WO2019146861A1 - 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법 - Google Patents

위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법 Download PDF

Info

Publication number
WO2019146861A1
WO2019146861A1 PCT/KR2018/009337 KR2018009337W WO2019146861A1 WO 2019146861 A1 WO2019146861 A1 WO 2019146861A1 KR 2018009337 W KR2018009337 W KR 2018009337W WO 2019146861 A1 WO2019146861 A1 WO 2019146861A1
Authority
WO
WIPO (PCT)
Prior art keywords
response characteristic
linear
equation
phase shift
nonlinear response
Prior art date
Application number
PCT/KR2018/009337
Other languages
English (en)
French (fr)
Inventor
김영식
구엔더만
이혁교
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to EP18902666.9A priority Critical patent/EP3745084A4/en
Priority to JP2020550565A priority patent/JP7001835B2/ja
Priority to US16/610,664 priority patent/US11255662B2/en
Publication of WO2019146861A1 publication Critical patent/WO2019146861A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2504Calibration devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2531Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2527Projection by scanning of the object with phase change by in-plane movement of the patern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02058Passive reduction of errors by particular optical compensation or alignment elements, e.g. dispersion compensation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation

Definitions

  • the present invention relates to a system and method for compensating non-linear response characteristics in object shape measurement using phase shift deflection measurement.
  • a free-form surface is any surface that has asymmetry about any axis.
  • the core parts of cutting-edge optics such as smart glasses and head mounted display (HMD) are all free-form surfaces.
  • This free-form surface has been studied all over the world because it can not only exceed the limit of optical performance of an optical system composed of spherical or aspherical surfaces but also can satisfy design elements at the same time.
  • the phase shift deflection measurement method is a typical technique for measuring the three-dimensional shape of the free-form surface. Unlike the conventional interferometer, the three-dimensional shape measurement can be performed without a separate reference surface.
  • Most commercial displays including LCDs, generally have a nonlinear sensitivity characteristic to enhance human visual perception, and a relatively large difference between shades of darker than the tread that is more stepped.
  • the sensitivity characteristics of digital equipment such as cameras due to luminance are different from human eyes.
  • the intensity of the sinusoidal pattern generated on the display for measurement in the phase shift deflection measurement method is obtained by measuring the intensity of the sinusoidal pattern rather than the actual sinusoidal pattern.
  • the nonlinear components in these displays and cameras often cause a serious measurement error in the measurement results.
  • the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a method and apparatus for compensating for nonlinear response characteristics generated by a digital device (screen, camera) The purpose is to provide.
  • a first step is to create a look-up table that takes non-linear response characteristics into a screen pattern to linearize the response characteristics of the measurement system to secure a nonlinear response characteristic of the system closer to linearity
  • the AIA phase shift algorithm which is widely used to reduce the phase shift error in the interferometer, is applied to compensate the nonlinear response characteristics.
  • the phase shift deflection measurement method the phase is accurately measured without error by the nonlinear response characteristic.
  • a phase shift deflection measurement method capable of measuring a 3D shape of a 3D object with high accuracy.
  • An object of the present invention is to provide a system for compensating for nonlinear response characteristics in a phase shift deflection measurement method, comprising: a pattern generating unit for generating a pattern and projecting the pattern on a measurement object; A detector for obtaining an image of a deformed pattern reflected from the measurement object; And a compensating means for compensating for nonlinear response characteristics generated by the pattern generating unit and the detector.
  • the nonlinear response characteristic measuring method of the present invention can be used to compensate for nonlinear response characteristics in the phase shift deflection measuring method.
  • the pattern generator may be a screen for generating a pattern
  • the detector may be a camera.
  • the compensation means may linearize the nonlinear response based on a lookup table considering the nonlinear response characteristics of the screen and the camera.
  • Equation (1) represents a normalized linear response characteristic model equation.
  • Equation 2 it is possible to obtain an inverse function response characteristic by generating a differential equation (a fifth-order equation) of Equation 2 by changing the input from the measured nonlinear response characteristic graph to the normalized measurement intensity and output to the screen brightness value.
  • Equation (2) Y nor_mea represents a normalized measurement intensity measured by the camera, and X represents a corresponding pre-compensation screen brightness value.
  • a 5 , a 4 , a 3 , a 2 , a 1 , and a 0 are the coefficient values obtained by fitting the inverse response characteristic obtained using the measured nonlinear response characteristic graph to the differential equation (fifth order equation) do.
  • Equation (3) The brightness value to be input on the screen is expressed by Equation (3) so that the normal recalled measurement intensity measured by the camera is a linear response characteristic based on Equations (1) and (2).
  • X new_input a 5 ⁇ Y 5 linear _model + a 4 ⁇ Y 4 linear _model + a 3 ⁇ Y 3 linear _model + a 2 ⁇ Y 2 linear _model + a 1 ⁇ Y linear _model + a 0
  • Equation (3) all coefficient values are obtained through equations (1) and (2), where X is the pre-compensation screen brightness value and X new_input is the post-compensation screen brightness value to be the linear response characteristic.
  • phase shift amount may be calculated by applying an AIA (Advanced Iterative Algorithm) phase shift algorithm.
  • AIA Advanced Iterative Algorithm
  • Another object of the present invention is to provide a method for compensating for nonlinear response characteristics in a phase shift deflection measurement method, the method comprising: generating a pattern generating unit pattern and projecting the pattern onto a measurement object; Obtaining an image of a deformed pattern in which the detector is reflected from the object to be measured; Linearizing a nonlinear response based on a lookup table in which the compensating means considers the nonlinear response characteristics of the pattern generator and the detector; And compensating for a phase shift amount caused by the nonlinear response characteristic of the compensating means.
  • the method of compensating for the nonlinear response characteristic in the phase shift deflection measuring method may be achieved.
  • the phase shift amount is calculated by applying an AIA phase shift algorithm, and includes the steps of: setting an initial phase shift value; A second step of calculating a phase distribution based on the phase shift value; A third step of updating the phase shift value based on the computed phase distribution; And a fourth step of repeating the second and third steps until the difference between the phase shift value and the updated phase shift value becomes equal to or less than a set convergence value.
  • an AIA phase shift algorithm includes the steps of: setting an initial phase shift value; A second step of calculating a phase distribution based on the phase shift value; A third step of updating the phase shift value based on the computed phase distribution; And a fourth step of repeating the second and third steps until the difference between the phase shift value and the updated phase shift value becomes equal to or less than a set convergence value.
  • the linearizing step may include calculating a nonlinear response characteristic graph indicating normalized measurement intensities measured by the detector in a predetermined step from a minimum value to a maximum value of the full screen brightness value of the pattern generator, And converting it into a linear response characteristic through a table.
  • Equation (1) represents a normalized linear response characteristic model equation.
  • Equation 2 it is possible to obtain an inverse function response characteristic by generating a differential equation (a fifth-order equation) of Equation 2 by changing the input from the measured nonlinear response characteristic graph to the normalized measurement intensity and output to the screen brightness value.
  • Equation (2) Y nor_mea represents a normalized measurement intensity measured by the camera, and X represents a corresponding pre-compensation screen brightness value.
  • a 5 , a 4 , a 3 , a 2 , a 1 , and a 0 are the coefficient values obtained by fitting the inverse response characteristic obtained using the measured nonlinear response characteristic graph to the differential equation (fifth order equation) do.
  • Equation (3) The brightness value to be input on the screen is expressed by Equation (3) so that the normal recalled measurement intensity measured by the camera is a linear response characteristic based on Equations (1) and (2).
  • X new_input a 5 ⁇ Y 5 linear _model + a 4 ⁇ Y 4 linear _model + a 3 ⁇ Y 3 linear _model + a 2 ⁇ Y 2 linear _model + a 1 ⁇ Y linear _model + a 0
  • Equation (3) all coefficient values are obtained through equations (1) and (2), where X is the pre-compensation screen brightness value and X new_input is the post-compensation screen brightness value to be the linear response characteristic.
  • the embodiment of the present invention it is possible to compensate for the non-linear response characteristic caused by the digital equipment (screen, camera) in the phase shift deflection measurement method.
  • the first step is to perform a lookup considering the nonlinear response characteristic in the screen pattern to linearize the response characteristic of the measurement system
  • nonlinear response characteristics are compensated by applying AIA phase shift algorithm, which is widely used to reduce phase shift error in an interferometer,
  • AIA phase shift algorithm which is widely used to reduce phase shift error in an interferometer
  • FIG. 1 is a schematic view of a three-dimensional shape measuring system using a phase shift flatness measuring method
  • FIG. 2 is a graph showing a nonlinear response characteristic graph obtained by normalizing brightness intensity values measured by a camera for a predetermined step from a minimum value to a maximum value, according to an exemplary embodiment of the present invention
  • FIG. 3 is a graph of a linear response characteristic model normalized by a graph including a minimum value and a maximum value in FIG. 2,
  • FIG. 4 is a graph illustrating a response characteristic graph, which is linearized according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a method of compensating for phase shift according to an embodiment of the present invention.
  • it is an object to provide a system and method for compensating for non-linear response characteristics caused by digital equipment (screen 10, camera 20) in phase shift deflection measurement.
  • a system for compensating for nonlinear response characteristics in a phase shift deflection measurement method includes a pattern generation unit for generating a pattern and projecting the pattern on the measurement object 1, And a compensating means for compensating for a nonlinear response characteristic generated by the pattern generating unit and the detector.
  • FIG. 1 shows a schematic view of a three-dimensional shape measuring system using a phase-shift flatness measuring method.
  • the pattern generating unit according to the embodiment of the present invention projects the sine wave pattern generated as the screen 10 of the display device onto the measurement object 1.
  • the pattern reflected on the measurement object 1 is incident on a detector constituted by the camera 20 to measure the intensity.
  • the analysis means obtains a 3D shape of the measurement object 1 by measuring and analyzing the phase from the deformed pattern measured by the camera 20.
  • the control unit is connected to both the screen 10 and the camera 20 to control them.
  • the compensating means is configured to compensate for measurement errors caused by nonlinear components in the screen 10 and the camera 20.
  • a method for compensating for nonlinear response characteristics caused by the screen 10 as a digital device and the camera is performed in a two-step process.
  • the first step is to create a look up table (LUT) that takes nonlinear response characteristics into the screen pattern of the screen 10 in order to linearize the response characteristics of the measurement system.
  • LUT look up table
  • This can be regarded as a preparation step to compensate the nonlinear response characteristic of the system more closely to the linearity and reduce the measurement error in the next step. That is, the nonlinear response is linearized on the basis of a look-up table (LUT) which considers the nonlinear response characteristics of the camera and the screen 10 by the compensation means according to the embodiment of the present invention.
  • the second step is to compensate for the nonlinear response characteristics by applying the advanced iterative algorithm (AIA), which is widely used to reduce the phase shift error in the interferometer. Since the error components caused by the phase shift error cause error components equal to the distortion of the pattern generated by the nonlinear response characteristics of the digital devices, the phase measurement accuracy is increased by using the error components.
  • AIA advanced iterative algorithm
  • phase shift deflection measurement can precisely measure the phase without error due to the non-linear response characteristic, thereby enabling the 3D shape of the measurement object 1 to be measured with high accuracy.
  • the first step is to linearize the non-linear response based on a look-up table that considers the non-linear response characteristics of the screen 10 and the camera.
  • FIG. 2 is a graph showing a nonlinear response characteristic curve obtained by normalizing brightness intensity values measured by a camera for a predetermined step from a minimum value to a maximum value of the overall screen brightness of the screen 10 according to an embodiment of the present invention.
  • a first step first of all, in order to create a lock-up table (LUT), the nonlinear response characteristic of the screen 10 and the camera is experimentally determined. The appropriate compensation value is then reflected in the pattern of the screen 10 to give distortion to the existing sine wave so that the response characteristics of the system as a whole are linear.
  • LUT lock-up table
  • the brightness of the entire screen of the screen 10 is set to be displayed in gray scale brightness at a constant level from a minimum value to a maximum value. That is, for example, a brightness value corresponding to a gray scale of 0 to 255 is given to the screen of the screen 10.
  • the image reflected through the measurement object 1 is stored through the camera and the measured brightness intensity values are normalized as shown in FIG.
  • FIG. 3 is a graph showing a minimum value and a maximum value in FIG. 2
  • FIG. 4 is a graph showing a linearized response characteristic according to an embodiment of the present invention.
  • the process of creating a function such that the measurement intensity of the camera becomes linear based on the previously measured nonlinear response characteristic graph is a process of creating a lookup table (LUT).
  • LUT lookup table
  • a linear response characteristic equation that linearly connects the minimum value (I min ) and the maximum value (I max ) is generated as shown in the following equation (1).
  • the input is converted into normalized measured camera intensity and the output is converted to gray scale value to obtain a quadratic equation (fifth-order equation) As shown in FIG.
  • Equation (2) Y nor_mea represents the normalized measurement intensity measured by the camera, and X represents a corresponding pre-compensation screen brightness value.
  • a 5 , a 4 , a 3 , a 2 , a 1 , and a 0 are the coefficient values obtained by fitting the inverse response characteristic obtained using the measured nonlinear response characteristic graph to the differential equation (fifth order equation) do.
  • Equation (3) The brightness value to be input on the screen is expressed by Equation (3) so that the normal recalled measurement intensity measured by the camera is a linear response characteristic based on Equations (1) and (2).
  • X new_input a 5 ⁇ Y 5 linear _model + a 4 ⁇ Y 4 linear _model + a 3 ⁇ Y 3 linear _model + a 2 ⁇ Y 2 linear _model + a 1 ⁇ Y linear _model + a 0
  • Screen brightness value Screen brightness before correction (X) Screen brightness value after compensation (X new_input ) 0 0 a 5 x? 5 + a 4 x? 4 + a 3 x? 3 + a 2 x? 2 + a 1 x? + a 0
  • One One a 5 ⁇ ( ⁇ + ⁇ ) 5 + a 4 ⁇ ( ⁇ + ⁇ ) 4 + a 3 ⁇ ( ⁇ + ⁇ ) 3 + a 2 ⁇ ( ⁇ + ⁇ ) 2 + a 1 ⁇ ( ⁇ + ⁇ ) + a 0 ... ... ...
  • the second compensation step is for compensating for the amount of phase shift caused by the nonlinear response characteristic by the compensation means according to the embodiment of the present invention.
  • the compensation process of the second stage according to the embodiment of the present invention can compensate for the amount of phase shift caused by nonlinear response characteristics using an advanced iterative algorithm (AIA) phase shift algorithm. And a method of compensating the transition amount.
  • AIA advanced iterative algorithm
  • the AIA phase shift algorithm is a method of obtaining the phase value more accurately by compensating for the nonlinear phase shift amount due to the nonlinear response characteristic in the application of the phase shift algorithm through the iterative calculation. And a method applied only to the interferometer is introduced into the phase shift flattening measurement method according to the embodiment of the present invention.
  • an initial phase shift is determined (S1). Then, a phase distribution is calculated based on the phase shift value (S2). The phase shift value is updated based on the phase distribution calculated inversely (S3).
  • the embodiment of the present invention it becomes possible to compensate the non-linear response characteristic generated by the digital equipment (screen, camera) in the phase shift deflection measurement method. That is, according to the method for compensating the nonlinear response characteristic in the object shape measurement using the phase shift deviation measuring method according to the embodiment of the present invention, in the first step, the non- In order to reduce the phase shift error in the interferometer, the AIA phase shift algorithm is applied to compensate the phase shift caused by the nonlinear response characteristics. , The phase shift deflection measurement method accurately measures the phase without error due to the nonlinear response characteristic, and thereby, the 3D shape of the measurement object can be measured with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Dispersion Chemistry (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

본 발명은 위상천이 편향측정법을 이용한 대상물 형상측정에서 비선형 응답특성을 보상하기 위한 시스템 및 방법에 대한 것이다. 보다 상세하게는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법에 있어서, 패턴발생부가 패턴을 생성하여 측정대상물에 투영하는 단계; 디텍터가 측정대상물로부터 반사되는 변형된 패턴의 영상을 획득하는 단계; 보상수단이 상기 패턴발생부와 상기 디텍터의 비선형응답특성을 고려한 룩업테이블을 기반으로 비선형 응답을 선형화하는 단계; 및 상기 보상수단이 비선형 응답특성으로 발생한 위상천이량을 보상하는 단계;를 포함하는 것을 특징으로 하는 위상천이 편향측정법을 이용한 대상물 형상측정에서 비선형 응답특성을 보상하기 위한 방법에 관한 것이다.

Description

위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법
본 발명은 위상천이 편향측정법을 이용한 대상물 형상측정에서 비선형 응답특성을 보상하기 위한 시스템 및 방법에 대한 것이다.
자유곡면이란 어떠한 축에 대해서도 비대칭성을 가진 임의의 면을 말하며 최근 등장한 스마트 안경과 헤드 마운티드 디스플레이(HMD, Head Mounted Display) 등의 최첨단 광학기기의 핵심 부품들은 모두 자유곡면으로 이루어져 있다. 이러한 자유곡면은 기존의 구면이나 비구면으로만 이루어진 광학계의 광학적 성능의 한계를 뛰어넘을 뿐만 아니라 디자인적인 요소도 동시에 충족시킬 수 있기 때문에 전세계적으로 많은 연구가 이루어지고 있다. 위상천이 편향측정법은 이러한 자유곡면의 삼차원 형상을 측정할 수 있은 대표적인 기술로서 기존의 간섭계와 달리 별도의 기준면 없이도 측정 대상물에 대한 삼차원 형상 측정이 가능하기 때문에 차세대 자유곡면 형상측정기로 각광을 받고 있다.
위상천이 편향측정법의 기본 원리는 주기적인 패턴을 가진 줄무늬 패턴을 측정하고자 하는 측정대상물 표면에 입사시킨 후 측정 대상물의 형태에 의해 편형된 패턴의 위상을 분석함으로써 각 표면의 기울기 변화를 측정하게 된다. 즉 측정하고자 하는 대상물의 형상이 z=z(x,y)라고 가정을 하면 위상천이 편향측정법을 통해 얻게되는 측정값은 입사된 패턴의 방향에 따라 x축 방향 기울기 성분(∂z/∂x)과 y축 방향 기울기 성분(∂z/∂y)을 각각 얻을 수 있다. 따라서 측정된 위상으로부터 획득된 x축과 y축 방향의 두 기울기 성분을 적분을 하게 되면 측정 대상물에 대한 삼차원 형상을 복원하여 얻을 수 있게 된다.
이때, 측정된 위상의 정확도는 사용된 카메라와 스크린의 비선형 응답 특성에 영향을 받기 때문에 이를 보정해 줘야 측정 오차가 줄어들게 된다.
LCD를 비롯한 대다수의 상업용 디스플레이는 일반적으로 인간의 시각적 인식을 높이기 위해 감도 특성이 비선형적이고 특히 더 밟은 색조보다 어두운 색조간의 상대적 차이가 크게 된다. 그러나 휘도에 따른 카메라와 같은 디지털 장비의 감도 특성은 사람의 눈과 틀리다.
위상천이 편향측정법에서 측정을 위해 디스플레이에서 생성된 정현파 패턴의 강도는 카메라를 통해 측정하게 되면 실제 정현파 패턴이 아닌 왜곡된 패턴을 얻게 된다. 이러한 디스플레이와 카메라에서 위발된 비선형 성분은 주로 측정 결과값에 심각한 측정 오차를 유발하게 된다.
따라서 위상천이 편향측정법에 최적화된 비선형 응답 특성 보상알고리즘을 통해 측정 정확도를 높일 수 있는 방법이 요구되었다.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 실시예에 따르면, 위상천이 편향측정법에서 디지털 장비(스크린, 카메라)로 인해 발생된 비선형 응답 특성을 보상하기 위한 방법을 제공하는데 그 목적이 있다.
본 발명의 실시예에 따르면 첫번째 단계는 측정 시스템의 응답 특성을 선형으로 만들기 위해 화면 패턴에 비선형 응답 특성을 고려한 룩업 테이블(look up table)을 만들어 시스템의 비선형 응답 특성을 좀더 선형에 가깝게 보안하고, 두번째 단계에서는 간섭계에서 위상천이 오차를 줄이기 위해 널리 사용되고 있는 AIA 위상천이 알고리즘을 적용하여 비선형 응답특성을 보상하여, 위상천이 편향측정법에서 비선형 응답 특성에 의한 오차 없이 정확히 위상을 측정하고 이를 통해 측정 대상물에 대한 3D 형상을 높은 정확도로 측정할 수 있는 위상천이 편향측정법을 이용한 대상물 형상측정에서 비선형 응답특성을 보상하기 위한 시스템 및 방법을 제공하는데 그 목적이 있다.
한편, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 목적은, 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템에 있어서, 패턴을 생성하여 측정대상물에 투영하는 패턴발생부; 상기 측정대상물로부터 반사되는 변형된 패턴의 영상을 획득하는 디텍터; 및 상기 패턴발생부와 상기 디텍터로 인해 발생된 비선형 응답특성을 보상하는 보상수단;을 포함하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템으로서 달성될 수 있다.
그리고 패턴발생부는 패턴을 생성하는 스크린이고, 상기 디텍터는 카메라로 구성되는 것을 특징으로 할 수 있다.
또한 보상수단은, 상기 스크린과 상기 카메라의 비선형응답특성을 고려한 룩업테이블을 기반으로 비선형 응답을 선형화하는 것을 특징으로 할 수 있다.
그리고 스크린의 전체 화면 밝기값을 최소값에서 최대값까지 일정한 단계별로 상기 카메라에서 측정된 측정강도를 정규화, 노멀라이즈(normalized)하여 나타낸 비선형 응답 특성그래프를 산출하고, 상기 비선형 응답 특성을 룩업테이블을 기반으로 선형응답특성으로 변환하는 것을 특징으로 할 수 있다.
비선형 응답 특성 그래프에서, 최소값(Imin)와 최대값(Imax)을 선형적으로 잇는 이하의 수학식 1의 선형응답 특성방정식을 생성하는 것을 특징으로 할 수 있다.
[수학식 1]
Ylinear_model = αX+β
상기 수학식 1에서, X는 입력으로 주어지는 보상전 스크린 밝기 값 (X=0, 1, 2, 3, 4, …, 255), α와 β는 스크린 밝기 값에 따라 선형응답 특성이 되도록 하는 계수 값으로 각각 α=(Imax-Imin)/255, β=Imin으로 주어지고 이를 통해 얻게 되는 정규화된 선형 응답 특성 모델 값은 Ylinear_model이 된다. 즉, 수학식 1은 정규화된 선형응답 특성 모델 방정식을 나타낸다.
또한, 측정된 비선형 응답특성 그래프로부터 입력을 정규화된 측정강도, 출력을 스크린 밝기 값으로 바꾸어 이하 수학식 2의 다차 방정식(5차 방정식)을 생성하여 역함수 응답특성을 구하는 것을 특징으로 할 수 있다.
[수학식 2]
X=a5×Y5 nor_mea+a4×Y4 nor_mea+a3×Y3 nor_mea+a2×Y2 nor_mea+a1×Ynor_mea+a0
상기 수학식 2에서, Ynor_mea는 상기 카메라에서 측정된 정규화된 측정 강도를 나타내고, X는 대응되는 보상전 스크린 밝기 값이 된다. 그리고 a5, a4, a3, a2, a1, a0는 측정된 비선형 응답특성 그래프를 이용하여 얻게 되는 역함수 응답특성을 다차 방정식(5차 방정식)으로 피팅했을 때 얻게 되는 계수값이 된다.
수학식 1과 수학식 2를 기반으로 상기 카메라에서 측정되는 정규회된 측정 강도가 선형응답 특성이 되도록 스크린에서 입력해야 될 밝기 값은 수학식 3으로 표현된다.
[수학식 3]
Xnew_input=a5×Y5 linear _model+a4×Y4 linear _model+a3×Y3 linear _model+a2×Y2 linear _model+a1×Ylinear _model+a0
=a5×(αX+β)5+a4×(αX+β)4+a3×(αX+β)3+a2×(αX+β)2+a1×(αX+β)+a0
상기 수학식 3에서 모든 계수들 값은 수학식 1과 2를 통해 획득되고, X는 보상전 스크린 밝기 값이고 Xnew_input는 선형응답 특성이 되도록 하는 보상후 스크린 밝기 값이 된다.
위에서 기술된 수학식 1, 2, 3을 기반으로 카메라에서 측정되는 정규화된 측정강도가 수학식 1을 통해 선형적으로 변하게 될 때 수학식 3에서의 스크린에서 입력해야 될 밝기 값을 구하게 되고 이를 실제 스크린에 반영하여 선형 응답특성을 얻는 것을 특징으로 할 수 있다.
그리고 비선형 응답특성으로 발생한 위상천이량을 보상하는 것을 특징으로 할 수 있다.
또한, 상기 위상천이량은 AIA(Advanced Iterative Algorithm) 위상천이 알고리즘을 적용하여 산출되는 것을 특징으로 할 수 있다.
또 다른 카테고리로서 본 발명의 목적은 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법에 있어서, 패턴발생부가 패턴을 생성하여 측정대상물에 투영하는 단계; 디텍터가 측정대상물로부터 반사되는 변형된 패턴의 영상을 획득하는 단계; 보상수단이 상기 패턴발생부와 상기 디텍터의 비선형응답특성을 고려한 룩업테이블을 기반으로 비선형 응답을 선형화하는 단계; 및 상기 보상수단이 비선형 응답특성으로 발생한 위상천이량을 보상하는 단계;를 포함하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법으로서 달성될 수 있다.
그리고 상기 위상천이량을 보상하는 단계에서, 상기 위상천이량은 AIA 위상천이 알고리즘을 적용하여 산출되며, 임의의 초기 위상천이값을 설정하는 제1단계; 위상천이값을 기반으로 위상분포를 연산하는 제2단계; 연산된 위상분포를 기반으로 위상천이값을 업데이트하는 제3단계; 및 상기 위상천이값과 업데이트된 위상천이값의 차이가 설정된 수렴값 이하가 될 때까지 제2단계, 제3단계를 반복하는 제4단계;를 포함하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법으로서 달성될 수 있다.
또한, 상기 선형화하는 단계는, 상기 패턴발생기의 전체 화면 밝기값을 최소값에서 최대값까지 일정한 단계별로 상기 디텍터에서 측정된 정규화된 측정강도를 나타낸 비선형 응답 특성그래프를 산출하고, 상기 비선형 응답 특성을 룩업테이블을 통해 선형응답특성으로 변환하는 것을 특징으로 할 수 있다.
그리고 비선형 응답 특성 그래프에서 최소값(Imin)와 최대값(Imax)을 선형적으로 잇는 이하의 수학식 1의 선형응답 특성방정식을 생성하는 것을 특징으로 할 수 있다.
[수학식 1]
Ylinear_model = αX+β
상기 수학식 1에서, X는 입력으로 주어지는 보상전 스크린 밝기 값 (X=0, 1, 2, 3, 4, …, 255), α와 β는 스크린 밝기 값에 따라 선형응답 특성이 되도록 하는 계수 값으로 각각 α=(Imax-Imin)/255, β=Imin으로 주어지고 이를 통해 얻게 되는 정규화된 선형 응답 특성 모델 값은 Ylinear_model이 된다. 즉, 수학식 1은 정규화된 선형응답 특성 모델 방정식을 나타낸다.
또한, 측정된 비선형 응답특성 그래프로부터 입력을 정규화된 측정강도, 출력을 스크린 밝기 값으로 바꾸어 이하 수학식 2의 다차 방정식(5차 방정식)을 생성하여 역함수 응답특성을 구하는 것을 특징으로 할 수 있다.
[수학식 2]
X=a5×Y5 nor_mea+a4×Y4 nor_mea+a3×Y3 nor_mea+a2×Y2 nor_mea+a1×Ynor_mea+a0
상기 수학식 2에서, Ynor_mea는 상기 카메라에서 측정된 정규화된 측정 강도를 나타내고, X는 대응되는 보상전 스크린 밝기 값이 된다. 그리고 a5, a4, a3, a2, a1, a0는 측정된 비선형 응답특성 그래프를 이용하여 얻게 되는 역함수 응답특성을 다차 방정식(5차 방정식)으로 피팅했을 때 얻게 되는 계수값이 된다.
수학식 1과 수학식 2를 기반으로 상기 카메라에서 측정되는 정규회된 측정 강도가 선형응답 특성이 되도록 스크린에서 입력해야 될 밝기 값은 수학식 3으로 표현된다.
[수학식 3]
Xnew_input=a5×Y5 linear _model+a4×Y4 linear _model+a3×Y3 linear _model+a2×Y2 linear _model+a1×Ylinear _model+a0
=a5×(αX+β)5+a4×(αX+β)4+a3×(αX+β)3+a2×(αX+β)2+a1×(αX+β)+a0
상기 수학식 3에서 모든 계수들 값은 수학식 1과 2를 통해 획득되고, X는 보상전 스크린 밝기 값이고 Xnew_input는 선형응답 특성이 되도록 하는 보상후 스크린 밝기 값이 된다.
위에서 기술된 수학식 1, 2, 3을 기반으로 카메라에서 측정되는 정규화된 측정강도가 수학식 1을 통해 선형적으로 변하게 될 때 수학식 3에서의 스크린에서 입력해야 될 밝기 값을 구하게 되고 이를 실제 스크린에 반영하여 선형 응답특성을 얻는 것을 특징으로 할 수 있다.
본 발명의 실시예에 따르면, 위상천이 편향측정법에서 디지털 장비(스크린, 카메라)로 인해 발생된 비선형 응답 특성을 보상할 수 있는 효과를 갖는다.
본 발명의 실시예에 따른 위상천이 편향측정법을 이용한 대상물 형상측정에서 비선형 응답특성을 보상하기 위한 방법에 따르면, 첫번째 단계는 측정 시스템의 응답 특성을 선형으로 만들기 위해 화면 패턴에 비선형 응답 특성을 고려한 룩업 테이블(look up table)을 만들어 시스템의 비선형 응답 특성을 좀더 선형에 가깝게 보안하고, 두번째 단계에서는 간섭계에서 위상천이 오차를 줄이기 위해 널리 사용되고 있는 AIA 위상천이 알고리즘을 적용하여 비선형 응답특성을 보상하여, 위상천이 편향측정법에서 비선형 응답 특성에 의한 오차 없이 정확히 위상을 측정하고 이를 통해 측정 대상물에 대한 3D 형상을 높은 정확도로 측정할 수 있는 효과를 갖는다.
한편, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 일실시예를 예시하는 것이며, 발명의 상세한 설명과 함께 본 발명의 기술적 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석 되어서는 아니 된다.
도 1은 위상천이 편형측정법을 이용한 3차원 형상 측정 시스템의 개략도,
도 2는 본 발명의 실시예에 따라 스크린의 전체 화면 밝기를 최소값에서 최대값까지 일정한 단계에 대한 카메라에서 측정된 밝기 강도값을 정규화하여 나타낸 비선형 응답 특성그래프,
도 3은 도 2에서 최소값과 최대값을 이은 그래프로 정규화된 선형 응답 특성 모델그래프,
도 4는 본 발명의 실시예에 따라 선형화된 응답특성 그래프,
도 5는 본 발명의 실시예에 따른 위상천이량 보상 방법의 흐름도를 도시한 것이다.
<보호의 설명>
1:측정대상물 10:스크린 20:카메라
본 발명의 실시예에 따르면, 위상천이 편향측정법에서 디지털 장비(스크린(10), 카메라(20))로 인해 발생된 비선형 응답 특성을 보상하기 위한 시스템 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 실시예에 따른 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템은, 패턴을 생성하여 측정대상물(1)에 투영하는 패턴발생부와, 측정대상물(1)로부터 반사되는 변형된 패턴의 영상을 획득하는 디텍터와, 패턴발생부와 상기 디텍터로 인해 발생된 비선형 응답특성을 보상하는 보상수단을 포함하여 구성될 수 있다.
도 1은 위상천이 편형측정법을 이용한 3차원 형상 측정 시스템의 개략도를 도시한 것이다. 본 발명의 실시예에 따른 패턴발생부는 디스플레이 기기의 스크린(10)으로서 발생된 정현파 패턴은 측정대상물(1)로 투영된다. 그리고 측정대상물(1)에 반사된 패턴은 카메라(20)로 구성된 디텍터에 입사되어 강도를 측정하게 된다. 또한, 분석수단은 이러한 카메라(20)에서 측정된 변형된 패턴으로부터 위상을 측정, 분석하여 측정대상물(1)에 대한 3D 형상을 얻게 된다. 또한, 제어부는 스크린(10)과 카메라(20) 모두에 연결되어 이들을 제어하게 된다.
본 발명의 실시예에 따른 보상수단은 스크린(10)과 카메라(20)에서 위발된 비선형성분에 의한 측정오차를 보상하기 위해 구성된다. 본 발명의 실실시예에 따른 위상천이 편향측정법에서 디지털 장비인 스크린(10)과 카메라로 인해 발생된 비선형 응답 특성을 보상하기 위한 방법으로 2 단계의 과정을 거치게 된다.
첫번째 단계는 측정 시스템의 응답 특성을 선형으로 만들기 위해 스크린(10) 화면 패턴에 비선형 응답 특성을 고려한 룩업테이블(look up table, LUT)을 만들어 이를 적용하는 것이다. 이를 통해 시스템의 비선형 응답 특성을 좀더 선형에 가깝게 보상하고 다음 단계에서의 측정 오차를 줄이기 위한 준비 단계로 볼 수 있다. 즉, 본 발명의 실시예에 따른 보상수단에 의해, 스크린(10)과 카메라의 비선형응답특성을 고려한 룩업테이블(LUT)을 기반으로 비선형 응답을 선형화하는 것이다.
두번째 단계는 간섭계에서 위상천이 오차를 줄이기 위해 널리 사용되고 있는 advanced iterative algorithm(AIA)를 적용하여 비선형 응답특성을 보상하는 것이다. 위상천이 오차로 인해 발생하는 오차성분들이 마치 디지털 장비들의 비선형 응답특성으로 발생하는 패턴의 왜곡과 동일한 오차 성분들을 유발하기 때문에 이를 이용하여 위상을 측정 정확도를 높이고자 한다.
위에서 언급된 두 단계의 보상 과정을 거치면 위상천이 편향측정법에서 비선형 응답 특성에 의한 오차 없이 정확히 위상을 측정하고 이를 통해 측정 대상물(1)에 대한 3D 형상을 높은 정확도로 측정이 가능하게 된다.
이하에서는 각단계의 구성에 대해 보다 상세하게 설명하도록 한다.
첫번째 단계는, 스크린(10)과 상기 카메라의 비선형응답특성을 고려한 룩업테이블을 기반으로 비선형 응답을 선형화하는 것이다. 도 2는 본 발명의 실시예에 따라 스크린(10)의 전체 화면 밝기를 최소값에서 최대값까지 일정한 단계에 대한 카메라에서 측정된 밝기 강도값을 정규화하여 나타낸 비선형 응답 특성그래프를 도시한 것이다.
본 발명의 실시예에 따른 첫번째 단계에 따르면, 록업테이블(LUT)을 만들기 위해서는 우선 스크린(10)과 카메라의 비선형 응답 특성을 실험적으로 구한다. 그런 다음 적절한 보상값을 스크린(10) 패턴에 반영하여 전체적으로 시스템의 응답 특성이 선형적으로 되도록 기존의 정현파에 왜곡을 준다.
보다 구체적으로 설명하면, 스크린(10) 전체 화면의 밝기를 최소 값에서 최대 값까지 일정한 단계로 그레이 스케일 밝기로 표시하도록 설정한다. 즉, 예를 들어, 스크린(10) 화면에 0부터 255의 그레이 스케일에 해당하는 밝기 값을 준다. 그리고 측정대상물(1)을 통해 반사된 이미지를 카메라를 통해 저장하고 측정된 밝기 강도값은 도 2에 도시된 같이 정규화(normalized)하여 나타내었다. 도 3은 도 2에서 최소값과 최대값을 이은 그래프를 도시한 것이고, 도 4는 본 발명의 실시예에 따라 선형화된 응답특성 그래프를 도시한 것이다.
앞서 측정된 비선형 응답 특성 그래프를 기준으로 카메라의 측정 강도가 선형적이 되도록 함수를 생성하는 과정이 바로 룩업 테이블(LUT)를 작성하는 것이다. 측정된 비선형 응답 특성 그래프에서 최소값(Imin)과 최대값(Imax)을 선형적으로 잇는 선형 응답 특성 방정식을 아래의 수학식 1과 같이 생성한다.
[수학식 1]
Ylinear_model = αX+β
상기 수학식 1에서, X는 입력으로 주어지는 보상전 스크린 밝기 값(X=0, 1, 2, 3, 4, …, 255), α와 β는 스크린 밝기 값에 따라 선형응답 특성이 되도록 하는 계수 값으로 각각 α=(Imax-Imin)/255, β=Imin으로 주어지고 이를 통해 얻게 되는 정규화된 선형 응답 특성 모델 값은 Ylinear_model이 된다.
그리고 도 3의 역함수 응답특성을 구하기 위해 입력을 정규화된 카메라 측정강도(normalized measured camera intensity), 출력을 그레이 스케일 밝기값(gray scale value)으로 바꾸어 다차 방정식(5차 방정식)을 아래의 수학식 2와 같이 생성한다.
[수학식 2]
X=a5×Y5 nor_mea+a4×Y4 nor_mea+a3×Y3 nor_mea+a2×Y2 nor_mea+a1×Ynor_mea+a0
수학식 2에서, Ynor_mea는 상기 카메라에서 측정된 정규화된 측정 강도를 나타내고, X는 대응되는 보상전 스크린 밝기 값이 된다. 그리고 a5, a4, a3, a2, a1, a0는 측정된 비선형 응답특성 그래프를 이용하여 얻게 되는 역함수 응답특성을 다차 방정식(5차 방정식)으로 피팅했을 때 얻게 되는 계수값이 된다.
수학식 1과 수학식 2를 기반으로 상기 카메라에서 측정되는 정규회된 측정 강도가 선형응답 특성이 되도록 스크린에서 입력해야 될 밝기 값은 수학식 3으로 표현된다.
[수학식 3]
Xnew_input=a5×Y5 linear _model+a4×Y4 linear _model+a3×Y3 linear _model+a2×Y2 linear _model+a1×Ylinear _model+a0
=a5×(αX+β)5+a4×(αX+β)4+a3×(αX+β)3+a2×(αX+β)2+a1×(αX+β)+a0
스크린 밝기값 보정전 스크린 밝기값 (X) 보상후 스크린 밝기값 (Xnew_input)
0 0 a5×β5+a4×β4+a3×β3+a2×β2+a1×β+a0
1 1 a5×(α+β)5+a4×(α+β)4+a3×(α+β)3+a2×(α+β)2+a1×(α+β)+a0
... ... ...
255 255 a5×(255α+β)5+a4×(255α+β)4+a3×(255α+β)3+a2×(255α+β)2+a1×(255α+β)+a0
즉, 표 1에서 표시된 바와 같이, 본 발명의 실시예에 따르면, 보상전 스크린 밝기 값을 주면 도 2와 같은 응답 특성을 얻게 되고, 룩업 테이블(LUT)를 통해 보상 값을 얻고 이를 반영한 보상후 스크린 밝기 값을 주면 도 4와 같은 결과를 얻게 된다.
다음으로 본 발명의 실시예에 따른 두번째 보상 과정에 대해 설명하도록 한다. 두번째 보상단계는 본 발명의 실시예에 따른 보상수단에 의해 비선형 응답특성으로 발생한 위상천이량을 보상하기 위한 것이다.
본 발명의 실시예에 따른 두번째 단계의 보상 과정은 AIA(advanced iterative algorithm) 위상천이 알고리즘을 이용하여 비선형 응답특성으로 발생한 위상천이량을 보상할 수 있다.도 5는 본 발명의 실시예에 따른 위상천이량 보상 방법의 흐름도를 도시한 것이다.
도 5에 도시된 바와 같이 위상천이 알고리즘 적용시 비선형 응답특성으로 인해 발생한 비선형 위상천이량을 반복 연산을 통해 보상함으로서 좀더 정확하게 위상값을 구하는 방법으로, 이러한 AIA 위상천이 알고리즘은 선행 비특허문헌에 기재된 것으로, 간섭계에서만 적용되었던 방법을 본 발명의 실시예에 따른 위상천이 평향측정법에 도입하는 것을 특징으로 한다.
도 5에 도시된 바와 같이, 먼저, 임의의 초기 위상 천이값(initial phase shift)을 결정하게 된다(S1). 그리고 이러한 위상 천이값을 기반으로 위상분포(phase distribution)을 연산하게 된다(S2). 그리고 역으로 연산된 위상분포를 기반으로 위상천이값을 업데이트하게 된다(S3).
그리고 업데이트된 위상천이값과 업데이트 전 위상천이값의 차이가 설정된 수렴값이하인지를 판단하고(S4), 수렴값 이하가 될 때까지 S2단계와 S3단계의 연산을 반복하게 된다. 이러한 반복 연산을 통해 수렴된 위상천이값을 최종적으로 보상하게 된다(S5).
앞서 언급한 바와 같이, 본 발명의 실시예에 따르면, 위상천이 편향측정법에서 디지털 장비(스크린, 카메라)로 인해 발생된 비선형 응답 특성을 보상할 수 있게 된다. 즉, 본 발명의 실시예에 따른 위상천이 편향측정법을 이용한 대상물 형상측정에서 비선형 응답특성을 보상하기 위한 방법에 따르면, 첫번째 단계에서는 측정 시스템의 응답 특성을 선형으로 만들기 위해 스크린 패턴에 비선형 응답 특성을 고려한 룩업테이블을 만들어 시스템의 비선형 응답 특성을 좀더 선형에 가깝게 보안하고, 두번째 단계에서는 간섭계에서 위상천이 오차를 줄이기 위해 널리 사용되고 있는 AIA 위상천이 알고리즘을 적용하여 비선형 응답특성으로 발생한 위상천이량을 보상하여, 위상천이 편향측정법에서 비선형 응답 특성에 의한 오차 없이 정확히 위상을 측정하고 이를 통해 측정 대상물에 대한 3D 형상을 높은 정확도로 측정할 수 있게 된다.

Claims (15)

  1. 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템에 있어서,
    패턴을 생성하여 측정대상물에 투영하는 패턴발생부;
    상기 측정대상물로부터 반사되는 변형된 패턴의 영상을 획득하는 디텍터; 및
    상기 패턴발생부와 상기 디텍터로 인해 발생된 비선형 응답특성을 보상하는 보상수단;을 포함하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템.
  2. 제 1항에 있어서,
    상기 패턴발생부는 패턴을 생성하는 스크린이고, 상기 디텍터는 카메라로 구성되는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템.
  3. 제 2항에 있어서,
    상기 보상수단은, 상기 스크린과 상기 카메라의 비선형응답특성을 고려한 룩업테이블을 기반으로 비선형 응답을 선형화하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템.
  4. 제 3항에 있어서,
    상기 스크린의 전체 화면 밝기값을 최소값에서 최대값까지 일정한 단계별로 상기 카메라에서 측정된 측정강도를 정규화, 노멀라이즈(normalized)하여 나타낸 비선형 응답 특성그래프를 산출하고, 상기 비선형 응답 특성을 룩업테이블을 기반으로 선형응답특성으로 변환하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템.
  5. 제 4항에 있어서,
    비선형 응답 특성 그래프에서, 최소값(Imin)와 최대값(Imax)을 선형적으로 잇는 이하의 수학식 1의 정규화된 선형응답 특성 모델방정식을 생성하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템:
    [수학식 1]
    Ylinear_model = αX+β
    상기 수학식 1에서, X는 입력으로 주어지는 보상전 스크린 밝기 값(X=0, 1, 2, 3, 4, …, 255), α와 β는 스크린 밝기 값에 따라 선형응답 특성이 되도록 하는 계수 값으로 각각 α=(Imax-Imin)/255, β=Imin으로 주어지고 이를 통해 얻게 되는 정규화된 선형 응답 특성 모델 값은 Ylinear_model이다.
  6. 제 5항에 있어서,
    측정된 비선형 응답 특성그래프로부터 입력을 정규화된 측정강도, 출력을 스크린 밝기 값으로 바꾸어 이하 수학식 2의 다차 방정식을 생성하여 역함수 응답특성을 구하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템:
    [수학식 2]
    X=a5×Y5 nor_mea+a4×Y4 nor_mea+a3×Y3 nor_mea+a2×Y2 nor_mea+a1×Ynor_mea+a0
    상기 수학식 2에서, Ynor_mea는 상기 카메라에서 측정된 정규화된 측정 강도를 나타내고, X는 대응되는 보상전 스크린 밝기 값이고, a5, a4, a3, a2, a1, a0는 측정된 비선형 응답 특성그래프를 이용하여 얻게 되는 역함수 응답특성을 다차 방정식(5차 방정식)으로 피팅했을 때 얻게 되는 계수값이다.
  7. 제 6항에 있어서,
    상기 수학식 1과 수학식 2를 기반으로 상기 카메라에서 측정되는 정규화된 측정 강도가 선형응답 특성이 되도록 스크린에서 입력해야 될 밝기 값은 수학식 3으로 표현되고, 수학식 1, 2, 3을 기반으로 카메라에서 측정되는 정규화된 측정강도가 수학식 1을 통해 선형적으로 변하게 될 때 수학식 3에서의 스크린에서 입력해야 될 밝기 값을 구하게 되고 이를 실제 스크린에 반영하여 선형 응답특성을 얻는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템:
    [수학식 3]
    Xnew_input=a5×Y5 linear _model+a4×Y4 linear _model+a3×Y3 linear _model+a2×Y2 linear _model+a1×Ylinear _model+a0
    =a5×(αX+β)5+a4×(αX+β)4+a3×(αX+β)3+a2×(αX+β)2+a1×(αX+β)+a0
    상기 수학식 3에서 모든 계수들 값은 수학식 1과 2를 통해 획득되고, X는 보상전 스크린 밝기 값이고 Xnew_input는 선형응답 특성이 되도록 하는 보상후 스크린 밝기 값다.
  8. 제 7항에 있어서,
    비선형 응답특성으로 발생한 위상천이량을 보상하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템.
  9. 제 8항에 있어서,
    상기 위상천이량은 AIA(Advanced Iterative Algorithm) 위상천이 알고리즘을 적용하여 산출되는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템.
  10. 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법에 있어서,
    패턴발생부가 패턴을 생성하여 측정대상물에 투영하는 단계;
    디텍터가 측정대상물로부터 반사되는 변형된 패턴의 영상을 획득하는 단계;
    보상수단이 상기 패턴발생부와 상기 디텍터의 비선형응답특성을 고려한 룩업테이블을 기반으로 비선형 응답을 선형화하는 단계; 및
    상기 보상수단이 비선형 응답특성으로 발생한 위상천이량을 보상하는 단계;를 포함하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법.
  11. 제 10항에 있어서,
    상기 위상천이량을 보상하는 단계에서, 상기 위상천이량은 AIA 위상천이 알고리즘을 적용하여 산출되며,
    임의의 초기 위상천이값을 설정하는 제1단계;
    위상천이값을 기반으로 위상분포를 연산하는 제2단계;
    연산된 위상분포를 기반으로 위상천이값을 업데이트하는 제3단계; 및
    상기 위상천이값과 업데이트된 위상천이값의 차이가 설정된 수렴값 이하가 될 때까지 제2단계, 제3단계를 반복하는 제4단계;를 포함하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법.
  12. 제 11항에 있어서,
    상기 선형화하는 단계는,
    상기 패턴발생기의 전체 화면 밝기값을 최소값에서 최대값까지 일정한 단계별로 상기 디텍터에서 측정된 정규화된 측정강도를 나타낸 비선형 응답 특성그래프를 산출하고, 상기 비선형 응답 특성을 룩업테이블을 통해 선형응답특성으로 변환하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법.
  13. 제 12항에 있어서,
    비선형 응답 특성 그래프에서, 최소값(Imin)와 최대값(Imax)을 선형적으로 잇는 이하의 수학식 1의 정규화된 선형응답 특성 모델방정식을 생성하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법:
    [수학식 1]
    Ylinear_model = αX+β
    상기 수학식 1에서, X는 입력으로 주어지는 보상전 스크린 밝기 값(X=0, 1, 2, 3, 4, …, 255), α와 β는 스크린 밝기 값에 따라 선형응답 특성이 되도록 하는 계수 값으로 각각 α=(Imax-Imin)/255, β=Imin으로 주어지고 이를 통해 얻게 되는 정규화된 선형 응답 특성 모델 값은 Ylinear_model이다.
  14. 제 13항에 있어서,
    측정된 비선형 응답 특성그래프로부터 입력을 정규화된 측정강도, 출력을 스크린 밝기 값으로 바꾸어 이하 수학식 2의 다차 방정식을 생성하여 역함수 응답특성을 구하는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법:
    [수학식 2]
    X=a5×Y5 nor_mea+a4×Y4 nor_mea+a3×Y3 nor_mea+a2×Y2 nor_mea+a1×Ynor_mea+a0
    상기 수학식 2에서, Ynor_mea는 상기 카메라에서 측정된 정규화된 측정 강도를 나타내고, X는 대응되는 보상전 스크린 밝기 값이고, a5, a4, a3, a2, a1, a0는 측정된 비선형 응답 특성그래프를 이용하여 얻게 되는 역함수 응답특성을 다차 방정식(5차 방정식)으로 피팅했을 때 얻게 되는 계수값이다.
  15. 제 14항에 있어서,
    상기 수학식 1과 수학식 2를 기반으로 상기 카메라에서 측정되는 정규화된 측정 강도가 선형응답 특성이 되도록 스크린에서 입력해야 될 밝기 값은 수학식 3으로 표현되고, 수학식 1, 2, 3을 기반으로 카메라에서 측정되는 정규화된 측정강도가 수학식 1을 통해 선형적으로 변하게 될 때 수학식 3에서의 스크린에서 입력해야 될 밝기 값을 구하게 되고 이를 실제 스크린에 반영하여 선형 응답특성을 얻는 것을 특징으로 하는 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 방법:
    [수학식 3]
    Xnew_input=a5×Y5 linear _model+a4×Y4 linear _model+a3×Y3 linear _model+a2×Y2 linear _model+a1×Ylinear _model+a0
    =a5×(αX+β)5+a4×(αX+β)4+a3×(αX+β)3+a2×(αX+β)2+a1×(αX+β)+a0
    상기 수학식 3에서 모든 계수들 값은 수학식 1과 2를 통해 획득되고, X는 보상전 스크린 밝기 값이고 Xnew_input는 선형응답 특성이 되도록 하는 보상후 스크린 밝기 값이다.
PCT/KR2018/009337 2018-01-23 2018-08-14 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법 WO2019146861A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18902666.9A EP3745084A4 (en) 2018-01-23 2018-08-14 SYSTEM AND METHOD FOR COMPENSATION OF CHARACTERISTIC OF NONLINEAR RESPONSE IN PHASE SHIFT DEFLECTOMETRY
JP2020550565A JP7001835B2 (ja) 2018-01-23 2018-08-14 位相シフト偏向測定法で非線形応答特性を補償するためのシステム及び方法
US16/610,664 US11255662B2 (en) 2018-01-23 2018-08-14 System and method for compensating for non-linear response characteristic in phase-shifting deflectometry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0008341 2018-01-23
KR1020180008341A KR101955847B1 (ko) 2018-01-23 2018-01-23 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2019146861A1 true WO2019146861A1 (ko) 2019-08-01

Family

ID=65758789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009337 WO2019146861A1 (ko) 2018-01-23 2018-08-14 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법

Country Status (5)

Country Link
US (1) US11255662B2 (ko)
EP (1) EP3745084A4 (ko)
JP (1) JP7001835B2 (ko)
KR (1) KR101955847B1 (ko)
WO (1) WO2019146861A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050974A (ja) * 2019-09-24 2021-04-01 株式会社デンソーウェーブ 縞パターン画像決定方法および三次元計測装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366954B1 (ko) * 2020-04-20 2022-02-28 한국표준과학연구원 편향측정법을 이용한 자유곡면 3차원 형상측정시스템 및 형상측정방법
KR102526978B1 (ko) * 2021-03-05 2023-05-02 한국표준과학연구원 대각선 패턴 주사 방식을 이용한 실시간 3차원 형상측정시스템 및 형상측정방법
KR102485679B1 (ko) * 2021-03-05 2023-01-10 한국표준과학연구원 측정정확도 향상을 위한 편향측정법의 보정방법
CN114322838B (zh) * 2021-12-30 2023-03-31 天津大学 一种小重合视场多目相位偏折测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431706B1 (ko) * 2001-08-11 2004-05-17 한국표준과학연구원 2 주파수 레이저 간섭계에서의 길이 측정을 위한 위상각측정방법 및 비선형 오차 보상방법 그리고 이를 이용한길이 측정을 위한 위상각 측정방법 및 측정 시스템
JP4111166B2 (ja) * 2004-05-07 2008-07-02 コニカミノルタセンシング株式会社 3次元形状入力装置
JP4255865B2 (ja) * 2003-03-31 2009-04-15 株式会社ミツトヨ 非接触三次元形状測定方法及び装置
JP2010074107A (ja) * 2008-09-22 2010-04-02 Nuflare Technology Inc 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
KR20170051746A (ko) * 2015-10-30 2017-05-12 건국대학교 산학협력단 사전왜곡과 Pulsed RF 제어를 이용한 조명 제어 기법과 장치.

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493329B2 (ja) * 1999-12-20 2004-02-03 株式会社ミツトヨ 平面形状計測装置、平面形状計測方法及び該方法を実行するプログラムを記憶した記憶媒体
US7009718B2 (en) * 2000-06-07 2006-03-07 Citizen Watch Co., Ltd. Grating pattern projection apparatus using liquid crystal grating
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
JP3851189B2 (ja) * 2002-03-05 2006-11-29 シチズン時計株式会社 液晶格子を用いた格子パタン投影装置
US6856405B2 (en) * 2003-03-03 2005-02-15 Phase Shift Technology, Inc. Non linear phase shift calibration for interferometric measurement of multiple surfaces
US7286246B2 (en) 2003-03-31 2007-10-23 Mitutoyo Corporation Method and apparatus for non-contact three-dimensional surface measurement
US20070115484A1 (en) * 2005-10-24 2007-05-24 Peisen Huang 3d shape measurement system and method including fast three-step phase shifting, error compensation and calibration
CA2528791A1 (en) * 2005-12-01 2007-06-01 Peirong Jia Full-field three-dimensional measurement method
FI121151B (fi) * 2007-11-22 2010-07-30 Valtion Teknillinen Menetelmä ja laitteisto liikkuvan pinnan topografian ja optisten ominaisuuksien määrittämiseksi
JP2010014444A (ja) * 2008-07-01 2010-01-21 Kanazawa Univ 位相シフト法による形状測定方法及び測定装置
US20100149551A1 (en) * 2008-12-16 2010-06-17 Faro Technologies, Inc. Structured Light Imaging System and Method
CN102589479B (zh) * 2012-03-06 2014-11-26 天津大学 三维形貌中心摄动复合光栅投影测量方法及装置
JP6192017B2 (ja) * 2012-10-05 2017-09-06 国立大学法人京都工芸繊維大学 デジタルホログラフィ装置
JP2014106110A (ja) * 2012-11-27 2014-06-09 Canon Inc 計測方法及び計測装置
JP5976936B2 (ja) * 2013-07-11 2016-08-24 シチズンホールディングス株式会社 液晶装置
US9930263B2 (en) * 2014-03-31 2018-03-27 Sony Corporation Imaging apparatus, for determining a transmittance of light for a second image based on an analysis of a first image
US9885563B2 (en) * 2014-10-10 2018-02-06 Georgia Tech Research Corporation Dynamic digital fringe projection techniques for measuring warpage
CN104506838B (zh) * 2014-12-23 2016-06-29 宁波盈芯信息科技有限公司 一种符号阵列面结构光的深度感知方法、装置及系统
DE102017211377B4 (de) * 2017-07-04 2021-01-14 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren und Vorrichtung zur optischen Oberflächenvermessung eines Messobjektes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431706B1 (ko) * 2001-08-11 2004-05-17 한국표준과학연구원 2 주파수 레이저 간섭계에서의 길이 측정을 위한 위상각측정방법 및 비선형 오차 보상방법 그리고 이를 이용한길이 측정을 위한 위상각 측정방법 및 측정 시스템
JP4255865B2 (ja) * 2003-03-31 2009-04-15 株式会社ミツトヨ 非接触三次元形状測定方法及び装置
JP4111166B2 (ja) * 2004-05-07 2008-07-02 コニカミノルタセンシング株式会社 3次元形状入力装置
JP2010074107A (ja) * 2008-09-22 2010-04-02 Nuflare Technology Inc 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
KR20170051746A (ko) * 2015-10-30 2017-05-12 건국대학교 산학협력단 사전왜곡과 Pulsed RF 제어를 이용한 조명 제어 기법과 장치.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050974A (ja) * 2019-09-24 2021-04-01 株式会社デンソーウェーブ 縞パターン画像決定方法および三次元計測装置
JP7294026B2 (ja) 2019-09-24 2023-06-20 株式会社デンソーウェーブ 縞パターン画像決定方法

Also Published As

Publication number Publication date
EP3745084A1 (en) 2020-12-02
US20210172731A1 (en) 2021-06-10
US11255662B2 (en) 2022-02-22
EP3745084A4 (en) 2021-09-22
JP2021511520A (ja) 2021-05-06
KR101955847B1 (ko) 2019-03-11
JP7001835B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2019146861A1 (ko) 위상천이 편향측정법에서 비선형 응답특성을 보상하기 위한 시스템 및 방법
US9542910B2 (en) On demand calibration of imaging displays
JPH10501945A (ja) 自動ビデオ・モニタ整列システムにおける座標系を変換する方法および装置
WO2018128308A1 (ko) 디스플레이 패널의 무라 보정방법
CN105023545A (zh) 液晶显示器的自我影像校正装置及方法
CN1984350A (zh) 用于校准彩色显示面板的方法和设备及制造和维修方法
TW201541435A (zh) 液晶顯示器的自我影像校正裝置及方法
JPS63125932A (ja) ビデオ像とフィルム像を等質にする方法と装置
JP4762412B2 (ja) 画像再生システムの欠陥を判定し且つ少なくとも部分的に補正する方法及び該方法を実施するための装置
EP0454086B1 (en) Compensation for drift in a cathode ray tube
KR100225040B1 (ko) 프로젝션 티브이(Projection TV)의 주변부 밝기 보정장치
JPH06253241A (ja) 投写型ディスプレイの投写歪補正方法
KR19990025691U (ko) 엘씨디(lcd) 모듈의 감마 특성 자동 보정 장치
CN112333436A (zh) 一种投影仪的二维校准方法、投影仪以及校准系统
CN108573666A (zh) 像素检测与校正电路、像素电路,以及像素检测与校正方法
TWM492582U (zh) 液晶顯示器的自我影像校正裝置
CN1142165A (zh) 对电子束位置进行模拟的色纯调节设备
WO2024111993A1 (ko) 디스플레이 패널의 광학 보상 방법 및 시스템
JPS60140381A (ja) 電光変換特性自動補正方法とその装置
CN116800936A (zh) 一种投影仪的二维校准方法、投影仪以及校准系统
JP3721672B2 (ja) 陰極線管の補正装置
KR100866882B1 (ko) 화상 처리 장치, 이를 이용한 프로젝터 및 그 화상 처리방법
WO2018131940A1 (ko) 직류 전류 기능 교정 장치 및 방법
KR0183736B1 (ko) 음극선관 화면 상의 광센서 정렬 상태를 판단하는 방법
KR100200831B1 (ko) 화상 신호용 인쇄 회로 기판의 화상 신호 출력의 검사 조정기 및 이에 의한 검사 조정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018902666

Country of ref document: EP

Effective date: 20200824