JP7140143B2 - Semiconductor device manufacturing method and film adhesive - Google Patents

Semiconductor device manufacturing method and film adhesive Download PDF

Info

Publication number
JP7140143B2
JP7140143B2 JP2019568442A JP2019568442A JP7140143B2 JP 7140143 B2 JP7140143 B2 JP 7140143B2 JP 2019568442 A JP2019568442 A JP 2019568442A JP 2019568442 A JP2019568442 A JP 2019568442A JP 7140143 B2 JP7140143 B2 JP 7140143B2
Authority
JP
Japan
Prior art keywords
film
adhesive
semiconductor element
component
acrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019568442A
Other languages
Japanese (ja)
Other versions
JPWO2019150449A1 (en
Inventor
智陽 山崎
祐樹 中村
慎太郎 橋本
健太 菊地
大輔 舛野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2019150449A1 publication Critical patent/JPWO2019150449A1/en
Application granted granted Critical
Publication of JP7140143B2 publication Critical patent/JP7140143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Description

本発明は半導体装置の製造方法、及びフィルム状接着剤に関する。 The present invention relates to a method for manufacturing a semiconductor device and a film adhesive.

半導体装置における基板の配線、半導体チップに付設されたワイヤ等による凹凸を充填可能な、ワイヤ埋込型の半導体装置を得ることができる接着シートが知られている(例えば、特許文献1及び2)。当該接着シートは、凹凸充填時において高い流動性を発現するべく、熱硬化性成分を主成分として含有している。 BACKGROUND ART Adhesive sheets capable of filling unevenness due to wiring of a substrate in a semiconductor device, wires attached to a semiconductor chip, etc., and capable of obtaining a wire-embedded semiconductor device are known (for example, Patent Documents 1 and 2). . The adhesive sheet contains a thermosetting component as a main component in order to exhibit high fluidity when the irregularities are filled.

近年、このようなワイヤ埋込型の半導体装置の動作の高速化が重要視されている。従来は積層された半導体素子の最上段に、半導体装置の動作を制御するコントローラチップが配置されていたが、動作の高速化を実現するため、最下段にコントローラチップを配置した半導体装置のパッケージ技術が開発されている。このようなパッケージの1つの形態として、多段に積層した半導体素子のうち、2段目の半導体素子を圧着する際に使用するフィルム状接着剤を分厚くし、当該フィルム状接着剤内部にコントローラチップを埋め込むパッケージが注目を集めている。このような用途に使用されるフィルム状接着剤には、コントローラチップ、コントローラチップに接続されているワイヤ、基板表面の凹凸起因の段差等を埋め込むことのできる高い流動性が必要となる。 In recent years, increasing the speed of operation of such wire-embedded semiconductor devices has been emphasized. Conventionally, the controller chip that controls the operation of the semiconductor device was placed on the top layer of the stacked semiconductor elements, but in order to achieve faster operation, the semiconductor device package technology places the controller chip on the bottom layer. is being developed. As one form of such a package, among the semiconductor elements stacked in multiple layers, the film-like adhesive used when pressing the semiconductor element in the second layer is made thicker, and the controller chip is placed inside the film-like adhesive. Embedding packages are attracting attention. The film-like adhesive used for such applications requires high fluidity to embed controller chips, wires connected to the controller chips, steps due to irregularities on the substrate surface, and the like.

国際公開第2005/103180号WO2005/103180 特開2009-120830号公報JP 2009-120830 A

しかしながら、特許文献1及び2に記載の接着シートのように、単に硬化前の流動性が高いことを特徴とする接着シートを用いると、半導体素子の薄型化に伴い、硬化後に半導体装置全体が反り易いという問題がある。また、当該接着シートを用いた圧着時に空隙が発生した場合、それを従来の工程内で除去することが難しいという問題がある。このため、得られる半導体装置の接続信頼性の確保のためには、さらなる検討が必要であるというのが現状である。なお、特に後者における空隙の除去については、加圧オーブン等により加熱及び加圧する工程を別途設けることにより一応可能である。しかしながら、工程数の増加により、汎用品種に比べてリードタイムが増大してしまう。 However, when using an adhesive sheet that is simply characterized by high fluidity before curing, such as the adhesive sheets described in Patent Documents 1 and 2, the entire semiconductor device warps after curing as semiconductor elements become thinner. There is the problem of ease. Moreover, when a gap is generated during pressure bonding using the adhesive sheet, there is a problem that it is difficult to remove the gap within the conventional process. For this reason, the current situation is that further investigation is required to ensure the connection reliability of the resulting semiconductor device. In particular, the removal of voids in the latter case can be tentatively possible by separately providing a step of heating and pressurizing with a pressure oven or the like. However, due to the increase in the number of processes, the lead time increases compared to general-purpose products.

そこで、本発明は、リードタイムの増大を抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能な、半導体装置の製造方法を提供することを目的とする。本発明はまた、当該製造方法に用いられるフィルム状接着剤を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method of manufacturing a semiconductor device that can obtain a semiconductor device having excellent connection reliability while suppressing an increase in lead time. Another object of the present invention is to provide a film adhesive used in the production method.

本発明は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のダイボンド工程と、第1の半導体素子の面積よりも大きい第2の半導体素子の片面に、150℃におけるずり弾性率が1.5MPa以下であるフィルム状接着剤を貼付するラミネート工程と、フィルム状接着剤が貼付された第2の半導体素子を、フィルム状接着剤が第1の半導体素子を覆うように載置し、フィルム状接着剤を圧着することで、第1のワイヤ及び第1の半導体素子をフィルム状接着剤に埋め込む第2のダイボンド工程と、を備える、半導体装置の製造方法を提供する。 The present invention comprises a first die-bonding step of electrically connecting a first semiconductor element to a substrate via a first wire, and a second semiconductor element having a larger area than the first semiconductor element. , a laminating step of applying a film-like adhesive having a shear modulus of elasticity at 150° C. of 1.5 MPa or less; and a second die bonding step of embedding the first wire and the first semiconductor element in the film-like adhesive by pressing the film-like adhesive so as to cover the semiconductor device. I will provide a.

本発明によれば、リードタイムの増大を抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能である。より具体的には、150℃におけるずり弾性率が1.5MPa以下であるフィルム状接着剤を用いることで、特に第2のダイボンド工程において生じる空隙(ボイド)を、後工程である封止工程により解消することができる。これにより、空隙を解消するための特別なプロセスが別途必要とされず、リードタイムが増大しない。 According to the present invention, it is possible to obtain a semiconductor device having excellent connection reliability while suppressing an increase in lead time. More specifically, by using a film-like adhesive having a shear elastic modulus of 1.5 MPa or less at 150° C., the gaps (voids) generated particularly in the second die bonding step are removed by the subsequent sealing step. can be resolved. As a result, a special process for eliminating voids is not required separately, and the lead time is not increased.

本発明において、150℃におけるずり弾性率とは、フィルム状接着剤に5%の歪みを周波数1Hzで与えながら、5℃/分の昇温速度で室温から125℃まで昇温して1時間保持した後、5℃/分の昇温速度でさらに150℃まで昇温して45分間保持した後、動的粘弾性測定装置を用いて測定することで得られるものである。 In the present invention, the shear modulus at 150° C. means that the temperature is raised from room temperature to 125° C. at a rate of 5° C./min while applying a strain of 5% to the film adhesive at a frequency of 1 Hz and held for 1 hour. After that, the temperature is further increased to 150° C. at a temperature increase rate of 5° C./min, held for 45 minutes, and then measured using a dynamic viscoelasticity measuring device.

本発明において、フィルム状接着剤の、硬化後の170~190℃における引張弾性率が15MPa以下であることが好ましい。フィルム状接着剤が、硬化後において低弾性であることにより、封止工程時に良好な埋め込み性と応力緩和性とを得ることが可能となる。例えば薄型の第2の半導体素子を使用した場合でも、フィルム状接着剤が硬化した後の半導体装置の反りを抑制することができる。これにより、半導体装置の応力が緩和され、良好な接続信頼性を示す半導体装置を得易くなる。 In the present invention, the film adhesive preferably has a tensile modulus of 15 MPa or less at 170 to 190° C. after curing. Since the film-like adhesive has low elasticity after curing, it is possible to obtain good embedding properties and stress relaxation properties during the sealing process. For example, even when a thin second semiconductor element is used, warping of the semiconductor device after curing of the film-like adhesive can be suppressed. As a result, the stress of the semiconductor device is relaxed, making it easier to obtain a semiconductor device exhibiting good connection reliability.

本発明において、フィルム状接着剤の、80℃におけるずり粘度が15000Pa・s以下であることが好ましい。これにより、良好な埋め込み性を得易くなる。 In the present invention, the film adhesive preferably has a shear viscosity at 80° C. of 15000 Pa·s or less. This makes it easier to obtain good embeddability.

本発明において、フィルム状接着剤が、アクリル樹脂及びエポキシ樹脂を含むことが好ましい。熱可塑性成分と熱硬化成分とを併用することにより、良好な埋め込み性、熱硬化性及び応力緩和性を得易くなる。 In the present invention, the film adhesive preferably contains an acrylic resin and an epoxy resin. By using a thermoplastic component and a thermosetting component in combination, it becomes easier to obtain good embedding properties, thermosetting properties, and stress relaxation properties.

本発明において、アクリル樹脂が、重量平均分子量が10万~50万である第1のアクリル樹脂と、重量平均分子量が60万~100万である第2のアクリル樹脂とを含み、アクリル樹脂の全質量を基準として、第1のアクリル樹脂の含有量が50質量%以上であることが好ましい。このように分子量分布の幅を広げることにより、応力緩和性が向上し、硬化後の基板の反りを低減し易くなる。また、成膜性及び接着性を維持したまま、埋め込み性を向上し易くなる。 In the present invention, the acrylic resin includes a first acrylic resin having a weight average molecular weight of 100,000 to 500,000 and a second acrylic resin having a weight average molecular weight of 600,000 to 1,000,000. Based on the mass, the content of the first acrylic resin is preferably 50% by mass or more. By widening the width of the molecular weight distribution in this manner, the stress relaxation property is improved, and it becomes easy to reduce the warp of the substrate after curing. In addition, it becomes easy to improve the embedding property while maintaining the film-forming property and adhesiveness.

本発明において、フィルム状接着剤が、無機フィラー及び有機フィラーの少なくとも一方を含むことが好ましい。これにより、フィルム状接着剤の取り扱い性等がより向上すると共に、より良好なずり弾性率、接着力等の機械特性を得ることができる。 In the present invention, the film adhesive preferably contains at least one of an inorganic filler and an organic filler. Thereby, the handleability of the film-like adhesive is further improved, and mechanical properties such as better shear modulus and adhesive strength can be obtained.

本発明は、また、基板上に第1のワイヤを介して第1の半導体素子が電気的に接続されると共に、第1の半導体素子上に、第1の半導体素子の面積よりも大きい第2の半導体素子が圧着されてなる半導体装置において、第2の半導体素子を圧着すると共に、第1のワイヤ及び第1の半導体素子を埋め込むために用いられる、150℃におけるずり弾性率が1.5MPa以下である、フィルム状接着剤を提供する。本発明のフィルム状接着剤を用いることで、リードタイムの増大を抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能である。 The present invention also provides a first semiconductor element electrically connected on a substrate via a first wire, and a second semiconductor element having an area larger than that of the first semiconductor element on the first semiconductor element. In the semiconductor device in which the semiconductor elements of (1) are crimped, the shear elastic modulus at 150° C. used for crimping the second semiconductor element and embedding the first wire and the first semiconductor element is 1.5 MPa or less A film adhesive is provided. By using the film-like adhesive of the present invention, it is possible to obtain a semiconductor device with excellent connection reliability while suppressing an increase in lead time.

本発明のフィルム状接着剤において、硬化後の170~190℃における引張弾性率が15MPa以下であることが好ましい。 The film adhesive of the present invention preferably has a tensile modulus of elasticity of 15 MPa or less at 170 to 190° C. after curing.

本発明のフィルム状接着剤において、80℃におけるずり粘度が15000Pa・s以下であることが好ましい。 The film adhesive of the present invention preferably has a shear viscosity of 15000 Pa·s or less at 80°C.

本発明のフィルム状接着剤は、アクリル樹脂及びエポキシ樹脂を含むことが好ましい。 The film adhesive of the present invention preferably contains an acrylic resin and an epoxy resin.

本発明のフィルム状接着剤において、アクリル樹脂が、重量平均分子量が10万~50万である第1のアクリル樹脂と、重量平均分子量が60万~100万である第2のアクリル樹脂とを含み、アクリル樹脂の全質量を基準として、第1のアクリル樹脂の含有量が50質量%以上であることが好ましい。 In the film adhesive of the present invention, the acrylic resin includes a first acrylic resin having a weight average molecular weight of 100,000 to 500,000 and a second acrylic resin having a weight average molecular weight of 600,000 to 1,000,000. , the content of the first acrylic resin is preferably 50% by mass or more based on the total mass of the acrylic resin.

本発明のフィルム状接着剤は、無機フィラー及び有機フィラーの少なくとも一方を含むことが好ましい。 The film adhesive of the present invention preferably contains at least one of an inorganic filler and an organic filler.

本発明によれば、リードタイムの増大を抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能な、半導体装置の製造方法を提供することができる。また、本発明によれば、当該製造方法に用いられるフィルム状接着剤を提供することができる。 According to the present invention, it is possible to provide a method of manufacturing a semiconductor device that can obtain a semiconductor device having excellent connection reliability while suppressing an increase in lead time. Moreover, according to the present invention, it is possible to provide a film adhesive used in the production method.

本発明の実施形態に係るフィルム状接着剤を示す図である。It is a figure which shows the film-like adhesive which concerns on embodiment of this invention. 接着シートを示す図である。It is a figure which shows an adhesive sheet. 他の接着シートを示す図である。FIG. 10 is a diagram showing another adhesive sheet; 他の接着シートを示す図である。FIG. 10 is a diagram showing another adhesive sheet; 他の接着シートを示す図である。FIG. 10 is a diagram showing another adhesive sheet; 半導体装置を示す図である。It is a figure which shows a semiconductor device. 本発明の実施形態に係る半導体装置の製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 図7の後続の工程を示す図である。FIG. 8 shows a subsequent step of FIG. 7; 図8の後続の工程を示す図である。FIG. 9 shows a subsequent step of FIG. 8; 図9の後続の工程を示す図である。FIG. 10 is a diagram illustrating a subsequent step of FIG. 9; 図10の後続の工程を示す図である。FIG. 11 shows a subsequent step of FIG. 10;

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。なお、本明細書における「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味する。 Preferred embodiments of the present invention will be described in detail below with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are omitted. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratios of the drawings are not limited to the illustrated ratios. In this specification, "(meth)acryl" means "acryl" and "methacryl" corresponding thereto.

(フィルム状接着剤)
図1は、本実施形態に係るフィルム状接着剤10を模式的に示す断面図である。フィルム状接着剤10は、熱硬化性であり、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化物(Cステージ)状態となり得る接着剤組成物をフィルム状に成形してなるものである。
(Film adhesive)
FIG. 1 is a cross-sectional view schematically showing a film adhesive 10 according to this embodiment. The film-like adhesive 10 is a thermosetting adhesive composition formed into a film by passing through a semi-cured (B-stage) state and being able to become a completely cured (C-stage) state after curing. be.

フィルム状接着剤10は、150℃におけるずり弾性率が1.5MPa以下である。リードタイムの増大を抑制しつつ、接続信頼性に優れる半導体装置をより得易くなるという観点から、ずり弾性率は1.2MPa以下であることが好ましく、1.0MPa以下であることがより好ましく、0.8MPa以下であることがさらに好ましい。ずり弾性率の下限は特に限定されないが、過度な流動性を抑制するという観点から0.01MPaとすることができる。なお、ずり弾性率は、後述のとおり(a)~(f)成分の種類及び量を調整することにより、調整することが可能である。例えば、150℃におけるずり弾性率を下げる(1.5MPa以下にする)ための指針としては、(a1)成分の量を増やすこと、(a2)成分の量を減らすこと、(b)成分の重量平均分子量を下げること、(c)成分の量を減らすこと、(d)成分の量を減らすこと、(e)成分の量を減らすこと、などが挙げられるが、この限りではない。 The film adhesive 10 has a shear modulus of 1.5 MPa or less at 150°C. The shear modulus is preferably 1.2 MPa or less, more preferably 1.0 MPa or less, from the viewpoint of making it easier to obtain a semiconductor device with excellent connection reliability while suppressing an increase in lead time. It is more preferably 0.8 MPa or less. Although the lower limit of the shear modulus is not particularly limited, it can be set to 0.01 MPa from the viewpoint of suppressing excessive fluidity. The shear modulus can be adjusted by adjusting the types and amounts of components (a) to (f) as described below. For example, as a guideline for lowering the shear modulus at 150° C. (to 1.5 MPa or less), the amount of component (a1) is increased, the amount of component (a2) is decreased, and the weight of component (b) is Examples include, but are not limited to, reducing the average molecular weight, reducing the amount of component (c), reducing the amount of component (d), and reducing the amount of component (e).

フィルム状接着剤10は、硬化後の170~190℃における引張弾性率が15MPa以下であることが好ましい。良好な埋め込み性と応力緩和性とをより得易くなるという観点から、引張弾性率は12MPa以下であることがより好ましく、10MPa以下であることがさらに好ましく、8MPa以下であることが特に好ましい。引張弾性率の下限は特に限定されないが、適度な接着性を確保するという観点から1MPaとすることができる。引張弾性率は、例えば周波数10Hzとして、動的粘弾性測定装置を用いて測定することができる。 The film adhesive 10 preferably has a tensile elastic modulus of 15 MPa or less at 170 to 190° C. after curing. From the viewpoint of making it easier to obtain good embeddability and stress relaxation, the tensile modulus is more preferably 12 MPa or less, even more preferably 10 MPa or less, and particularly preferably 8 MPa or less. Although the lower limit of the tensile modulus is not particularly limited, it can be set to 1 MPa from the viewpoint of ensuring appropriate adhesiveness. The tensile modulus can be measured using a dynamic viscoelasticity measuring device at a frequency of 10 Hz, for example.

フィルム状接着剤10は、80℃におけるずり粘度が15000Pa・s以下であることが好ましい。良好な埋め込み性を得易くなるという観点から、ずり粘度は10000Pa・s以下であることがより好ましく、9000Pa・s以下であることがさらに好ましい。ずり粘度の下限は特に限定されないが、過度な流動性を抑制するという観点から1000Pa・sとすることができる。ずり粘度は、例えば動的粘弾性測定装置を用いて測定することができる。 The film adhesive 10 preferably has a shear viscosity of 15000 Pa·s or less at 80°C. The shear viscosity is more preferably 10,000 Pa·s or less, and even more preferably 9,000 Pa·s or less, from the viewpoint of easily obtaining good embeddability. Although the lower limit of the shear viscosity is not particularly limited, it can be set to 1000 Pa·s from the viewpoint of suppressing excessive fluidity. Shear viscosity can be measured, for example, using a dynamic viscoelasticity measuring device.

フィルム状接着剤10の含有成分は特に限定されないが、例えば、(a)熱硬化性成分、(b)熱可塑性成分、(c)無機フィラー、(d)有機フィラー、(e)硬化促進剤、(f)その他の成分、等を含むことができる。これら(a)~(f)成分の種類及び量を調整することにより、フィルム状接着剤10の特性を調整することができる。 Components contained in the film-like adhesive 10 are not particularly limited, but for example, (a) a thermosetting component, (b) a thermoplastic component, (c) an inorganic filler, (d) an organic filler, (e) a curing accelerator, (f) other ingredients, and the like. By adjusting the types and amounts of these components (a) to (f), the properties of the film adhesive 10 can be adjusted.

(a)熱硬化性成分
熱硬化性成分としては熱硬化性樹脂が挙げられる。特に、半導体素子を実装する場合に要求される耐熱性及び耐湿性の観点から、熱硬化性成分としてエポキシ樹脂、フェノール樹脂等が好ましい。
(a) Thermosetting component The thermosetting component includes thermosetting resins. In particular, from the viewpoint of heat resistance and moisture resistance required when mounting a semiconductor element, epoxy resin, phenol resin, and the like are preferable as the thermosetting component.

例えばエポキシ樹脂としては、芳香環含有エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂等の、一般に知られているエポキシ樹脂を用いることができる。また、エポキシ樹脂は多官能エポキシ樹脂であってもよい。エポキシ樹脂としては、具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、これらのビスフェノール型エポキシ樹脂を変性させた二官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フルオレン変性エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフタレン変性エポキシ樹脂等を用いることができる。 For example, as epoxy resins, generally known epoxy resins such as aromatic ring-containing epoxy resins, heterocyclic ring-containing epoxy resins, and alicyclic epoxy resins can be used. Alternatively, the epoxy resin may be a polyfunctional epoxy resin. Specific examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bifunctional epoxy resins obtained by modifying these bisphenol type epoxy resins, and cresol novolac type epoxy resin. , bisphenol A novolak-type epoxy resin, fluorene-modified epoxy resin, triphenylmethane-type epoxy resin, biphenyl-type epoxy resin, glycidylamine-type epoxy resin, naphthalene-modified epoxy resin, and the like can be used.

エポキシ樹脂としては、例えば、新日化エポキシ製造株式会社製のYDFシリーズ及びYDCNシリーズ、株式会社プリンテック製のEPOX-MKシリーズ及びVG-3101L等が挙げられる。 Examples of epoxy resins include YDF series and YDCN series manufactured by Shin Nikka Epoxy Manufacturing Co., Ltd., EPOX-MK series and VG-3101L manufactured by Printec Co., Ltd., and the like.

また、フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、ザイロック型フェノール樹脂、ビフェニル型フェノール樹脂、トリフェニルメタン型フェノール樹脂、フェノール環上の水素をアリール基で置換した変性フェノール樹脂等が挙げられる。なお、フェノール樹脂としては、耐熱性の観点から、85℃、85%RHの恒温恒湿槽に48時間投入後の吸水率が2質量%以下で、熱重量分析計(TGA)で測定した350℃での加熱質量減少率(昇温速度:5℃/min、雰囲気:窒素)が5質量%未満のものが好ましい。 Phenolic resins include, for example, novolac-type phenolic resins, Zyloc-type phenolic resins, biphenyl-type phenolic resins, triphenylmethane-type phenolic resins, and modified phenolic resins in which hydrogen atoms on the phenol ring are substituted with aryl groups. In addition, from the viewpoint of heat resistance, the phenol resin has a water absorption of 2% by mass or less after being placed in a constant temperature and humidity bath at 85 ° C. and 85% RH for 48 hours. C. (heating rate: 5.degree. C./min, atmosphere: nitrogen) is preferably less than 5% by mass.

フェノール樹脂としては、例えば、DIC株式会社製のフェノライトKA及びTDシリーズ、エア・ウォーター株式会社製のHEシリーズ等が挙げられる。 Examples of phenolic resins include Phenolite KA and TD series manufactured by DIC Corporation, HE series manufactured by Air Water Corporation, and the like.

(a)熱硬化性成分としてエポキシ樹脂及びフェノール樹脂を併用する場合、エポキシ樹脂及びフェノール樹脂の配合比は、それぞれエポキシ当量と水酸基当量の当量比で0.70/0.30~0.30/0.70となるのが好ましく、0.65/0.35~0.35/0.65となるのがより好ましく、0.60/0.40~0.40/0.60となるのがさらに好ましく、0.60/0.40~0.50/0.50となるのが特に好ましい。配合比が上記範囲内であることで、優れた硬化性、流動性等を有するフィルム状接着剤10が得易くなる。 (a) When an epoxy resin and a phenol resin are used together as a thermosetting component, the compounding ratio of the epoxy resin and the phenol resin is 0.70/0.30 to 0.30 in terms of the equivalent ratio of epoxy equivalent to hydroxyl group equivalent, respectively. 0.70 is preferable, 0.65/0.35 to 0.35/0.65 is more preferable, and 0.60/0.40 to 0.40/0.60 is preferable. More preferably, 0.60/0.40 to 0.50/0.50 is particularly preferred. When the compounding ratio is within the above range, it becomes easier to obtain the film-like adhesive 10 having excellent curability, fluidity, and the like.

なお、硬化後における半導体装置の反りを抑制するという観点から、硬化速度の異なる熱硬化性樹脂を組み合わせることが好ましい。具体的には、上記に例示したエポキシ樹脂及びフェノール樹脂のうち、例えば(a1)軟化点が60℃以下又は常温で液体であるもの(硬化して接着作用を有するものであれば特に限定されない)と、(a2)軟化点が60℃超(常温で固体)であるものと、を組み合わせて用いることが好ましい。なお、ここでいう常温とは5~35℃を意味する。 From the viewpoint of suppressing warpage of the semiconductor device after curing, it is preferable to combine thermosetting resins having different curing speeds. Specifically, among the epoxy resins and phenol resins exemplified above, for example, (a1) those having a softening point of 60° C. or lower or being liquid at room temperature (there are no particular limitations as long as they cure and have an adhesive effect). and (a2) a softening point exceeding 60° C. (solid at room temperature). The normal temperature here means 5 to 35°C.

(a1)成分の含有量は、(a)成分の全質量を基準として10~50質量%であることが好ましく、20~40質量%であることがより好ましい。これにより、埋め込み性と、ダイシング、ピックアップ等のプロセス適性とを両立し易くなる。 The content of component (a1) is preferably 10 to 50% by mass, more preferably 20 to 40% by mass, based on the total mass of component (a). This facilitates compatibility between embeddability and process aptitude such as dicing and pick-up.

(a2)成分の含有量は、(a)成分の全質量を基準として10質量%以上であることが好ましく、15質量%以上であることがより好ましい。これにより、製膜性、流動性、応力緩和性等を調整し易くなる。なお、(a2)成分の含有量の上限は特に限定されないが、(a)成分の全質量を基準として90質量%とすることができる。 The content of component (a2) is preferably 10% by mass or more, more preferably 15% by mass or more, based on the total mass of component (a). This makes it easier to adjust the film formability, fluidity, stress relaxation, and the like. Although the upper limit of the content of component (a2) is not particularly limited, it can be 90% by mass based on the total mass of component (a).

(b)熱可塑性成分
(b)熱可塑性成分としては、架橋性官能基を有するモノマー比率が高く分子量が低い熱可塑性成分と、架橋性官能基を有するモノマー比率が低く分子量が高い熱可塑性成分との併用が好ましい。例えば、(b)成分は、(b1)架橋性官能基を有するモノマー単位をモノマー単位全量に対し5~15モル%有し、重量平均分子量が10万~50万でありガラス転移温度Tgが-50~50℃である熱可塑性成分と、(b2)架橋性官能基を有するモノマー単位をモノマー単位全量に対し比率で1~7モル%有し、重量平均分子量が60万~100万でありガラス転移温度Tgが-50~50℃である熱可塑性成分とを含むことが好ましい。
(b) Thermoplastic component (b) The thermoplastic component includes a thermoplastic component with a high ratio of monomers having a crosslinkable functional group and a low molecular weight, and a thermoplastic component with a low ratio of monomers with a crosslinkable functional group and a high molecular weight. combination use is preferable. For example, component (b) has (b1) a monomer unit having a crosslinkable functional group in an amount of 5 to 15 mol% with respect to the total amount of monomer units, has a weight average molecular weight of 100,000 to 500,000, and has a glass transition temperature Tg of − A glass having a thermoplastic component having a temperature of 50 to 50° C. and (b2) a monomer unit having a crosslinkable functional group in a ratio of 1 to 7 mol % with respect to the total amount of monomer units, and having a weight average molecular weight of 600,000 to 1,000,000. and a thermoplastic component having a transition temperature Tg of -50 to 50°C.

(b)成分としては、熱可塑性樹脂であるアクリル樹脂(アクリル系樹脂)が好ましく、さらに、ガラス転移温度Tgが-50℃~50℃であり、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基又はグリシジル基を架橋性官能基として有する官能性モノマーを重合して得られる、エポキシ基含有(メタ)アクリル共重合体等のアクリル樹脂がより好ましい。 Component (b) is preferably an acrylic resin (acrylic resin) which is a thermoplastic resin, and further has a glass transition temperature Tg of −50° C. to 50° C., and an epoxy or glycidyl group such as glycidyl acrylate and glycidyl methacrylate. As a crosslinkable functional group, an acrylic resin such as an epoxy group-containing (meth)acrylic copolymer obtained by polymerizing a functional monomer is more preferable.

このようなアクリル樹脂として、エポキシ基含有(メタ)アクリル酸エステル共重合体、エポキシ基含有アクリルゴム等を使用することができ、エポキシ基含有アクリルゴムがより好ましい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリル等の共重合体、エチルアクリレートとアクリロニトリル等の共重合体等からなる、エポキシ基を有しているアクリルゴムである。 As such an acrylic resin, an epoxy group-containing (meth)acrylic acid ester copolymer, an epoxy group-containing acrylic rubber, or the like can be used, and an epoxy group-containing acrylic rubber is more preferable. Epoxy group-containing acrylic rubber is an acrylic rubber having an epoxy group, which is mainly composed of an acrylic acid ester and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, or a copolymer such as ethyl acrylate and acrylonitrile. be.

なお、(b)成分の架橋性官能基としては、エポキシ基の他、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基が挙げられる。 The crosslinkable functional groups of the component (b) include epoxy groups as well as crosslinkable functional groups such as alcoholic or phenolic hydroxyl groups and carboxyl groups.

(b1)成分において、高い接着力が発現し易く、また150℃におけるずり弾性率を低くし易い観点から、架橋性官能基を有するモノマー単位はモノマー単位全量に対し5~15モル%であることが好ましく、5~10モル%がより好ましい。 In the component (b1), from the viewpoint of easily exhibiting high adhesive strength and easily lowering the shear modulus at 150° C., the monomer unit having a crosslinkable functional group should be 5 to 15 mol % of the total amount of the monomer unit. is preferred, and 5 to 10 mol % is more preferred.

(b2)成分において、硬化後における弾性率の過度な上昇を抑制し易いという観点から、架橋性官能基を有するモノマー単位はモノマー単位全量に対し1~7モル%であることが好ましく、2~5モル%がより好ましい。 In the component (b2), from the viewpoint of facilitating suppression of an excessive increase in elastic modulus after curing, the monomer unit having a crosslinkable functional group preferably accounts for 1 to 7 mol% of the total amount of the monomer units. 5 mol % is more preferred.

(b1)成分(第1のアクリル樹脂)の重量平均分子量は、10万~50万であることが好ましい。(b1)成分の重量平均分子量が10万以上であると、フィルム成膜性がより良好になると共に、フィルム状接着剤10の接着強度と耐熱性をより高めることができる。(b1)成分の重量平均分子量が50万以下であると、ずり粘度を低減し易くなるため、フィルム状接着剤10の埋込性がより良好になる。 The weight average molecular weight of component (b1) (first acrylic resin) is preferably 100,000 to 500,000. When the weight-average molecular weight of the component (b1) is 100,000 or more, the film formability is further improved, and the adhesive strength and heat resistance of the film adhesive 10 can be further increased. When the weight-average molecular weight of the component (b1) is 500,000 or less, the film-like adhesive 10 can be more easily embedded because the shear viscosity can be easily reduced.

(b2)成分(第2のアクリル樹脂)の重量平均分子量は、60万~100万であることが好ましい。(b2)成分の重量平均分子量が60万以上であると、(b1)成分との併用により成膜性を向上させる効果が一段と良好になる。(b2)成分の重量平均分子量が100万以下であると、未硬化状態のフィルム状接着剤10のずり粘度を低減し易くなるため、埋込性がより良好になる。また、未硬化状態のフィルム状接着剤10の切削性が改善し、ダイシングの品質がより良好になる場合がある。 The weight average molecular weight of component (b2) (second acrylic resin) is preferably 600,000 to 1,000,000. When the weight-average molecular weight of component (b2) is 600,000 or more, the effect of improving the film-forming properties when used in combination with component (b1) is further enhanced. When the weight-average molecular weight of the component (b2) is 1,000,000 or less, the uncured film adhesive 10 can be easily reduced in shear viscosity, resulting in better embedding properties. In addition, the machinability of the uncured film adhesive 10 is improved, and the dicing quality may be improved.

重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いて得られるポリスチレン換算値である。 The weight average molecular weight is a polystyrene conversion value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.

また、(b1)成分及び(b2)成分のガラス転移温度Tgは-50~50℃であることが好ましい。ガラス転移温度Tgが50℃以下であると、フィルム状接着剤10の柔軟性がより良好になる。一方、ガラス転移温度Tgが-50℃以上であると、フィルム状接着剤10の柔軟性が高くなり過ぎないため、半導体ウェハをダイシングする際にフィルム状接着剤10を切断し易い。このため、バリの発生によりダイシング性が悪化することを抑制し易い。 Further, the glass transition temperature Tg of the components (b1) and (b2) is preferably -50 to 50°C. When the glass transition temperature Tg is 50° C. or lower, the flexibility of the film adhesive 10 becomes better. On the other hand, when the glass transition temperature Tg is −50° C. or higher, the flexibility of the film adhesive 10 does not become too high, so that the film adhesive 10 is easily cut when dicing the semiconductor wafer. Therefore, it is easy to suppress the deterioration of the dicing property due to the occurrence of burrs.

(b)成分全体のガラス転移温度Tgは-20℃~40℃であることが好ましく、-10℃~30℃であることが好ましい。これにより、ダイシング時にフィルム状接着剤10が切断し易くなるため樹脂くずが発生し難く、フィルム状接着剤10の接着力と耐熱性とを高くし易く、また未硬化状態のフィルム状接着剤10の高い流動性を発現し易くなる。 The glass transition temperature Tg of the component (b) as a whole is preferably -20°C to 40°C, preferably -10°C to 30°C. As a result, the film-like adhesive 10 is easily cut during dicing, so resin waste is less likely to occur, the adhesive strength and heat resistance of the film-like adhesive 10 can be easily increased, and the uncured film-like adhesive 10 It becomes easy to express high fluidity of.

ガラス転移温度Tgは、熱示差走査熱量計(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定することができる。 The glass transition temperature Tg can be measured using a thermal differential scanning calorimeter (for example, "Thermo Plus 2" manufactured by Rigaku Corporation).

(b)成分は、市販品として入手することも可能である。例えば、(b1)成分としては、アクリルゴムHTR-860P-30B-CHN(商品名、ナガセケムテックス株式会社製)等が挙げられる。この化合物は、架橋性の部位としてグリシジル部位を有し、アクリル酸誘導体からなるアクリルゴムをベース樹脂とする化合物であり、重量平均分子量が23万、ガラス転移温度Tgが-7℃である。また、(b2)成分としては、アクリルゴムHTR-860P-3CSP(商品名、ナガセケムテックス株式会社製)等が挙げられる。 Component (b) can also be obtained as a commercial product. For example, the (b1) component includes acrylic rubber HTR-860P-30B-CHN (trade name, manufactured by Nagase ChemteX Corporation). This compound has a glycidyl site as a crosslinkable site, is a compound based on an acrylic rubber composed of an acrylic acid derivative, and has a weight average molecular weight of 230,000 and a glass transition temperature Tg of -7°C. The (b2) component includes acrylic rubber HTR-860P-3CSP (trade name, manufactured by Nagase ChemteX Corporation).

(b1)成分(第1のアクリル樹脂)の含有量は、(b)成分(アクリル樹脂)の全質量を基準として50質量%以上であることが好ましく、70質量%以上であることがより好ましい。これにより、良好な埋め込み性、応力緩和性、製膜性、接着性等を得易くなる。なお、(b1)成分の含有量の上限は特に限定されないが、(b)成分の全質量を基準として90質量%とすることができる。 The content of component (b1) (first acrylic resin) is preferably 50% by mass or more, more preferably 70% by mass or more, based on the total mass of component (b) (acrylic resin). . This makes it easier to obtain good embedding properties, stress relaxation properties, film-forming properties, adhesion properties, and the like. Although the upper limit of the content of component (b1) is not particularly limited, it can be 90% by mass based on the total mass of component (b).

(b2)成分の含有量は、(b)成分の全質量を基準として10質量%以上であることが好ましく、30質量%以上であることがより好ましい。これにより、製膜性、接着性、弾性率等を調整し易くなる。なお、(b2)成分の含有量の上限は特に限定されないが、(b)成分の全質量を基準として50質量%とすることができる。 The content of component (b2) is preferably 10% by mass or more, more preferably 30% by mass or more, based on the total mass of component (b). This makes it easier to adjust the film formability, adhesiveness, elastic modulus, and the like. Although the upper limit of the content of component (b2) is not particularly limited, it can be 50% by mass based on the total mass of component (b).

(b)成分の含有量は、(a)成分を100質量部としたとき、20~160質量部であることが好ましく、50~120質量部であることがより好ましい。(b)成分の含有量が上記下限値以上であることにより、良好な製膜性、埋め込み性、接着性、応力緩和性等が得易い。一方、(b)成分の含有量が上記上限値以下であることにより、良好な製膜性、埋め込み性等を得易くなる。 The content of component (b) is preferably 20 to 160 parts by mass, more preferably 50 to 120 parts by mass, based on 100 parts by mass of component (a). When the content of component (b) is at least the above lower limit, good film-forming properties, embedding properties, adhesion properties, stress relaxation properties, and the like can be easily obtained. On the other hand, when the content of the component (b) is equal to or less than the above upper limit, it becomes easier to obtain good film forming properties, embedding properties, and the like.

(c)無機フィラー
(c)成分としては、Bステージ状態におけるフィルム状接着剤10のダイシング性の向上、フィルム状接着剤10の取扱い性の向上、熱伝導性の向上、ずり粘度(溶融粘度)の調整、チクソトロピック性の付与、接着力の向上等の観点から、シリカフィラー等が好ましい。
(c) Inorganic filler The component (c) improves the dicing properties of the film adhesive 10 in the B-stage state, improves the handleability of the film adhesive 10, improves thermal conductivity, and shear viscosity (melt viscosity). Silica fillers are preferred from the viewpoints of adjustment of , provision of thixotropic properties, improvement of adhesive strength, and the like.

(c)成分は、未硬化状態のフィルム状接着剤10のダイシング性を向上し、硬化後の接着力を十分に発現させる目的で、平均粒径の異なる2種類以上のフィラーを含むことが好ましい。(c)成分は、例えば(c1)未硬化状態のフィルム状接着剤10のダイシング性向上を目的とした平均粒径が0.2μm以上の第1のフィラーと、(c2)硬化後の接着力を十分に発現させることを目的とした平均粒径が0.2μm未満の第2のフィラーを含むことが好ましい。 The component (c) preferably contains two or more fillers with different average particle diameters for the purpose of improving the dicing properties of the uncured film adhesive 10 and sufficiently exhibiting the adhesive strength after curing. . The component (c) includes, for example, (c1) a first filler having an average particle size of 0.2 μm or more for the purpose of improving the dicing property of the uncured film adhesive 10, and (c2) adhesive strength after curing. It is preferable to include a second filler having an average particle size of less than 0.2 μm for the purpose of sufficiently expressing the.

平均粒径は、レーザー回折式粒度分布測定装置を用いて、アセトンを溶媒として分析した場合に得られる値とする。第1及び第2のフィラーの平均粒径は、粒度分布測定装置で分析した場合に、それぞれのフィラーが含まれていることが判別できる程度に、その差が大きいことがより好ましい。 The average particle size is a value obtained by analysis using a laser diffraction particle size distribution analyzer using acetone as a solvent. It is more preferable that the difference between the average particle diameters of the first and second fillers is large enough to determine the presence of each filler when analyzed by a particle size distribution analyzer.

(c1)成分の含有量は、(c)成分の全質量を基準として30質量%以上であることが好ましい。(c1)成分の含有量が30質量%以上であることにより、フィルムの破断性の悪化、未硬化状態のフィルム状接着剤10の流動性の悪化を抑制し易くなる。なお、(c1)成分の含有量の上限は特に限定されないが、(c)成分の全質量を基準として95質量%とすることができる。 The content of component (c1) is preferably 30% by mass or more based on the total mass of component (c). When the content of the component (c1) is 30% by mass or more, it becomes easy to suppress the deterioration of the breakability of the film and the deterioration of the fluidity of the uncured film-like adhesive 10 . Although the upper limit of the content of component (c1) is not particularly limited, it can be 95% by mass based on the total mass of component (c).

(c2)成分の含有量は、(c)成分の全質量を基準として5質量%以上であることが好ましい。(c2)成分の含有量が5質量%以上であることにより、硬化後の接着力を向上させ易い。なお、(c2)成分の含有量の上限は、適度な流動性を確保する観点から、(c)成分の全質量を基準として30質量%とすることができる。 The content of component (c2) is preferably 5% by mass or more based on the total mass of component (c). When the content of component (c2) is 5% by mass or more, it is easy to improve the adhesive strength after curing. In addition, the upper limit of the content of the component (c2) can be set to 30% by mass based on the total mass of the component (c) from the viewpoint of ensuring appropriate fluidity.

(c)成分の含有量は、(a)成分を100質量部としたとき、10~90質量部であることが好ましい。(c)成分の含有量が上記下限値以上であることにより、未硬化状態のフィルム状接着剤10のダイシング性の悪化、硬化後の接着力の低下を抑制し易いという傾向がある。一方、(c)成分の含有量が上記上限値以下であることにより、未硬化状態のフィルム状接着剤10の流動性の低下、硬化後の弾性率の上昇を抑制し易いという傾向がある。 The content of component (c) is preferably 10 to 90 parts by mass based on 100 parts by mass of component (a). When the content of the component (c) is at least the above lower limit, there is a tendency that deterioration of the dicing property of the film adhesive 10 in an uncured state and a decrease in adhesive strength after curing are easily suppressed. On the other hand, when the content of the component (c) is equal to or less than the above upper limit, there is a tendency that the uncured film-like adhesive 10 tends to be less fluid and less likely to increase in elastic modulus after curing.

(d)有機フィラー
(d)成分としては、フィルム状接着剤10のダイシング性の向上、フィルム状接着剤10の取扱い性の向上、ずり粘度(溶融粘度)の調整、接着力の向上、硬化後の応力緩和性等の観点から、スチレン-PMMA変性ゴムフィラー、シリコーン変性ゴムフィラー等が好ましい。(d)成分の平均粒径は、硬化後の接着力を十分に発現し易くする観点から0.2μm以下であることが好ましい。
(d) Organic filler As component (d), improvement of dicing property of film adhesive 10, improvement of handleability of film adhesive 10, adjustment of shear viscosity (melt viscosity), improvement of adhesive strength, Styrene-PMMA-modified rubber fillers, silicone-modified rubber fillers, and the like are preferable from the viewpoint of stress relaxation. The average particle diameter of component (d) is preferably 0.2 μm or less from the viewpoint of facilitating the development of sufficient adhesive strength after curing.

(d)成分の含有量は、(c)成分を100質量部としたとき、0~50質量部であることが好ましい。 The content of component (d) is preferably from 0 to 50 parts by mass based on 100 parts by mass of component (c).

(e)硬化促進剤
良好な硬化性を得る目的で、(e)硬化促進剤を用いることが好ましい。(e)成分としては、反応性の観点からイミダゾール系の化合物が好ましい。なお、(e)成分の反応性が高すぎると、フィルム状接着剤10の製造工程中の加熱によりずり粘度が上昇し易くなるだけではなく、経時による劣化を引き起こし易い傾向がある。一方、(e)成分の反応性が低すぎると、フィルム状接着剤10の硬化性が低下し易い傾向がある。フィルム状接着剤10が十分硬化されないまま製品内に搭載されると、十分な接着性が得られず、半導体装置の接続信頼性を悪化させる可能性がある。
(e) Curing Accelerator For the purpose of obtaining good curability, it is preferable to use (e) a curing accelerator. As component (e), an imidazole compound is preferable from the viewpoint of reactivity. If the reactivity of the component (e) is too high, not only is the shear viscosity likely to increase due to heating during the manufacturing process of the film-like adhesive 10, but also deterioration over time tends to occur. On the other hand, if the reactivity of the component (e) is too low, the curability of the film-like adhesive 10 tends to decrease. If the film-like adhesive 10 is mounted in a product without being sufficiently cured, sufficient adhesiveness cannot be obtained, possibly deteriorating the connection reliability of the semiconductor device.

(e)成分を含有させることで、フィルム状接着剤10の硬化性がより向上する。一方、(e)成分の含有量が多すぎる場合には、フィルム状接着剤10の製造工程中の加熱によりずり粘度が上昇し易くなるだけではなく、経時による劣化を引き起こし易い傾向がある。このような観点から、(e)成分の含有量は、(a)成分を100質量部としたとき、0~0.20質量部であることが好ましい。 By containing the component (e), the curability of the film-like adhesive 10 is further improved. On the other hand, if the content of the component (e) is too high, the shear viscosity tends to increase due to heating during the manufacturing process of the film adhesive 10, and deterioration over time tends to occur. From this point of view, the content of component (e) is preferably 0 to 0.20 parts by mass based on 100 parts by mass of component (a).

(f)その他の成分
上記成分以外に、接着性向上の観点から、本技術分野において使用され得るその他の成分をさらに適量用いてもよい。そのような成分としては、例えばカップリング剤が挙げられる。カップリング剤としては、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。
(f) Other components In addition to the above components, from the viewpoint of improving adhesion, other components that can be used in this technical field may be used in appropriate amounts. Such components include, for example, coupling agents. Coupling agents include γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane and the like.

(フィルム状接着剤)
フィルム状接着剤10は、例えば上記成分を含む接着剤組成物のワニスを基材フィルム上に塗布することによりワニスの層を形成する工程、加熱乾燥によりワニスの層から溶媒を除去する工程、基材フィルムを除去する工程、により得ることができる。
(Film adhesive)
The film-like adhesive 10 is prepared by, for example, forming a varnish layer by applying a varnish of an adhesive composition containing the above components onto a base film, removing the solvent from the varnish layer by heat drying, a step of removing the material film.

ワニスは、上記成分を含む接着剤組成物を有機溶媒中で混合、混練等して調製することができる。混合及び混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を用いることができる。これらの機器は適宜組み合わせて用いることができる。ワニスの塗布は、例えば、コンマコーター、ダイコータ―等により行うことができる。ワニスの加熱乾燥条件は、使用した有機溶媒が充分に揮散する条件であれば特に制限はなく、例えば60~200℃で0.1~90分間とすることができる。 The varnish can be prepared by mixing, kneading, etc., an adhesive composition containing the above components in an organic solvent. Mixing and kneading can be carried out using a usual dispersing machine such as a stirrer, a kneader, a triple roll, a ball mill and the like. These devices can be used in combination as appropriate. Application of the varnish can be performed by, for example, a comma coater, a die coater, or the like. Conditions for drying the varnish by heating are not particularly limited as long as the organic solvent used is sufficiently volatilized.

有機溶媒としては、上記成分を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノン等を使用することが好ましい。 The organic solvent is not limited as long as it can uniformly dissolve, knead or disperse the above components, and conventionally known solvents can be used. Examples of such solvents include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, toluene and xylene. It is preferable to use methyl ethyl ketone, cyclohexanone, etc., because of their high drying speed and low price.

上記基材フィルムとしては、特に制限はなく、例えば、ポリエステルフィルム(ポリエチレンテレフタレートフィルム等)、ポリプロピレンフィルム(OPP(Oriented PolyPropylene)フィルム等)、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が挙げられる。 The base film is not particularly limited, and examples thereof include polyester film (polyethylene terephthalate film, etc.), polypropylene film (OPP (Oriented Polypropylene) film, etc.), polyimide film, polyetherimide film, polyether naphthalate film, methyl A pentene film etc. are mentioned.

フィルム状接着剤10の厚さは、第1のワイヤ及び第1の半導体素子、並びに基板の配線回路等の凹凸を十分に埋め込めるよう、20~200μmであることが好ましい。また、厚さが20μm以上であることで十分な接着力を得易くなり、200μm以下であることで半導体装置の小型化の要求に応え易くなる。このような観点から、フィルム状接着剤10の厚さは30~200μmであることがより好ましく、40~150μmであることがさらに好ましい。 The thickness of the film-like adhesive 10 is preferably 20 to 200 μm so that the unevenness of the first wire, the first semiconductor element, and the wiring circuit of the substrate can be sufficiently embedded. Further, when the thickness is 20 μm or more, it becomes easy to obtain sufficient adhesive strength, and when it is 200 μm or less, it becomes easy to meet the demand for miniaturization of semiconductor devices. From this point of view, the thickness of the film adhesive 10 is more preferably 30-200 μm, and even more preferably 40-150 μm.

厚いフィルム状接着剤10を得る方法としては、フィルム状接着剤10同士を貼り合わせる方法が挙げられる。 A method of obtaining the thick film adhesive 10 includes a method of bonding the film adhesives 10 together.

(接着シート)
接着シート100は、図2に示すように、基材フィルム20上にフィルム状接着剤10を備えるものである。接着シート100は、フィルム状接着剤10を得る工程において、基材フィルム20を除去しないことで得ることができる。
(adhesive sheet)
The adhesive sheet 100 comprises a film adhesive 10 on a base film 20, as shown in FIG. The adhesive sheet 100 can be obtained by not removing the base film 20 in the process of obtaining the film adhesive 10 .

接着シート110は、図3に示すように、接着シート100の基材フィルム20とは反対側の面にさらにカバーフィルム30を備えるものである。カバーフィルム30としては、例えば、PETフィルム、PEフィルム、OPPフィルム等が挙げられる。 The adhesive sheet 110 further includes a cover film 30 on the surface of the adhesive sheet 100 opposite to the base film 20, as shown in FIG. Examples of the cover film 30 include PET film, PE film, OPP film, and the like.

フィルム状接着剤10は、ダイシングテープ上に積層されてもよい。これにより得られるダイシング・ダイボンディング一体型接着シートを用いることで、半導体ウェハへのラミネート工程を一度に行うことができ、作業の効率化が可能である。 The film adhesive 10 may be laminated on a dicing tape. By using the obtained dicing/die-bonding integrated adhesive sheet, it is possible to carry out the lamination process to the semiconductor wafer at once, thereby improving work efficiency.

ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。ダイシングテープには、必要に応じて、プライマー処理、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。 Examples of the dicing tape include plastic films such as polytetrafluoroethylene film, polyethylene terephthalate film, polyethylene film, polypropylene film, polymethylpentene film, and polyimide film. The dicing tape may be subjected to surface treatment such as primer treatment, UV treatment, corona discharge treatment, polishing treatment, etching treatment, etc., if necessary.

ダイシングテープは粘着性を有するものが好ましい。このようなダイシングテープとしては、上記プラスチックフィルムに粘着性を付与したもの、上記プラスチックフィルムの片面に粘着剤層を設けたものが挙げられる。 The dicing tape preferably has adhesiveness. Examples of such a dicing tape include those obtained by imparting adhesiveness to the plastic film, and those obtained by providing an adhesive layer on one side of the plastic film.

このようなダイシング・ダイボンディング一体型接着シートとしては、図4に示す接着シート120及び図5に示す接着シート130が挙げられる。接着シート120は、図4に示すように、引張テンションを加えたときの伸びを確保できる基材フィルム40上に粘着剤層50が設けられたダイシングテープ60を支持基材とし、ダイシングテープ60の粘着剤層50上に、フィルム状接着剤10が設けられた構造を有している。接着シート130は、図5に示すように、接着シート120においてフィルム状接着剤10の表面にさらに基材フィルム20が設けられた構造を有している。 Examples of such a dicing/die-bonding integrated adhesive sheet include an adhesive sheet 120 shown in FIG. 4 and an adhesive sheet 130 shown in FIG. As shown in FIG. 4, the adhesive sheet 120 uses a dicing tape 60 having an adhesive layer 50 provided on a base film 40 that can ensure elongation when a tensile tension is applied. It has a structure in which a film adhesive 10 is provided on an adhesive layer 50 . As shown in FIG. 5, the adhesive sheet 130 has a structure in which the substrate film 20 is further provided on the surface of the film adhesive 10 in the adhesive sheet 120 .

基材フィルム40としては、ダイシングテープについて記載した上記プラスチックフィルムが挙げられる。また、粘着剤層50は、例えば、液状成分及び熱可塑性成分を含み適度なタック強度を有する樹脂組成物を用いて形成することができる。ダイシングテープ60を得るには、当該樹脂組成物を基材フィルム40上に塗布し乾燥して粘着剤層50を形成する方法、PETフィルム等の他のフィルム上に一旦形成した粘着剤層50を基材フィルム40と貼り合せる方法等が挙げられる。 The base film 40 includes the plastic films described above for the dicing tape. Also, the pressure-sensitive adhesive layer 50 can be formed using, for example, a resin composition containing a liquid component and a thermoplastic component and having an appropriate tack strength. In order to obtain the dicing tape 60, the resin composition is coated on the base film 40 and dried to form the adhesive layer 50, or the adhesive layer 50 once formed on another film such as a PET film is coated. A method of bonding with the base film 40 and the like can be mentioned.

ダイシングテープ60上にフィルム状接着剤10を積層する方法としては、上記の接着剤組成物のワニスをダイシングテープ60上に直接塗布し乾燥する方法、ワニスをダイシングテープ60上にスクリーン印刷する方法、予めフィルム状接着剤10を作製し、これをダイシングテープ60上に、プレス、ホットロールラミネートにより積層する方法等が挙げられる。連続的に製造でき、効率がよい点で、ホットロールラミネートによる積層が好ましい。 The method of laminating the film-like adhesive 10 on the dicing tape 60 includes a method of directly applying the varnish of the above adhesive composition onto the dicing tape 60 and drying it, a method of screen-printing the varnish onto the dicing tape 60, For example, the film-like adhesive 10 is prepared in advance and laminated on the dicing tape 60 by pressing or hot roll lamination. Lamination by hot roll lamination is preferable in terms of continuous production and good efficiency.

ダイシングテープ60の厚さは、特に制限はなく、フィルム状接着剤10の厚さやダイシング・ダイボンディング一体型接着シートの用途によって適宜、当業者の知識に基づいて定めることができる。なお、ダイシングテープ60の厚さが60μm以上であることで、取扱い性の低下、エキスパンドによる破れ等を抑制し易いる傾向がある。一方、ダイシングテープの厚さが180μm以下であることで、経済性と取扱い性の良さを両立し易い。 The thickness of the dicing tape 60 is not particularly limited, and can be appropriately determined based on the knowledge of those skilled in the art according to the thickness of the film adhesive 10 and the application of the dicing/die bonding integrated adhesive sheet. In addition, when the thickness of the dicing tape 60 is 60 μm or more, there is a tendency that it is easy to suppress a decrease in handleability, breakage due to expansion, and the like. On the other hand, when the thickness of the dicing tape is 180 μm or less, it is easy to achieve both economic efficiency and good handling.

(半導体装置)
図6は、半導体装置を示す断面図である。図6に示すように、半導体装置200は、第1の半導体素子Wa上に、第2の半導体素子Waaが積み重ねられた半導体装置である。詳細には、基板14に、第1のワイヤ88を介して1段目の第1の半導体素子Waが電気的に接続されると共に、第1の半導体素子Wa上に、第1の半導体素子Waの面積よりも大きい2段目の第2の半導体素子Waaがフィルム状接着剤10を介して圧着されることで、第1のワイヤ88及び第1の半導体素子Waがフィルム状接着剤10に埋め込まれてなるワイヤ埋込型の半導体装置である。また、半導体装置200では、基板14と第2の半導体素子Waaとがさらに第2のワイヤ98を介して電気的に接続されると共に、第2の半導体素子Waaが封止材42により封止されている。
(semiconductor device)
FIG. 6 is a cross-sectional view showing a semiconductor device. As shown in FIG. 6, the semiconductor device 200 is a semiconductor device in which a second semiconductor element Waa is stacked on a first semiconductor element Wa. Specifically, the first semiconductor element Wa of the first stage is electrically connected to the substrate 14 via the first wire 88, and the first semiconductor element Wa is formed on the first semiconductor element Wa. By crimping the second semiconductor element Waa having a larger area than the film adhesive 10, the first wire 88 and the first semiconductor element Wa are embedded in the film adhesive 10. It is a wire embedded type semiconductor device. Further, in the semiconductor device 200, the substrate 14 and the second semiconductor element Waa are electrically connected through the second wire 98, and the second semiconductor element Waa is sealed with the sealing material 42. ing.

第1の半導体素子Waの厚さは、10~170μmであり、第2の半導体素子Waaの厚さは20~400μmである。フィルム状接着剤10内部に埋め込まれている第1の半導体素子Waは、半導体装置200を駆動するためのコントローラチップである。 The thickness of the first semiconductor element Wa is 10-170 μm, and the thickness of the second semiconductor element Waa is 20-400 μm. The first semiconductor element Wa embedded inside the film adhesive 10 is a controller chip for driving the semiconductor device 200 .

基板14は、表面に回路パターン84,94がそれぞれ二箇所ずつ形成された有機基板90からなる。第1の半導体素子Waは、回路パターン94上に接着剤41を介して圧着されており、第2の半導体素子Waaは、第1の半導体素子Waが圧着されていない回路パターン94、第1の半導体素子Wa、及び回路パターン84の一部を覆うようにフィルム状接着剤10を介して基板14に圧着されている。基板14上の回路パターン84,94に起因する凹凸は、フィルム状接着剤10により埋め込まれている。そして、樹脂製の封止材42により、第2の半導体素子Waa、回路パターン84及び第2のワイヤ98が封止されている。 The substrate 14 is composed of an organic substrate 90 on which two circuit patterns 84 and 94 are formed respectively. The first semiconductor element Wa is pressure-bonded onto the circuit pattern 94 via an adhesive 41, and the second semiconductor element Waa is the circuit pattern 94 to which the first semiconductor element Wa is not pressure-bonded. The semiconductor element Wa and a part of the circuit pattern 84 are covered with the film adhesive 10 and pressed against the substrate 14 . The unevenness caused by the circuit patterns 84 and 94 on the substrate 14 is filled with the film adhesive 10 . The second semiconductor element Waa, the circuit pattern 84 and the second wires 98 are sealed with a resin sealing material 42 .

(半導体装置の製造方法)
半導体装置は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のダイボンド工程と、第1の半導体素子の面積よりも大きい第2の半導体素子の片面に、150℃におけるずり弾性率が1.5MPa以下であるフィルム状接着剤を貼付するラミネート工程と、フィルム状接着剤が貼付された第2の半導体素子を、フィルム状接着剤が第1の半導体素子を覆うように載置し、フィルム状接着剤を圧着することで、第1のワイヤ及び第1の半導体素子をフィルム状接着剤に埋め込む第2のダイボンド工程と、を備える、半導体装置の製造方法により製造される。以下、半導体装置200の製造手順を例として、具体的に説明する。
(Method for manufacturing semiconductor device)
A semiconductor device includes a first die bonding step of electrically connecting a first semiconductor element to a substrate via a first wire, and a second semiconductor element having an area larger than that of the first semiconductor element. , a laminating step of applying a film-like adhesive having a shear modulus of elasticity at 150° C. of 1.5 MPa or less; and a second die bonding step of embedding the first wire and the first semiconductor element in the film-like adhesive by pressing the film-like adhesive so as to cover the semiconductor device. Manufactured by The manufacturing procedure of the semiconductor device 200 will be specifically described below as an example.

まず、図7に示すように、基板14上の回路パターン94上に、接着剤41付き第1の半導体素子Waaを圧着し、第1のワイヤ88を介して基板14上の回路パターン84と第1の半導体素子Waとを電気的に接続する(第1のダイボンド工程)。 First, as shown in FIG. 7, the first semiconductor element Waa with the adhesive 41 is pressure-bonded onto the circuit pattern 94 on the substrate 14, and the circuit pattern 84 on the substrate 14 and the first semiconductor element Waa are connected to each other via the first wire 88. As shown in FIG. 1 is electrically connected to the semiconductor element Wa (first die bonding step).

次に、半導体ウェハ(例えば8インチサイズ)の片面に、接着シート100をラミネートし、基材フィルム20を剥がすことで、半導体ウェハの片面にフィルム状接着剤10を貼り付ける。そして、フィルム状接着剤10にダイシングテープ60を貼り合わせた後、所定サイズ(例えば7.5mm角)にダイシングし、ダイシングテープ60を剥離することにより、図8に示すように、フィルム状接着剤10が貼付した第2の半導体素子Waaを得る(ラミネート工程)。 Next, an adhesive sheet 100 is laminated on one side of a semiconductor wafer (e.g., 8-inch size), and the base film 20 is peeled off to attach the film adhesive 10 to one side of the semiconductor wafer. Then, after affixing a dicing tape 60 to the film-like adhesive 10, the film-like adhesive 10 is diced into a predetermined size (for example, 7.5 mm square), and the dicing tape 60 is peeled off to obtain a film-like adhesive as shown in FIG. A second semiconductor element Waa to which 10 is attached is obtained (laminating step).

ラミネート工程は、50~100℃で行うことが好ましく、60~80℃で行うことがより好ましい。ラミネート工程の温度が50℃以上であると、半導体ウェハと良好な密着性を得ることができる。ラミネート工程の温度が100℃以下であると、ラミネート工程中にフィルム状接着剤10が過度に流動することが抑えられるため、厚さの変化等を引き起こすことを防止できる。 The lamination process is preferably carried out at 50 to 100°C, more preferably at 60 to 80°C. A semiconductor wafer and favorable adhesiveness can be obtained as the temperature of a lamination process is 50 degreeC or more. When the temperature in the lamination process is 100° C. or less, excessive flow of the film adhesive 10 is suppressed during the lamination process, so that variations in thickness can be prevented.

ダイシング方法としては、回転刃を用いてブレードダイシングする方法、レーザーによりフィルム状接着剤10又はウェハとフィルム状接着剤10の両方を切断する方法、また常温又は冷却条件下での伸張など汎用の方法などが挙げられる。 As the dicing method, a blade dicing method using a rotary blade, a method of cutting the film-like adhesive 10 or both the wafer and the film-like adhesive 10 with a laser, and general-purpose methods such as stretching under normal temperature or cooling conditions. etc.

そして、フィルム状接着剤10が貼付した第2の半導体素子Waaを、第1の半導体素子Waがワイヤ88を介して接続された基板14に圧着する。具体的には、図9に示すように、フィルム状接着剤10が貼付した第2の半導体素子Waaを、フィルム状接着剤10が第1の半導体素子Waを覆うように載置し、次いで、図10に示すように、第2の半導体素子Waaを基板14に圧着させることで基板14に第2の半導体素子Waaを固定する(第2のダイボンド工程)。第2のダイボンド工程は、フィルム状接着剤10を80~180℃、0.01~0.50MPaの条件で0.5~3.0秒間圧着することが好ましい。 Then, the second semiconductor element Waa to which the film-like adhesive 10 is attached is pressure-bonded to the substrate 14 to which the first semiconductor element Wa is connected via the wire 88 . Specifically, as shown in FIG. 9, the second semiconductor element Waa attached with the film-like adhesive 10 is placed so that the film-like adhesive 10 covers the first semiconductor element Wa, and then, As shown in FIG. 10, the second semiconductor element Waa is fixed to the substrate 14 by pressure bonding the second semiconductor element Waa to the substrate 14 (second die bonding step). In the second die bonding step, the film adhesive 10 is preferably pressure-bonded under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds.

次いで、図11に示すように、基板14と第2の半導体素子Waaとを第2のワイヤ98を介して電気的に接続した後、回路パターン84、第2のワイヤ98及び第2の半導体素子Waa全体を、封止材42で170~180℃、5~8MPaの条件にて封止する(封止工程)。このような工程を経ることで半導体装置200を製造することができる。 Next, as shown in FIG. 11, after electrically connecting the substrate 14 and the second semiconductor element Waa via the second wire 98, the circuit pattern 84, the second wire 98 and the second semiconductor element The entire Waa is sealed with a sealing material 42 under conditions of 170 to 180° C. and 5 to 8 MPa (sealing step). Through such steps, the semiconductor device 200 can be manufactured.

上記のとおり、半導体装置200は、基板上に第1のワイヤを介して第1の半導体素子が電気的に接続されると共に、第1の半導体素子上に、第1の半導体素子の面積よりも大きい第2の半導体素子が圧着されてなる半導体装置において、第2の半導体素子を圧着すると共に、第1のワイヤ及び第1の半導体素子を埋め込むために用いられる、150℃におけるずり弾性率が1.5MPa以下である、フィルム状接着剤を用いて製造される。150℃におけるずり弾性率が1.5MPa以下であるフィルム状接着剤を用いることで、特に第2のダイボンド工程において生じる空隙を、後工程である封止工程により解消することができる。これにより、空隙を解消するための特別なプロセスが別途必要とされず、リードタイムの増大を抑制することができる。 As described above, in the semiconductor device 200, the first semiconductor element is electrically connected to the substrate through the first wires, and the area of the first semiconductor element is larger than the area of the first semiconductor element. In a semiconductor device in which a large second semiconductor element is crimped, a shear elastic modulus of 1 at 150° C. is used for crimping the second semiconductor element and embedding the first wire and the first semiconductor element. .5 MPa or less, manufactured using a film-like adhesive. By using a film-like adhesive having a shear modulus of elasticity of 1.5 MPa or less at 150° C., it is possible to eliminate voids that occur particularly in the second die bonding step in the subsequent sealing step. As a result, a special process for eliminating voids is not required separately, and an increase in lead time can be suppressed.

以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。例えば、以下のようにその趣旨を逸脱しない範囲で適宜変更を行ってもよい。 Although the preferred embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described embodiments. For example, the following modifications may be made as appropriate without departing from the spirit of the invention.

半導体装置200において、基板14は、表面に回路パターン84,94がそれぞれ二箇所ずつ形成された有機基板90であったが、基板14としてはこれに限られず、リードフレームなどの金属基板を用いてもよい。 In the semiconductor device 200, the substrate 14 is the organic substrate 90 on which two circuit patterns 84 and 94 are formed respectively, but the substrate 14 is not limited to this. good too.

半導体装置200は、第1の半導体素子Wa上に第2の半導体素子Waaが積層されており、二段に半導体素子が積層された構成を有していたが、半導体装置の構成はこれに限られない。第2の半導体素子Waaの上に第3の半導体素子をさらに積層されていても構わないし、第2の半導体素子Waaの上に複数の半導体素子がさらに積層されていても構わない。積層される半導体素子の数が増加するにつれて、得られる半導体装置の容量を増やすことができる。 The semiconductor device 200 has a configuration in which the second semiconductor element Waa is stacked on the first semiconductor element Wa and the semiconductor elements are stacked in two stages, but the configuration of the semiconductor device is limited to this. can't A third semiconductor element may be further laminated on the second semiconductor element Waa, and a plurality of semiconductor elements may be further laminated on the second semiconductor element Waa. As the number of stacked semiconductor elements increases, the capacity of the resulting semiconductor device can be increased.

本実施形態に係る半導体装置の製造方法では、ラミネート工程において、半導体ウェハの片面に、図2に示す接着シート100をラミネートし、基材フィルム20を剥がすことで、フィルム状接着剤10を貼り付けていたが、ラミネート時に用いる接着シートはこれに限られない。接着シート100の代わりに、図4及び5に示すダイシング・ダイボンディング一体型接着シート120,130を用いることができる。この場合、半導体ウェハをダイシングする際にダイシングテープ60を別途貼り付ける必要がない。 In the method of manufacturing a semiconductor device according to the present embodiment, in the lamination step, the adhesive sheet 100 shown in FIG. However, the adhesive sheet used for lamination is not limited to this. Instead of the adhesive sheet 100, dicing/die bonding integrated adhesive sheets 120 and 130 shown in FIGS. 4 and 5 can be used. In this case, there is no need to attach the dicing tape 60 separately when dicing the semiconductor wafer.

ラミネート工程において、半導体ウェハではなく、半導体ウェハを個片化して得られた半導体素子を、接着シート100にラミネートしても構わない。この場合、ダイシング工程を省略することができる。 In the lamination step, instead of the semiconductor wafer, semiconductor elements obtained by singulating the semiconductor wafer may be laminated on the adhesive sheet 100 . In this case, the dicing process can be omitted.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following examples.

(実施例1~2及び比較例1~3)
表1(単位:質量部)に従い、熱硬化性樹脂であるエポキシ樹脂及びフェノール樹脂、並びに無機フィラーをそれぞれ秤量して組成物を得て、さらにシクロヘキサノンを加えて撹拌混合した。これに、熱可塑性樹脂であるアクリルゴムを加えて撹拌した後、さらにカップリング剤及び硬化促進剤を加えて各成分が均一になるまで撹拌し、ワニスを得た。なお、表1中の各成分の品名は下記のものを意味する。
(Examples 1-2 and Comparative Examples 1-3)
According to Table 1 (unit: parts by mass), thermosetting resins such as epoxy resin and phenolic resin, and inorganic filler were weighed to obtain a composition, and then cyclohexanone was added and mixed with stirring. To this, acrylic rubber, which is a thermoplastic resin, was added and stirred, and then a coupling agent and a curing accelerator were added and stirred until each component became uniform to obtain a varnish. In addition, the product name of each component in Table 1 means the following.

(エポキシ樹脂)
YDF-8170C:(商品名、新日化エポキシ製造株式会社製、ビスフェノールF型エポキシ樹脂:エポキシ当量159、常温で液体、重量平均分子量約310)
R710:(商品名、株式会社プリンテック製、ビスフェノールE型エポキシ樹脂:エポキシ当量170、常温で液体、重量平均分子量約340)
YDCN-700-10:(商品名、新日化エポキシ製造株式会社製、クレゾールノボラック型エポキシ樹脂:エポキシ当量210、軟化点75~85℃)
VG-3101L:(商品名、株式会社プリンテック製、多官能エポキシ樹脂:エポキシ当量210、軟化点39~46℃)
(Epoxy resin)
YDF-8170C: (trade name, manufactured by Shinnikka Epoxy Manufacturing Co., Ltd., bisphenol F type epoxy resin: epoxy equivalent 159, liquid at normal temperature, weight average molecular weight about 310)
R710: (trade name, manufactured by Printec Co., Ltd., bisphenol E type epoxy resin: epoxy equivalent 170, liquid at room temperature, weight average molecular weight about 340)
YDCN-700-10: (trade name, Shin Nikka Epoxy Mfg. Co., Ltd., cresol novolac type epoxy resin: epoxy equivalent 210, softening point 75 to 85 ° C.)
VG-3101L: (trade name, manufactured by Printec Co., Ltd., polyfunctional epoxy resin: epoxy equivalent 210, softening point 39 to 46° C.)

(フェノール樹脂)
HE100C-30:(商品名、エア・ウォーター株式会社製、フェノール樹脂:水酸基当量175、軟化点79℃、吸水率1質量%、加熱質量減少率4質量%)
HE200C-10:(商品名、エア・ウォーター株式会社製、フェノール樹脂:水酸基当量200、軟化点65~76℃、吸水率1質量%、加熱質量減少率4質量%)
HE910-10:(商品名、エア・ウォーター株式会社製、フェノール樹脂:水酸基当量101、軟化点83℃、吸水率1質量%、加熱質量減少率3質量%)。
(Phenolic resin)
HE100C-30: (trade name, manufactured by Air Water Inc., phenolic resin: hydroxyl equivalent 175, softening point 79°C, water absorption 1% by mass, heating mass reduction rate 4% by mass)
HE200C-10: (trade name, manufactured by Air Water Inc., phenolic resin: hydroxyl equivalent 200, softening point 65 to 76 ° C., water absorption 1% by mass, heating mass reduction rate 4% by mass)
HE910-10: (trade name, manufactured by Air Water Inc., phenolic resin: hydroxyl equivalent 101, softening point 83°C, water absorption 1 mass%, heating mass reduction rate 3 mass%).

(無機フィラー)
SC2050-HLG:(商品名、株式会社アドマテックス製、シリカフィラー分散液:平均粒径0.50μm)
SC1030-HJA:(商品名、株式会社アドマテックス製、シリカフィラー分散液:平均粒径0.25μm)
アエロジルR972:(商品名、日本アエロジル株式会社製、シリカ:平均粒径0.016μm)。
(Inorganic filler)
SC2050-HLG: (trade name, Admatechs Co., Ltd., silica filler dispersion: average particle size 0.50 μm)
SC1030-HJA: (trade name, Admatechs Co., Ltd., silica filler dispersion: average particle size 0.25 μm)
Aerosil R972: (trade name, manufactured by Nippon Aerosil Co., Ltd., silica: average particle size 0.016 μm).

(アクリルゴム)
HTR-860P-3CSP:(サンプル名:ナガセケムテックス株式会社製、アクリルゴム:重量平均分子量80万、グリシジル官能基モノマー比率3モル%、Tg12℃)
HTR-860P-30B-CHN:(サンプル名、ナガセケムテックス株式会社製、アクリルゴム:重量平均分子量23万、グリシジル官能基モノマー比率8モル%、Tg-7℃)
(acrylic rubber)
HTR-860P-3CSP: (Sample name: manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 800,000, glycidyl functional group monomer ratio 3 mol%, Tg 12 ° C.)
HTR-860P-30B-CHN: (Sample name, manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 230,000, glycidyl functional group monomer ratio 8 mol%, Tg -7 ° C.)

(カップリング剤)
A-189:(商品名、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、γ-メルカプトプロピルトリメトキシシラン)
A-1160:(商品名、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、γ-ウレイドプロピルトリエトキシシラン)
(coupling agent)
A-189: (trade name, manufactured by Momentive Performance Materials Japan LLC, γ-mercaptopropyltrimethoxysilane)
A-1160: (trade name, manufactured by Momentive Performance Materials Japan LLC, γ-ureidopropyltriethoxysilane)

(硬化促進剤)
キュアゾール2PZ-CN:(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
(Curing accelerator)
Curesol 2PZ-CN: (trade name, manufactured by Shikoku Kasei Co., Ltd., 1-cyanoethyl-2-phenylimidazole)

Figure 0007140143000001
Figure 0007140143000001

次に、得られたワニスを100メッシュのフィルターでろ過し、真空脱泡した。真空脱泡後のワニスを、基材フィルムである、離型処理を施したポリエチレンテレフタレート(PET)フィルム(厚さ38μm)上に塗布した。塗布したワニスを、90℃で5分間、続いて140℃で5分間の2段階で加熱乾燥した。こうして、PETフィルム上に、Bステージ状態にある厚さ60μmのフィルム状接着剤を備えた接着シートを得た。 The resulting varnish was then filtered through a 100 mesh filter and vacuum defoamed. The varnish after vacuum defoaming was applied onto a release-treated polyethylene terephthalate (PET) film (thickness: 38 μm), which is a substrate film. The applied varnish was dried by heating in two steps, 90° C. for 5 minutes and then 140° C. for 5 minutes. In this way, an adhesive sheet having a B-stage film adhesive with a thickness of 60 μm on the PET film was obtained.

<各種物性の評価>
得られたフィルム状接着剤について下記のとおり評価をした。評価結果を表2に示す。
<Evaluation of various physical properties>
The obtained film adhesive was evaluated as follows. Table 2 shows the evaluation results.

[ずり弾性率測定]
フィルム状接着剤から基材フィルムを剥離除去し、厚さ方向に10mm角に打ち抜いた。これを複数枚準備して貼り合わせることで、10mm角、厚さ360μmの、フィルム状接着剤の評価用サンプルを得た。動的粘弾性装置ARES(ティー・エイ・インスツルメント・ジャパン株式会社製)に直径8mmの円形アルミプレート治具をセットし、この冶具で上記評価用サンプルを挟み込んだ。その後、評価用サンプルに対し5%の歪みを周波数1Hzで与えながら、5℃/分の昇温速度で室温(30℃)から125℃まで昇温して1時間保持した後、5℃/分の昇温速度でさらに150℃まで昇温して45分間保持した。そして、150℃におけるずり弾性率の値を記録した。
[Shear modulus measurement]
The base film was peeled off from the film-like adhesive, and punched out in the thickness direction into 10 mm squares. By preparing a plurality of these and pasting them together, a sample for evaluation of a film-like adhesive having a size of 10 mm square and a thickness of 360 μm was obtained. A circular aluminum plate jig with a diameter of 8 mm was set in a dynamic viscoelasticity device ARES (manufactured by TA Instruments Japan Co., Ltd.), and the evaluation sample was sandwiched between the jigs. After that, while applying a strain of 5% to the evaluation sample at a frequency of 1 Hz, the temperature was raised from room temperature (30 ° C.) to 125 ° C. at a heating rate of 5 ° C./min and held for 1 hour, and then 5 ° C./min. The temperature was further raised to 150° C. at a heating rate of 100° C. and held for 45 minutes. Then, the shear modulus value at 150° C. was recorded.

[ずり粘度測定]
ずり弾性率測定と同様にして、評価用サンプルに対し5%の歪みを周波数1Hzで与えながら、5℃/分の昇温速度で室温(30℃)から140℃まで昇温させながらずり粘度を測定した。そして、80℃での測定値を記録した。
[Shear viscosity measurement]
In the same manner as the shear modulus measurement, the shear viscosity was measured while increasing the temperature from room temperature (30°C) to 140°C at a rate of 5°C/min while applying 5% strain to the evaluation sample at a frequency of 1Hz. It was measured. Then, the measured value at 80°C was recorded.

[硬化後の引張弾性率測定]
フィルム状接着剤から基材フィルムを剥離除去した後、フィルム状接着剤を4mm幅、長さ30mmに切り出した。これを、120℃で2時間、170℃で3時間加熱し、フィルム状接着剤を硬化させた評価用サンプルを得た。その後、評価用サンプルを動的粘弾性装置(製品名:Rheogel-E4000、株式会社UMB製)にセットし、引張り荷重をかけて、周波数10Hz、昇温速度3℃/分の条件で引張弾性率を測定した。そして、170~190℃での測定値を記録した。
[Measurement of tensile modulus after curing]
After peeling and removing the base film from the film-like adhesive, the film-like adhesive was cut into 4 mm width and 30 mm length. This was heated at 120° C. for 2 hours and at 170° C. for 3 hours to obtain an evaluation sample in which the film adhesive was cured. After that, the sample for evaluation was set in a dynamic viscoelasticity device (product name: Rheogel-E4000, manufactured by UMB Corporation), a tensile load was applied, and the tensile modulus was measured under the conditions of a frequency of 10 Hz and a heating rate of 3°C/min. was measured. Then, the measured values at 170-190°C were recorded.

[圧着後埋込性評価]
接着シートのフィルム状接着剤を2枚貼り合わせて厚さ120μmとし、これを厚さ100μmの半導体ウェハ(8インチ)に70℃で貼り付けた。次に、それらを7.5mm角にダイシングして、接着シート付き半導体素子を得た。
一方、ダイシング・ダイボンディング一体型フィルム(日立化成株式会社製、HR-9004-10(厚さ10μm))を、厚さ50μmの半導体ウェハ(8インチ)に70℃で貼り付けた。次に、それらを3.0mm角にダイシングして、上記の一体型フィルム付きチップを得た。一体型フィルム付きチップを、表面凹凸が最大6μmである評価用基板に、120℃、0.20MPa、2秒間の条件で圧着した後、120℃で2時間加熱して一体型フィルムを半硬化させた。これによりチップ付き基板を得た。
得られたチップ付き基板に、接着シート付き半導体素子を、120℃、0.20MPa、2秒間の条件で圧着した。この際、先に圧着しているチップが、接着シート付き半導体素子の真ん中にくるように位置合わせをした。得られた構造体を、ずり弾性率測定と同様にして125℃で1時間、150℃で45分間加熱した。
加熱後室温まで自然放冷した構造体を、超音波C-SCAN画像診断装置(インサイト株式会社製、品番IS350、プローブ:75MHz)にて分析し、圧着後埋込性を確認した。圧着後埋込性は以下の基準により評価した。
○:圧着フィルム面積に対する空隙面積の割合が10%未満。
×:圧着フィルム面積に対する空隙面積の割合が10%以上。
[Evaluation of embeddability after crimping]
Two film-like adhesives of the adhesive sheet were laminated together to a thickness of 120 μm, and this was laminated to a semiconductor wafer (8 inches) with a thickness of 100 μm at 70°C. Next, they were diced into 7.5 mm squares to obtain semiconductor elements with an adhesive sheet.
On the other hand, a dicing/die bonding integrated film (HR-9004-10 (thickness: 10 μm) manufactured by Hitachi Chemical Co., Ltd.) was attached to a semiconductor wafer (8 inches) with a thickness of 50 μm at 70°C. Next, they were diced into 3.0 mm squares to obtain the integrated film-attached chips. The integrated film-attached chip was press-bonded to an evaluation substrate having a maximum surface unevenness of 6 μm under the conditions of 120° C., 0.20 MPa, and 2 seconds, and then heated at 120° C. for 2 hours to semi-harden the integrated film. rice field. Thus, a substrate with a chip was obtained.
A semiconductor element with an adhesive sheet was press-bonded to the obtained substrate with a chip under the conditions of 120° C., 0.20 MPa, and 2 seconds. At this time, the position was adjusted so that the chip, which had been crimped first, was in the center of the semiconductor element with the adhesive sheet. The resulting structure was heated at 125° C. for 1 hour and 150° C. for 45 minutes as in the shear modulus measurement.
After heating, the structure was allowed to cool naturally to room temperature, and was analyzed with an ultrasonic C-SCAN diagnostic imaging system (manufactured by Insight Corporation, product number IS350, probe: 75 MHz) to confirm the embeddability after crimping. The embeddability after crimping was evaluated according to the following criteria.
◯: The ratio of void area to pressure-bonded film area is less than 10%.
x: The ratio of void area to pressure-bonded film area is 10% or more.

[封止後空隙埋込性評価]
圧着後埋込性評価にて得られた構造体の半導体素子等の搭載面を、モールド用封止材(日立化成株式会社製、商品名:CEL-9700HF)を用いて封止した。封止にはモールド成形機MH-705-1(アピックヤマダ株式会社製)を用い、封止条件は175℃、6.9MPa、120秒間とした。得られた封止サンプルを圧着後埋込性評価と同様に分析し、封止後空隙埋込性の評価を行った。評価基準は以下のとおりとした。
○:圧着フィルム面積に対する空隙面積の割合が5%未満。
×:圧着フィルム面積に対する空隙面積の割合が5%以上。
[Evaluation of void embeddability after sealing]
The semiconductor element mounting surface of the structure obtained by the evaluation of embeddability after crimping was sealed with a sealing material for molding (trade name: CEL-9700HF manufactured by Hitachi Chemical Co., Ltd.). A molding machine MH-705-1 (manufactured by Apic Yamada Co., Ltd.) was used for sealing, and the sealing conditions were 175° C., 6.9 MPa, and 120 seconds. The obtained sealed sample was analyzed in the same manner as in the evaluation of the embeddability after pressure bonding, and the evaluation of the embeddability after sealing was performed. The evaluation criteria were as follows.
◯: The ratio of void area to pressure-bonded film area is less than 5%.
x: The ratio of void area to pressure-bonded film area is 5% or more.

[反り量の評価]
圧着後埋込性評価と同様にして構造体を作製した。この構造体を170℃で3時間加熱させて、フィルム状接着剤を硬化させた後、半導体素子の対角線方向における高低差を表面粗さ計で8mm分測定した。得られた測定値の最大値と最小値との差を、構造体の反り量として記録した。
[Evaluation of amount of warpage]
A structure was produced in the same manner as the embeddability evaluation after crimping. This structure was heated at 170° C. for 3 hours to cure the film-like adhesive, and then the height difference in the diagonal direction of the semiconductor element was measured for 8 mm with a surface roughness meter. The difference between the maximum and minimum measured values was recorded as the amount of warpage of the structure.

Figure 0007140143000002
Figure 0007140143000002

10…フィルム状接着剤、14…基板、42…樹脂(封止材)、88…第1のワイヤ、98…第2のワイヤ、200…半導体装置、Wa…第1の半導体素子、Waa…第2の半導体素子。 DESCRIPTION OF SYMBOLS 10... Film adhesive 14... Substrate 42... Resin (sealing material) 88... First wire 98... Second wire 200... Semiconductor device Wa... First semiconductor element Waa... Second 2 semiconductor device.

Claims (12)

基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のダイボンド工程と、
前記第1の半導体素子の面積よりも大きい第2の半導体素子の片面に、150℃におけるずり弾性率が1.5MPa以下であるフィルム状接着剤を貼付するラミネート工程と、
前記フィルム状接着剤が貼付された第2の半導体素子を、前記フィルム状接着剤が前記第1の半導体素子を覆うように載置し、前記フィルム状接着剤を圧着することで、前記第1のワイヤ及び前記第1の半導体素子を前記フィルム状接着剤に埋め込む第2のダイボンド工程と、
を備える、半導体装置の製造方法。
a first die bonding step of electrically connecting the first semiconductor element to the substrate via the first wire;
a laminating step of applying a film-like adhesive having a shear elastic modulus of 1.5 MPa or less at 150° C. to one side of the second semiconductor element having an area larger than that of the first semiconductor element;
The second semiconductor element to which the film-like adhesive is attached is placed so that the film-like adhesive covers the first semiconductor element, and the film-like adhesive is pressure-bonded to obtain the first semiconductor element. a second die bonding step of embedding the wire and the first semiconductor element in the film adhesive;
A method of manufacturing a semiconductor device, comprising:
前記フィルム状接着剤の、硬化後の170~190℃における引張弾性率が15MPa以下である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the film adhesive has a tensile modulus of 15 MPa or less at 170 to 190°C after curing. 前記フィルム状接着剤の、80℃におけるずり粘度が15000Pa・s以下である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the film adhesive has a shear viscosity at 80°C of 15000 Pa·s or less. 前記フィルム状接着剤が、アクリル樹脂及びエポキシ樹脂を含む、請求項1~3のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the film adhesive contains an acrylic resin and an epoxy resin. 前記アクリル樹脂が、重量平均分子量が10万~50万である第1のアクリル樹脂と、重量平均分子量が60万~100万である第2のアクリル樹脂とを含み、アクリル樹脂の全質量を基準として、前記第1のアクリル樹脂の含有量が50質量%以上である、請求項4に記載の製造方法。 The acrylic resin includes a first acrylic resin having a weight average molecular weight of 100,000 to 500,000 and a second acrylic resin having a weight average molecular weight of 600,000 to 1,000,000, based on the total mass of the acrylic resin. 5. The manufacturing method according to claim 4, wherein the content of said first acrylic resin is 50% by mass or more. 前記フィルム状接着剤が、無機フィラー及び有機フィラーの少なくとも一方を含む、請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the film adhesive contains at least one of an inorganic filler and an organic filler. 基板上に第1のワイヤを介して第1の半導体素子が電気的に接続されると共に、前記第1の半導体素子上に、前記第1の半導体素子の面積よりも大きい第2の半導体素子が圧着されてなる半導体装置において、前記第2の半導体素子を圧着すると共に、前記第1のワイヤ及び前記第1の半導体素子を埋め込むために用いられる、150℃におけるずり弾性率が1.5MPa以下である、フィルム状接着剤。 A first semiconductor element is electrically connected to the substrate via a first wire, and a second semiconductor element having an area larger than that of the first semiconductor element is formed on the first semiconductor element. In the crimped semiconductor device, the shear elastic modulus at 150° C. used for crimping the second semiconductor element and embedding the first wire and the first semiconductor element is 1.5 MPa or less. There is a film adhesive. 硬化後における170~190℃における引張弾性率が15MPa以下である、請求項7に記載のフィルム状接着剤。 8. The film adhesive according to claim 7, which has a tensile elastic modulus of 15 MPa or less at 170 to 190° C. after curing. 80℃におけるずり粘度が15000Pa・s以下である、請求項7又は8に記載のフィルム状接着剤。 The film adhesive according to claim 7 or 8, which has a shear viscosity at 80°C of 15000 Pa·s or less. アクリル樹脂及びエポキシ樹脂を含む、請求項7~9のいずれか一項に記載のフィルム状接着剤。 The film adhesive according to any one of claims 7 to 9, comprising an acrylic resin and an epoxy resin. 前記アクリル樹脂が、重量平均分子量が10万~50万である第1のアクリル樹脂と、重量平均分子量が60万~100万である第2のアクリル樹脂とを含み、アクリル樹脂の全質量を基準として、前記第1のアクリル樹脂の含有量が50質量%以上である、請求項10に記載のフィルム状接着剤。 The acrylic resin includes a first acrylic resin having a weight average molecular weight of 100,000 to 500,000 and a second acrylic resin having a weight average molecular weight of 600,000 to 1,000,000, based on the total mass of the acrylic resin. 11. The film adhesive according to claim 10, wherein the content of said first acrylic resin is 50% by mass or more. 無機フィラー及び有機フィラーの少なくとも一方を含む、請求項7~11のいずれか一項に記載のフィルム状接着剤。

The film adhesive according to any one of claims 7 to 11, comprising at least one of an inorganic filler and an organic filler.

JP2019568442A 2018-01-30 2018-01-30 Semiconductor device manufacturing method and film adhesive Active JP7140143B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003028 WO2019150449A1 (en) 2018-01-30 2018-01-30 Semiconductor device production method and film-shaped adhesive

Publications (2)

Publication Number Publication Date
JPWO2019150449A1 JPWO2019150449A1 (en) 2021-01-28
JP7140143B2 true JP7140143B2 (en) 2022-09-21

Family

ID=67479182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019568442A Active JP7140143B2 (en) 2018-01-30 2018-01-30 Semiconductor device manufacturing method and film adhesive

Country Status (6)

Country Link
JP (1) JP7140143B2 (en)
KR (1) KR102450758B1 (en)
CN (1) CN111630641B (en)
SG (1) SG11202004664PA (en)
TW (1) TWI793255B (en)
WO (1) WO2019150449A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118554A (en) 2008-11-13 2010-05-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2013060524A (en) 2011-09-13 2013-04-04 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, semiconductor device and production method thereof
JP2013181049A (en) 2012-02-29 2013-09-12 Hitachi Chemical Co Ltd Film-shaped adhesive, adhesive sheet and semiconductor device
JP2013256574A (en) 2012-06-12 2013-12-26 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2015122425A (en) 2013-12-24 2015-07-02 日東電工株式会社 Method for manufacturing semiconductor device, semiconductor device, adhesive film for embedding use, and dicing/die-bonding film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754475B2 (en) * 1995-10-31 2006-03-15 スリーエム カンパニー Reactive hot melt composition, reactive hot melt composition preparation, film hot melt adhesive
JP4788017B2 (en) * 1999-05-17 2011-10-05 株式会社デンソー Film forming method and electrode or wiring forming method
US6884833B2 (en) * 2001-06-29 2005-04-26 3M Innovative Properties Company Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents
JP2005103180A (en) 2003-10-02 2005-04-21 Matsushita Electric Ind Co Ltd Washing machine
JP4188337B2 (en) * 2004-05-20 2008-11-26 株式会社東芝 Manufacturing method of multilayer electronic component
JP5524465B2 (en) 2007-10-24 2014-06-18 日立化成株式会社 Adhesive sheet, semiconductor device using the same, and manufacturing method thereof
JP2010254763A (en) * 2009-04-22 2010-11-11 Hitachi Chem Co Ltd Adhesive composition, method for manufacturing the same, adhesive sheet using this, integrated sheet, method for manufacturing the same, and semiconductor device and method for manufacturing the same
JP5879675B2 (en) * 2010-06-17 2016-03-08 日立化成株式会社 Adhesive film for semiconductor, wiring board for semiconductor mounting, semiconductor device, and adhesive composition
WO2013133275A1 (en) * 2012-03-08 2013-09-12 日立化成株式会社 Adhesive sheet and method for manufacturing semiconductor device
JP5890795B2 (en) * 2013-03-18 2016-03-22 日本碍子株式会社 Components for semiconductor manufacturing equipment
CN107405870B (en) * 2015-03-23 2019-11-19 富士胶片株式会社 Laminated body, temporary bond composition and temporary bond film
US10566304B2 (en) * 2015-09-07 2020-02-18 Hitachi Chemical Company, Ltd. Assembly and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118554A (en) 2008-11-13 2010-05-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2013060524A (en) 2011-09-13 2013-04-04 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, semiconductor device and production method thereof
JP2013181049A (en) 2012-02-29 2013-09-12 Hitachi Chemical Co Ltd Film-shaped adhesive, adhesive sheet and semiconductor device
JP2013256574A (en) 2012-06-12 2013-12-26 Hitachi Chemical Co Ltd Film-like adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2015122425A (en) 2013-12-24 2015-07-02 日東電工株式会社 Method for manufacturing semiconductor device, semiconductor device, adhesive film for embedding use, and dicing/die-bonding film

Also Published As

Publication number Publication date
JPWO2019150449A1 (en) 2021-01-28
TW201939622A (en) 2019-10-01
KR102450758B1 (en) 2022-10-04
TWI793255B (en) 2023-02-21
SG11202004664PA (en) 2020-06-29
CN111630641B (en) 2023-05-02
CN111630641A (en) 2020-09-04
WO2019150449A1 (en) 2019-08-08
KR20200112828A (en) 2020-10-05

Similar Documents

Publication Publication Date Title
JP6135202B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5736899B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP6133542B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP5428423B2 (en) Semiconductor device and film adhesive
JP5834662B2 (en) Film adhesive, adhesive sheet, semiconductor device and manufacturing method thereof
JP6222395B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP6191799B1 (en) Semiconductor device, semiconductor device manufacturing method, and film adhesive
TWI774916B (en) Manufacturing method of semiconductor device, film-like adhesive, and adhesive sheet
JP6443521B2 (en) Film adhesive and dicing die bonding integrated adhesive sheet
TWI785197B (en) Semiconductor device manufacturing method and film adhesive
JP6191800B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP7140143B2 (en) Semiconductor device manufacturing method and film adhesive
JP7115537B2 (en) Semiconductor device manufacturing method and film adhesive
JP6213618B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP2022115581A (en) Semiconductor device and manufacturing method thereof, thermosetting resin composition, adhesive film and dicing/die bonding integrated film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220822

R151 Written notification of patent or utility model registration

Ref document number: 7140143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350