WO2019146619A1 - 高純度酸化スカンジウムの製造方法 - Google Patents

高純度酸化スカンジウムの製造方法 Download PDF

Info

Publication number
WO2019146619A1
WO2019146619A1 PCT/JP2019/002012 JP2019002012W WO2019146619A1 WO 2019146619 A1 WO2019146619 A1 WO 2019146619A1 JP 2019002012 W JP2019002012 W JP 2019002012W WO 2019146619 A1 WO2019146619 A1 WO 2019146619A1
Authority
WO
WIPO (PCT)
Prior art keywords
scandium
solution
firing
oxalic acid
oxalate
Prior art date
Application number
PCT/JP2019/002012
Other languages
English (en)
French (fr)
Inventor
達也 檜垣
小林 宙
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201980009511.0A priority Critical patent/CN111630001B/zh
Priority to AU2019211653A priority patent/AU2019211653B9/en
Priority to EP19743119.0A priority patent/EP3744686B1/en
Priority to US16/964,353 priority patent/US10968112B2/en
Priority to CA3088357A priority patent/CA3088357C/en
Publication of WO2019146619A1 publication Critical patent/WO2019146619A1/ja
Priority to PH12020551111A priority patent/PH12020551111A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/282Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • C01F17/13Preparation or treatment, e.g. separation or purification by using ion exchange resins, e.g. chelate resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method of producing scandium oxide, and more particularly to a method of producing high purity scandium oxide with reduced impurity quality.
  • Patent Document 1 low-grade scandium oxide is heated and dissolved with nitric acid, the nitric acid solution is brought into contact with an anion exchange resin to adsorb impurities dissolved in the solution, and hydrochloric acid is added to the solution.
  • a method of separating scandium and impurities by contacting with an anion exchange resin and adsorbing the other impurities to the resin it is shown that high purity scandium oxide can be obtained by further adding oxalic acid or hydrofluoric acid and calcining the obtained precipitate.
  • the present invention has been proposed in view of such circumstances, and it is an object of the present invention to provide a method for efficiently obtaining high purity scandium oxide from a solution containing scandium.
  • a solution containing scandium is subjected to an oxalic acid oxidation treatment using oxalic acid, and the obtained scandium oxalate crystals are fired at a temperature of 400 ° C. to 600 ° C.
  • the second invention of the present invention is the high-purity scandium oxide oxide according to the first invention, wherein the temperature of the solution is adjusted to 40 ° C. or more and less than 100 ° C. to perform oxalic acid oxidation treatment in the reprecipitation step. Manufacturing method.
  • the third invention of the present invention is the method for producing high purity scandium oxide according to the first or second invention, wherein the baking is performed at a baking temperature of 900 ° C. or more in the second baking step.
  • the scandium-containing solution is subjected to an ion exchange treatment and / or a solvent extraction treatment on the scandium-containing solution. It is a manufacturing method of high purity scandium oxide which is obtained by carrying out.
  • high purity scandium oxide can be efficiently obtained from a solution containing scandium.
  • the present embodiment is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.
  • the notation “X to Y” (X and Y are arbitrary numerical values) means “more than X and less than Y”.
  • the method for producing scandium oxide according to this embodiment is a method of obtaining a scandium oxide from a crystal of scandium oxalate obtained by subjecting a solution containing scandium to oxalic acid oxidation treatment using oxalic acid. And, in this production method, scandium oxalate obtained by oxalic acid treatment from a solution containing scandium is fired in two steps to obtain high purity scandium oxide with few impurities. .
  • a solution containing scandium is subjected to an oxalic acid oxidation treatment using oxalic acid, and the obtained scandium oxalate crystal is fired at a predetermined temperature.
  • a baking step a dissolving step of dissolving a scandium compound obtained by firing in one or more solutions selected from hydrochloric acid and nitric acid to obtain a solution, and performing an oxalic acid oxidation treatment on the solution using oxalic acid, It has a reprecipitation step of forming a reprecipitate of scandium oxalate, and a second baking step of firing the obtained reprecipitate of scandium oxalate to obtain scandium oxide.
  • scandium-containing solution a solution containing scandium as a raw material
  • HPAL high pressure acid leaching
  • the solution after sulfurization may be separated into impurities by ion exchange treatment and / or solvent extraction treatment, and a solution in which scandium is concentrated (sulfuric acid solution) can be used.
  • a chelate resin treatment using a resin having iminodiacetic acid as a functional group can be mentioned.
  • an adsorption process in which the after-sulfiding solution is brought into contact with a chelate resin to adsorb scandium onto the chelate resin, and the chelate resin is brought into contact with sulfuric acid.
  • An aluminum removal step of removing aluminum adsorbed to the chelate resin a scandium elution step of obtaining a scandium elution solution by contacting sulfuric acid with the chelate resin subjected to the aluminum removal step, and contacting the sulfuric acid with the chelate resin subjected to the scandium elution step
  • the chromium removal step of removing the chromium adsorbed to the chelate resin in the adsorption step.
  • the solvent extraction process is also not particularly limited, and the scandium eluate obtained through the above-described ion exchange process is subjected to a solvent extraction process using an amine-based extractant, a phosphate-based extractant, etc. be able to.
  • the scandium eluent and the extractant are mixed to extract impurities, and then the extract is separated into the organic solvent and the extract containing scandium, and the extracted organic solvent is mixed with a hydrochloric acid solution or a sulfuric acid solution.
  • Extraction and scrubbing step of separating scandium contained in the organic solvent by trace amount, and mixing the back extraction starting solution into the organic solvent after washing, back extracting the impurities from the organic solvent after washing, and obtaining the back extraction solution Can be illustrated.
  • the oxidation obtained using the scandium-containing solution as a raw material Scandium has an even higher scandium grade.
  • FIG. 1 is a process diagram showing an example of the flow of a method for producing scandium oxide.
  • an oxalic acid oxidation step S11 of subjecting a scandium-containing solution to oxalic acid oxidation treatment, and a first firing step of firing the obtained scandium oxalate crystals at a predetermined temperature S12 and a scandium compound which is a baked product are dissolved in a mineral acid to obtain a solution, and the solution is subjected to oxalic acid oxidation treatment to obtain a reprecipitate of scandium oxalate crystals.
  • S14, and a second firing step of firing a reprecipitate of scandium oxalate to obtain scandium oxide are examples of scandium oxide.
  • the oxalic acid oxidation process S11 is a process of subjecting the scandium-containing solution to an oxalic acid oxidation process. Specifically, in the oxalic acid oxidation step S11, a reaction of scandium into oxalate (scandium oxalate) using oxalic acid is caused to the scandium-containing solution.
  • the scandium-containing solution is not particularly limited, but is preferably adjusted to have a scandium concentration of 5 g / L to 10 g / L, more preferably about 5 g / L, using an acid such as sulfuric acid PH adjusted to about 0 is used.
  • oxalic acid may be added to the scandium-containing solution to precipitate and form solid crystals of scandium oxalate based on scandium in the scandium-containing solution.
  • the oxalic acid used may be solid or solution.
  • a method of causing solid crystals of scandium oxalate to precipitate is generated (so-called reverse addition method) by gradually adding a scandium-containing solution into an oxalic acid solution filled in a reaction vessel as a method of oxalic acid oxidation treatment be able to.
  • precipitation of iron (II) oxalate and the like can be prevented, and scandium of higher purity can be recovered without using an expensive oxidizing agent and the like.
  • the temperature of the scandium-containing solution to be treated is preferably adjusted to a range of 10 ° C. or more and 30 ° C. or less, and more preferably adjusted to a range of 15 ° C. or more and 25 ° C. or less.
  • the oxalic acid used for the treatment it is preferable to use an amount in the range of 1.05 times to 1.2 times the equivalent necessary for depositing scandium in the scandium-containing solution as an oxalate salt. If the amount used is less than 1.05 times the required equivalent, the entire amount of scandium may not be recovered effectively. On the other hand, if the amount used exceeds 1.2 times the required equivalent, the solubility of scandium oxalate increases and scandium re-dissolves to lower the recovery rate, and also to decompose excess oxalic acid. It is not preferable because the amount of oxidizing agent such as sodium hypochlorite increases.
  • the crystals of scandium oxalate obtained by such an oxalic acid oxidation treatment can be recovered by filtration and washing treatment.
  • the first firing step S12 is a step of firing the crystals of scandium oxalate obtained in the oxalic acid oxidation step S11 at a predetermined temperature. By the baking treatment at such a predetermined temperature, a scandium compound which is a baked product can be obtained.
  • the firing is performed in the range of 400 ° C. or more and 600 ° C. or less in the first firing step S12.
  • the present inventor performed a scan process on a scandium oxalate crystal under conditions of a temperature range of 400 ° C. to 600 ° C., which is a lower temperature range than conventional, to easily scandium scandium which is easily soluble in an aqueous solution such as acid. It was found that a compound was obtained.
  • the easily soluble scandium compound thus obtained has a weight loss ratio of 53% to 65%, preferably 55% to 65%, and more preferably 53% to 65%, based on the weight of the scandium oxalate crystals before the baking treatment. It is in the range of 55% to 60%.
  • the present inventors have a weight loss ratio having a range of 55% or more and 65% or less From this, it was found that there is a region exhibiting a form of easy solubility when the poorly soluble scandium oxalate is heated to be decomposed into the hardly soluble scandium oxide.
  • the crystal of scandium oxalate which is the raw material, is not completely decomposed by firing and the whole amount becomes scandium oxide, but some scandium oxalate remains. Or, it is considered to be a compound in which CO 2 or CO generated by decomposition remains.
  • the easily soluble scandium compound obtained by firing under temperature conditions in the range of 400 ° C. to 600 ° C. contains more carbon (C) than scandium oxide obtained by firing at a conventional high temperature. ing.
  • scandium compounds in the easily soluble region are simply referred to simply as "scandium compounds".
  • the peak of scandium oxalate is not observed, and the peak intensity corresponding to the peak of scandium oxide is also 11,000 counts It becomes below. From this, it is considered that the scandium compound obtained by firing at a temperature of 400 ° C. or more and 600 ° C. or less has a low degree of crystallinity and has a property of easy solubility.
  • the scandium compound exhibiting this solubility has the property of being a fine one having a BET specific surface area of 70 m 2 / g or more.
  • the scandium compound obtained at a firing temperature of 400 ° C. is 250 m 2 / g or more.
  • the specific surface area of the scandium compound more preferably 100 m 2 / g or more, more preferably 200 meters 2 / g or more, particularly preferably 250 meters 2 / g or more.
  • the conditions for producing the easily soluble scandium compound in this way are to fire under the temperature conditions in the range of 400 ° C. to 600 ° C., and more preferably, the temperature in the range of 400 ° C. to 500 ° C. It is to bake on conditions. Also, in other words, such a readily soluble scandium compound has a weight loss ratio of 53% or more and 65% or less, preferably 55% or more and 65% or less, and more preferably 55% or more and 60% or less. It can be obtained by firing under the following conditions.
  • the crystals of scandium oxalate obtained by the oxalic acid oxidation treatment are washed with water, dried, and then fired using a predetermined furnace.
  • the furnace is not particularly limited, but may be a tubular furnace or the like, and industrially, using a continuous furnace such as a rotary kiln is preferable because drying and firing can be performed continuously by the same apparatus.
  • the holding time when firing is performed at a firing temperature of 400 ° C. to 600 ° C. is not particularly limited, but is preferably 0.5 hours to 12 hours, and is 1 hour to 12 hours More preferably, it is particularly preferably 1 hour or more and 6 hours or less. If the holding time is less than 0.5 hours, the firing may not proceed sufficiently, and a large amount of poorly soluble scandium oxalate may remain. On the other hand, when the holding time exceeds 12 hours, the easily soluble property of the obtained scandium compound may hardly change or may gradually decrease, and the heat energy increases, resulting in an increase in processing cost.
  • the scandium compound which is a calcined product obtained by the calcination treatment in the first calcination step S12 is totally dissolved in one or more solutions selected from hydrochloric acid and nitric acid which are mineral acids to obtain a solution. It is a process.
  • the firing step S12 by performing the firing at the firing temperature in the range of 400 ° C. or more and 600 or less in the first firing step S12, it is possible to obtain a scandium compound having easy solubility in an aqueous solution such as an acid. Therefore, in the dissolution step S13, a so-called re-dissolution solution in which scandium is eluted in a solution by dissolving the easily soluble scandium compound thus obtained in one or more solutions selected from hydrochloric acid and nitric acid. Thus, it is possible to obtain a solution in which scandium is concentrated.
  • a re-dissolution solution is prepared utilizing the easily soluble property of the obtained scandium compound, and based on this re-dissolution solution again in the subsequent step.
  • the dissolution treatment in the dissolution step S13 is not particularly limited, and pure water is added to the scandium compound, and one or more solutions selected from hydrochloric acid and nitric acid are further added thereto and stirred. Can. Moreover, as temperature conditions in the dissolution treatment, the temperature can be adjusted to a range of about 40 ° C. or more and 80 ° C. or less.
  • the pH condition of the solution selected from hydrochloric acid and nitric acid used for dissolution is not particularly limited, and for example, one adjusted to about pH 0 to 2 may be used. Since scandium compounds to be dissolved in these acid solutions exhibit solubility as described above in aqueous solutions such as acids, they can be easily dissolved even under conditions of pH 0 to 2 and high concentration It is possible to effectively reduce the drug cost required for As the acid solution, sulfuric acid which is the same mineral acid can be used other than the above-mentioned hydrochloric acid and nitric acid. However, according to the experiments of the present inventor, it was found that although the mechanism is not clear, by dissolving using hydrochloric acid, scandium oxalate having higher purity than that obtained using sulfuric acid can be obtained.
  • the scandium concentration can be increased to about 50 g / L and adjusted to an arbitrary value, thereby reducing the amount of liquid and, in turn, reducing the amount of equipment. Capacity can be reduced.
  • re-precipitation process In the re-precipitation step S14, re-precipitation of the scandium oxalate crystals is carried out by subjecting the solution obtained by re-dissolving the scandium compound in the dissolution step S13 (re-dissolution solution) to an oxalic acid oxidation treatment again. It is a process to obtain.
  • a second solution of oxalic acid oxidation is performed using the redissolved solution as a raw material.
  • the method of re-dissolving the easily soluble scandium compound and re-producing scandium oxalate crystals from the re-dissolution solution it coexists with the scandium oxalate crystals obtained by the second oxalic acid oxidation.
  • the amount of impurities can be significantly reduced.
  • the method of the Shu oxidation treatment in the reprecipitation step S14 can be performed in the same manner as the treatment performed in the Shu oxidation step S11. For example, it is adjusted to have a scandium concentration of 5 g / L to 10 g / L, more preferably about 5 g / L, and pH is further adjusted using a mineral acid such as hydrochloric acid or nitric acid.
  • the Shu oxidation treatment is performed using one adjusted to about 0.
  • oxalic acid oxidation treatment by setting the solution temperature of the solution (re-dissolution solution) at the time of reaction to 40 ° C. or higher, oxalic acid obtained as compared with the case where the reaction occurs at normal temperature (25 ° C.)
  • the particles of scandium can be coarsened, and handling at the time of charging to the firing furnace in the next firing step (second firing step) becomes easy.
  • the impurities may be caught in the gaps between the particles and the quality may be lowered simply by coarsening.
  • the easily soluble scandium compound is redissolved, and crystals of scandium oxalate are generated again from the redissolved solution, the crystals of scandium oxalate for the second time Since the impurities coexisting in the above can be significantly reduced, the particles can be effectively coarsened. From this, the handling property can be effectively enhanced.
  • the temperature conditions in the oxalic acid oxidation treatment are preferably in the range of 40 ° C. or higher and less than 100 ° C. It is more preferable to set it as the range of 40 degreeC or more and 60 degrees C or less.
  • the second firing step S15 is a step of firing the reprecipitate of scandium oxalate obtained in the reprecipitation step S14 at a predetermined temperature. That is, in the second baking step S15, a second baking process of baking the crystal of scandium oxalate obtained from the re-dissolution is performed to obtain scandium oxide by this baking process.
  • the firing temperature condition is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably about 1100 ° C.
  • the crystal of scandium oxalate is fired at a high temperature of 900 ° C. or more to form a compound having a form of scandium oxide as a fired product.
  • carbon (C) derived from oxalic acid remains by baking on high temperature conditions in this way.
  • the obtained crystals of scandium oxalate are washed with water and dried, as in the treatment in the first firing step S12. Use and bake.
  • the holding time when firing at a firing temperature of 900 ° C. or higher is not particularly limited, but is preferably 0.5 hours to 12 hours, and more preferably 1 hour to 12 hours. It is preferable that it is preferably 1 hour or more and 6 hours or less. If the holding time is less than 0.5 hours, the firing may not proceed sufficiently, and a fired product in the form of scandium oxide may not be obtained effectively. On the other hand, if the holding time exceeds 12 hours, the heat energy increases and the processing cost becomes high.
  • Example 1 ⁇ Formation of scandium-containing solution> (Wet smelting process of nickel oxide ore) Nickel oxide ore was leached with sulfuric acid using an autoclave, and the obtained leachate was neutralized by adding slaked lime. Next, a sulfurizing agent is added to the obtained neutralized solution to cause a sulfurization reaction, nickel, cobalt and the like are separated as sulfides, and a scandium-containing sulfurized solution is obtained.
  • the entire amount of the solution was filtered to separate out scandium oxalate crystals, and 50 g of the separated crystals were repeatedly washed three times with 1 liter of pure water using 1 liter of pure water.
  • the obtained scandium solution was diluted to have a scandium concentration of 5 g / L, and hydrochloric acid was added to adjust the pH to 0 to prepare a solution of 3.5 liters.
  • ⁇ Second firing step> the washed crystal of scandium oxalate was placed in a furnace, and a second baking was performed at a baking temperature of 900 ° C. for 2 hours to generate scandium oxide. Then, scandium oxide taken out of the furnace was analyzed.
  • Example 2 ⁇ Formation of scandium-containing solution> (Wet smelting process of nickel oxide ore) Nickel oxide ore was leached with sulfuric acid using an autoclave, and the obtained leachate was neutralized by adding slaked lime. Next, a sulfurizing agent is added to the obtained neutralized solution to cause a sulfurization reaction, nickel, cobalt and the like are separated as sulfides, and a scandium-containing sulfurized solution is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

スカンジウムを含有する溶液から、効率よく高純度の酸化スカンジウムを得る方法を提供する。 本発明に係る高純度酸化スカンジウムの製造方法は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を400℃以上600℃以下の温度で焼成する第1焼成工程S12と、焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程S13と、溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程S14と、得られたシュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程S15と、を有する。

Description

高純度酸化スカンジウムの製造方法
 本発明は、酸化スカンジウムの製造方法に関するものであり、より詳しくは、不純物の品位を低減させた高純度な酸化スカンジウムの製造方法に関する。
 近年、アルミニウムとの高性能合金や燃料電池の材料として注目されているスカンジウムは、チタン精製残渣やニッケル酸化鉱石を硫酸浸出することで得られた浸出液から精製することが主流となっており、副産物としての回収が進められている。
 このような従来のスカンジウムの回収においては、主として、不純物を分離する浄液処理を通して高純度品の生産を行っている。すなわち、スカンジウムは、上述したような主要工程における溶液(例えば浸出液等)に低濃度で存在するものであるため、イオン交換法や溶媒抽出法等の方法を多段階に実施することで徐々に濃縮させていき、溶液中の濃度を高めていくことが必要となる。これらの方法を用いて、合金に必要な品位、例えば99.9%(3N品)以上のグレードまで高純度化していくのであるが、かなりの手間がかかり、精製に要するコストが高止まりとなる一因となっている。
 例えば、特許文献1には、低品位の酸化スカンジウムを硝酸で加熱溶解し、この硝酸溶液を陰イオン交換樹脂に接触させて液中に溶存する不純物を吸着させ、さらに溶液に塩酸を添加し、陰イオン交換樹脂に接触させて他の不純物を樹脂に吸着させることでスカンジウムと不純物を分離する方法が開示されている。この方法では、さらにシュウ酸又はフッ酸を添加し、得られた沈殿物を焼成することによって、高純度の酸化スカンジウムを得ることが示されている。
 しかしながら、この特許文献1の方法では、スカンジウムと同量、あるいはスカンジウムよりもはるかに大量に共存する不純物を分離することから、不純物の分離に要する手間とコストがかさみ、また不純物を完全に分離しきれないという問題がある。
 不純物を分離する方法として、一度精製したものを再度溶解して析出させることで精製する方法が知られており、工業的にも広く用いられている。しかしながら、酸化スカンジウムに対してこのような方法を用いようとしても、酸化スカンジウムは酸等の水溶液に対して難溶性であり、溶解するには高濃度の酸を用いる必要がある。
 さらに、酸化スカンジウムを溶解できたとしても、酸濃度が高いことから、スカンジウム濃度が1g/L~3g/L程度の溶液しか得ることができない。また、再度シュウ酸化しようとしても、酸濃度が高いために、80%程度の実収率を得るのに12当量程度のシュウ酸を添加することが必要となり、薬剤コストが高くなるという問題が生じる。
 このように、従来の方法では、高純度の酸化スカンジウムを得る場合に、多くの手間がかかるとともにコストがかさみ、さらには高濃度の酸を取扱うことから安全性の問題が生じるという課題があった。
特開平8-232026号公報
 本発明は、このような実情に鑑みて提案されたものであり、スカンジウムを含有する溶液から、効率よく高純度の酸化スカンジウムを得る方法を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、シュウ酸スカンジウムの結晶に対して特定の温度条件で焼成することで、酸等の水溶液に対して易溶性を示すスカンジウム化合物を得ることができることが分かり、そして、その易溶性のスカンジウム化合物を利用して再溶解液を調製し、再溶解液から生成させたシュウ酸スカンジウムに対して焼成して酸化スカンジウムを製造することで、効率よく高純度の酸化スカンジウムが得られることを見出し、本発明を完成するに至った。
 (1)本発明の第1の発明は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を400℃以上600℃以下の温度で焼成する第1焼成工程と、焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程と、前記溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程と、得られた前記シュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する、高純度酸化スカンジウムの製造方法である。
 (2)本発明の第2の発明は、第1の発明において、前記再沈殿工程では、前記溶解液の温度を40℃以上100℃未満に調整してシュウ酸化処理を施す、高純度酸化スカンジウムの製造方法である。
 (3)本発明の第3の発明は、第1又は第2の発明において、前記第2焼成工程では、焼成温度を900℃以上として焼成する、高純度酸化スカンジウムの製造方法である。
 (4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、前記スカンジウムを含有する溶液は、スカンジウムを含有する溶液に対してイオン交換処理及び/又は溶媒抽出処理を施して得られたものである、高純度酸化スカンジウムの製造方法である。
 本発明によれば、スカンジウムを含有する溶液から、効率よく高純度の酸化スカンジウムを得ることができる。
酸化スカンジウムの製造方法の流れの一例を示す工程図である。
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X~Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。
 ≪1.概要≫
 本実施の形態に係る酸化スカンジウムの製造方法は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶から酸化スカンジウムを得る方法である。そして、この製造方法では、スカンジウムを含有する溶液からシュウ酸処理により得られるシュウ酸スカンジウムを、2段階で焼成することで、不純物の少ない高純度な酸化スカンジウムを得ることを特徴とするものである。
 具体的に、本実施の形態に係る酸化スカンジウムの製造方法は、スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を所定の温度で焼成する第1焼成工程と、焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程と、溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程と、得られたシュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する。
 このような方法では、第1焼成工程において、シュウ酸スカンジウムの結晶に対して特定の温度条件で焼成することで、酸等の水溶液に対して易溶性を示すスカンジウム化合物を得ることができる。そして、そのようにして得られた易溶性のスカンジウム化合物を利用し、具体的には、塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液(再溶解液)を得て、その再溶解液からシュウ酸スカンジウムの再沈殿物を生成させ、その再沈殿物に対して所定の温度条件で焼成処理を施すことで、効率的に不純物を分離除去した高純度な酸化スカンジウムを得ることができる。
 ここで、原料となる、スカンジウムを含有する溶液(以下、「スカンジウム含有溶液」ともいう)としては、ニッケル酸化鉱石に対する高圧酸浸出(HPAL)処理により得られた浸出液を硫化処理してニッケルを分離した後の硫化後液に対し、イオン交換処理及び/又は溶媒抽出処理によって不純物を分離して、スカンジウムを濃縮させた溶液(硫酸酸性溶液)を用いることができる。
 ニッケル酸化鉱石のHPALプロセスを経て得られた硫化後液等のスカンジウム含有溶液に対するイオン交換処理としては、特に限定されない。例えば、キレート樹脂として、イミノジ酢酸を官能基とする樹脂を用いた処理が挙げられる。具体的な処理工程として、例えば硫化後液を処理対象とする場合には、硫化後液をキレート樹脂に接触させてスカンジウムをキレート樹脂に吸着させる吸着工程と、そのキレート樹脂に硫酸を接触させてキレート樹脂に吸着したアルミニウムを除去するアルミニウム除去工程と、アルミニウム除去工程を経たキレート樹脂に硫酸を接触させてスカンジウム溶離液を得るスカンジウム溶離工程と、スカンジウム溶離工程を経たキレート樹脂に硫酸を接触させて吸着工程にてキレート樹脂に吸着したクロムを除去するクロム除去工程と、を有するものを例示できる。
 また、溶媒抽出処理についても特に限定されず、上述したようなイオン交換処理を経て得られたスカンジウム溶離液に対して、アミン系抽出剤、リン酸系抽出剤等を使用した溶媒抽出処理を行うことができる。例えば、スカンジウム溶離液と抽出剤とを混合して、不純物を抽出した抽出後有機溶媒とスカンジウムを含む抽残液とに分離する抽出工程と、抽出後有機溶媒に塩酸溶液又は硫酸溶液を混合して抽出後有機溶媒に微量含まれるスカンジウムを分離するスクラビング工程と、洗浄後有機溶媒に逆抽出始液を混合して洗浄後有機溶媒から不純物を逆抽出し、逆抽出液を得る逆抽出工程と、を有するものを例示できる。
 このように、イオン交換処理や溶媒抽出処理を施して得られたスカンジウム含有溶液では、不純物成分が低減されてスカンジウムが溶液中で濃縮されていることから、そのスカンジウム含有溶液を原料として得られる酸化スカンジウムは、スカンジウム品位がより一層に高いものとなる。
 ≪2.酸化スカンジウムの製造方法の各工程について≫
 図1は、酸化スカンジウムの製造方法の流れの一例を示す工程図である。図1に示すように、この製造方法は、スカンジウム含有溶液に対してシュウ酸化処理を施すシュウ酸化工程S11と、得られたシュウ酸スカンジウムの結晶に対して所定の温度で焼成する第1焼成工程S12と、焼成物であるスカンジウム化合物を鉱酸に溶解させて溶解液を得る溶解工程S13と、溶解液に対してシュウ酸化処理を施してシュウ酸スカンジウムの結晶の再沈殿物を得る再沈殿工程S14と、シュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する。
 [シュウ酸化工程]
 シュウ酸化工程S11は、スカンジウム含有溶液に対してシュウ酸化処理を施す工程である。具体的に、シュウ酸化工程S11では、スカンジウム含有溶液に対してシュウ酸を用いてスカンジウムをシュウ酸塩(シュウ酸スカンジウム)とする反応を生じさせる。
 このようにスカンジウムをシュウ酸塩とすることによって、濾過性等のハンドリング性を向上させることができ、スカンジウムを効率的に回収することができる。また、このシュウ酸化処理により、溶液中の不純物と分離することができる。
 スカンジウム含有溶液としては、特に限定されないが、好ましくはスカンジウム濃度が5g/L~10g/Lとなるように、より好ましくは5g/L程度の濃度となるように調整し、硫酸等の酸を用いてpHを0程度に調整したものを用いる。
 シュウ酸化処理の方法としては、スカンジウム含有溶液に対してシュウ酸を添加して、スカンジウム含有溶液中のスカンジウムに基づいてシュウ酸スカンジウムの固体結晶を析出生成させる方法を用いることができる。このとき、使用するシュウ酸としては、固体であっても溶液であってもよい。なお、このシュウ酸化処理の方法において、スカンジウム含有溶液中に不純物成分として2価鉄イオンが含まれる場合には、シュウ酸鉄(II)の沈殿生成を防止するために、シュウ酸化処理に先立ち、酸化剤を添加して酸化還元電位(ORP,参照電極:銀/塩化銀)を500mV~600mV程度の範囲に制御して酸化処理を施すことが好ましい。
 あるいは、シュウ酸化処理の方法として、スカンジウム含有溶液を、反応容器に満たしたシュウ酸溶液の中に徐々に添加して、シュウ酸スカンジウムの固体結晶を析出生成させる方法(いわゆる逆添加法)を用いることができる。このとき、シュウ酸化処理に先立ち、スカンジウム含有溶液のpHを-0.5以上1以下の範囲に調整することが好ましい。このようなシュウ酸化処理方法によれば、シュウ酸鉄(II)等の沈殿生成を防止することができ、また高価な酸化剤等を用いることなく、より高純度のスカンジウムを回収することができる。
 シュウ酸化処理に際しては、処理対象であるスカンジウム含有溶液の温度を、10℃以上30℃以下の範囲に調整することが好ましく、15℃以上25℃以下の範囲に調整することがより好ましい。
 また、処理に用いるシュウ酸としては、スカンジウム含有溶液中のスカンジウムをシュウ酸塩として析出させるのに必要な当量の1.05倍~1.2倍の範囲の量を使用することが好ましい。使用量が必要な当量の1.05倍未満であると、スカンジウムを有効に全量回収できなくなる可能性がある。一方で、使用量が必要な当量の1.2倍を超えると、シュウ酸スカンジウムの溶解度が増加することでスカンジウムが再溶解して回収率が低下し、また過剰なシュウ酸を分解するために次亜塩素ソーダのような酸化剤の使用量が増加するため好ましくない。
 このようなシュウ酸化処理により得られたシュウ酸スカンジウムの結晶は、濾過・洗浄処理を行うことによって回収することができる。
 [第1焼成工程]
 第1焼成工程S12は、シュウ酸化工程S11で得られたシュウ酸スカンジウムの結晶に対して所定の温度で焼成する工程である。このような所定の温度での焼成処理により、焼成物であるスカンジウム化合物を得ることができる。
 そして、本実施の形態では、この第1焼成工程S12において、焼成温度を400℃以上600℃以下の範囲として焼成を行うことを特徴としている。これにより、酸等の水溶液に対して易溶性を示すスカンジウム化合物を焼成物として得ることができる。
 本発明者は、シュウ酸スカンジウムの結晶に対して、従来よりも低温領域である400℃以上600℃以下の範囲の条件で焼成処理を施すことによって、酸等の水溶液に対して易溶性のスカンジウム化合物が得られることを見出した。なお、従来、シュウ酸スカンジウムを焼成して酸化スカンジウムを得るためには、焼成温度を900℃以上、好ましくは1100℃程度とすることが必要であった。
 しかも、このようにして得られる易溶性のスカンジウム化合物は、焼成処理前のシュウ酸スカンジウムの結晶の重量に対する減量率が、53%以上65%以下、好ましくは55%以上65%以下、より好ましくは55%以上60%以下の範囲となる。なお、減量率とは、焼成による重量の減少割合をいい、焼成前後の重量際に基づいて下記式[1]で表すことができる。
 減量率(%)=(1-焼成後物量/焼成前物量)×100
                          ・・・[1]
 ここで、シュウ酸スカンジウム(Sc12;分子量353.92)を焼成することで酸化スカンジウム(Sc;分子量137.92)を得る場合、焼成前後の減量率としては、理論的には(1-137.92/353.92)×100=61%になる。しかしながら、本発明者は、400℃以上600℃以下の範囲の条件で焼成処理を施すことで得られる易溶性のスカンジウム化合物においては、減量率が55%以上65%以下の範囲で幅があるものとなることから、難溶性のシュウ酸スカンジウムを加熱して難溶性の酸化スカンジウムに分解される際に、易溶性の形態を呈する領域があることを見出した。
 つまり、この易溶性を示すスカンジウム化合物は、原料であるシュウ酸スカンジウムの結晶が、焼成により完全に分解してその全量が酸化スカンジウムになったものではなく、部分的にシュウ酸スカンジウムが残留したり、あるいは分解で生成したCOやCO等が残留した状態にある化合物であると考えられる。実際に、400℃以上600℃以下の範囲の温度条件で焼成して得られる易溶性のスカンジウム化合物は、従来の高温で焼成して得られる酸化スカンジウムに比べて、炭素(C)が多く含まれている。
 また、この易溶性を示すスカンジウム化合物は、X線回折分析を行っても、とりわけより易溶性を示す下限の温度側では、特有の回折ピークを示さず、その化合物の形態を特定することが困難である。そのため、易溶性の領域にある化合物を、単に『スカンジウム化合物』と総称する。具体的に、400℃以上600℃以下の範囲の温度条件で焼成して得られる易溶性のスカンジウム化合物では、シュウ酸スカンジウムのピークも観察されず、酸化スカンジウムのピークに相当するピーク強度も11000カウント以下となる。このことから、400℃以上600℃以下の温度で焼成して得られるスカンジウム化合物では、結晶化度が低くなり、易溶性の性質を有するものになると考えられる。
 さらに、この易溶性を示すスカンジウム化合物は、BET比表面積が70m/g以上の微細なものであるという性質を有する。特に、焼成温度を400℃として得られたスカンジウム化合物では、250m/g以上となる。このように、400℃以上600℃以下の温度条件で焼成して得られたスカンジウム化合物では、比表面積が大きくなり、その結果として、酸溶液に対する溶解に際しての酸溶液との接触面積が多くなり、易溶性を示すようになると考えられる。スカンジウム化合物の比表面積としては、100m/g以上であることがより好ましく、200m/g以上であることがさらに好ましく、250m/g以上であることが特に好ましい。
 そして、このように易溶性のスカンジウム化合物を生じさせるための条件が、400℃以上600℃以下の範囲の温度条件で焼成することであり、より好ましくは、400℃以上500℃以下の範囲の温度条件で焼成することである。また、換言すると、このような易溶性のスカンジウム化合物は、焼成による減量率が53%以上65%以下、好ましくは55%以上65%以下、より好ましくは55%以上60%以下の範囲となるような条件で焼成することによって得られる。
 具体的に、第1焼成工程S12における焼成処理では、シュウ酸化処理により得られたシュウ酸スカンジウムの結晶を水で洗浄し、乾燥させた後に、所定の炉を用いて焼成する。炉としては、特に限定されないが、管状炉等が挙げられ、また工業的には、ロータリーキルン等の連続炉を用いることで乾燥と焼成とを同じ装置で連続して行うことができるため好ましい。
 また、400℃以上600℃以下の焼成温度で焼成するときの保持時間としては、特に限定されないが、0.5時間以上12時間以下であることが好ましく、1時間以上12時間以下であることがより好ましく、1時間以上6時間以下であることが特に好ましい。保持時間が0.5時間未満であると、十分に焼成が進行せず、難溶性のシュウ酸スカンジウムの多くが残存してしまう可能性がある。一方で、保持時間が12時間を超えると、得られるスカンジウム化合物の易溶性の性質が、ほとんど変わらないか、むしろ徐々に低下することがあり、また熱エネルギーが増大するため処理コストが高くなる。
 [溶解工程]
 溶解工程S13は、第1焼成工程S12での焼成処理により得られた焼成物であるスカンジウム化合物を、鉱酸である塩酸及び硝酸から選ばれる1種以上の溶液に全溶解させて溶解液を得る工程である。
 上述したように、第1焼成工程S12において焼成温度を400℃以上600以下の範囲として焼成を行うことで、酸等の水溶液に対して易溶性を示すスカンジウム化合物を得ることができる。したがって、溶解工程S13では、このようにして得られた易溶性のスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させることで、スカンジウムを液中に溶出させた、いわゆる再溶解液であって、スカンジウムが濃縮された溶液を得ることができる。
 このように、本実施の形態に係る酸化スカンジウムの製造方法では、得られたスカンジウム化合物の易溶性の性質を利用して再溶解液を調製し、この再溶解液に基づいて後工程において再度シュウ酸スカンジウムの結晶を得て、その結晶を焼成して酸化スカンジウムとすることで、不純物元素を効率的に分離除去することができる。これにより、不純物品位が低減された高純度の酸化スカンジウムを製造することができる。
 溶解工程S13における溶解処理としては、特に限定されず、スカンジウム化合物に対して純水を加え、さらにそこに塩酸及び硝酸から選ばれる1種以上の溶液を添加していき、撹拌することによって行うことができる。また、溶解処理における温度条件としても、40℃以上80℃以下程度の範囲に調整して行うことができる。
 また、溶解に用いる塩酸及び硝酸から選ばれる1種以上の溶液としては、そのpH条件は特に限定されず、例えばpH0~2程度に調整したものを用いればよい。これらの酸溶液に溶解させるスカンジウム化合物は、上述したように酸等の水溶液に対して易溶性を示すものであることから、pH0~2程度の条件でも容易に溶解させることが可能となり、高濃度化する等に必要な薬剤コストを有効に抑えることができる。なお、酸溶液として、上述した塩酸や硝酸以外にも、同じ鉱酸である硫酸を用いることもできる。ただし、本発明者の実験により、メカニズムは定かではないが、塩酸を用いて溶解させることで、硫酸を用いた場合よりもより一層に高純度なシュウ酸スカンジウムが得られることが分かった。
 なお、溶解工程S13で得られる再溶解液としては、例えば、スカンジウム濃度を50g/L程度にまで高めて任意の値に調整することができ、これにより、液量の削減や、延いては設備容量の減少を図ることができる。
 [再沈殿工程]
 再沈殿工程S14は、溶解工程S13においてスカンジウム化合物を再溶解して得られた溶解液(再溶解液)を用い、再度、シュウ酸化処理を施すことによって、シュウ酸スカンジウムの結晶の再沈殿物を得る工程である。
 すなわち、再沈殿工程S14では、再溶解液を原料として2回目のシュウ酸化を行う。このように、易溶性のスカンジウム化合物を再溶解し、その再溶解液からシュウ酸スカンジウムの結晶を再度生成させる方法によれば、その2回目のシュウ酸化により得られるシュウ酸スカンジウムの結晶に共存する不純物量を著しく低減させることができる。
 再沈殿工程S14におけるシュウ酸化処理の方法としては、シュウ酸化工程S11にて行った処理と同様にして行うことができる。例えば、再溶解液のスカンジウム濃度が5g/L~10g/Lとなるように、より好ましくは5g/L程度の濃度となるように調整し、さらに塩酸や硝酸等の鉱酸を用いてpHを0程度に調整したものを用いてシュウ酸化処理する。
 また、この2回目のシュウ酸化処理では、シュウ酸化処理において添加するシュウ酸の量を、スカンジウムに対して3.0当量以内に抑えても高い実収率でスカンジウムをシュウ酸スカンジウムとすることができ、シュウ酸の使用コストを低減することができる。
 ここで、シュウ酸化処理においては、反応時における溶液(再溶解液)の液温を40℃以上とすることで、常温(25℃)で反応を生じさせた場合と比べて、得られるシュウ酸スカンジウムの粒子を粗大化させることができ、次の焼成工程(第2焼成工程)で焼成炉に装入する際の取り扱いが容易となる。ただし、単に粗大化しただけでは、不純物が粒子の隙間に巻き込まれて品位が低下する懸念がある。
 しかしながら、上述したように本実施の形態においては、易溶性のスカンジウム化合物を再溶解し、その再溶解液からシュウ酸スカンジウムの結晶を再度生成させていることから、2回目のシュウ酸スカンジウムの結晶に共存する不純物を著しく低減させることができるため、有効に粒子を粗大化させることができる。このことから、ハンドリング性も効果的に高めることができる。
 なお、100℃以上の液温条件としても、粗大化への影響は少なく、エネルギーも余計にかかるため、シュウ酸化処理における温度条件としては、40℃以上100℃未満の範囲とすることが好ましく、40℃以上60℃以下の範囲とすることがより好ましい。
 [第2焼成工程]
 第2焼成工程S15は、再沈殿工程S14で得られたシュウ酸スカンジウムの再沈殿物を所定の温度で焼成する工程である。すなわち、第2焼成工程S15では、再溶解液から得られたシュウ酸スカンジウムの結晶を焼成する2回目の焼成処理を行い、この焼成処理により酸化スカンジウムを得る。
 第2焼成工程S15における焼成処理では、焼成温度の条件を900℃以上とすることが好ましく、1000℃以上とすることがより好ましく、1100℃程度とすることが特に好ましい。このように、第2焼成工程S15では、シュウ酸スカンジウムの結晶に対して900℃以上の高温の条件で焼成を行うことで、明確に酸化スカンジウムの形態を有する化合物を焼成物として生じさせる。また、このように高温条件で焼成することで、シュウ酸に由来する炭素(C)が残留することを防ぐことができる。
 そして、このように、易溶性のスカンジウム化合物を再溶解し、その再溶解液から再度シュウ酸スカンジウムの結晶を生成させ、そのシュウ酸スカンジウムの結晶を焼成していることから、不純物品位を低減させた高純度な酸化スカンジウムを得ることができる。
 第2焼成工程S15における焼成処理の方法としては、第1焼成工程S12における処理と同様に、得られたシュウ酸スカンジウムの結晶を水で洗浄し、乾燥させた後に、管状炉や連続炉等を用いて焼成する。
 また、900℃以上の高温の焼成温度で焼成するときの保持時間としては、特に限定されないが、0.5時間以上12時間以下であることが好ましく、1時間以上12時間以下であることがより好ましく、1時間以上6時間以下であることが特に好ましい。保持時間が0.5時間未満であると、十分に焼成が進行せず、酸化スカンジウムの形態の焼成物が有効に得られない可能性がある。一方で、保持時間が12時間を超えると、熱エネルギーが増大するため処理コストが高くなる。
 以下、本発明の実施例を示して、本発明についてより具体的に説明する。なお、本発明は以下の実施例に何ら限定されない。
 [実施例1]
 <スカンジウム含有溶液の生成>
  (ニッケル酸化鉱石の湿式製錬プロセス)
 オートクレーブを用いてニッケル酸化鉱石を硫酸で浸出し、得られた浸出液に消石灰を添加して中和した。次いで、得られた中和後液に硫化剤を添加して硫化反応を生じさせ、ニッケルやコバルト等を硫化物として分離し、スカンジウムを含有する硫化後液を得た。
  (イオン交換処理、中和処理)
 次に、得られた硫化後液に対してキレート樹脂を用いたイオン交換処理に付し、溶液中の不純物を分離するとともに、キレート樹脂から溶離したスカンジウムを含む溶離液(スカンジウム溶離液)を得た。その後、スカンジウム溶離液に対して中和剤を添加して、水酸化スカンジウムの沈殿物を生成させた。
  (溶媒抽出処理)
 次に、水酸化スカンジウムの沈殿物に硫酸を添加して再度溶解して溶解液(スカンジウム溶解液)とし、このスカンジウム溶解液に対してアミン系抽出剤を用いた溶媒抽出処理に付し、抽残液として硫酸スカンジウム溶液(スカンジウム含有溶液)を得た。
 <シュウ酸化工程>
 得られた硫酸スカンジウム溶液を、スカンジウム濃度が5g/L程度となるまで水を加えて希釈し、硫酸でpHが0になるように調整した。そして、この調整後の溶液をシュウ酸化始液とし、合計65リットルを準備した。
 次に、始液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を合計27リットル準備した。そして、そのシュウ酸溶液を反応容器に収容し、そのシュウ酸溶液の中に始液を270ml/minの流量で添加した。始液を全量添加した後、1時間かけて撹拌した。なお、反応温度を25℃とし、滞留時間を5時間、添加時間を4時間とする条件とした。下記表1に、シュウ酸化(1回目のシュウ酸化)の処理条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶50gに対して純水1リットルを使用するレパルプ洗浄を3回繰り返した。
 <第1焼成工程>
 次に、シュウ酸化処理により得られたシュウ酸スカンジウムの結晶の一部を分取し、これを炉に入れて1100℃の温度で2時間かけて焼成し、得られた焼成物を分析した。なお、下記表5に、焼成温度1100℃として得られた焼成物の分析結果を示す(表5中の「1回目の焼成処理後の酸化スカンジウム」)。
 一方、残りのシュウ酸スカンジウム結晶から500gを分取し、これを炉に入れて400℃の温度で2時間かけて焼成し、約215gの焼成物を得た。そして、その焼成物の一部を分析した。下記表2に、焼成温度400℃での焼成条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 <再溶解工程>
 次に、焼成温度400℃で焼成して得られた焼成物の残りから150gを採取し、それに純水を加えて混合しながら60℃に加熱し、さらに塩酸を添加してpHを1に調整した。この操作により、150gのシュウ酸スカンジウムの結晶の95%以上が溶解したスカンジウム溶解液を得た。下記表3に、溶解処理の条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 なお、得られたスカンジウム溶解液をスカンジウム濃度が5g/Lになるように希釈し、塩酸を添加してpHを0に調整した液を再溶解液とし、3.5リットル準備した。
 <再沈殿工程>
 次に、再溶解液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を1.45リットル準備した。そして、そのシュウ酸溶液を反応容器に収容し、そのシュウ酸溶液の中に再溶解液を添加した。再溶解液を全量添加した後、1時間撹拌状態を保持した。なお、反応温度を25℃とし、滞留時間を2時間、添加時間を1時間とする条件とした。下記表4に、シュウ酸化(2回目のシュウ酸化)の処理条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶66gに対して純水2リットルを使用するレパルプ洗浄を2回繰り返した。
 <第2焼成工程>
 次に、洗浄後のシュウ酸スカンジウムの結晶を炉に入れて2回目の焼成を、焼成温度900℃で2時間かけて行い、酸化スカンジウムを生成させた。そして、炉から取り出した酸化スカンジウムを分析した。
 酸化スカンジウムの分析は、以下のようにして行った。すなわち、スカンジウム(Sc)については、他の69成分の不純物をICP及びICP質量分析(ICP-MS)装置を用いて分析し、これらの不純物量を差し引いた残りがスカンジウムとみなして評価した。なお、1回目の焼成処理(1100℃)後の酸化スカンジウムの分析も、同様にして行った。
 下記表5に、得られた酸化スカンジウムの分析結果を示す(表5中の「2回目の焼成処理後の酸化スカンジウム」)。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、シュウ酸化処理により得られたシュウ酸スカンジウムを400℃で焼成し、得られたスカンジウム化合物を塩酸に再溶解して、その再溶解液から再度シュウ酸スカンジウムの結晶を生成させ、そのシュウ酸スカンジウムを900℃で焼成して得られた酸化スカンジウムでは、1回目の焼成処理(1100℃)後の酸化スカンジウムに比べて、不純物品位が低減されて、高純度なものとなった。
 [実施例2]
 <スカンジウム含有溶液の生成>
  (ニッケル酸化鉱石の湿式製錬プロセス)
 オートクレーブを用いてニッケル酸化鉱石を硫酸で浸出し、得られた浸出液に消石灰を添加して中和した。次いで、得られた中和後液に硫化剤を添加して硫化反応を生じさせ、ニッケルやコバルト等を硫化物として分離し、スカンジウムを含有する硫化後液を得た。
  (イオン交換処理、中和処理)
 次に、得られた硫化後液に対してキレート樹脂を用いたイオン交換処理に付し、溶液中の不純物を分離するとともに、キレート樹脂から溶離したスカンジウムを含む溶離液(スカンジウム溶離液)を得た。その後、スカンジウム溶離液に対して中和剤を添加して、水酸化スカンジウムの沈殿物を生成させた。
  (溶媒抽出処理)
 次に、水酸化スカンジウムの沈殿物に硫酸を添加して再度溶解して溶解液(スカンジウム溶解液)とし、このスカンジウム溶解液に対してアミン系抽出剤を用いた溶媒抽出処理に付し、抽残液として硫酸スカンジウム溶液(スカンジウム含有溶液)を得た。
 <シュウ酸化工程>
 得られた硫酸スカンジウム溶液を、スカンジウム濃度が5g/L程度となるまで水を加えて希釈し、硫酸でpHが0になるように調整した。そして、この調整後の溶液をシュウ酸化始液とし、合計65リットルを準備した。
 次に、始液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を合計27リットル準備した。そして、そのシュウ酸溶液を反応容器に収容し、そのシュウ酸溶液の中に始液を270ml/minの流量で添加した。始液を全量添加した後、1時間かけて撹拌した。なお、反応温度を25℃とし、滞留時間を5時間、添加時間を4時間とする条件とした。下記表6に、シュウ酸化(1回目のシュウ酸化)の処理条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000006
 撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶50gに対して純水1リットルを使用するレパルプ洗浄を3回繰り返した。
 <第1焼成工程>
 次に、シュウ酸化処理により得られたシュウ酸スカンジウムの結晶の一部を分取し、これを炉に入れて1100℃の温度で2時間かけて焼成し、得られた焼成物を分析した。なお、下記表10に、焼成温度1100℃として得られた焼成物の分析結果を示す(表10中の「1回目の焼成処理後の酸化スカンジウム」)。
 一方、残りのシュウ酸スカンジウム結晶から500gを分取し、これを炉に入れて400℃の温度で2時間かけて焼成し、約215gの焼成物を得た。そして、その焼成物の一部を分析した。下記表7に、焼成温度400℃での焼成条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000007
 <再溶解工程>
 次に、焼成温度400℃で焼成して得られた焼成物の残りから150gを採取し、それに純水を加えて混合しながら60℃に加熱し、さらに塩酸を添加してpHを1に調整した。この操作により、150gのシュウ酸スカンジウムの結晶の95%以上が溶解したスカンジウム溶解液を得た。下記表8に、溶解処理の条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000008
 なお、得られたスカンジウム溶解液をスカンジウム濃度が5g/Lになるように希釈し、塩酸を添加してpHを0に調整した液を再溶解液とし、試験条件毎に3.5リットル準備した。
 <再沈殿工程>
 次に、再溶解液中のスカンジウムに対して2.7当量のシュウ酸を反応させるため、シュウ酸を100g/Lの濃度で溶解した溶液を試験条件毎に1.45リットル準備した。そして、再溶解液を反応容器に収容し、その再溶解液の中にシュウ酸溶液を添加した。シュウ酸溶液を全量添加した後、1時間撹拌状態を保持した。なお、反応温度を25℃とし、滞留時間を2時間、添加時間を1時間とする条件とした。下記表9に、シュウ酸化(2回目のシュウ酸化)の処理条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000009
 撹拌終了後、全量濾過を行ってシュウ酸スカンジウムの結晶を分離し、分離した結晶66gに対して純水2リットルを使用するレパルプ洗浄を3回繰り返した。
 なお、上記の実施例1における2回目のシュウ酸化となる再沈殿工程では、シュウ酸溶液に再溶解液を添加するいわゆる「逆添加法」を用いたが、本実施例における2回目のシュウ酸化となる再沈殿工程では、1回目のシュウ酸化で十分に高品位なシュウ酸スカンジウムが得られ、溶解工程にて塩酸により十分にシュウ酸スカンジウムを溶解させることができたため、その再溶解液にシュウ酸溶液を添加する一般的な「正添加」法を用いた。この場合であっても、高純度化が可能であることを確認することができた。
 <第2焼成工程>
 次に、洗浄後のシュウ酸スカンジウムの結晶を炉に入れて2回目の焼成を、焼成温度900℃で2時間かけて行い、酸化スカンジウムを生成させた。そして、炉から取り出した酸化スカンジウムを分析した。
 酸化スカンジウムの分析は、以下のようにして行った。すなわち、スカンジウム(Sc)については、他の69成分の不純物をICP及びICP質量分析(ICP-MS)装置を用いて分析し、これらの不純物量を差し引いた残りがスカンジウムとみなして評価した。なお、1回目の焼成処理(1100℃)後の酸化スカンジウムの分析も、同様にして行った。
 下記表10に、得られた酸化スカンジウムの分析結果を示す(表10中の「2回目の焼成処理後の酸化スカンジウム」)。
Figure JPOXMLDOC01-appb-T000010
 表10に示されるように、シュウ酸化処理により得られたシュウ酸スカンジウムを400℃で焼成し、得られたスカンジウム化合物を塩酸に再溶解して、その再溶解液から再度シュウ酸スカンジウムの結晶を生成させ、そのシュウ酸スカンジウムを900℃で焼成して得られた酸化スカンジウムでは、1回目の焼成処理(1100℃)後の酸化スカンジウムに比べて、不純物品位が低減されて、高純度なものとなった。

Claims (4)

  1.  スカンジウムを含有する溶液にシュウ酸を用いてシュウ酸化処理を施し、得られたシュウ酸スカンジウムの結晶を400℃以上600℃以下の温度で焼成する第1焼成工程と、
     焼成により得られたスカンジウム化合物を塩酸及び硝酸から選ばれる1種以上の溶液に溶解させて溶解液を得る溶解工程と、
     前記溶解液にシュウ酸を用いてシュウ酸化処理を施し、シュウ酸スカンジウムの再沈殿物を生成させる再沈殿工程と、
     得られた前記シュウ酸スカンジウムの再沈殿物を焼成して酸化スカンジウムを得る第2焼成工程と、を有する
     高純度酸化スカンジウムの製造方法。
  2.  前記再沈殿工程では、前記溶解液の温度を40℃以上100℃未満に調整してシュウ酸化処理を施す
     請求項1に記載の高純度酸化スカンジウムの製造方法。
  3.  前記第2焼成工程では、焼成温度を900℃以上として焼成する
     請求項1又は2に記載の高純度酸化スカンジウムの製造方法。
  4.  前記スカンジウムを含有する溶液は、スカンジウムを含有する溶液に対してイオン交換処理及び/又は溶媒抽出処理を施して得られたものである
     請求項1乃至3のいずれか1項に記載の高純度酸化スカンジウムの製造方法。
PCT/JP2019/002012 2018-01-25 2019-01-23 高純度酸化スカンジウムの製造方法 WO2019146619A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980009511.0A CN111630001B (zh) 2018-01-25 2019-01-23 高纯度氧化钪的制造方法
AU2019211653A AU2019211653B9 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
EP19743119.0A EP3744686B1 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
US16/964,353 US10968112B2 (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
CA3088357A CA3088357C (en) 2018-01-25 2019-01-23 Method for producing high-purity scandium oxide
PH12020551111A PH12020551111A1 (en) 2018-01-25 2020-07-22 Method for producing high-purity scandium oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018010843A JP6583445B2 (ja) 2018-01-25 2018-01-25 高純度酸化スカンジウムの製造方法
JP2018-010843 2018-01-25

Publications (1)

Publication Number Publication Date
WO2019146619A1 true WO2019146619A1 (ja) 2019-08-01

Family

ID=67395486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002012 WO2019146619A1 (ja) 2018-01-25 2019-01-23 高純度酸化スカンジウムの製造方法

Country Status (8)

Country Link
US (1) US10968112B2 (ja)
EP (1) EP3744686B1 (ja)
JP (1) JP6583445B2 (ja)
CN (1) CN111630001B (ja)
AU (1) AU2019211653B9 (ja)
CA (1) CA3088357C (ja)
PH (1) PH12020551111A1 (ja)
WO (1) WO2019146619A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708786A (zh) * 2020-12-15 2021-04-27 广东先导稀材股份有限公司 一种从铝钪合金靶材废料中回收钪的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380030B2 (ja) * 2019-09-30 2023-11-15 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法
JP7347083B2 (ja) * 2019-09-30 2023-09-20 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法
JP7347084B2 (ja) * 2019-09-30 2023-09-20 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法
JP7347085B2 (ja) * 2019-09-30 2023-09-20 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法
JP2022024249A (ja) * 2020-07-13 2022-02-09 住友金属鉱山株式会社 スカンジウムの回収方法
CN113584327B (zh) * 2021-06-28 2022-10-28 中国恩菲工程技术有限公司 氧化钪的提纯方法
CN114455624A (zh) * 2022-03-03 2022-05-10 中国恩菲工程技术有限公司 具有六棱柱结构的氧化钪及其制备方法
CN114890450B (zh) * 2022-05-11 2024-03-26 湖南东方钪业股份有限公司 一种制备氧化钪的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198017A (ja) * 1990-11-29 1992-07-17 Mitsubishi Materials Corp 酸化スカンジウムの精製方法
JPH08232026A (ja) 1995-02-24 1996-09-10 Mitsubishi Materials Corp スカンジウムの精製方法
JPH09324227A (ja) * 1996-06-06 1997-12-16 Mitsubishi Materials Corp 低α低酸素金属スカンジウムとその製造方法
JP2016507636A (ja) * 2012-12-11 2016-03-10 クリーン テク ピーティーワイ リミテッド スカンジウムを回収するプロセス、方法および生産設備
JP2016153534A (ja) * 2014-01-31 2016-08-25 住友金属鉱山株式会社 スカンジウム回収方法
WO2018043704A1 (ja) * 2016-09-05 2018-03-08 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2070596C1 (ru) * 1993-05-28 1996-12-20 Научно-производственная экологическая фирма "Экотехнология" Способ получения скандиевых концентратов
US20120207656A1 (en) * 2011-02-11 2012-08-16 Emc Metals Corporation System and Method for Recovery of Scandium Values From Scandium-Containing Ores
CN102863004A (zh) * 2011-07-05 2013-01-09 北京有色金属研究总院 一种高纯氧化钪的提纯制备方法
WO2014110216A1 (en) * 2013-01-10 2014-07-17 Bloom Energy Corporation Methods of recovering scandium from titanium residue streams
JP5652503B2 (ja) * 2013-05-10 2015-01-14 住友金属鉱山株式会社 スカンジウム回収方法
CN103361486B (zh) * 2013-07-18 2014-10-29 攀枝花市精研科技有限公司 从含钪和钛的废酸液中提取高纯氧化钪及钛的方法
JP5954350B2 (ja) 2014-01-31 2016-07-20 住友金属鉱山株式会社 スカンジウム回収方法
CN104975192A (zh) * 2014-04-09 2015-10-14 包钢集团矿山研究院(有限责任公司) 从含钪物料中提取钪的方法
JP6004023B2 (ja) * 2015-02-02 2016-10-05 住友金属鉱山株式会社 スカンジウムの回収方法
JP6891723B2 (ja) * 2016-08-30 2021-06-18 住友金属鉱山株式会社 スカンジウム化合物の製造方法、スカンジウム化合物
JP6900677B2 (ja) * 2017-01-11 2021-07-07 住友金属鉱山株式会社 酸化スカンジウムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198017A (ja) * 1990-11-29 1992-07-17 Mitsubishi Materials Corp 酸化スカンジウムの精製方法
JPH08232026A (ja) 1995-02-24 1996-09-10 Mitsubishi Materials Corp スカンジウムの精製方法
JPH09324227A (ja) * 1996-06-06 1997-12-16 Mitsubishi Materials Corp 低α低酸素金属スカンジウムとその製造方法
JP2016507636A (ja) * 2012-12-11 2016-03-10 クリーン テク ピーティーワイ リミテッド スカンジウムを回収するプロセス、方法および生産設備
JP2016153534A (ja) * 2014-01-31 2016-08-25 住友金属鉱山株式会社 スカンジウム回収方法
WO2018043704A1 (ja) * 2016-09-05 2018-03-08 住友金属鉱山株式会社 高純度酸化スカンジウムの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HEAD, E. L. ET AL.: "THE THERMAL DECOMPOSITION OF SCANDIUM FORMATE AND OXALATE", J. INORG. NUCL. CHEM., vol. 26, April 1964 (1964-04-01), pages 525 - 530, XP055540679, ISSN: 00221902 *
See also references of EP3744686A4
XIU, ZHIMENG ET AL.: "Nanocrystalline Scandia Powders Via Oxalate Precipitation: The Effects of Solvent and Solution pH", J. AM. CERAM. SOC., vol. 91, no. 2, 17 January 2008 (2008-01-17), pages 603 - 606, XP055628689, ISSN: 1551-2916 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708786A (zh) * 2020-12-15 2021-04-27 广东先导稀材股份有限公司 一种从铝钪合金靶材废料中回收钪的方法

Also Published As

Publication number Publication date
AU2019211653A1 (en) 2020-07-30
CA3088357C (en) 2021-03-30
CA3088357A1 (en) 2019-08-01
EP3744686A4 (en) 2021-11-03
JP2019127634A (ja) 2019-08-01
EP3744686A1 (en) 2020-12-02
PH12020551111A1 (en) 2021-05-31
AU2019211653B9 (en) 2021-05-20
CN111630001A (zh) 2020-09-04
US20210032119A1 (en) 2021-02-04
EP3744686B1 (en) 2023-01-04
CN111630001B (zh) 2021-10-01
JP6583445B2 (ja) 2019-10-02
US10968112B2 (en) 2021-04-06
AU2019211653B2 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2019146619A1 (ja) 高純度酸化スカンジウムの製造方法
JP5652503B2 (ja) スカンジウム回収方法
US9963762B2 (en) Scandium recovery method
JP6004023B2 (ja) スカンジウムの回収方法
JP6900677B2 (ja) 酸化スカンジウムの製造方法
CN107429320B (zh) 钪回收方法
JP6798078B2 (ja) イオン交換処理方法、スカンジウムの回収方法
WO2018043704A1 (ja) 高純度酸化スカンジウムの製造方法
WO2017104629A1 (ja) スカンジウムの回収方法
WO2018043183A1 (ja) スカンジウムの回収方法
WO2018043242A1 (ja) スカンジウム化合物の製造方法、スカンジウム化合物
WO2017130692A1 (ja) スカンジウムの回収方法
JP7347083B2 (ja) 高純度酸化スカンジウムの製造方法
WO2022014234A1 (ja) スカンジウムの回収方法
JP7347085B2 (ja) 高純度酸化スカンジウムの製造方法
JP7347084B2 (ja) 高純度酸化スカンジウムの製造方法
JP7380030B2 (ja) 高純度酸化スカンジウムの製造方法
JP7338179B2 (ja) 高純度酸化スカンジウムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3088357

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019211653

Country of ref document: AU

Date of ref document: 20190123

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019743119

Country of ref document: EP

Effective date: 20200825