WO2019148537A1 - 一种高精度曲线传动测量系统 - Google Patents

一种高精度曲线传动测量系统 Download PDF

Info

Publication number
WO2019148537A1
WO2019148537A1 PCT/CN2018/076124 CN2018076124W WO2019148537A1 WO 2019148537 A1 WO2019148537 A1 WO 2019148537A1 CN 2018076124 W CN2018076124 W CN 2018076124W WO 2019148537 A1 WO2019148537 A1 WO 2019148537A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide rail
vacuum
electric cylinder
trolley
transmission
Prior art date
Application number
PCT/CN2018/076124
Other languages
English (en)
French (fr)
Inventor
丁开忠
姚凯
胡乐星
宋云涛
陈永华
吴昱城
蔡雅倩
李君君
冯汉升
连欢
Original Assignee
合肥中科离子医学技术装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥中科离子医学技术装备有限公司 filed Critical 合肥中科离子医学技术装备有限公司
Priority to JP2018566275A priority Critical patent/JP6697659B1/ja
Publication of WO2019148537A1 publication Critical patent/WO2019148537A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • H05H2007/008Arrangements for beam delivery or irradiation for measuring beam parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00

Definitions

  • the invention belongs to the field of mechanical transmission technology and precision measurement, and relates to a high-precision curve transmission measurement system.
  • the existing motion means mostly adopts a linear transmission device.
  • the environment structure is complicated and the space is limited, the motion coverage of the linear transmission device is limited, and accurate and complete motion and measurement cannot be realized.
  • different types of sensors and motion devices are replaced by opening the vacuum environment, which requires repeated vacuuming and vacuuming processes, which results in low work efficiency and increases time, labor, and material costs.
  • a transmission measuring system having a wide range of motion, high precision, and no vacuum breaking operation is required.
  • the object of the present invention is to provide a high-precision curve transmission measuring system for solving problems such as non-linear motion in a vacuum environment or other confined spaces, high-precision measurement, high-precision motion control, and replacement operation without breaking vacuum.
  • a high-precision curve transmission measuring system comprises a transmission unit, a vacuum sealing unit, a motion control unit and a measuring unit; wherein the transmission unit comprises a guide rail, a trolley, a transmission rod and an electric cylinder; a plurality of trolleys are arranged on the guide rail; One end of the rod is connected with the last one of the plurality of carts, and the other end is connected with the electric cylinder; the vacuum sealing unit comprises a flapper valve, a vacuum chamber, a vacuum sealing mechanism, a linear guide rail of the guide rail and a transmission rod running through the entire vacuum sealing unit
  • the motion control unit includes a servo motor, a reducer, a motor drive, a grating scale, a real-time controller, and a limit switch; the electric cylinder is driven by a servo motor; the measuring unit includes a sensor; and the first one of the plurality of cars The front end of the trolley is equipped with sensors.
  • the guide rail is formed by splicing different curved segments and straight segments; the guide rail is provided with a T-shaped groove, and the slider is a truncated cone shape, which is installed in the T-shaped groove of the guide rail; the bottom of each trolley is connected by a snap spring. Sliders, the joints can be rotated; the adjacent carts, the trolleys and the transmission rods are connected by hinges; the guide rails, the sliders, the trolleys, the hinges, the transmission rods and the electric cylinders are matched to realize the accurate driving along the fixed track by the trolley. Movement; the rails are mounted on the rail supports.
  • One end of the plug-in valve is connected with the object to be tested, the other end is connected with the vacuum chamber, and the vacuum chamber is connected with the vacuum sealing mechanism; one cover of the vacuum chamber can be opened to facilitate operation and maintenance of the sensor and the trolley; the flapper valve is closed.
  • the vacuum environment of the object to be tested is protected from the external action;
  • the vacuum sealing mechanism is a freely stretchable welded vacuum bellows; and
  • the vacuum sealing flange is provided at both ends of the plug valve, the vacuum chamber and the vacuum sealing mechanism.
  • the flapper valve is connected to the object to be tested, between the insert valve and the vacuum chamber, and between the vacuum chamber and the vacuum sealing mechanism through a flange.
  • the other side of the vacuum sealing machine is fixed with a blind flange, and the upper hole is opened. Install the vacuum feedthrough.
  • the transmission unit and the vacuum sealing unit are supported and adjusted to a suitable height by a support mechanism;
  • the support mechanism includes a gantry and a height adjustment mechanism;
  • the gantry is mounted with a vacuum chamber, a vacuum sealing mechanism, and an electric cylinder;
  • the height adjustment mechanism includes a support frame, a support plate and an adjusting screw, the support plate is fixed to the gantry, and the adjusting screw is fixedly connected to the support frame and the support plate.
  • the linear guide rail and the transmission rod of the guide rail penetrate the entire vacuum sealing unit;
  • the vacuum chamber is provided with a rail adjusting mechanism, including a rotating hand wheel, a rack and pinion mechanism, an adjusting guide rail, and an output shaft of the rotating hand wheel and the rack and pinion mechanism are meshed with each other.
  • the rack and pinion mechanism is connected with the adjusting rail, and the sliding platform of the adjusting rail is fixed with the linear guide rail; when working, the rotating hand wheel drives the rack and pinion mechanism to drive the adjusting rail, and the linear guide reciprocates along with the adjusting rail.
  • the flapper valve can be closed.
  • the electric cylinder drives the transmission rod to push the trolley to slide in the guide rail, and the running speed ranges from 0 to 150 mm/s; after the measurement is completed, the electric cylinder drives the transmission rod to move back, and the sensor and the trolley move with the back;
  • the sensor retreats into the vacuum chamber, and the linear guide portion of the guide rail is adjusted backward by 50 mm through the guide rail adjusting mechanism inside the vacuum chamber, and is separated from the curved portion of the guide rail, and then the flap valve is closed to open the cover plate on the vacuum chamber.
  • the front end of the servo motor is connected to the reducer, and is connected with the electric cylinder through a pulley to drive the movement of the electric cylinder; the reading head of the grating is moved together with the transmission unit for measuring the actual movement displacement of the transmission unit, the reading head
  • the signal line is connected to the motor drive to realize signal feedback; the real-time controller acts as a lower position machine, and controls the movement of the servo motor through the motor drive;
  • the limit switch includes a photoelectric limit limit and a mechanical limit switch, respectively connected to the motor Drive the DI port and STO port.
  • the signal of the sensor passes through the inner space of the transmission rod through the cable, leads out the flange of the vacuum sealing mechanism, and is connected to the corresponding signal acquisition and processing equipment; the measured signal is then sent to the real-time controller for post-processing.
  • the electric cylinder pushes the transmission rod into the accelerator, the transmission rod pushes the trolley to slide on the guide rail;
  • the real-time controller is connected to the motor drive, controls the servo motor, drives the electric cylinder through the reducer, and the grating scale serves as the second feedback of the servo motor, and the photoelectric limit
  • the position and mechanical limit switch protection system does not exceed the stroke;
  • the front end of the first car is equipped with a beam measurement probe.
  • the current signal obtained by the probe is taken out of the vacuum and read through the picoammeter; the picoammeter is outputted by the RS232 serial port.
  • the current signal is used to summarize the signals of multiple picoammeters to the real-time controller through the serial port server; the picoammeter converts the measured current signal into an analog voltage signal, and the analog voltage signal is connected to the analog signal inserted into the CompactRIO chassis. Capture card to achieve signal acquisition, processing and storage.
  • the electric cylinder pushes the transmission rod into the inside of the device under test, and the transmission rod pushes the trolley to slide on the guide rail.
  • the front end of the first trolley is equipped with a small leak detector, and the rear end of the electric cylinder is equipped with a visual sensor, and the cable is from a small leak detector.
  • the starting point is led to the visual sensor via the trolley and the transmission rod, and the deflation rate of the material in the vacuum environment is judged based on the data obtained by the sensor.
  • the invention has the beneficial effects that the invention adopts a curved transmission device in a vacuum environment, which can increase the range of the moving radius of the transmission device, and connects the transmission rod with the electric cylinder and the trolley respectively, and combines the plug-in valve, the vacuum chamber and the vacuum seal.
  • the mechanism enables the trolley to accurately reach the position to be reached, has the characteristics of high accuracy and increased range of motion, and can be replaced with different detecting devices without damaging the vacuum environment, and has the advantages of simple structure, convenient use and high reliability.
  • the high efficiency and low cost provide reliable service for the relevant debugging and post-maintenance of the vacuum.
  • the current signal obtained by the picometer measurement sensor has the advantages of high precision and good real-time performance.
  • the servo is semi-closed.
  • the motion control system has the advantages of high positioning accuracy and good stability; the curve transmission measuring system provides reliable service for high-precision measurement inside vacuum or other confined spaces.
  • Figure 1 is a partial schematic view of a curved transmission measuring system of the present invention
  • Figure 2 is a partial enlarged view of Figure 1 of the present invention
  • FIG. 3 is a schematic structural view of a curve transmission measuring system of the present invention.
  • Figure 4 is a schematic view showing the structure of a vacuum chamber in the present invention.
  • Figure 5 is a schematic view showing the structure of a vacuum sealing mechanism in the present invention.
  • FIG. 6 is a schematic diagram of a layout of a motion control unit and a measurement unit according to the present invention.
  • Figure 7 is a schematic view showing the layout of a curve transmission measuring system of the present invention.
  • the present invention is a high-precision curve transmission measuring system, which realizes high-precision motion and measurement in a vacuum interior or other confined space through a curved transmission, including a transmission unit, a vacuum sealing unit, and a motion control unit. And a measuring unit;
  • the transmission unit comprises a guide rail 1, a slider 2, a trolley 3, a transmission rod 6, an electric cylinder 10, and a support platform mechanism;
  • the guide rail 1 is formed by splicing different curved segments (curved guide rails) and straight segments (linear guide rails) to match specific movement trajectories and space constraints; the guide rail 1 has a T-shaped groove; the slider 2 has a truncated cone shape, and is mounted on the guide rail 1 The T-shaped groove of the guide rail 1 slides; the bottom of each trolley 3 is connected to the two sliders 2 by a snap spring, and the joint is rotatable; the adjacent trolleys 3, the trolley 3 and the transmission rod 6 are connected by a hinge 5 The tail end of the transmission rod 6 is fixed to the high precision electric cylinder 10.
  • the guide rail 1, the slider 2, the trolley 3, the hinge 5, the transmission rod 6, and the electric cylinder 10 cooperate to realize the precise movement of the trolley 3 to drive the sensor 17 along the fixed trajectory.
  • the rail support 4 is fixed inside the object to be tested, and is used for supporting the rail 1, including an adjusting frame, a long bolt and a bottom plate, a lower end of the long bolt is connected to the bottom plate, and an upper end penetrates the adjusting frame and is fixed by the two nuts and the adjusting frame; 1 and the adjusting bracket of the rail support 4 are fixed by screws; the rail support 4 adopts a work structure to enhance the support strength and reduce the disturbance of the whole device during the movement.
  • the linear guide 16 of the guide rail 1 and the transmission rod 6 extend through the entire vacuum sealing unit, and the vacuum sealing unit includes a flapper valve 7, a vacuum chamber 8, and a vacuum sealing mechanism 9.
  • One end of the transmission rod 6 is connected to the last section of the plurality of carts 3, and the other end is fixed to the electric cylinder 10.
  • the transmission rod 6 is sealed by the vacuum chamber 8 and the vacuum sealing mechanism 9 during the movement.
  • the vacuum chamber 8 is internally provided with a rail adjusting mechanism, and the rail adjusting mechanism comprises a rotating hand wheel 13, a rack and pinion mechanism 14, and an adjusting guide rail 15;
  • the output shaft of the rotating hand wheel 13 and the rack and pinion mechanism 14 are in mesh with each other, and the rack and pinion mechanism 14 is connected with the adjusting rail 15 , and the slider platform of the adjusting rail 15 is fixed to the linear guide rail 16; when working, the rotating hand wheel 13 is twisted.
  • the driving rack and pinion mechanism 14 drives the adjusting rail 15 to move, and the linear guide 16 reciprocates with the adjusting rail 15 to realize the docking and separation with the curved portion of the guide rail 1; before the flapper valve 7 is closed, the electric cylinder 10 drives the transmission rod 6 and the trolley 3 drive the sensor 17 to completely retreat into the vacuum chamber, and then twist the rotating hand wheel 13 to separate the linear guide 16 from the curved portion of the guide rail 1, thereby closing the flapper valve 7.
  • the transmission unit and the vacuum sealing unit are supported and adjusted to a suitable height by a support mechanism.
  • the support mechanism includes a gantry 11 and a height adjustment mechanism 12; the gantry 11 is mounted with a vacuum chamber 8, a vacuum sealing mechanism 9, and an electric cylinder 10; the height adjustment mechanism 12 includes a support frame 121, a support plate 122, and an adjustment The screw 123, the support plate 122 is fixed to the gantry 11, and the adjusting screw 123 is fixedly coupled to the support frame 121 and the support plate 122.
  • the pressing nut in the height adjusting mechanism 12 is loosened, and then the adjusting screw 123 is rotated to adjust the height. After reaching the predetermined height, the pressing nut is tightened to complete the height adjustment.
  • By adjusting the height of the height adjustment mechanism 12 it is ensured that the entire motion track is at the same horizontal plane.
  • the front end of the first car 3 is equipped with a sensor 17; the electric cylinder 10 drives the transmission rod 6 to push the trolley 3 to slide in the guide rail 1, and its running speed ranges from 0 to 150 mm/s, so that the movement of the trolley 3 and the transmission rod 6 is The resulting mechanical disturbance is minimized.
  • the electric cylinder 10 drives the transmission rod 6 to move back, and the sensor 17 and the carriage 3 move back.
  • the linear guide 16 of the guide rail 1 is adjusted backward by 50 mm through the guide rail adjusting mechanism inside the vacuum chamber 8, separated from the curved portion of the guide rail 1, and then the flapper valve 7 is closed to open the vacuum.
  • the cover plate on the cavity 8 can realize the replacement or other operation of the sensor without destroying the vacuum environment of the object to be tested.
  • the vacuum sealing unit ensures vacuum sealing of the system, and closing the flapper valve 7 protects the vacuum environment of the object to be tested.
  • the vacuum sealing mechanism 9 is a freely stretchable welded vacuum bellows.
  • the plug valve 7, the vacuum chamber 8 and the vacuum sealing mechanism 9 are provided with a vacuum sealing flange at both ends, between the plug-in valve 7 and the object to be tested, between the plug-in valve 7 and the vacuum chamber 8, the vacuum chamber 8 and the vacuum
  • the sealing mechanism 9 is connected by flanges, and the other side of the vacuum sealing mechanism 9 is fixed with a blind plate flange, and a vacuum feedthrough is installed in the opening to allow the signal of the sensor 17 to be taken out while ensuring that the entire device is in a vacuum environment.
  • the motion control unit includes a servo motor, a reducer, a motor drive, a scale, a real-time controller, and a limit switch.
  • the electric cylinder 10 and its front end transmission parts are driven by a servo motor, and the front end of the servo motor is connected to a speed reducer and connected to the electric cylinder through a pulley.
  • the motor drive and the servo motor are connected by a power line and a feedback line.
  • the encoder of the servo motor is used as a speed feedback source, and the absolute scale is used as the second feedback, that is, the displacement feedback source.
  • the reading head of the grating ruler moves along with the transmission unit to measure the actual motion displacement of the transmission unit, and the signal line of the reading head is connected to the motor drive to realize signal feedback; the real-time controller is used as the lower position machine, and the servo is controlled by the motor drive.
  • the movement of the motor; the limit switch includes a photoelectric limit and a mechanical limit switch, respectively connected to the DI port and the STO port of the motor drive, for preventing the transmission unit from exceeding its movement stroke.
  • the measuring unit comprises a sensor 17 and a corresponding signal acquisition and processing device.
  • the signal of the sensor 17 passes through the inner space of the transmission rod 6 through the cable, leads out the flange of the vacuum sealing mechanism 9, and is connected to the corresponding signal acquisition and processing equipment.
  • the measured signal is then sent to the real-time controller for post processing.
  • the real-time controller can realize the control and signal acquisition of the picoammeter, the acquisition and processing of the analog signal, and the motion control of the motor, and realize the synchronization of data acquisition and motion control.
  • the corresponding signal acquisition and processing equipment includes a picoammeter, a serial port server, and an analog signal acquisition card.
  • the picoammeter is used to measure the current signal obtained by the sensor, and each current signal is measured using a picoammeter.
  • the picoammeter can output the measured current signal through the serial port; the current signal to be tested can also be converted into a voltage signal and output through the analog voltage output port.
  • the RS232 cable is used as the signal cable of the picoammeter, and the serial port of the picoammeter is converted into a network port through a serial server to be connected to the CompactRIO real-time controller.
  • the serial port server is used to convert multiple serial ports of the picoammeter into network ports, and the serial port server can use TCP/IP protocol communication instead of serial port communication, thereby greatly improving the communication speed.
  • the CompactRIO real-time controller implements the functions of initialization, parameter setting, current signal acquisition, data processing and saving of the picoammeter.
  • the analog signal acquisition card is used to collect the analog voltage signal output by the picoammeter, and the analog signal acquisition card is inserted into the CompactRIO chassis to further process and save the signal.
  • the servo motor drives the transmission unit to reciprocate.
  • the motor drive and the servo motor are connected by the power line and the feedback line.
  • the encoder of the servo motor is used as the speed feedback source, and the absolute scale is used as the second feedback, that is, the displacement feedback source. .
  • Two sets of limit switches with photoelectric limit and mechanical limit ensure that the servo motor does not exceed the travel of the drive unit to ensure safe operation.
  • the picoammeter and the sensor are connected by a shielded twisted pair cable, each signal is connected to a picoammeter, and the serial server is used to connect the picoammeter to the CompactRIO real-time controller, and the analog voltage output of the picoammeter is connected by a cable.
  • the port and the analog signal acquisition card are inserted into the CompactRIO chassis; the servo motor and the motor drive are connected by a power line and a feedback line, and the read head of the scale and the slide of the electric cylinder are screwed together.
  • the read head is connected to the second feedback interface of the motor drive through the signal line, and the photoelectric limit and the mechanical limit switch are respectively connected to the motor drive, and the motor drive is connected to the CompactRIO real-time controller through the network cable.
  • a sensor is connected at the foremost end of the trolley for obtaining a current signal to be measured.
  • the current signal obtained by the sensor is measured using a picoammeter.
  • the picometer can output the measured value through the signal line.
  • the measured value is sent to the CompactRIO real-time controller for post-processing through the serial port server.
  • the picoammeter converts the input current signal into a voltage signal. Then, the analog signal acquisition card is used for acquisition, and then sent to the CompactRIO real-time controller for post-processing.
  • the CompactRIO real-time controller enables the control and signal acquisition of the picoammeter, the acquisition and processing of analog signals, and the motion control of the motor, as well as the synchronization of data acquisition and motion control.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the accelerator has a high vacuum environment, and the measurement trajectory and active space of the probe are greatly limited.
  • a curved guide rail 1 is erected in the accelerator, and the measuring radius can cover the entire radial range from the central area to the lead-out area according to requirements.
  • the cross-section of the guide rail 1 and the trolley 3 ensures that the accelerator can be taken out through the 48 mm ⁇ 48 mm tunnel.
  • the accelerator and flapper valve 7 are connected by flanges.
  • the electric cylinder 10 pushes the transmission rod 6 into the interior of the accelerator, and the transmission rod 6 pushes the carriage 3 to slide on the guide rail 1.
  • the CompactRIO real-time controller is connected to the motor drive, controls the servo motor, drives the electric cylinder through the reducer, and the grating scale serves as the second feedback of the servo motor.
  • the photoelectric limit and the mechanical limit switch protect the system from moving beyond the stroke.
  • the front end of the first car 3 is equipped with a beam measuring probe, that is, a sensor 17, and the current signal obtained by the probe is taken out of the vacuum and read through the picoammeter.
  • the picometer can output the measured current signal from the RS232 serial port, and the signals of multiple picoammeters can be summarized into the CompactRIO real-time controller through the serial port server, and the initialization and parameter setting of the picoammeter can be implemented; the picoammeter can also be used.
  • the measured current signal is converted into an analog voltage signal, and the analog voltage signal is inserted into an analog signal acquisition card inserted into the CompactRIO chassis to realize signal acquisition, processing, and storage.
  • the picoammeter and the probe are connected by a shielded twisted pair cable, and each current signal of the probe is connected to a picoammeter, and the picoammeter can output the measured value through the serial port signal line, and the measured value passes through the serial server.
  • the picoammeter converts the input current signal into a voltage signal, and uses a cable to connect the analog voltage output port of the picoammeter and the analog signal acquisition card, and then The capture card is inserted into the card slot of the CompactRIO real-time controller, and finally the result of collecting the analog signal is sent to the CompactRIO real-time controller for post-processing; the servo motor and the motor drive are connected by the power line and the feedback line, and the servo is connected.
  • the encoder of the motor is used as the speed feedback source, and the absolute scale is used as the second feedback, that is, the displacement feedback source.
  • the reading head of the grating ruler is fixed with the screw of the electric cylinder, the reading head is connected to the second feedback interface of the motor drive through the signal line, and the photoelectric limit and the mechanical limit switch are respectively connected to the DI port and STO of the motor drive.
  • the motor driver is connected to the CompactRIO real-time controller via a network cable.
  • the CompactRIO real-time controller enables the control and signal acquisition of the picoammeter, the acquisition and processing of analog signals, and the motion control of the motor, as well as the synchronization of data acquisition and motion control.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the venting rate is diagnosed in the specific vacuum environment, and the measurement method is as follows: the electric cylinder 10 pushes the transmission rod 6 into the inside of the device under test, and the transmission rod 6 pushes the trolley 3 to slide on the guide rail 1, first
  • the front end of the trolley 3 is equipped with a small leak detector, that is, a sensor 17, which determines the coverage area of the rail 1 based on the measurement position and distribution requirements.
  • a visual sensor is installed at the tail of the electric cylinder 10. The cable is led out from the small leak detector through the trolley 3 and the transmission rod 6 to the visual sensor. According to the data obtained by the sensor, it is judged whether the material discharge rate in the vacuum environment satisfies the requirements.
  • the invention adopts a curved transmission device in a vacuum environment, and can flexibly cope with various measurement position requirements.
  • the transmission rods are respectively connected with the electric cylinders and the trolleys, so that the trolleys can accurately reach the required position and simultaneously insert
  • the plate valve, vacuum chamber and vacuum sealing mechanism enable functions such as sensor replacement without damaging the vacuum environment.
  • the whole system has simple structure, convenient use, high reliability, high work efficiency and low cost, and can provide accurate and reliable service for relevant debugging and post-maintenance inside the vacuum.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种高精度曲线传动测量系统,包括传动单元、真空密封单元、运动控制单元以及测量单元;所述传动单元包括导轨(1)、滑块(2)、小车(3)、传动杆(6)、电缸(10)、支撑机构;导轨(1)上放置有若干节小车(3),第一节小车(3)的前端安装有传感器(17);所述的真空密封单元包括插板阀(7)、真空腔(8)、真空密封机构(9);传动杆(6)和导轨(1)贯穿真空密封单元,连接小车(3)和电缸(10);所述的运动控制单元包括伺服电机、减速机、电机驱动、光栅尺及实时控制器、限位开关;实时控制器通过电机驱动控制伺服电机,经减速机带动电缸(10)运动,光栅尺参与位置反馈,限位开关做保护;所述的测量单元包括传感器(17)及相应的信号采集处理设备。

Description

一种高精度曲线传动测量系统 技术领域
本发明属于机械传动技术以及精密测量领域,涉及到一种高精度曲线传动测量系统。
背景技术
现有的运动手段多采用直线传动装置,当环境结构复杂、空间受到限制时,直线传动装置的运动覆盖范围有限,不能实现准确、完整的运动和测量。遇到真空环境时,通过打开真空环境来更换不同类型的传感器和运动装置,需要反复的破真空和抽真空过程,工作效率低下,增加了时间、人力、物力等成本。为了改善现有的直线传动装置的上述问题,需要一种运动范围广、精度高、不破真空实现更换操作的传动测量系统。
发明内容
本发明的目的在于提供一种高精度曲线传动测量系统,用以解决真空环境或其它受限空间内的非直线运动、高精度测量、高精度运动控制和不破真空实现更换操作等问题。
本发明的目的可以通过以下技术方案实现:
一种高精度曲线传动测量系统,包括传动单元、真空密封单元、运动控制单元以及测量单元;其中,所述的传动单元包括导轨、小车、传动杆、电缸;导轨上放置有若干小车;传动杆一端与若干小车中的最后一节小车连接,另一端与电缸连接;所述的真空密封单元包括插板阀、真空腔、真空密封机构,导轨的直线导轨和传动杆贯穿整个真空密封单元;所述的运动控制单元包括伺服电机、减速机、电机驱动、光栅尺、实时控制器以及限位开关;电缸由伺服电机驱动;所述的测量单元包括传感器;位于若干小车中的第一节小车的前端安装有传感器。
所述的导轨由不同曲线段、直线段拼接而成;导轨上开有T型槽,滑块为圆台状,其安装在导轨的T型槽内滑动;每节小车的底部通过卡簧连接两 个滑块,连接处可旋转;相邻小车之间、小车和传动杆之间通过铰链连接;导轨、滑块、小车、铰链、传动杆、电缸配合,实现小车带动传感器沿固定轨迹做精确运动;导轨安装在导轨支撑上。
所述的插板阀一端与被测对象连接,另一端与真空腔连接,真空腔再和真空密封机构连接;真空腔的一面盖板可打开,便于传感器和小车的操作维护;插板阀关闭时,保护被测对象的真空环境不受外侧动作的影响;所述真空密封机构为自由伸缩的焊接真空波纹管;插板阀、真空腔和真空密封机构两端均设有真空密封法兰,插板阀与被测对象之间、插板阀与真空腔之间、真空腔与真空密封机构之间都通过法兰连接,真空密封机的另一侧固定盲板法兰,其上开孔安装真空馈通。
所述的传动单元和真空密封单元通过支撑台机构提供支撑并调节到合适的高度;支撑台机构包括台架和高度调节机构;所述台架上面安装有真空腔、真空密封机构、电缸;所述高度调节机构包括支撑架、支撑板和调节螺杆,支撑板与台架固接,调节螺杆固定连接支撑架和支撑板。
所述的导轨的直线导轨和传动杆贯穿整个真空密封单元;真空腔内装有导轨调节机构,包括转动手轮、齿轮齿条机构、调节导轨,转动手轮的输出轴与齿轮齿条机构相互啮合,齿轮齿条机构与调节导轨连接,调节导轨的滑块平台与直线导轨固接;工作时,扭动转动手轮驱动齿轮齿条机构,进而带动调节导轨运动,直线导轨随着调节导轨往复运动,实现与导轨的曲线部分的对接和分离;关闭插板阀之前,电缸驱动传动杆和小车带动传感器完全退至真空腔内,扭动转动手轮使直线导轨与导轨的曲线部分分离,即可关闭插板阀。
所述的电缸带动传动杆推动小车在导轨中滑行,其运行的速度范围为0-150mm/s;测量完成后,电缸带动传动杆往回运动,传感器和小车随着往回运动;当传感器退至真空腔之内,通过真空腔内部的导轨调节机构将导轨的 直线导轨部分往后调节50mm,与导轨的曲线部分分离,然后关闭插板阀,打开真空腔上的盖板。
所述的伺服电机前端连接减速机,并通过皮带轮与电缸进行连接,驱动电缸运动;所述的光栅尺的读数头跟随传动单元一起运动,用于测量传动单元的实际运动位移,读数头的信号线连接电机驱动,实现信号反馈;所述的实时控制器作为下位机,通过电机驱动控制伺服电机的运动;所述的限位开关包括光电限位和机械限位开关,分别接入电机驱动的DI口和STO口。
所述的传感器的信号通过线缆经传动杆内部空间,引出真空密封机构的法兰外侧,接入相应的信号采集处理设备;所测信号然后送入实时控制器进行后处理。
电缸推动传动杆伸入加速器内部,传动杆推动小车在导轨上滑动;实时控制器连接电机驱动,控制伺服电机,通过减速机驱动电缸运动,光栅尺作为伺服电机的第二反馈,光电限位和机械限位开关保护系统运动不超过行程;第一节小车的前端安装有束流测量探头,探头获取的电流信号引出真空后,通过皮安表读取;皮安表由RS232串口输出测量的电流信号,通过串口服务器将多台皮安表的信号汇总到实时控制器上;皮安表将所测的电流信号转化为模拟电压信号,模拟电压信号接入插入到CompactRIO机箱中的模拟信号采集卡,实现信号的采集、处理与保存。
电缸推动传动杆伸入被测装置内部,传动杆再推动小车在导轨上滑动,第一节小车的前端安装有小型检漏仪,电缸的尾部安装可视化传感器,电缆线从小型检漏仪出发经由小车、传动杆引出到可视化传感器,根据传感器所获数据判断真空环境下材料的放气率。
本发明的有益效果:本发明在真空环境中采用曲线传动装置,可增大传动装置的运动半径范围,通过将传动杆分别与电缸和小车连接,并结合插板阀、真空腔和真空密封机构,可使小车准确到达需到达的位置,具有准确性高和 增大运动范围的特点,同时在不破坏真空环境的情况下可跟换不同检测装置,具有结构简单、使用方便、可靠性高、工作效率高以及成本低的特点,为真空内部的相关调试和后期维护提供可靠的服务;采用皮安表测量传感器获取的电流信号,具有精度高、实时性好的优点;采用半闭环的伺服运动控制系统,具有定位精度高、稳定性好的优点;该曲线传动测量系统为真空内部或其它受限空间的高精度测量提供可靠的服务。
附图说明
为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。
图1为本发明曲线传动测量系统的局部示意图;
图2为本发明中图1的局部放大图;
图3为本发明曲线传动测量系统的结构示意图;
图4为本发明中真空腔的结构示意图;
图5为本发明中真空密封机构的结构示意图;
图6为本发明的运动控制单元、测量单元布局示意图;
图7为本发明曲线传动测量系统布局示意图;
附图中,各标号所代表的部件列表如下:1-导轨,2-滑块,3-小车,4-导轨支撑,5-铰链,6-传动杆,7-插板阀,8-真空腔,9-真空密封机构,10-电缸,11-台架,12-高度调节机构,121-支撑架,122-支撑板,123-调节螺杆,13-转动手轮,14-齿轮齿条机构,15-调节导轨,16-直线导轨,17-传感器。
本发明的较佳实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1-7所示,本发明为一种高精度曲线传动测量系统,通过曲线 传动实现真空内部或其它受限空间的高精度运动和测量,包括传动单元、真空密封单元、运动控制单元以及测量单元;
其中,所述的传动单元包括导轨1、滑块2、小车3、传动杆6、电缸10、支撑台机构;
导轨1由不同曲线段(曲线导轨)、直线段(直线导轨)拼接而成,以配合特定的运动轨迹以及空间限制;导轨1上开有T型槽;滑块2为圆台状,其安装在导轨1的T型槽内滑动;每节小车3的底部通过卡簧连接两个滑块2,连接处可旋转;相邻小车3之间、小车3和传动杆6之间均通过铰链5连接;传动杆6的尾端与高精度电缸10固接。导轨1、滑块2、小车3、铰链5、传动杆6、电缸10配合,可实现小车3带动传感器17沿固定轨迹做精确运动。
导轨支撑4固定在被测对象内部,用于导轨1的支撑,包括调节架、长螺栓与底板,长螺栓下端连接底板,上端贯穿调节架并通过适配的两个螺母与调节架固定;导轨1和导轨支撑4的调节架之间通过螺钉固定;导轨支撑4采用工型结构,增强支撑强度,同时减少整体装置在运动过程中产生扰动。
导轨1的直线导轨16和传动杆6贯穿整个真空密封单元,该真空密封单元包括插板阀7、真空腔8、真空密封机构9。传动杆6一端与若干小车3的最后一节连接,另一端与电缸10固接。传动杆6在运动过程中,通过真空腔8、真空密封机构9进行密封,真空腔8内部安装有导轨调节机构,该导轨调节机构包括转动手轮13、齿轮齿条机构14、调节导轨15;转动手轮13的输出轴与齿轮齿条机构14相互啮合,齿轮齿条机构14与调节导轨15连接,调节导轨15的滑块平台与直线导轨16固接;工作时,扭动转动手轮13驱动齿轮齿条机构14,进而带动调节导轨15运动,直线导轨16随着调节导轨15往复运动,实现与导轨1的曲线部分的对接和分离;关闭插板阀7之前,电缸10驱动传动杆6和小车3带动传感器17完全退至真空腔内,再扭动转动 手轮13使直线导轨16与导轨1的曲线部分分离,即可关闭插板阀7。
传动单元和真空密封单元通过支撑台机构提供支撑并调节到合适的高度。支撑台机构包括台架11和高度调节机构12;所述台架11上面安装有真空腔8、真空密封机构9、电缸10;所述高度调节机构12包括支撑架121、支撑板122和调节螺杆123,支撑板122与台架11固接,调节螺杆123固定连接支撑架121和支撑板122。当需要调整高度时,将高度调节机构12中的压紧螺母松开,然后转动调节螺杆123调节高度,到达预定高度后拧紧压紧螺母,完成高度调节。通过高度调节机构12的高度调节,可保证整个运动轨道位于同一水平面。
第一节小车3的前端安装有传感器17;电缸10带动传动杆6推动小车3在导轨1中滑行,其运行的速度范围为0-150mm/s,使得小车3和传动杆6的运动,引起的机械扰动降到最低。
测量完成后,电缸10带动传动杆6往回运动,传感器17和小车3随着往回运动。当传感器17退至真空腔8之内,通过真空腔8内部的导轨调节机构将导轨1的直线导轨16部分往后调节50mm,与导轨1的曲线部分分离,然后关闭插板阀7,打开真空腔8上的盖板,可以在不破坏被测对象真空环境的基础上,实现传感器的更换或其他操作。
所述的真空密封单元保证该系统的真空密封,关闭插板阀7可保护被测对象的真空环境。所述真空密封机构9为自由伸缩的焊接真空波纹管。插板阀7、真空腔8和真空密封机构9两端均设有真空密封法兰,插板阀7与被测对象之间、插板阀7与真空腔8之间、真空腔8与真空密封机构9之间都通过法兰连接,真空密封机构9的另一侧固定盲板法兰,其上开孔安装真空馈通,以便传感器17的信号引出,同时保证整个装置处于真空环境。
所述的运动控制单元包括伺服电机、减速机、电机驱动、光栅尺、实时控制器以及限位开关。电缸10及其前端的传动部件由伺服电机驱动,伺服电 机前端连接减速机,并通过皮带轮与电缸进行连接。电机驱动与伺服电机之间通过动力线和反馈线进行连接,伺服电机的编码器作为速度反馈源,采用绝对式光栅尺作为第二反馈,即位移反馈源。所述的光栅尺的读数头跟随传动单元一起运动,测量传动单元的实际运动位移,读数头的信号线连接电机驱动,实现信号反馈;所述的实时控制器作为下位机,通过电机驱动控制伺服电机的运动;所述的限位开关包括光电限位和机械限位开关,分别接入电机驱动的DI口和STO口,用于防止传动单元超过其运动行程。
所述的测量单元包括传感器17及相应的信号采集处理设备。传感器17的信号通过线缆经传动杆6内部空间,引出真空密封机构9的法兰外侧,接入相应的信号采集处理设备。所测信号然后送入实时控制器进行后处理。
实时控制器可实现皮安表的控制和信号获取、模拟信号的采集与处理,以及电机的运动控制,并实现数据采集与运动控制的同步。
相应的信号采集处理设备包括皮安表、串口服务器、模拟信号采集卡。
皮安表用于测量传感器获取的电流信号,每一路电流信号采用一个皮安表进行测量。皮安表可通过串口输出测量的电流信号;也可将待测的电流信号转化为电压信号,并通过模拟电压输出口输出。
采用RS232线缆作为皮安表的信号线缆,通过串口服务器将皮安表的串口转换为网口,以连接到CompactRIO实时控制器上。
所述的串口服务器用于将多个皮安表的串口转换为网口,使用串口服务器可采用TCP/IP协议通信替代串口通信,从而大大提高通信速率。
所述的CompactRIO实时控制器实现皮安表的初始化、参数设置、电流信号获取、数据处理与保存的功能。
所述的模拟信号采集卡用来采集皮安表输出的模拟电压信号,将模拟信号采集卡插入到CompactRIO机箱中,进一步实现信号的处理与保存。
采用伺服电机驱动传动单元进行往复运动,电机驱动与伺服电机之间通 过动力线和反馈线进行连接,伺服电机的编码器作为速度反馈源,采用绝对式光栅尺作为第二反馈,即位移反馈源。采用光电限位和机械限位两套限位开关确保伺服电机不会超过传动单元的行程,以确保运行的安全性。
具体地,皮安表与传感器之间通过屏蔽双绞线连接,每一路信号连接一个皮安表,采用串口服务器连接皮安表与CompactRIO实时控制器,采用电缆线连接皮安表的模拟电压输出口和模拟信号采集卡,再将采集卡插入到CompactRIO机箱中;伺服电机与电机驱动之间通过动力线和反馈线进行连接,光栅尺的读数头与电缸的滑台用螺钉固定在一起,读数头通过信号线连接到电机驱动的第二反馈接口,光电限位和机械限位开关分别接到电机驱动上,电机驱动通过网线与CompactRIO实时控制器相连。
在小车的最前端连接有传感器,用于获取待测电流信号。采用皮安表测量传感器获取的电流信号。皮安表一方面可以通过信号线输出测量值,此时测量值通过串口服务器,然后送入到CompactRIO实时控制器中进行后处理;另一方面,皮安表将输入的电流信号转化为电压信号,然后采用模拟信号采集卡进行采集,再送入到CompactRIO实时控制器中进行后处理。
CompactRIO实时控制器可实现皮安表的控制和信号获取、模拟信号的采集与处理,以及电机的运动控制,并实现数据采集与运动控制的同步。
实施例一:
在回旋加速器束流测量过程中,加速器内为高真空环境,探针的测量轨迹和活动空间有很大限制。在加速器内架设曲线导轨1,测量半径可根据要求覆盖中心区到引出区的整个径向范围,导轨1和小车3的截面保证可通过48mm×48mm的孔道引出加速器。加速器和插板阀7通过法兰连接。电缸10推动传动杆6伸入加速器内部,传动杆6推动小车3在导轨1上滑动。CompactRIO实时控制器连接电机驱动,控制伺服电机,通过减速机驱动电缸运动,光栅尺作为伺服电机的第二反馈,光电限位和机械限位开关保护系统 运动不超过行程。第一节小车3的前端安装有束流测量探头,即传感器17,探头获取的电流信号引出真空后,通过皮安表读取。皮安表可由RS232串口输出测量的电流信号,通过串口服务器将多台皮安表的信号汇总到CompactRIO实时控制器上,并可实施皮安表的初始化、参数设置等操作;皮安表也可将所测的电流信号转化为模拟电压信号,模拟电压信号接入插入到CompactRIO机箱中的模拟信号采集卡,实现信号的采集、处理与保存。
具体地,皮安表与探头之间通过屏蔽双绞线连接,探头的每一路电流信号连接一个皮安表,皮安表一方面可以通过串口信号线输出测量值,此时测量值通过串口服务器,然后送入到CompactRIO实时控制器中进行后处理;另一方面,皮安表将输入的电流信号转化为电压信号,采用电缆线连接皮安表的模拟电压输出口和模拟信号采集卡,再将采集卡插入到CompactRIO实时控制器的卡槽中,最终将采集模拟信号的结果送入到CompactRIO实时控制器中进行后处理;伺服电机与电机驱动之间通过动力线和反馈线进行连接,伺服电机的编码器作为速度反馈源,采用绝对式光栅尺作为第二反馈,即位移反馈源。光栅尺的读数头与电缸的滑台用螺钉固定在一起,读数头通过信号线连接到电机驱动的第二反馈接口,光电限位和机械限位开关分别接到电机驱动的DI口和STO口,电机驱动器通过网线与CompactRIO实时控制器相连。总的来说,CompactRIO实时控制器可实现皮安表的控制和信号获取、模拟信号的采集与处理,以及电机的运动控制,并实现数据采集与运动控制的同步。
实施例二:
在特定真空环境下对所测部件进行放气率诊断,采用的测量方式为:电缸10推动传动杆6伸入被测装置内部,传动杆6再推动小车3在导轨1上滑动,第一节小车3的前端安装有小型检漏仪,即传感器17,根据测量位置和分布需求确定导轨1的覆盖区域。电缸10的尾部安装可视化传感器,电缆线从小型检漏仪出发经由小车3、传动杆6引出到可视化传感器,根据传感器 所获数据判断真空环境下材料的放气率是否满足要求。
本发明在真空环境中采用曲线传动装置,可灵活应对各种测量位置需求,通过曲线导轨的拼接设计,将传动杆分别与电缸和小车连接,可使小车准确到达所需位置,同时结合插板阀、真空腔和真空密封机构,可实现在不破坏真空环境的情况下可更换传感器等功能。整套系统结构简单,使用方便,可靠性高,工作效率高,成本较低,可以为真空内部的相关调试和后期维护提供准确可靠的服务。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

  1. 一种高精度曲线传动测量系统,其特征在于,包括传动单元、真空密封单元、运动控制单元以及测量单元;
    其中,所述的传动单元包括导轨(1)、小车(3)、传动杆(6)、电缸(10);导轨(1)上放置有若干小车(3);传动杆(6)一端与若干小车(3)中的最后一节小车连接,另一端与电缸(10)连接;
    所述的真空密封单元包括插板阀(7)、真空腔(8)、真空密封机构(9),导轨(1)的直线导轨(16)和传动杆(6)贯穿整个真空密封单元;
    所述的运动控制单元包括伺服电机、减速机、电机驱动、光栅尺、实时控制器以及限位开关;电缸(10)由伺服电机驱动;
    所述的测量单元包括传感器(17);位于若干小车中的第一节小车的前端安装有传感器(17)。
  2. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的导轨(1)由不同曲线段、直线段拼接而成;导轨(1)上开有T型槽,滑块(2)为圆台状,其安装在导轨(1)的T型槽内滑动;每节小车(3)的底部通过卡簧连接两个滑块(2),连接处可旋转;相邻小车(3)之间、小车(3)和传动杆(6)之间通过铰链(5)连接;导轨(1)、滑块(2)、小车(3)、铰链(5)、传动杆(6)、电缸(10)配合,实现小车(3)带动传感器(17)沿固定轨迹做精确运动;导轨(1)安装在导轨支撑(4)上。
  3. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的插板阀(7)一端与被测对象连接,另一端与真空腔(8)连接,真空腔(8)再和真空密封机构(9)连接;真空腔(8)的一面盖板可打开,便于传感器(17)和小车(3)的操作维护;插板阀(7)关闭时,保护被测对象的真空环境不受外侧动作的影响;所述真空密封机构(9)为自由伸缩的焊接 真空波纹管;插板阀(7)、真空腔(8)和真空密封机构(9)两端均设有真空密封法兰,插板阀(7)与被测对象之间、插板阀(7)与真空腔(8)之间、真空腔(8)与真空密封机构(9)之间都通过法兰连接,真空密封机构(9)的另一侧固定盲板法兰,其上开孔安装真空馈通。
  4. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的传动单元和真空密封单元通过支撑台机构提供支撑并调节到合适的高度;支撑台机构包括台架(11)和高度调节机构(12);所述台架(11)上面安装有真空腔(8)、真空密封机构(9)、电缸(10);所述高度调节机构(12)包括支撑架(121)、支撑板(122)和调节螺杆(123),支撑板(122)与台架(11)固接,调节螺杆(123)固定连接支撑架(121)和支撑板(122)。
  5. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的导轨(1)的直线导轨(16)和传动杆(6)贯穿整个真空密封单元;真空腔(8)内装有导轨调节机构,包括转动手轮(13)、齿轮齿条机构(14)、调节导轨(15),转动手轮(13)的输出轴与齿轮齿条机构(14)相互啮合,齿轮齿条机构(14)与调节导轨(15)连接,调节导轨(15)的滑块平台与直线导轨(16)固接;工作时,扭动转动手轮(13)驱动齿轮齿条机构(14),进而带动调节导轨(15)运动,直线导轨(16)随着调节导轨(15)往复运动,实现与导轨(1)的曲线部分的对接和分离;关闭插板阀(7)之前,电缸(10)驱动传动杆(6)和小车(3)带动传感器(17)完全退至真空腔内,扭动转动手轮(13)使直线导轨(16)与导轨(1)的曲线部分分离,即可关闭插板阀(7)。
  6. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的电缸(10)带动传动杆(6)推动小车(3)在导轨(1)中滑行,其运行的速度范围为0-150mm/s;测量完成后,电缸(10)带动传动杆(6)往回运动,传感器(17)和小车(3)随着往回运动;当传感器(17)退至真空腔 (8)之内,通过真空腔(8)内部的导轨调节机构将导轨(1)的直线导轨(16)部分往后调节50mm,与导轨(1)的曲线部分分离,然后关闭插板阀(7),打开真空腔(8)上的盖板。
  7. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的伺服电机前端连接减速机,并通过皮带轮与电缸(10)进行连接,驱动电缸运动;所述的光栅尺的读数头跟随传动单元一起运动,用于测量传动单元的实际运动位移,读数头的信号线连接电机驱动,实现信号反馈;所述的实时控制器作为下位机,通过电机驱动控制伺服电机的运动;所述的限位开关包括光电限位和机械限位开关,分别接入电机驱动的DI口和STO口。
  8. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,所述的传感器(17)的信号通过线缆经传动杆(6)内部空间,引出真空密封机构(9)的法兰外侧,接入相应的信号采集处理设备;所测信号然后送入实时控制器进行后处理。
  9. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,电缸推动传动杆伸入加速器内部,传动杆推动小车在导轨上滑动;实时控制器连接电机驱动,控制伺服电机,通过减速机驱动电缸运动,光栅尺作为伺服电机的第二反馈,光电限位和机械限位开关保护系统运动不超过行程;第一节小车的前端安装有束流测量探头,探头获取的电流信号引出真空后,通过皮安表读取;皮安表由RS232串口输出测量的电流信号,通过串口服务器将多台皮安表的信号汇总到实时控制器上;皮安表将所测的电流信号转化为模拟电压信号,模拟电压信号接入插入到CompactRIO机箱中的模拟信号采集卡,实现信号的采集、处理与保存。
  10. 根据权利要求1所述的一种高精度曲线传动测量系统,其特征在于,电缸推动传动杆伸入被测装置内部,传动杆再推动小车在导轨上滑动,第一节小车的前端安装有小型检漏仪,电缸的尾部安装可视化传感器,电缆线从 小型检漏仪出发经由小车、传动杆引出到可视化传感器,根据传感器所获数据判断真空环境下材料的放气率。
PCT/CN2018/076124 2018-02-05 2018-02-10 一种高精度曲线传动测量系统 WO2019148537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018566275A JP6697659B1 (ja) 2018-02-05 2018-02-10 高精度の曲線伝動測定システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810111603.7 2018-02-05
CN201810111603.7A CN108036809A (zh) 2018-02-05 2018-02-05 一种高精度曲线传动测量系统

Publications (1)

Publication Number Publication Date
WO2019148537A1 true WO2019148537A1 (zh) 2019-08-08

Family

ID=62097292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076124 WO2019148537A1 (zh) 2018-02-05 2018-02-10 一种高精度曲线传动测量系统

Country Status (3)

Country Link
JP (1) JP6697659B1 (zh)
CN (1) CN108036809A (zh)
WO (1) WO2019148537A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762318A (zh) * 2018-08-16 2018-11-06 合肥中科离子医学技术装备有限公司 一种多轴高精度闭环反馈运动控制系统
CN109607074B (zh) * 2018-11-29 2020-12-25 中国船舶工业系统工程研究院 一种兼容直线和弯曲轨道的滑块装置
CN111399029B (zh) * 2020-03-30 2022-03-01 合肥中科离子医学技术装备有限公司 一种曲线运动的连续标定方法
CN113155449B (zh) * 2021-05-17 2022-06-07 长沙理工大学 一种非接触式移动副动力学实验平台

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173851A (zh) * 1995-11-08 1998-02-18 金仁起 用于人员快速运输控制系统的位置识别装置
JP2003109800A (ja) * 2001-10-01 2003-04-11 Mitsubishi Electric Corp 電子加速装置
WO2006042522A1 (de) * 2004-10-19 2006-04-27 Gerhard Haidinger Schienenkamerasystem
CN103148778A (zh) * 2011-12-05 2013-06-12 考克利尔维修工程 与3d轮廓术组合的相位步进错位干涉法的低相干干涉系统
CN204297559U (zh) * 2014-10-21 2015-04-29 北京航天长征飞行器研究所 一种真空低温下弧形高精度行走装置
CN106131390A (zh) * 2016-08-31 2016-11-16 南京理工大学 一种直曲轨小车及其定位装置
CN206181531U (zh) * 2016-08-30 2017-05-17 中广核达胜加速器技术有限公司 一种便于检修的加速器
CN206347090U (zh) * 2016-11-17 2017-07-21 费勉仪器科技(上海)有限公司 一种磁力传动机构及应用该传动机构的真空管道系统
CN107676448A (zh) * 2017-11-03 2018-02-09 合肥中科离子医学技术装备有限公司 一种用于真空环境曲轨传动装置
CN207349385U (zh) * 2017-11-03 2018-05-11 合肥中科离子医学技术装备有限公司 一种用于真空环境曲轨传动装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486140B (zh) * 2013-09-18 2015-12-30 浙江工业大学 热真空环境下的高精度传动装置
EP3136071B1 (fr) * 2015-08-25 2018-03-28 The Swatch Group Research and Development Ltd. Dispositif et procede d'etalonnage d'un dispositif de mesure de l'altitude
CN205003280U (zh) * 2015-08-25 2016-01-27 北京环境特性研究所 Rcs测量用直线定位系统
CN106823160B (zh) * 2017-01-19 2018-01-12 合肥中科离子医学技术装备有限公司 用于回旋加速器质子重离子医疗装置中的束流阻断机构
CN107101830B (zh) * 2017-04-30 2019-04-16 南京理工大学 一种电动伺服直线加载测试系统
CN207798118U (zh) * 2018-02-05 2018-08-31 合肥中科离子医学技术装备有限公司 一种高精度曲线传动测量系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1173851A (zh) * 1995-11-08 1998-02-18 金仁起 用于人员快速运输控制系统的位置识别装置
JP2003109800A (ja) * 2001-10-01 2003-04-11 Mitsubishi Electric Corp 電子加速装置
WO2006042522A1 (de) * 2004-10-19 2006-04-27 Gerhard Haidinger Schienenkamerasystem
CN103148778A (zh) * 2011-12-05 2013-06-12 考克利尔维修工程 与3d轮廓术组合的相位步进错位干涉法的低相干干涉系统
CN204297559U (zh) * 2014-10-21 2015-04-29 北京航天长征飞行器研究所 一种真空低温下弧形高精度行走装置
CN206181531U (zh) * 2016-08-30 2017-05-17 中广核达胜加速器技术有限公司 一种便于检修的加速器
CN106131390A (zh) * 2016-08-31 2016-11-16 南京理工大学 一种直曲轨小车及其定位装置
CN206347090U (zh) * 2016-11-17 2017-07-21 费勉仪器科技(上海)有限公司 一种磁力传动机构及应用该传动机构的真空管道系统
CN107676448A (zh) * 2017-11-03 2018-02-09 合肥中科离子医学技术装备有限公司 一种用于真空环境曲轨传动装置
CN207349385U (zh) * 2017-11-03 2018-05-11 合肥中科离子医学技术装备有限公司 一种用于真空环境曲轨传动装置

Also Published As

Publication number Publication date
CN108036809A (zh) 2018-05-15
JP6697659B1 (ja) 2020-05-27
JP2020517907A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019148537A1 (zh) 一种高精度曲线传动测量系统
EP2662689B1 (en) Automated inspection of spar web in hollow monolithic structure
CN206419641U (zh) 一种激光跟踪仪高度调整装置
WO2022017349A1 (zh) 一种钢轨铣轨车及其钢轨精铣作业控制系统
CN208350757U (zh) 一种高效的气体检测器
CN203184850U (zh) 直角坐标系焊接机器人装置
CN110161323A (zh) 基于多传感器系统的绝缘子表面电位测量系统和测量方法
CN111855232A (zh) 一种全自动车用底盘电子测量仪
CN203303519U (zh) 大型医疗设备治疗床
CN216372175U (zh) 一种gis室内多自由度挂轨式巡检机器人的本体结构
CN207349385U (zh) 一种用于真空环境曲轨传动装置
CN219550089U (zh) 可升降结构及挂轨式巡检机器人
CN218956493U (zh) 一种钢轨垂直伤损检测工艺实验平台
CN109916272A (zh) 移动液压式齿轮箱轴向间隙测量设备
CN106926853A (zh) 一种便携可折叠的全自动铁路轨道检测车
CN116544828A (zh) 一种配电站用巡检设备及其巡检方法
CN206450264U (zh) 一种抗干扰的机房监控装置
CN207798118U (zh) 一种高精度曲线传动测量系统
CN107676448B (zh) 一种用于真空环境曲轨传动装置
CN109338833A (zh) 一种高铁轨道轨距检测装置
CN208350579U (zh) 一种新型可调节的管道粉尘检测装置
CN111037272A (zh) 驱动桥螺栓全自动拧紧机
CN115144471B (zh) 一种轨道探伤车的探头标定系统
CN220038088U (zh) 一种巡检用数据测控装置
CN220205195U (zh) 一种轨道交通车辆车体底架零件安装及检验辅助装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018566275

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904366

Country of ref document: EP

Kind code of ref document: A1