WO2019146593A1 - エンジンの制御方法及びエンジンシステム - Google Patents

エンジンの制御方法及びエンジンシステム Download PDF

Info

Publication number
WO2019146593A1
WO2019146593A1 PCT/JP2019/001859 JP2019001859W WO2019146593A1 WO 2019146593 A1 WO2019146593 A1 WO 2019146593A1 JP 2019001859 W JP2019001859 W JP 2019001859W WO 2019146593 A1 WO2019146593 A1 WO 2019146593A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
air
engine
ignition
control
Prior art date
Application number
PCT/JP2019/001859
Other languages
English (en)
French (fr)
Inventor
真二 高山
剛豊 伊藤
道生 伊藤
健幸 氏原
大策 小川
大輔 梅津
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to US16/960,502 priority Critical patent/US11008930B2/en
Priority to DE112019000489.1T priority patent/DE112019000489T5/de
Publication of WO2019146593A1 publication Critical patent/WO2019146593A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/05Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means
    • F02P5/14Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using mechanical means dependent on specific conditions other than engine speed or engine fluid pressure, e.g. temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is an engine in which a part of an air-fuel mixture is subjected to SI combustion and the remaining part is subjected to CI combustion by self-ignition, and a control method of the engine capable of changing generated torque according to a steering angle Relates to an engine system to which
  • Premixed compression ignition combustion is known in which a mixture of air and gasoline fuel is burned by self-ignition in a sufficiently compressed cylinder.
  • partial compression ignition combustion that combines SI (Spark Ignition) combustion and CI (Compression Ignition) combustion instead of burning all the mixture by self-ignition (hereinafter, referred to as “spark ignition control compression ignition” "Combustion” is also proposed (see, for example, Patent Document 1). Spark ignition control In compression ignition combustion, a part of the mixture is forcibly burned by flame propagation (SI combustion) starting from spark ignition, and the unburned mixture in the remaining part is burned (CI combustion) by self-ignition.
  • SI combustion flame propagation
  • CI combustion Compression Ignition
  • driving support control that integrally controls acceleration (G) in the longitudinal direction and width direction of the vehicle by changing the generated torque according to the steering angle
  • vehicle attitude control In the vehicle attitude control, at the moment when the driver starts to turn the steering wheel, the generated torque of the engine is reduced to be smaller than the required torque, and load transfer to the front wheels is generated by the deceleration G thereof. As a result, the tire grip of the front wheel is increased and the cornering force is enhanced.
  • the above-described reduction of the engine torque is performed by retarding the ignition timing of the air-fuel mixture (ignition retard) by the ignition plug.
  • Spark Ignition Control In a vehicle equipped with an engine capable of compression ignition combustion, there is a demand to execute vehicle attitude control. However, in a state where spark ignition control compression ignition combustion is being performed, if reduction of engine torque by ignition retard is performed to execute vehicle attitude control, in-cylinder pressure is necessary for CI combustion in the latter half of combustion There is a concern that the pressure in the cylinder will not rise and a misfire may occur as a result.
  • An object of the present invention is to provide an engine control method capable of executing vehicle attitude control without affecting the combustion performance of spark ignition control compression ignition combustion, and an engine system to which the control method is applied. is there.
  • a control method of an engine is a method of controlling an engine mounted on a vehicle having steered wheels and mechanically connected to drive wheels of the vehicle, the engine including an ignition plug, the engine A first combustion mode in which all the mixture in the cylinder of the engine burns due to the propagation of the flame generated by the spark plug, and at least a portion of the mixture in the cylinder burns by self-ignition Setting step of selecting the combustion mode of the engine between the second combustion modes, and reducing torque setting step of setting the torque reduction amount for reducing the generated torque of the engine based on the steering angle of the steered wheels And, when the first combustion mode is selected in the combustion mode setting step, based on the torque reduction amount set in the reduction torque setting step.
  • An engine system is mounted on a vehicle having steered wheels and mechanically connected to drive wheels of the vehicle, and detects an operating state of the engine including an engine equipped with a spark plug.
  • An engine system having a driving condition sensor, a steering angle sensor for detecting a steering angle of the steered wheels, and a controller, wherein the controller is based on a detection result of the driving condition sensor.
  • first combustion mode in which all the mixture in the cylinder burns by propagation of the flame generated by the spark plug
  • second combustion mode in which at least a part of the mixture in the cylinder burns by self-ignition
  • the combustion mode of the engine is selected, and based on the detection result of the steering angle sensor, the torque reduction amount for reducing the generated torque of the engine is set, and the combustion mode setting process
  • retard control is performed to control the spark plug so that the ignition timing is retarded based on the torque reduction amount set in the reduction torque setting step.
  • the second combustion mode is selected in the combustion mode setting step, the control to suppress the degree of the retard control is executed based on the torque reduction amount set in the reduction torque setting step. It is done.
  • the torque reduction amount is set based on the steering angle of the steered wheels. This corresponds to the execution of vehicle attitude control.
  • the first combustion mode corresponds to SI combustion
  • the second combustion mode corresponds to spark ignition controlled compression ignition combustion.
  • retard control is executed to reduce the generated torque of the engine by the set torque reduction amount by retarding the ignition timing (torque reduction step) . This is a torque reduction due to the ignition retard.
  • retard suppression control is performed to suppress the degree of the retard control (suppression step). That is, at the time of spark-ignition control compression-ignition combustion, the vehicle attitude control is executed by changing it to a suppressed ignition retard instead of the normal ignition retard. For this reason, the start timing of the SI combustion in the spark ignition control compression ignition combustion is not retarded in the retard suppression control as compared with the normal retard control. Therefore, the in-cylinder temperature and pressure are sufficiently raised by the heat generated by the SI combustion, and the CI combustion in the second half of the combustion can be favorably generated without causing a misfire.
  • the first air-fuel mixture is made leaner than the stoichiometric air-fuel ratio based on the operating state of the engine.
  • the first air-fuel mixture is made leaner than the stoichiometric air-fuel ratio based on the operating state of the engine.
  • the possibility of misfire is relatively high even if the above-mentioned retard control is performed, as the possibility of misfire increases when the air-fuel mixture is lean. Becomes lower.
  • normal retard control is used instead of the retard suppression control. Torque reduction is employed. Therefore, the area in which the vehicle attitude control is performed can be limited by control different from the original control of retard suppression control, and control for the vehicle attitude control can be simplified.
  • the retard suppression control may be configured to prohibit retardation of the ignition timing of the spark plug. In this way, the ignition retard is completely avoided, and the risk of misfire can be eliminated.
  • the reduction of the generated torque of the engine for the vehicle attitude control is replaced by the other control, for example, a control for reducing the amount of fuel supplied into the cylinder.
  • the retard suppression control may limit the degree of retardation of the ignition timing of the spark plug.
  • the possibility of misfire can be suppressed by reducing the degree of ignition retardation as compared to normal retard control.
  • an engine control method capable of performing vehicle attitude control without affecting the combustion performance of spark ignition control compression ignition combustion, in particular without causing a misfire, and the control method are applied Engine system can be provided.
  • FIG. 1 is a schematic view of a vehicle to which an engine control method and an engine system according to the present invention are applied.
  • FIG. 2 is a system diagram showing an entire configuration of a compression ignition engine to which the present invention is applied.
  • FIG. 3 is a block diagram showing a control system of the compression ignition engine.
  • FIG. 4 is an operation map for explaining the difference in combustion control according to the engine speed and load.
  • FIG. 5 is a time chart for schematically describing the combustion control performed in each region of the operation map of FIG. 4.
  • FIG. 6 is a graph showing the heat release rate at the time of execution of spark ignition controlled compression ignition combustion.
  • FIG. 7 is a time chart schematically showing a control mode in the vehicle attitude control.
  • FIG. 8 is a flow chart showing a specific control example of the vehicle attitude control.
  • FIG. 9 is a graph showing the relationship between the steering speed and the target addition deceleration.
  • FIGS. 10A and 10B are flowcharts schematically showing an engine control method according to the present invention.
  • FIG. 11 is a flowchart showing the basic operation of the engine control method according to the embodiment of the present invention.
  • FIG. 12 is a flowchart showing details of the engine control process.
  • FIG. 13 is a flowchart showing details of the engine control process.
  • FIG. 14 is a flowchart showing details of the engine control process.
  • FIG. 15 is a flowchart showing details of the engine control process.
  • FIG. 16 is a tabular diagram showing the relationship between the operation mode and the total fuel injection amount and the ignition timing.
  • FIG. 18 is a tabular diagram showing a modification of the retard suppression control.
  • the vehicle 100 is an FF drive vehicle, and includes an engine body 1 as a drive source.
  • the engine body 1 is an in-line four-cylinder gasoline engine having four cylinders 2 and capable of SI combustion and spark ignition control compression ignition combustion.
  • Vehicle 100 includes a vehicle body 101 on which engine body 1 is mounted, a front wheel 102 as a driving wheel and a steering wheel, and a rear wheel 103 as a driven wheel.
  • the driving force generated by the engine body 1 is transmitted to the front wheels 102 via the transmission 104.
  • the vehicle 100 is provided with a steering 105 for steering the front wheel 102 and a power steering device 106 for assisting the operation of the steering 105.
  • the vehicle 100 is provided with an accelerator 107 operated by a driver to adjust the opening degree of a throttle valve 32 described later.
  • the vehicle 100 is equipped with an ECU 60 (controller) that electronically controls the engine body 1.
  • the ECU 60 can execute vehicle attitude control when the driver operates the steering 105.
  • the generated torque of the engine body 1 is reduced more than the required torque determined by the opening degree of the accelerator 107 etc. generate. Thereby, the tire grip of the front wheel 102 is increased, and the cornering force is enhanced.
  • the vehicle attitude control and the above-described spark ignition control compression ignition combustion will be described in detail later.
  • FIG. 2 is a diagram showing an overall configuration of an engine system according to the present embodiment.
  • the engine system includes an engine body 1 consisting of a 4-cycle gasoline direct injection engine, an intake passage 30 through which intake air introduced into the engine body 1 flows, and an exhaust passage 40 through which exhaust gas discharged from the engine body 1 flows And an EGR device 50 for recirculating part of the exhaust gas flowing through the exhaust passage 40 to the intake passage 30.
  • Engine body 1 is used as a drive source of vehicle 100.
  • the engine main body 1 is an engine driven by receiving supply of fuel containing gasoline as a main component.
  • the fuel may be gasoline including bioethanol and the like.
  • the engine body 1 includes a cylinder block 3, a cylinder head 4 and a piston 5.
  • the cylinder block 3 has a cylinder liner that forms the four cylinders described above.
  • the cylinder head 4 is attached to the upper surface of the cylinder block 3 and closes the upper opening of the cylinder 2.
  • the pistons 5 are slidably accommodated in the respective cylinders 2 and are connected to the crankshaft 7 via the connecting rods 8. In response to the reciprocating motion of the piston 5, the crankshaft 7 rotates about its central axis.
  • a combustion chamber 6 is formed above the piston 5.
  • the fuel is supplied to the combustion chamber 6 by injection from an injector 15 described later. Then, the mixture of the supplied fuel and air is burned in the combustion chamber 6, and the piston 5 pushed down by the expansion force by the combustion reciprocates in the vertical direction.
  • the geometric compression ratio of the cylinder 2 that is, the ratio of the volume of the combustion chamber 6 when the piston 5 is at the top dead center to the volume of the combustion chamber 6 when the piston 5 is at the bottom dead center is spark ignition described later
  • the compression ratio is set to a high compression ratio of 13 or more and 30 or less (for example, about 20) so as to be suitable for controlled compression ignition combustion.
  • a crank angle sensor SN1 and a water temperature sensor SN2 are attached to the cylinder block 3.
  • the crank angle sensor SN1 detects the rotational angle (crank angle) of the crankshaft 7 and the rotational speed of the crankshaft 7 (engine rotational speed).
  • the water temperature sensor SN2 detects the temperature (engine water temperature) of the cooling water flowing through the cylinder block 3 and the inside of the cylinder head 4.
  • An intake port 9 and an exhaust port 10 communicating with the combustion chamber 6 are formed in the cylinder head 4.
  • the bottom surface of the cylinder head 4 is a ceiling surface of the combustion chamber 6.
  • An intake side opening which is a downstream end of the intake port 9 and an exhaust side opening which is an upstream end of the exhaust port 10 are formed in the combustion chamber ceiling surface.
  • the cylinder head 4 is assembled with an intake valve 11 for opening and closing the intake side opening and an exhaust valve 12 for opening and closing the exhaust side opening.
  • the valve type of the engine main body 1 is a four-valve type of two intake valves ⁇ two exhaust valves, and two intake ports 9 and two exhaust ports 10 are provided for each cylinder 2.
  • two intake valves 11 and two exhaust valves 12 are also provided.
  • the cylinder head 4 is provided with an intake side valve operating mechanism 13 including a camshaft and an exhaust side valve operating mechanism 14.
  • the intake valve 11 and the exhaust valve 12 are opened and closed by these valve operating mechanisms 13 and 14 in conjunction with the rotation of the crankshaft 7.
  • the intake-side valve operating mechanism 13 incorporates an intake VVT 13 a capable of changing at least the opening timing of the intake valve 11.
  • the exhaust side valve mechanism 14 incorporates an exhaust VVT 14 a capable of changing at least the closing timing of the exhaust valve 12.
  • An injector 15 fuel injection valve
  • a spark plug 16 are further attached to the cylinder head 4.
  • the injector 15 injects (provides) fuel into the cylinder 2 (combustion chamber 6).
  • the injector 15 is disposed such that its tip is exposed in the combustion chamber 6 and is opposed to the radial center of the crown surface of the piston 5.
  • the spark plug 16 is disposed at a position slightly offset to the intake side with respect to the injector 15, and is disposed at a position where its tip (electrode portion) faces the cylinder 2.
  • the spark plug 16 is a forced ignition source for igniting a mixture of fuel and air formed in the cylinder 2 (combustion chamber 6).
  • An in-cylinder pressure sensor SN3, an intake cam angle sensor SN12 and an exhaust cam angle sensor SN13 are disposed in the cylinder head 4 as sensing elements.
  • the in-cylinder pressure sensor SN3 detects the pressure in the combustion chamber 6.
  • the intake cam angle sensor SN12 detects the rotational position of the camshaft of the intake valve operating mechanism 13, and the exhaust cam angle sensor SN13 detects the rotational position of the camshaft of the exhaust valve operating mechanism 14.
  • the intake passage 30 is connected to one side surface of the cylinder head 4 so as to communicate with the intake port 9.
  • Air (fresh air) taken in from the upstream end of the intake passage 30 is introduced into the combustion chamber 6 through the intake passage 30 and the intake port 9.
  • an air cleaner 31, a throttle valve 32, a supercharger 33, an electromagnetic clutch 34, an intercooler 35, and a surge tank 36 are disposed in this order from the upstream side.
  • the air cleaner 31 removes foreign substances in the intake air to clean the intake air.
  • the throttle valve 32 opens and closes the intake passage 30 in conjunction with the step-in operation of the accelerator 107 to adjust the flow rate of intake air in the intake passage 30.
  • the supercharger 33 delivers the intake air downstream of the intake passage 30 while compressing the intake air.
  • the supercharger 33 is a supercharger mechanically linked to the engine body 1, and switching between engagement and disengagement with the engine body 1 is made by the electromagnetic clutch 34. When the electromagnetic clutch 34 is engaged, the driving force is transmitted from the engine body 1 to the supercharger 33, and supercharging by the supercharger 33 is performed.
  • the intercooler 35 cools the intake air compressed by the supercharger 33.
  • the surge tank 36 is a tank which is disposed immediately upstream of the unillustrated intake manifold and provides a space for evenly distributing the intake air to the plurality of cylinders 2.
  • Each part of the intake passage 30 includes an airflow sensor SN4 for detecting the flow rate of intake air, first and second intake air temperature sensors SN5 and SN7 for detecting the temperature of intake air, and first and second intake air for detecting the pressure of intake air.
  • Barometric pressure sensors SN6 and SN8 are provided.
  • the air flow sensor SN4 and the first intake air temperature sensor SN5 are disposed in a portion of the intake passage 30 between the air cleaner 31 and the throttle valve 32, and detect the flow rate and temperature of intake air passing through the portion.
  • the first intake pressure sensor SN6 is provided in a portion between the throttle valve 32 and the supercharger 33 in the intake passage 30 (downstream from the connection port of the EGR passage 51 described later), and the intake air passing through the portion Detect pressure.
  • the second intake air temperature sensor SN7 is provided in a portion of the intake passage 30 between the supercharger 33 and the intercooler 35, and detects the temperature of intake air passing through the portion.
  • the second intake pressure sensor SN8 is provided in the surge tank 36 and detects the pressure of intake air in the surge tank 36.
  • the intake passage 30 is provided with a bypass passage 38 for bypassing the turbocharger 33 and sending the intake air to the combustion chamber 6.
  • the bypass passage 38 connects the surge tank 36 and the vicinity of the downstream end of the EGR passage 51 described later.
  • the bypass passage 38 is provided with a bypass valve 39 capable of opening and closing the bypass passage 38.
  • the exhaust passage 40 is connected to the other side surface of the cylinder head 4 so as to communicate with the exhaust port 10.
  • the burned gas (exhaust gas) generated in the combustion chamber 6 is discharged to the outside of the vehicle 100 through the exhaust port 10 and the exhaust passage 40.
  • a catalytic converter 41 is provided in the exhaust passage 40.
  • a GPF (gasoline particulate filter) 41 b for collecting the particulate matter.
  • the EGR device 50 includes an EGR passage 51 connecting the exhaust passage 40 and the intake passage 30, and an EGR cooler 52 and an EGR valve 53 provided in the EGR passage 51.
  • the EGR passage 51 connects a portion of the exhaust passage 40 downstream of the catalytic converter 41 and a portion of the intake passage 30 between the throttle valve 32 and the supercharger 33.
  • the EGR cooler 52 cools the exhaust gas (external EGR gas) returned to the intake passage 30 from the exhaust passage 40 through the EGR passage 51 by heat exchange.
  • the EGR valve 53 is provided on the EGR passage 51 downstream of the EGR cooler 52 so as to be able to open and close, and adjusts the flow rate of the exhaust gas flowing through the EGR passage 51.
  • the EGR passage 51 is provided with a differential pressure sensor SN9 for detecting the difference between the pressure on the upstream side of the EGR valve 53 and the pressure on the downstream side.
  • An accelerator opening sensor SN10 (one of driving condition sensors) for detecting the accelerator opening is attached to the accelerator 107.
  • the accelerator opening degree sensor SN10 is a sensor that detects the degree of depression of the accelerator 107, and is also a sensor that detects acceleration or deceleration of the driver.
  • a steering angle sensor SN11 (steering angle sensor) is attached to the steering 105. The steering angle sensor SN11 detects the steering angle of the front wheel 102 by the steering 105. Note that another steering angle sensor capable of detecting the steering angle of the front wheel 102 may be applied.
  • FIG. 3 is a block diagram showing a control configuration of the engine system.
  • the engine system of the present embodiment is generally controlled by an ECU (engine control module) 60.
  • the ECU 60 is a microprocessor configured of a CPU, a ROM, a RAM, and the like.
  • the ECU 60 includes the crank angle sensor SN1, the water temperature sensor SN2, the in-cylinder pressure sensor SN3, the air flow sensor SN4, the first and second intake temperature sensors SN5 and SN7, and the first and second intake pressure sensors SN6 and SN8, and a differential pressure sensor. It is electrically connected to SN9, an accelerator opening sensor SN10, a steering angle sensor SN11, an intake cam angle sensor SN12, and an exhaust cam angle sensor SN13.
  • Information detected by these sensors SN1 to SN13 that is, crank angle, engine rotation speed, engine water temperature, in-cylinder pressure, intake flow rate, intake temperature, intake pressure, differential pressure across EGR valve 53, accelerator opening degree, steering Information such as the angle, intake and exhaust cam angles, etc. is sequentially input to the ECU 60.
  • the ECU 60 controls each part of the engine while executing various determinations and calculations based on input signals from the sensors SN1 to SN13 and the like. That is, the ECU 60 is electrically connected to the intake VVT 13a, the exhaust VVT 14a, the injector 15, the spark plug 16, the throttle valve 32, the electromagnetic clutch 34, the bypass valve 39, the EGR valve 53, etc. The control signal is output to each of these devices.
  • the ECU 60 functionally includes a combustion control unit 61, a vehicle attitude control unit 62, and a determination unit 63.
  • the combustion control unit 61 controls the fuel injection operation by the injector 15 and the ignition operation of the spark plug 16.
  • the combustion control unit 61 detects the engine rotational speed detected by the crank angle sensor SN1, the engine load (required torque) specified by the opening degree of the accelerator 107 detected by the accelerator opening degree sensor SN10, and the air flow sensor SN4. Based on the detected intake air flow rate, the injection amount and injection timing of fuel from the injector 15 and the ignition timing of the spark plug 16 are determined, and the injector 15 and the spark plug 16 are driven according to the determination.
  • the combustion control unit 61 refers to a predetermined operation map (an example is shown in FIG. 4), and selects the combustion mode.
  • the combustion mode includes a combustion mode (spark ignition control compression ignition combustion) in which the injector 15 and the spark plug 16 are driven such that the mixture in the cylinder 2 self-ignites at a predetermined timing.
  • the vehicle attitude control unit 62 executes a vehicle attitude control that changes the generated torque of the engine body 1 according to the steering angle of the front wheel 102 by the steering 105.
  • the vehicle attitude control unit 62 determines that the vehicle 100 is traveling (cornering) when the steering angle increases by a predetermined amount within a predetermined time, for example, with reference to the detection value of the steering angle sensor SN11, and generates torque Control to lower the
  • retard control torque reduction step
  • the vehicle attitude control unit 62 performs control so that the ignition timing is retarded or the fuel injection amount is decreased as the torque reduction amount by the vehicle attitude control is larger.
  • the determination unit 63 determines whether or not the combustion may not be stabilized in the combustion chamber 6 or may be unstable (a combustion unstable state).
  • the combustion control including the spark ignition control compression ignition combustion by the combustion control unit 61 and the vehicle attitude control by the vehicle attitude control unit 62 are performed in a superimposed manner.
  • the above-mentioned combustion instability can be induced when both controls are executed in a superimposed manner under certain conditions.
  • the determination unit 63 further performs control to change the control mode of the combustion control or the vehicle attitude control, when it is determined that the above-described combustion unstable state can be reached.
  • FIG. 4 is a simple operation map for illustrating the difference in combustion control according to the engine speed and load.
  • the operation map shows four operation areas; a first area A1, a second area A2, a third area A3 and a fourth area A4.
  • the first area A1 is a low load area (including no load) with low engine load in the low and medium engine speed areas and a medium load and high load area with high engine speed area.
  • the second area A2 is an area (low speed / medium speed / medium load area) in which the load is higher than the first area A1 in the low speed / medium speed area.
  • the third area A3 is an area (low speed, medium speed / high load area) in which the load is higher than that of the second area A2 in the low speed / medium speed area.
  • the fourth area A4 is an area near the full open line in the low speed area.
  • SI combustion first combustion mode
  • the mixture in the combustion chamber 6 is ignited by spark ignition using the spark plug 16, and the mixture is forcedly burned by flame propagation which spreads the combustion area from the ignition point to the periphery. It is a form. That is, all of the air-fuel mixture in the cylinder 2 is a combustion mode in which combustion occurs by propagation of the flame generated by the spark plug 16.
  • spark ignition controlled compression ignition combustion is performed in the second area A2 and the third area A3.
  • Spark-ignition controlled compression-ignition combustion is a mixture of the above-described SI combustion and CI combustion.
  • CI combustion is a form of combustion in which the mixture is burned by self-ignition in an environment heated and pressurized by the compression of the piston 5.
  • Spark-ignition controlled compression-ignition combustion causes part of the mixture in the combustion chamber 6 to be SI-burned by spark ignition performed under an environment close to self-ignition of the mixture, and after the SI combustion (additional to SI combustion In this combustion mode, the remaining air-fuel mixture in the combustion chamber 6 is burned by self-ignition by high temperature and high pressure. That is, at least a part of the air-fuel mixture in the cylinder 2 is a combustion mode in which combustion is performed by self-ignition.
  • the air-fuel ratio (A / F) which is the weight ratio of air (fresh air) in the combustion chamber 6 to fuel, is a value larger than the theoretical air-fuel ratio (14.7)
  • spark ignition control compression ignition combustion is performed while setting to.
  • the air-fuel ratio A / F of the air-fuel mixture formed in the first air-fuel ratio mode is set in the range of about 25 to 30/1.
  • one of the first air fuel ratio mode ( ⁇ > 1) and the second air fuel ratio mode ( ⁇ ⁇ 1) is selected based on the operating state of the engine (air fuel ratio Mode setting process).
  • FIG. 5 is a time chart for schematically explaining the combustion control performed in each of the regions A1 to A4 of the operation map of FIG.
  • the chart (a) of FIG. 5 shows the fuel injection timing, the ignition timing and the aspect of the combustion (wave form of heat generation rate) when the engine is operated at the operation point P1 included in the second region A2 shown in FIG. Is shown.
  • the combustion in the first air-fuel ratio mode ( ⁇ > 1) is performed.
  • the combustion control to be performed by the combustion control unit 61 at the operation point P1 is as follows. As shown in the chart (a), the injector 15 injects the fuel in two divided fuel injections (first time) and fuel injection (second time) from the middle to the late stage of the compression stroke.
  • the spark plug 16 ignites the air-fuel mixture at a timing slightly advanced on the side near the compression top dead center. Spark ignition control compression ignition combustion is started triggered by this ignition, a part of the mixture in the combustion chamber 6 is burned by flame propagation (SI combustion), and thereafter the remaining mixture is burned by auto-ignition (CI combustion) ).
  • SI combustion flame propagation
  • CI combustion auto-ignition
  • FIG. 6 is a graph showing the heat release rate at the time of execution of spark ignition controlled compression ignition combustion.
  • Spark-ignition controlled compression-ignition combustion has the property that heat generation is sharper when CI combustion is developed than when SI combustion is developed. That is, as shown in FIG. 6, the slope of the rising edge at the initial stage of combustion corresponding to the SI combustion is smaller than the slope of the rising edge corresponding to the subsequent CI combustion.
  • the temperature and pressure in the combustion chamber 6 increase due to the SI combustion, the unburned mixture is self-ignited accordingly, and the CI combustion is started. At the timing when this CI combustion starts (inflection point X in FIG.
  • the spark ignition control compression ignition combustion With the end of the CI combustion, the spark ignition control compression ignition combustion also ends. Since the CI combustion has a higher combustion rate than SI combustion, the combustion end timing can be advanced compared to simple SI combustion (when all fuels are subjected to SI combustion). In other words, in the spark ignition controlled compression ignition combustion, the combustion end timing can be brought close to the compression top dead center in the expansion stroke. As a result, in the spark ignition controlled compression ignition combustion, the fuel consumption performance can be improved as compared with the simple SI combustion.
  • the chart (b) shows that the engine is operated at the operation point P2 included in the third area A3 shown in FIG. 4 (a point in the area where the load is relatively low in the third area A3).
  • the aspect of the combustion control by the combustion control part 61 is shown.
  • the combustion control unit 61 causes the injector 15 to execute the first fuel injection for injecting a relatively large amount of fuel during the intake stroke, and then inject a smaller amount of fuel than the first fuel injection.
  • the second fuel injection is performed during the compression stroke.
  • the combustion control unit 61 causes the spark plug 16 to ignite the air-fuel mixture at a timing slightly more advanced than the compression top dead center. The point at which spark ignition control compression ignition combustion is started triggered by this ignition is the same as the above operation point P1.
  • the chart (c) in FIG. 5 shows that the combustion control unit 61 is operating when the engine is operated at the operation point P3 (point in the region where the load is relatively high in the third region A3) included in the third region A3.
  • the aspect of combustion control is shown.
  • spark-ignition controlled compression-ignition is performed in the spark-ignition controlled compression-ignition combustion in which the air-fuel ratio in the combustion chamber 6 is slightly richer than the theoretical air-fuel ratio ( ⁇ ⁇ 1). Control to burn is performed.
  • the combustion control unit 61 causes the injector 15 to inject all or most of the fuel to be injected in one cycle during the intake stroke. For example, as shown in chart (c), fuel is injected over a series of periods from the second half of the intake stroke to the beginning of the compression stroke. Further, the combustion control unit 61 causes the ignition plug 16 to ignite the air-fuel mixture at a timing slightly delayed on the side near the compression top dead center. The point at which spark ignition control compression ignition combustion is started triggered by this ignition is the same as the above operation points P1 and P2.
  • the chart (d) in FIG. 5 shows an aspect of the combustion control by the combustion control unit 61 when the engine is operated at the operation point P4 included in the fourth region A4 with low rotation and high load.
  • SI combustion retardded-SI
  • the combustion control unit 61 causes the injector 15 to execute the first fuel injection for injecting a relatively large amount of fuel during the intake stroke, and subsequently, a smaller amount of fuel than the first fuel injection.
  • the second fuel injection to be injected is performed late in the compression stroke (immediately before compression top dead center).
  • the combustion control unit 61 causes the spark plug 16 to execute retarded ignition.
  • the ignition timing for the mixture is, for example, relatively late after approximately 5 to 20 ° CA from the compression top dead center. SI combustion is triggered by this ignition, and all the mixture in the combustion chamber 6 burns by flame propagation. The reason why the ignition timing in the fourth region A4 is retarded as described above is to prevent abnormal combustion such as knocking or preignition.
  • the chart (e) of FIG. 5 shows an aspect of the combustion control by the combustion control unit 61 when the engine is operated at the operation point P5 included in the high load / high speed region in the first region A1.
  • the ortho SI combustion intake_SI is executed instead of the spark ignition control compression ignition combustion.
  • the combustion control unit 61 causes the injector 15 to inject the fuel over a series of periods from the intake stroke to the compression stroke. Since the operating point P5 is a high load and high revolution condition, the amount of fuel to be injected in one cycle is originally large, and the crank angle period required to inject the required amount of fuel is prolonged . In the middle and low load regions in the first region A1, the fuel injection amount is smaller than in the chart (e). Further, the combustion control unit 61 causes the spark plug 16 to ignite the air-fuel mixture at a timing slightly more advanced than the compression top dead center. SI combustion is triggered by this ignition, and all the mixture in the combustion chamber 6 burns by flame propagation.
  • FIG. 7 is a time chart schematically showing a control mode of the vehicle attitude control according to the present embodiment.
  • FIG. 7 shows the relationship between the steering angle of the front wheel 102 by the steering 105, the deceleration of the vehicle 100 by the vehicle posture control, and the generated torque for realizing the deceleration.
  • the vehicle attitude control unit 62 Declare the deceleration gradually.
  • the torque generated by the engine body 1 is reduced by retard control of the ignition timing of the spark plug 16 or reduction control of the fuel supplied into the cylinder 2, thereby reducing the driving force of the vehicle 100. Let the speed increase.
  • vehicle attitude control unit 62 is a requested engine torque during normal operation, and is based on the vehicle speed detected by crank angle sensor SN1 and the opening degree of accelerator 107 detected by accelerator opening degree sensor SN10.
  • the engine torque is reduced with respect to the target basic engine torque that is determined. Further, when the steering speed becomes less than a predetermined value, the vehicle attitude control unit 62 gradually reduces the deceleration. In this way, the cornering force of the front wheel 102 can be increased at the time of cornering, and the vehicle 100 can be smoothly turned.
  • the vehicle attitude control is referred to as “additional deceleration setting process” in the sense that deceleration is added by reducing the torque with respect to the target basic engine torque.
  • the vehicle attitude control unit 62 determines whether the absolute value of the steering angle acquired from the detection result of the steering angle sensor SN11 is increasing (step # 1). If the absolute value of the steering angle is increasing (YES in step # 1), the vehicle attitude control unit 62 calculates the steering speed from the acquired steering angle (step # 2).
  • the vehicle attitude control unit 62 determines whether the absolute value of the steering speed obtained in step # 2 is decreasing (step # 3). If the absolute value of the steering speed has not decreased (YES in step # 3), that is, if the absolute value of the steering speed has increased or if the absolute value of the steering speed has not changed, the vehicle attitude control unit 62 Sets the target additional deceleration based on the steering speed (step # 4).
  • the target additional deceleration is a deceleration to be added to the vehicle 100 according to the operation of the steering 105 intended by the driver.
  • the vehicle attitude control unit 62 sets the target additional deceleration corresponding to the steering speed calculated in step # 2 based on the relationship between the target additional deceleration and the steering speed shown in the map of FIG. get. Referring to FIG. 9, when the steering speed is equal to or less than a predetermined threshold Ts, the corresponding target additional deceleration is zero. That is, when the steering speed is equal to or less than the threshold value Ts, the vehicle attitude control unit 62 performs control to reduce the engine torque to add deceleration to the vehicle 100 even if the steering operation is performed. Do not execute control).
  • the target additional deceleration corresponding to the steering speed asymptotically approaches a predetermined upper limit Dmax (for example, 1 m / s 2 ). That is, the target additional deceleration increases as the steering speed increases, and the increase rate of the increase decreases.
  • the vehicle attitude control unit 62 determines the maximum increase rate Rmax, which is the threshold value of the additional deceleration when adding the deceleration to the vehicle 100 in the present process. Then, the vehicle attitude control unit 62 determines the additional deceleration in the current process within the range in which the increase rate of the additional deceleration is equal to or less than the maximum increase rate Rmax (step # 5).
  • the vehicle attitude control unit 62 determines that the rate of increase from the additional deceleration determined in the previous process to the target additional deceleration set in step # 4 of the current process is equal to or less than the maximum increase rate Rmax. In this case, the target additional deceleration determined in step # 4 is determined as the additional deceleration in the current process. On the other hand, when the rate of increase from the previous additional deceleration to the target additional deceleration determined in step # 4 of the current process is larger than Rmax, vehicle attitude control unit 62 increases the rate of additional deceleration determined previously. The value increased by is determined as the additional deceleration in the current process.
  • step # 3 when the absolute value of the steering speed is decreasing (YES in step # 3), the vehicle attitude control unit 62 sets the additional deceleration determined in the previous process as the additional deceleration in the current process. Make a decision (step # 6). That is, when the absolute value of the steering speed is decreasing, the additional deceleration (maximum value of the additional deceleration) at the maximum steering speed is maintained.
  • step # 7 Deceleration reduction amount is set (step # 7).
  • the amount of deceleration reduction is calculated based on a constant reduction rate (for example, 0.3 m / s 3 ) stored in advance in a memory or the like included in the ECU 60.
  • the amount of deceleration reduction is calculated based on the driving state of the vehicle 100 obtained from various sensors, the reduction rate determined according to the steering speed calculated in step # 2, or the like.
  • the vehicle attitude control unit 62 subtracts the amount of deceleration reduction set in step # 7 from the additional deceleration determined in the previous process to determine the additional deceleration in the current process (step # 8). .
  • the vehicle attitude control unit 62 determines the torque reduction amount based on the current additional deceleration determined in step # 5, # 6 or # 8 (step # 9: reduction torque setting step). Specifically, the vehicle attitude control unit 62 determines a torque reduction amount required to realize the current additional deceleration based on the current vehicle speed, gear position, road surface gradient, and the like. Then, the vehicle attitude control unit 62 performs retard control of the ignition timing of the spark plug 16 or into the cylinder 2 via the combustion control unit 61 so as to reduce the engine torque by an amount corresponding to the determined torque reduction amount. It is intended to execute a control for reducing the amount of fuel supplied.
  • Spark-ignition control compression-ignition combustion is performed, which is self-igniting at a certain time.
  • SI combustion or spark ignition control compression ignition combustion is selected according to the operating state of the engine (combustion mode setting step).
  • the vehicle attitude control unit 62 executes vehicle attitude control (see FIG. 8). Further, the combustion control unit 61 controls the fuel injection timing of the injector 15 and the drive (ignition) timing of the spark plug 16 so that spark ignition control compression ignition combustion is realized when it is determined that the second condition is satisfied. See Figure 5).
  • the first air-fuel ratio mode ( ⁇ > 1) in which the air-fuel mixture is formed leaner than the stoichiometric air-fuel ratio and the air-fuel mixture is formed richer than the stoichiometric air-fuel ratio or stoichiometric air fuel Mode switching is performed between the second air-fuel ratio mode (.lambda..ltoreq.1) (see charts (b) and (c) in FIG. 5).
  • the vehicle attitude control and the spark ignition control compression ignition combustion are performed in a superimposed manner. That is, in a state where spark ignition control compression ignition combustion is being performed, reduction of engine torque may be performed to execute vehicle attitude control.
  • the simplest method for reducing the torque is to retard the ignition timing of the spark plug 16 (ignition retard).
  • ignition retard the ignition retard is performed to execute the vehicle attitude control. That is, when the start timing of SI combustion in the spark ignition control compression ignition combustion is retarded by the ignition retard, the in-cylinder pressure in the combustion chamber 6 may not increase to the in-cylinder pressure necessary for CI combustion in the second half of combustion. obtain. In this case, a state in which the combustion is not stabilized in the combustion chamber 6 or a state in which there is a risk of misfire (combustion unstable state) may occur.
  • the determination unit 63 determines whether or not the operating state can lead to the above-described unstable combustion state. Specifically, it is determined whether the first condition and the second condition are satisfied at the same time.
  • the engine torque reduction method for executing the vehicle attitude control is retard control (torque reduction performed when the first condition is satisfied).
  • the generated torque of the engine is reduced not by the process but by retard suppression control (suppression process) which suppresses the degree of the retard control. That is, at the time of spark-ignition control compression-ignition combustion, the vehicle attitude control is executed by changing it to a suppressed ignition retard instead of the normal ignition retard.
  • FIGS. 10 (A) and 10 (B) The switching control of the above-mentioned torque reduction means by the determination unit 63 will be described with reference to the flowcharts shown in FIGS. 10 (A) and 10 (B).
  • FIG. 10A In the control example of FIG. 10A, whether spark-ignition controlled compression-ignition combustion is being performed or not, that is, whether the engine is operated in the second region A2 or the third region A3 of the operation map of FIG. Accordingly, an example of switching the method of reducing the engine torque for executing the vehicle attitude control is shown.
  • the retard suppression control is performed in the above aspect (1).
  • the ECU 60 (FIG. 3) reads various sensor signals related to the driving state of the vehicle 100 (step # 11). Specifically, the ECU 60 detects the vehicle speed obtained from the detection value of the crank angle sensor SN1, the opening degree of the accelerator 107 detected by the accelerator opening degree sensor SN10, the steering angle of the steering 105 detected by the steering angle sensor SN11, and the vehicle 100 Various types of information are acquired, including the gear stages currently set in the transmission of.
  • determination unit 63 determines whether or not there is a request for additional deceleration, that is, whether or not there is a request for torque reduction for execution of vehicle attitude control (whether or not the first condition is satisfied) ) Is determined (step # 12). If the increase amount of the steering angle exceeds the reference increase amount, the vehicle attitude control unit 62 issues a request for additional deceleration (YES in step # 12). In this case, the determination unit 63 further determines whether the combustion control unit 61 is executing spark ignition control compression ignition combustion (whether or not the second condition is satisfied) (step # 13). If there is no request for additional deceleration (NO in step # 12), determination unit 63 ends the process (return to step # 11).
  • determination unit 63 controls retard control (ignition control unit 62) to control spark plug 16 so that the ignition timing is retarded (ignition control (ignition)
  • ignition control ignition
  • the reduction control for reducing the fuel injection amount of the injector 15 is set to perform the torque reduction for the vehicle attitude control (step # 14). That is, when the first condition and the second condition are satisfied, the determination unit 63 executes retard suppression control to suppress at least the degree of retard control of the ignition timing (suppression step).
  • step # 13 when the spark ignition control compression ignition combustion is not performed (NO in step # 13), that is, when the engine is operated in the first area A1 or the fourth area A4 of the operation map of FIG.
  • the section 63 is set to perform torque reduction for vehicle attitude control under ignition retard control for retarding the ignition timing of the air-fuel mixture by the spark plug 16 (step # 15). That is, when the first condition is satisfied while the second condition is not satisfied, the determination unit 63 retards the drive timing of the spark plug 16 to reduce the generated torque of the engine body 1 (torque reduction Process). The larger the amount of reduction in torque, the larger the degree of retardation of the ignition timing.
  • step # 14 or # 15 the determination unit 63 ends the process (return to step # 11).
  • the determination unit 63 determines that the first condition and the second condition are satisfied, it is not the retard control that is performed when the first condition is satisfied, but the control is performed.
  • the generated torque of the engine is reduced by retard suppression control (prohibition of ignition retardation) which suppresses the degree of retardation control. That is, at the time of spark ignition control compression ignition combustion, the vehicle attitude control by the ignition retard is prohibited, and is executed by another torque reduction method, for example, fuel reduction control. For this reason, the start timing of the SI combustion in the spark ignition control compression ignition combustion is not retarded in the retard suppression control as compared with the normal retard control.
  • the in-cylinder temperature and pressure are sufficiently raised by the heat generated by the SI combustion, and the CI combustion in the second half of the combustion can be favorably generated without causing a misfire.
  • SI combustion is performed instead of spark ignition controlled compression ignition combustion, the problem of misfire does not substantially occur. In such a case, control can be simplified because vehicle attitude control is performed by the ignition retard.
  • the engine torque reduction method for executing the vehicle attitude control depending on whether or not the engine is operated in the second region A2 of the operation map of FIG. 4. is there.
  • step # 21 and # 22 are the same as those of steps # 11 and # 12 described above, and thus the description thereof is omitted.
  • determination unit 63 determines that the combustion control unit 61 performs spark ignition control compression in the first air-fuel ratio mode ( ⁇ > 1). It is determined whether the ignition combustion is being performed (whether the second condition is satisfied and the first mode is being performed) (step # 23).
  • step # 23 determination unit 63 prohibits torque reduction by retard control (ignition retard) in vehicle attitude control unit 62. Then, in the reduction control for reducing the fuel injection amount of the injector 15, the torque reduction for vehicle attitude control is set to be performed (step # 24). That is, when the first condition and the second condition are satisfied and the first air-fuel ratio mode ( ⁇ > 1) is executed, the determination unit 63 ignites as a method of reducing the generated torque of the engine body 1 Execute retard suppression control (suppression step) to prohibit retardation.
  • step # 23 when spark ignition control compression ignition combustion in the first mode is not performed (NO in step # 23), that is, SI combustion in the first area A1 or the fourth area A4 of the operation map of FIG.
  • the determination unit 63 causes the vehicle attitude control unit 62 to switch the mixture by the spark plug 16
  • the torque reduction for vehicle attitude control is set to be performed (step # 25). That is, if the first condition is satisfied while the second condition is not satisfied, and if the first condition and the second condition are satisfied and the second mode is being executed, the determination is made.
  • the unit 63 retards the timing of driving the spark plug 16 in order to reduce the generated torque of the engine body 1 (torque reduction step).
  • the determination unit 63 determines that the first condition and the second condition are satisfied and the first air-fuel ratio mode ( ⁇ > 1) is being executed.
  • the execution of the ignition retard is prohibited, and the generated torque of the engine is reduced by another control, that is, a reduction control for reducing the amount of fuel. That is, at the time of spark-ignition control compression-ignition combustion using a mixture of air-fuel ratio lean, vehicle attitude control is executed not by ignition retard but by fuel reduction control.
  • the ignition retard is performed during combustion in the first air-fuel ratio mode ( ⁇ > 1), since the air-fuel mixture is lean, self-ignition becomes difficult to occur, and the possibility of misfire becomes higher.
  • fuel reduction control is performed. Therefore, misfires can be effectively suppressed.
  • the above-mentioned ignition retarding is carried out relatively even if the air-fuel ratio is lean. There is less chance of misfires.
  • the vehicle attitude control can be performed by relatively simple control of controlling the drive timing (ignition timing) of the spark plug 16.
  • FIG. 11 is a flowchart showing the basic operation of the engine control method according to this embodiment.
  • the ECU 60 (FIG. 3) reads a sensor signal related to the driving state of the vehicle 100 output by the various sensors SN1 to SN13 (step S1).
  • step S2 reduction torque setting step
  • step S3 the ECU 60 executes the engine control process in consideration of the additional deceleration set in step S2 (step S3).
  • step S3 the engine control processing of step S3 will be described in detail with reference to the flowcharts shown in FIGS.
  • FIG. 12 is a flowchart showing the details of the engine control process, mainly showing the steps of setting the control target value of the combustion operation.
  • the ECU 60 the combustion control unit 61
  • a goal G is set (step S11).
  • the ECU 60 sets a target basic engine torque for realizing the set target acceleration (step S12).
  • the target basic engine torque is a required torque calculated based on the depression amount of the accelerator 107 by the driver before considering the torque reduction by the vehicle attitude control.
  • step S13 combustion mode setting step.
  • a target combustion mode from the target basic engine torque and the engine rotational speed detected by the crank angle sensor SN1 (step S13: combustion mode setting step).
  • the target combustion mode for example, an operation map shown in FIG. 4 which is predetermined in relation to the engine speed and the load is referred to. That is, the ECU 60 determines which of the first area A1 to the fourth area A4 of the operation map the current basic engine speed and the target basic engine torque (load) set in step S12 belong to, as shown in FIG.
  • One of the combustion modes shown in the charts (a) to (e) is set as a target combustion mode.
  • the ECU 60 determineation unit 63 sets an execution method of torque reduction in vehicle attitude control according to the target combustion mode set in step S13 (step S14).
  • the torque reduction method As described above, in the present embodiment, either the reduction of the fuel injection amount injected from the injector 15 or the ignition retard that retards the drive timing of the spark plug 16 is adopted as the torque reduction method.
  • An example of control of which one of these is selected is as illustrated in the flowcharts of FIGS. 10 (A) and 10 (B) above.
  • the relationship between the target combustion mode and the torque reduction execution method is as shown in Table 1 below.
  • step S15 intervene is as follows.
  • the air fuel ratio A / F is set to about 25 to 30/1 lean
  • mode switching between the first air-fuel ratio mode and the second air-fuel ratio mode is performed, the amount of intake air or fuel injection into the cylinder, etc., is shifted to the air-fuel ratio matching each mode. Become unstable. If torque reduction control for vehicle attitude control is superimposed in such a state, problems such as unstable combustion or misfire may occur.
  • step S15 determination unit 63 executes torque reduction control for vehicle attitude control (steps S16 to S18 described next), If there is a request for mode switching (NO in step S15), torque reduction control for vehicle attitude control is prohibited. In the latter case, equal torque mode switching control (control of FIG. 14 or FIG. 15 described later) that executes the mode switching without torque fluctuation is executed.
  • step S15 If there is no request for mode switching (YES in step S15), the ECU 60 (combustion control unit 61) sets the target basic engine torque set in step S12 and step S2 in FIG. 11 (step # 9 in FIG. 8). A target final engine torque is set from the calculated torque reduction amount (step S16).
  • the target final engine torque is a torque obtained by subtracting a torque reduction due to the vehicle attitude control from the required torque. Of course, if there is no demand for execution of the vehicle attitude control, the amount of torque reduction to be deducted is zero. Then, the ECU 60 sets a target combustion pressure in the combustion chamber 6 based on the target final engine torque (step S17).
  • the ECU 60 sets a control target value of the combustion operation from the target combustion pressure set in step S17 and the target combustion mode set in step S13 (step S18). Specifically, the target air amount to be supplied to the combustion chamber 6, the target auto ignition timing for causing CI combustion, the target SI ratio, the target air fuel ratio, the target ignition timing of the air-fuel mixture by the spark plug 16 and the like are set.
  • the above SI ratio is a ratio of the heat generation amount by SI combustion to the total heat generation amount by spark ignition controlled compression ignition combustion.
  • inflection point X in the figure is a point of time when the combustion mode switches from SI combustion to CI combustion.
  • the area R1 of the heat release rate waveform located on the advanced side of the crank angle ⁇ ci corresponding to the inflection point X is defined as the heat release rate by SI combustion, and the heat release rate waveform located on the retarded side of ⁇ ci
  • the area R2 of is the heat release rate by CI combustion.
  • FIG. 16 is a table showing the relationship between the target combustion mode, the total fuel injection amount, and the ignition timing when the control example shown in FIG. 10 (B) is adopted in setting the execution method of the torque reduction in step S14.
  • the first air-fuel ratio mode 71A ( ⁇ > 1) of spark ignition controlled compression ignition combustion
  • SI combustion In mode 73A predetermined total fuel injection amounts f1, f2 and f3 are set, respectively, and the ignition timing is also set to a predetermined crank angle CA1.
  • FIG. 13 is a flowchart showing the details of the engine control process, mainly showing steps involved in the detailed control of spark ignition control compression ignition combustion.
  • step S21 processing for setting control values of actuators other than injector 15 and spark plug 16 is performed (step S21 to S24).
  • the ECU 60 combustion control unit 61
  • internal EGR performed by opening / closing timing operation (early opening of the intake valve 11 or late closing of the exhaust valve 12) of the intake valve 11 and the exhaust valve 12 (see FIG. 2) as EGR is An external EGR is performed to recirculate the exhaust gas.
  • step S21 a target internal EGR rate and a target external EGR rate are set. Then, the target intake valve opening / closing timing which is the opening / closing timing of the intake valve 11 for realizing the target internal EGR rate, the target exhaust valve opening / closing timing which is the opening / closing timing of the exhaust valve 12, and the EGR for realizing the target external EGR rate.
  • the target EGR valve opening degree which is the opening degree of the valve 53, is set (step S22).
  • the ECU 60 sets a target throttle opening degree which is the opening degree of the throttle valve 32 for realizing the target air amount, a target bypass valve opening degree which is the opening degree of the bypass valve 39 of the bypass passage 38, and a turbocharger
  • a target clutch engagement degree which is the degree of engagement of the electromagnetic clutch 34 of 33, is set (step S23). Then, the ECU 60 performs control such that the target throttle opening degree, the target intake valve opening / closing timing, the target exhaust valve opening / closing timing, the target bypass valve opening degree, the target EGR valve opening degree, and the target clutch engagement degree are achieved.
  • An operation command is transmitted to an actuator provided in each of the objects (step S24). That is, each actuator is operated according to the target value for achieving spark ignition control compression ignition combustion set in step S18.
  • correction processing of the combustion injection amount and the injection timing by the injector 15 and the ignition timing of the spark plug 16 is executed according to the actual combustion response to the target value (steps S25 to S29).
  • An actuator-driven valve or the like is a device with relatively poor responsiveness, which does not move immediately according to a target value.
  • the operating delay of these devices affects, for example, the attainment of the target air-fuel ratio.
  • the ECU 60 grasps the degree of deviation of the actual combustion state from the target combustion state due to the operation delay, and similarly responds to the combustion injection amount and the injection timing of the injector 15 which is excellent in response to correct the deviation.
  • the excellent ignition timing of the spark plug 16 is corrected according to the state of the internal gas actually formed in the combustion chamber 6.
  • the ECU 60 calculates the in-cylinder temperature, intake charge amount, and in-cylinder oxygen concentration of the cylinder 2 at the actual intake valve closing time (step S25).
  • the state quantity of the internal gas in the actual cylinder 2 which is obtained by the detected value etc. of and the combustion result of the previous time are referred to.
  • the self-ignition timing etc. which are obtained from the waveform of the actual in-cylinder pressure which the in-cylinder pressure sensor SN3 is derived from the detection value are used.
  • the ECU 60 sets the target combustion injection amount and target injection timing of the injector 15 so as to achieve the target air-fuel ratio set in step S18, based on the intake charge amount and the oxygen concentration in the cylinder obtained in step S25.
  • the ECU 60 sets a target ignition timing of the spark plug 16 based on the in-cylinder temperature of the cylinder 2 at the actual intake valve closing time (step S28).
  • the target ignition timing similarly set in step S18 is corrected such that the CI combustion is started at the target self-ignition timing set in step S18.
  • the ECU 60 drives the spark plug 16 to ignite the air-fuel mixture at the corrected target ignition timing (step S29).
  • step S20 determines in step S18.
  • the ECU 60 sets the target fuel injection amount and target injection timing for the injector 15 and the target ignition timing of the spark plug 16 based on the target air amount and the target combustion pressure similarly set in step S18. (Step S31).
  • the ECU 60 drives each of the actuators, the injector 15, and the spark plug 16 so as to achieve the above-mentioned target value (step S32).
  • the equal torque mode switching control air-fuel ratio mode setting step
  • FIG. 14 is a flowchart showing mode switching control when there is a mode switching request from the second air-fuel ratio mode to the first air-fuel ratio mode
  • FIG. 17 shows the mode switching, intake amount, fuel amount, ignition timing, engine It is a time chart which shows the relation between torque and air fuel ratio.
  • step S15 If there is a mode switching request in step S15 shown in FIG. 12 (NO in step S15), the process proceeds to step S41 in FIG.
  • the ECU 60 (the combustion control unit 61) adjusts the opening degree of the throttle valve 32 to increase the intake amount (step S42), and increases the fuel injection amount from the injector 15 (step S43).
  • time T0 to T1 is an execution period of the second mode
  • time T1 to T2 is a period of mode switching from the second air-fuel ratio mode to the first air-fuel ratio mode.
  • the fuel amount is also gradually increased while gradually increasing the intake amount to direct lean, in order to prevent an air-fuel ratio state in which NOx is generated.
  • the ECU 60 retards the ignition timing of the spark plug 16 between time T1 and T2 (step S44). This is to prevent the engine torque from fluctuating to the increase side by the increase of the fuel amount between time T1 and T2. Retardation of the ignition timing is performed such that the ignition timing is gradually retarded as the fuel amount gradually increases. Since the engine torque is reduced by such ignition retardation, an increase in the amount of fuel can be offset, and an equal torque can be maintained between time T1 and T2.
  • the ECU 60 confirms whether the intake amount has reached the target value of the intake amount set for the first air-fuel ratio mode ( ⁇ > 1) (step S45).
  • the intake amount target value is an intake amount capable of forming an air-fuel ratio that substantially does not generate NOx.
  • the air-fuel ratio is set. Therefore, in step S45, it is determined whether the air-fuel ratio has reached 25. If it has not been reached (NO in step S45), steps S42 to S44 are repeated. That is, the intake amount and the fuel amount are further increased, and the ignition timing is further retarded.
  • Time T2 of the time chart of FIG. 17 is the point of the sudden drop.
  • the first air-fuel ratio mode ( ⁇ > 1)
  • an air-fuel ratio air-fuel mixture that does not generate NOx is formed in the combustion chamber 6.
  • the ECU 60 ends the ignition retard (step S47).
  • FIG. 15 is a flowchart showing mode switching control when there is a mode switching request from the first air fuel ratio mode to the second air fuel ratio mode.
  • step S41 When it is not the mode switching request from the second air fuel ratio mode to the first air fuel ratio mode in step S41 in FIG. 14 (NO in step S41), the process is shifted to step S51 in FIG.
  • the ECU 60 (the combustion control unit 61) adjusts the opening degree of the throttle valve 32 to reduce the intake amount (step S51). On the other hand, the fuel injection amount from the injector 15 is maintained (step S52).
  • times T2 to T3 are execution periods of the first mode
  • times T3 to T5 are periods of mode switching from the first air-fuel ratio mode to the second air-fuel ratio mode.
  • the ECU 60 reduces the amount of intake air from time T2A to T3 at which the first air-fuel ratio mode ( ⁇ > 1) is achieved, as shown in the chart from time T3 to T4. On the other hand, the fuel injection amount between time T3 and time T4 is the same as time T2A to time T3.
  • the ECU 60 checks whether the intake amount has reached a predetermined reduced intake amount (air-fuel ratio) (step S53).
  • the ECU 60 rapidly retards the ignition timing of the spark plug 16 according to the amount of intake air and the amount of fuel injection at time T4, in order to offset the increase in engine torque due to the increase in fuel amount. (Step S56). Thereby, it is possible to prevent torque fluctuation around time T4.
  • Time T5 of the time chart of FIG. 17 is the time of the stop.
  • the ECU 60 ends the ignition retard at time T5 (step S59).
  • the torque reduction due to the ignition retard naturally reaches a minimum immediately before time T5.
  • the vehicle 100 which consists of FF drive cars was illustrated as an example of a vehicle.
  • the engine control method and vehicle system according to the present invention are also applied to a hybrid vehicle having an FR drive vehicle, a four-wheel drive vehicle, and a motor and an engine driven by electric power supplied from a battery or a capacitor. can do.
  • spark ignition control compression ignition combustion (example in FIG. 10A) or spark ignition control compression ignition combustion in the first air fuel ratio mode (FIG. 10B and FIGS. 12 to 12) 15 shows an example of retard suppression control in which the torque reduction for vehicle attitude control is completely switched to fuel reduction control instead of ignition retardation. Instead of prohibiting such ignition retard, let the ignition retard (control to limit the degree of ignition retard) perform a part of the torque reduction necessary for the vehicle attitude control, and let the remaining part be responsible for the fuel amount reduction control Such retard suppression control may be adopted.
  • FIG. 18 is a tabular diagram showing a modification of the retard suppression control.
  • Chart (a) in FIG. 18 shows the total fuel injection amount and the ignition timing in the SI combustion mode. In SI combustion, the total fuel injection amount is the amount of f0 to f11, and the ignition timing is a crank angle CA23 that is more retarded than the crank angle CA21 for "without torque reduction” or CA21 for “with torque reduction”.
  • Chart (b) shows spark-ignition-controlled compression-ignition combustion mode, of which chart (b1) is “without torque reduction” and chart (b2) is “with torque reduction” and retard suppression prohibits ignition retard. It is an example of control.
  • the spark ignition control compression ignition combustion of the chart (b3) shows a modification of the retard suppression control.
  • the total fuel injection amount f12 in the spark ignition control compression ignition combustion is smaller than f13 of the spark ignition control compression ignition combustion (without torque reduction) in the chart (b1), but the spark ignition control compression ignition combustion in the chart (b2)
  • the injection amount is set to be larger than f11 of no torque reduction / ignition retard inhibition).
  • the crank angle of the ignition timing of spark ignition control compression ignition combustion in chart (b3) is set to CA22, and the ignition timing (CA21) of spark ignition control compression ignition combustion in charts (b1) and (b2) is set.
  • part of the torque reduction necessary for vehicle attitude control is carried out by ignition retard (control to limit the degree of ignition retard), while fuel loss control as described in (4) above
  • the remaining portion may not be compensated by That is, when the retard suppression control is executed, the complementing of the torque reduction may not be performed by another means.
  • Engine body 2 cylinders 15 injector (fuel injection valve) 16 spark plug 60 ECU (controller) 61 combustion control unit 62 vehicle attitude control unit 63 determination unit 100 vehicle 102 front wheel 102 (steering wheel / drive wheel) 107 accelerator SN10 accelerator opening sensor (operating condition sensor) SN11 Steering angle sensor (steering angle sensor)

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Transportation (AREA)
  • Theoretical Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

火花点火制御圧縮着火燃焼の燃焼性能に影響を与えることなく車両姿勢制御を実行させる。ECU60は、操舵角の増大量が基準増大量を超過している場合に、エンジンの生成トルクを低下させる車両姿勢制御を実行し、所定の運転領域では、混合気が所定時期に自己着火するように点火プラグ16を駆動させ火花点火制御圧縮着火燃焼を実行させる。車両姿勢制御による付加減速度の要求があり(#12でYES)、且つ、火花点火制御圧縮着火燃焼が実行されている場合(#13でYES)には、ECU60は、点火プラグ16の点火リタードを禁止し、気筒2内に供給する燃料を減量させる減量制御により車両姿勢制御のためのトルク低減を実行させる(#14)。一方、ECU60は、火花点火制御圧縮着火燃焼が実行されていない場合(#13でNO)には、車両姿勢制御のトルク低減のために、点火リタードを実行させる(#15)。

Description

エンジンの制御方法及びエンジンシステム
 本発明は、混合気の一部をSI燃焼させると共に残部を自着火によりCI燃焼させるエンジンであって、操舵角に応じて生成トルクを変化させることが可能なエンジンの制御方法、及び該制御方法が適用されるエンジンシステムに関する。
 空気とガソリン燃料との混合気を十分に圧縮された気筒内で自着火により燃焼させる予混合圧縮着火燃焼が知られている。また、混合気の全てを自着火により燃焼させるのではなく、SI(Spark Ignition)燃焼とCI(Compression Ignition)燃焼とを組み合わせた部分圧縮着火燃焼(以下、本明細書では「火花点火制御圧縮着火燃焼」という)も提案されている(例えば特許文献1参照)。火花点火制御圧縮着火燃焼では、火花点火を端緒として混合気の一部を火炎伝播により強制的に燃焼(SI燃焼)させ、残部の未燃混合気を自着火により燃焼(CI燃焼)させる。
 一方、操舵角に応じて生成トルクを変化させることで、車両の前後方向及び幅方向の加速度(G)を統合的にコントロールする運転支援制御(以下、本明細書では「車両姿勢制御」という)も知られている(例えば特許文献2参照)。車両姿勢制御では、ドライバーがハンドルを切り始めた瞬間に、エンジンの生成トルクを要求トルクよりも低減させ、その減速Gにより前輪への荷重移動を発生させる。これにより、前輪のタイヤグリップが増加し、コーナリングフォースが高められる。車両姿勢制御において、例えば点火プラグによる混合気の点火タイミングの遅角(点火リタード)により、上記のエンジントルクの低減が行われる。
特開2001-73775号公報 特許第6112304号公報
 火花点火制御圧縮着火燃焼が可能なエンジンを搭載した車両において、車両姿勢制御を実行させる要請がある。しかし、火花点火制御圧縮着火燃焼が行われている状態において、車両姿勢制御の実行のために点火リタードによるエンジントルクの低減が行われると、筒内圧力が燃焼後半のCI燃焼のために必要な筒内圧力まで上昇せず、結果として失火が発生する懸念がある。
 本発明の目的は、火花点火制御圧縮着火燃焼の燃焼性能に影響を与えることなく車両姿勢制御を実行することができるエンジンの制御方法、及び該制御方法が適用されるエンジンシステムを提供することにある。
 本発明の一局面に係るエンジンの制御方法は、操舵輪を持つ車両に搭載されると共に前記車両の駆動輪に機械的に連結され、点火プラグを備えるエンジンを制御する方法であって、前記エンジンの運転状態に基づき、当該エンジンの気筒内の混合気の全てが前記点火プラグの生成した火炎の伝搬により燃焼する第1燃焼モードと、前記気筒内の混合気の少なくとも一部が自己着火により燃焼する第2燃焼モードとの間で前記エンジンの燃焼モードを選択する燃焼モード設定工程と、前記操舵輪の舵角に基づき、前記エンジンの発生トルクを低減させるトルク低減量を設定する低減トルク設定工程と、前記燃焼モード設定工程において前記第1燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、点火時期が遅角するように、前記点火プラグを制御するリタード制御を行うトルク低減工程と、前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、前記リタード制御の程度を抑制するリタード抑制制御を実行する抑制工程と、を有する。
 また、本発明の他の局面に係るエンジンシステムは、操舵輪を持つ車両に搭載されると共に前記車両の駆動輪に機械的に連結され、点火プラグを備えるエンジンと、前記エンジンの運転状態を検出する運転状態センサと、前記操舵輪の舵角を検出する舵角センサと、制御器と、を有するエンジンシステムであって、前記制御器は、前記運転状態センサの検出結果に基づき、当該エンジンの気筒内の混合気の全てが前記点火プラグの生成した火炎の伝搬により燃焼する第1燃焼モードと、前記気筒内の混合気の少なくとも一部が自己着火により燃焼する第2燃焼モードとの間で前記エンジンの燃焼モードを選択し、前記舵角センサの検出結果に基づき、前記エンジンの発生トルクを低減させるトルク低減量を設定し、前記燃焼モード設定工程において前記第1燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、点火時期が遅角するように、前記点火プラグを制御するリタード制御を実行し、前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、前記リタード制御の程度を抑制する制御を実行するように構成されている。
 上記のエンジンの制御方法若しくはエンジンシステムによれば、操舵輪の舵角に基づきトルク低減量が設定される。これは車両姿勢制御の実行に相当する。また、第1燃焼モードは、SI燃焼に相当し、第2燃焼モードは、火花点火制御圧縮着火燃焼に相当する。そして、燃焼モードとして第1燃焼モードが選択されているときに、点火時期の遅角によって、設定された前記トルク低減量だけエンジンの発生トルクを低減させるリタード制御が実行される(トルク低減工程)。これは、点火リタードによるトルク低減である。
 これに対し、燃焼モードとして第2燃焼モードが選択されているときには、前記リタード制御の程度を抑制するリタード抑制制御が実行される(抑制工程)。つまり、火花点火制御圧縮着火燃焼時には、車両姿勢制御を通常の点火リタードではなく、抑制された点火リタードに変更して実行する。このため、火花点火制御圧縮着火燃焼におけるSI燃焼の開始タイミングが、前記リタード抑制制御では通常のリタード制御に比較して遅角されない。従って、前記SI燃焼によって発生する熱によって筒内温度及び圧力が十分に高められ、失火を発生させることなく燃焼後半のCI燃焼を良好に発生させることができる。
 上記のエンジンの制御方法において、前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、上記エンジンの運転状態に基づき、前記混合気を理論空燃比よりもリーンとする第1空燃比モードと、理論空燃比若しくは当該理論空燃比よりもリッチとする第2空燃比モードとの間で空燃比モードを選択する空燃比モード設定工程を有し、前記抑制工程の前記リタード抑制制御は、前記空燃比モード設定工程において前記第1空燃比モードが選択されているときに実行されることが望ましい。
 第1空燃比モードで燃焼中において上記リタード制御を行うと、混合気がリーンであることから自着火が起こり難くなり、失火の可能性が一層高くなる。上記のエンジンの制御方法によれば、第1空燃比モードで火花点火制御圧縮着火燃焼が実行されている状況で車両姿勢制御を実行する場合において、前記リタード抑制制御を実行させるので、失火を効果的に抑止することができる。
 上記のエンジンの制御方法において、前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、上記エンジンの運転状態に基づき、前記混合気を理論空燃比よりもリーンとする第1空燃比モードと、理論空燃比若しくは当該理論空燃比よりもリッチとする第2空燃比モードとの間で空燃比モードを選択する空燃比モード設定工程を有し、前記トルク低減工程の前記リタード制御は、前記空燃比モード設定工程において前記第2空燃比モードが選択されているときに実行されることが望ましい。
 混合気がリーンである場合に失火の可能性が高くなる裏返しとして、混合気が理論空燃比以上に形成される第2空燃比モードでは、上記リタード制御を行っても相対的に失火の可能性が低くなる。上記のエンジンの制御方法によれば、第2空燃比モードで火花点火制御圧縮着火燃焼が実行されている状況で車両姿勢制御を実行する場合には、前記リタード抑制制御ではなく通常のリタード制御によるトルク低減が採用される。従って、リタード抑制制御という本来の制御とは異なる制御にて車両姿勢制御を実行させる領域を制限でき、車両姿勢制御のための制御を簡素化することができる。
 上記のエンジンの制御方法において、前記リタード抑制制御は、前記点火プラグの点火時期の遅角を禁止する態様とすることができる。これにより、点火リタードが完全に回避されるので、失火の懸念を払拭することができる。この場合、車両姿勢制御のための前記エンジンの生成トルクの低下は、前記他の制御、例えば気筒内へ供給する燃料を減量させる制御等によって代替される。
 上記のエンジンの制御方法において、前記リタード抑制制御が、前記点火プラグの点火時期の遅角の程度を制限する態様とすることができる。通常のリタード制御に比較して点火リタードの程度を小さくすることにより、失火の可能性を抑制することができる。
 本発明によれば、火花点火制御圧縮着火燃焼の燃焼性能に影響を与えることなく、特に失火を発生させることなく、車両姿勢制御を実行することができるエンジンの制御方法、及び該制御方法が適用されるエンジンシステムを提供することができる。
図1は、本発明に係るエンジンの制御方法及びエンジンシステムが適用される車両の概略図である。 図2は、本発明が適用される圧縮着火式エンジンの全体構成を示すシステム図である。 図3は、前記圧縮着火式エンジンの制御系統を示すブロック図である。 図4は、エンジンの回転数及び負荷に応じた燃焼制御の相違を説明するための運転マップである。 図5は、図4の運転マップの各領域で実行される燃焼制御を概略的に説明するためのタイムチャートである。 図6は、火花点火制御圧縮着火燃焼の実行時における熱発生率を示すグラフである。 図7は、車両姿勢制御における制御態様を概略的に示すタイムチャートである。 図8は、車両姿勢制御の具体的制御例を示すフローチャートである。 図9は、操舵速度と目標付加減速度との関係を示すグラフである。 図10(A)及び(B)は、本発明に係るエンジン制御方法を概略的に示すフローチャートである。 図11は、本発明の実施形態に係るエンジン制御方法の基本動作を示すフローチャートである。 図12は、エンジン制御処理の詳細を示すフローチャートである。 図13は、エンジン制御処理の詳細を示すフローチャートである。 図14は、エンジン制御処理の詳細を示すフローチャートである。 図15は、エンジン制御処理の詳細を示すフローチャートである。 図16は、運転モードと、総燃料噴射量及び点火時期との関係を示す表形式の図である。 図17は、第1空燃比モード(λ>1)と、第2空燃比モード(λ=1)との間のモード切換の態様を示すタイムチャートである。 図18は、リタード抑制制御の変形例を示す表形式の図である。
 [車両の構造]
 以下、図面に基づいて、本発明の実施形態を詳細に説明する。先ず、図1を参照して、本発明に係るエンジンの制御方法及び車両システムが適用される車両100の構造について概略的に説明する。本実施形態に係る車両100はFF駆動車であって、駆動源としてエンジン本体1を備える。エンジン本体1は4つの気筒2を有し、SI燃焼及び火花点火制御圧縮着火燃焼が可能な直列4気筒ガソリンエンジンである。
 車両100は、エンジン本体1を搭載する車体101と、駆動輪及び操舵輪としての前輪102と、従動輪としての後輪103とを含む。エンジン本体1で生成された駆動力は、トランスミッション104を介して前輪102に伝達される。また、車両100には、前輪102を操舵するステアリング105と、ステアリング105の操作を補助するパワーステアリング装置106とが備えられている。さらに車両100には、ドライバーによって操作され、後述のスロットル弁32の開度を調整するアクセル107が備えられている。
 車両100には、エンジン本体1の電子制御を行うECU60(制御器)が搭載されている。本実施形態に係るECU60は、ドライバーがステアリング105を操作した際に車両姿勢制御を実行可能である。車両姿勢制御では、ドライバーがステアリング105を切り始めた瞬間に、エンジン本体1の生成トルクを、アクセル107の開度などによって定まる要求トルクよりも低減させ、その減速Gにより前輪102への荷重移動を発生させる。これにより、前輪102のタイヤグリップが増加し、コーナリングフォースが高められる。この車両姿勢制御及び上述の火花点火制御圧縮着火燃焼については、後記で詳述する。
 [エンジンシステム]
 続いて、車両100に搭載されるエンジンシステムについて説明する。図2は、本実施形態に係るエンジンシステムの全体構成を示す図である。エンジンシステムは、4サイクルのガソリン直噴エンジンからなるエンジン本体1と、エンジン本体1に導入される吸気が流通する吸気通路30と、エンジン本体1から排出される排気ガスが流通する排気通路40と、排気通路40を流通する排気ガスの一部を吸気通路30に還流させるEGR装置50とを備えている。
 エンジン本体1は、車両100の駆動源として利用される。本実施形態では、エンジン本体1は、ガソリンを主成分とする燃料の供給を受けて駆動されるエンジンである。なお、燃料は、バイオエタノール等を含むガソリンであってもよい。エンジン本体1は、シリンダブロック3、シリンダヘッド4及びピストン5を備える。シリンダブロック3は、上述の4つの気筒を形成するシリンダライナを有する。シリンダヘッド4は、シリンダブロック3の上面に取り付けられ、気筒2の上部開口を塞いでいる。ピストン5は、各気筒2に往復摺動可能に収容されており、コネクティングロッド8を介してクランク軸7と連結されている。ピストン5の往復運動に応じて、クランク軸7はその中心軸回りに回転する。
 ピストン5の上方には燃焼室6が形成されている。燃焼室6には前記燃料が、後述するインジェクタ15からの噴射によって供給される。そして、供給された燃料と空気との混合気が燃焼室6で燃焼され、その燃焼による膨張力で押し下げられたピストン5が上下方向に往復運動する。気筒2の幾何学的圧縮比、つまりピストン5が上死点にあるときの燃焼室6の容積とピストン5が下死点にあるときの燃焼室6の容積との比は、後述する火花点火制御圧縮着火燃焼に好適となるように、13以上30以下(例えば20程度)の高圧縮比に設定されている。
 シリンダブロック3には、クランク角センサSN1及び水温センサSN2が取り付けられている。クランク角センサSN1は、クランク軸7の回転角度(クランク角)及びクランク軸7の回転速度(エンジン回転速度)を検出する。水温センサSN2は、シリンダブロック3及びシリンダヘッド4の内部を流通する冷却水の温度(エンジン水温)を検出する。
 シリンダヘッド4には、燃焼室6と連通する吸気ポート9及び排気ポート10が形成されている。シリンダヘッド4の底面は、燃焼室6の天井面となる。この燃焼室天井面には、吸気ポート9の下流端である吸気側開口と、排気ポート10の上流端である排気側開口とが形成されている。シリンダヘッド4には、前記吸気側開口を開閉する吸気弁11と、前記排気側開口を開閉する排気弁12とが組み付けられている。なお、図示は省いているが、エンジン本体1のバルブ形式は、吸気2バルブ×排気2バルブの4バルブ形式であって、吸気ポート9及び排気ポート10は、各気筒2につき2つずつ設けられるとともに、吸気弁11及び排気弁12も2つずつ設けられている。
 シリンダヘッド4には、カムシャフトを含む吸気側動弁機構13及び排気側動弁機構14が配設されている。吸気弁11及び排気弁12は、これら動弁機構13、14により、クランク軸7の回転に連動して開閉駆動される。吸気側動弁機構13には、吸気弁11の少なくとも開時期を変更可能な吸気VVT13aが内蔵されている。同様に、排気側動弁機構14には、排気弁12の少なくとも閉時期を変更可能な排気VVT14aが内蔵されている。これら吸気VVT13a及び排気VVT14aの制御により、吸気弁11及び排気弁12の双方が排気上死点を跨いで開弁するバルブオーバーラップ期間を調整することが可能である。また、このバルブオーバーラップ期間の調整により、燃焼室6に残留する既燃ガス(内部EGRガス)の量を調整することが可能である。
 シリンダヘッド4には、さらにインジェクタ15(燃料噴射弁)及び点火プラグ16が取り付けられている。インジェクタ15は、気筒2(燃焼室6)内に燃料を噴射(供給)する。インジェクタ15としては、その先端部に複数の噴孔を有し、これらの噴孔から放射状に燃料を噴射することが可能な多噴孔型のインジェクタを用いることができる。インジェクタ15は、その先端部が燃焼室6内に露出し、且つ、ピストン5の冠面の径方向中心部と対向するように配置されている。
 点火プラグ16は、インジェクタ15に対し吸気側に幾分ずれた位置に配置され、その先端部(電極部)が気筒2内に臨む位置に配置されている。点火プラグ16は、気筒2(燃焼室6)内に形成される燃料と空気との混合気に点火する強制点火源である。
 シリンダヘッド4には、センシング要素として、筒内圧センサSN3、吸気カム角センサSN12及び排気カム角センサSN13は配設されている。筒内圧センサSN3は、燃焼室6の圧力を検出する。吸気カム角センサSN12は、吸気側動弁機構13のカムシャフトの回転位置を、排気カム角センサSN13は、排気側動弁機構14のカムシャフトの回転位置を、各々検出する。
 吸気通路30は、図2に示すように、吸気ポート9と連通するようにシリンダヘッド4の一側面に接続されている。吸気通路30の上流端から取り込まれた空気(新気)は、吸気通路30および吸気ポート9を通じて燃焼室6に導入される。吸気通路30には、その上流側から順に、エアクリーナ31、スロットル弁32、過給機33、電磁クラッチ34、インタークーラ35及びサージタンク36が配置されている。
 エアクリーナ31は、吸気中の異物を除去して吸気を清浄化する。スロットル弁32は、アクセル107の踏み込み動作と連動して吸気通路30を開閉し、吸気通路30における吸気の流量を調整する。過給機33は、吸気を圧縮しつつ吸気通路30の下流側へ当該吸気を送り出す。過給機33は、エンジン本体1と機械的に連係されたスーパーチャージャであり、電磁クラッチ34によりエンジン本体1との締結及びその締結解除が切換られる。電磁クラッチ34が締結されると、エンジン本体1から過給機33に駆動力が伝達されて、過給機33による過給が行われる。インタークーラ35は、過給機33により圧縮された吸気を冷却する。サージタンク36は、図略のインテークマニホールドの直上流に配置され、複数の気筒2に吸気を均等に配分するための空間を提供するタンクである。
 吸気通路30の各部には、吸気の流量を検出するエアフローセンサSN4と、吸気の温度を検出する第1・第2吸気温センサSN5,SN7と、吸気の圧力を検出する第1・第2吸気圧センサSN6,SN8とが設けられている。エアフローセンサSN4及び第1吸気温センサSN5は、吸気通路30におけるエアクリーナ31とスロットル弁32との間の部分に配置され、当該部分を通過する吸気の流量、温度を各々検出する。第1吸気圧センサSN6は、吸気通路30におけるスロットル弁32と過給機33との間(後述するEGR通路51の接続口よりも下流側)の部分に設けられ、当該部分を通過する吸気の圧力を検出する。第2吸気温センサSN7は、吸気通路30における過給機33とインタークーラ35との間の部分に設けられ、当該部分を通過する吸気の温度を検出する。第2吸気圧センサSN8は、サージタンク36に設けられ、当該サージタンク36内の吸気の圧力を検出する。
 吸気通路30には、過給機33をバイパスして吸気を燃焼室6に送るためのバイパス通路38が設けられている。バイパス通路38は、サージタンク36と後述するEGR通路51の下流端付近とを互いに接続している。バイパス通路38には、当該バイパス通路38を開閉可能なバイパス弁39が設けられている。
 排気通路40は、排気ポート10と連通するようにシリンダヘッド4の他側面に接続されている。燃焼室6で生成された既燃ガス(排気ガス)は、排気ポート10及び排気通路40を通して車両100の外部に排出される。排気通路40には触媒コンバータ41が設けられている。触媒コンバータ41には、排気通路40を流通する排気ガス中に含まれる有害成分(HC、CO、NOx)を浄化するための三元触媒41aと、排気ガス中に含まれる粒子状物質(PM)を捕集するためのGPF(ガソリン・パティキュレート・フィルタ)41bとが内蔵されている。
 EGR装置50は、排気通路40と吸気通路30とを接続するEGR通路51と、EGR通路51に設けられたEGRクーラ52およびEGR弁53とを備える。EGR通路51は、排気通路40における触媒コンバータ41よりも下流側の部分と、吸気通路30におけるスロットル弁32と過給機33との間の部分とを互いに接続している。EGRクーラ52は、EGR通路51を通じて排気通路40から吸気通路30に還流される排気ガス(外部EGRガス)を熱交換により冷却する。EGR弁53は、EGRクーラ52よりも下流側のEGR通路51に開閉可能に設けられ、EGR通路51を流通する排気ガスの流量を調整する。なお、EGR通路51には、EGR弁53の上流側の圧力と下流側の圧力との差を検出するための差圧センサSN9が設けられている。
 アクセル107には、そのアクセル開度を検出するアクセル開度センサSN10(運転状態センサの一つ)が付設されている。アクセル開度センサSN10は、アクセル107のペダル踏み込み具合を検出するセンサであり、ドライバーの加減速を検出するセンサでもある。ステアリング105には、操舵角センサSN11(舵角センサ)が付設されている。操舵角センサSN11は、ステアリング105による前輪102の操舵角を検出する。なお、前輪102の舵角を検出可能な他の舵角センサを適用しても良い。
 [制御構成]
 図3は、前記エンジンシステムの制御構成を示すブロック図である。本実施形態のエンジンシステムは、ECU(エンジン・コントロール・モジュール)60によって統括的に制御される。ECU60は、CPU、ROM、RAM等から構成されるマイクロプロセッサである。
 ECU60には車両100に搭載された各種センサからの検出信号が入力される。ECU60は、上述したクランク角センサSN1、水温センサSN2、筒内圧センサSN3、エアフローセンサSN4、第1・第2吸気温センサSN5,SN7、第1・第2吸気圧センサSN6,SN8、差圧センサSN9、アクセル開度センサSN10、操舵角センサSN11、吸気カム角センサSN12及び排気カム角センサSN13と電気的に接続されている。これらのセンサSN1~SN13によって検出された情報、すなわち、クランク角、エンジン回転速度、エンジン水温、筒内圧力、吸気流量、吸気温、吸気圧、EGR弁53の前後差圧、アクセル開度、操舵角、吸気・排気カム角等の情報がECU60に逐次入力される。
 ECU60は、上記各センサSN1~SN13他からの入力信号に基づいて種々の判定や演算等を実行しつつエンジンの各部を制御する。すなわち、ECU60は、吸気VVT13a、排気VVT14a、インジェクタ15、点火プラグ16、スロットル弁32、電磁クラッチ34、バイパス弁39及びEGR弁53等と電気的に接続されており、上記演算の結果等に基づいてこれらの機器にそれぞれ制御用の信号を出力する。
 ECU60は、機能的に燃焼制御部61、車両姿勢制御部62及び判定部63を備えている。燃焼制御部61は、インジェクタ15による燃料噴射動作及び点火プラグ16の点火動作を制御する。例えば燃焼制御部61は、クランク角センサSN1により検出されるエンジン回転速度と、アクセル開度センサSN10により検出されるアクセル107の開度から特定されるエンジン負荷(要求トルク)と、エアフローセンサSN4により検出される吸気流量とに基づいて、インジェクタ15からの燃料の噴射量及び噴射タイミングと、点火プラグ16の点火タイミングとを決定し、それらの決定に従ってインジェクタ15及び点火プラグ16を駆動する。この際、燃焼制御部61は、予め定められた運転マップを参照(図4に一例を示す)し、燃焼モードを選択する。後記で詳述するが、前記燃焼モードには、気筒2内の混合気が所定時期に自己着火するようにインジェクタ15及び点火プラグ16が駆動される燃焼モード(火花点火制御圧縮着火燃焼)が含まれる。
 車両姿勢制御部62は、ステアリング105による前輪102の操舵角に応じて、エンジン本体1の生成トルクを変化させる車両姿勢制御を実行する。車両姿勢制御部62は、例えば操舵角センサSN11の検出値を参照し、操舵角が所定時間内に所定量増大した場合に、車両100が旋回(コーナリング)走行状態であると判定し、生成トルクを低下させる制御を行う。トルク低下の手法としては、本実施形態では少なくとも点火プラグ16の点火時期を遅角するリタード制御(トルク低減工程)と、気筒2内へ供給する燃料を減量させる減量制御とが採用され、これら制御のいずれか又は双方が、運転モード等に応じて採用される。なお、車両姿勢制御部62は、車両姿勢制御によるトルク低減量が大きい程、点火タイミングが遅角するように、若しくは燃料噴射量が減量されるように、各々制御を行う。
 判定部63は、燃焼室6において燃焼が安定しない状態若しくは失火の恐れが有る状態(燃焼不安定状態)に至り得るか否かを判定する。本実施形態では、燃焼制御部61による火花点火制御圧縮着火燃焼を含む燃焼制御と、車両姿勢制御部62による車両姿勢制御とが重畳的に実行される。ある条件下で両制御が重畳実行されると、上記の燃焼不安定状態が招来され得る。判定部63は、さらに、上記の燃焼不安定状態に至り得ると判定した場合に、前記燃焼制御又は前記車両姿勢制御の制御態様を変更させる制御を行う。
 [燃焼制御]
 続いて、燃焼制御部61が実行する燃焼制御について詳述する。図4は、エンジンの回転数及び負荷に応じた燃焼制御の相違を説明するための簡易的な運転マップである。この運転マップには、4つの運転領域;第1領域A1、第2領域A2、第3領域A3及び第4領域A4が示されている。第1領域A1は、エンジン回転数が低速・中速の領域におけるエンジン負荷が低い(無負荷を含む)低負荷の領域と、エンジン回転数が高速の領域における中負荷・高負荷の領域である。第2領域A2は、低速・中速の領域における、第1領域A1よりも負荷が高い領域(低速・中速/中負荷領域)である。第3領域A3は、低速・中速の領域における、第2領域A2よりも負荷が高い領域(低速・中速/高負荷領域)である。第4領域A4は、低速の領域における、全開ラインに近い領域である。
 第1領域A1及び第4領域A4では、SI燃焼(第1燃焼モード)が実行される。SI燃焼は、点火プラグ16を用いた火花点火により燃焼室6内の混合気に点火し、その点火点から周囲へと燃焼領域を拡げていく火炎伝播により、混合気を強制的に燃焼させる燃焼形態である。つまり、気筒2内の混合気の全てが、点火プラグ16が生成した火炎の伝搬により燃焼する燃焼モードである。
 第2領域A2及び第3領域A3では、火花点火制御圧縮着火燃焼(第2燃焼モード)が実行される。火花点火制御圧縮着火燃焼は、上記のSI燃焼と、CI燃焼とをミックスした燃焼である。CI燃焼は、ピストン5の圧縮により高温・高圧化された環境下で混合気を自己着火により燃焼させる燃焼形態である。火花点火制御圧縮着火燃焼は、混合気が自己着火する寸前の環境下で行われる火花点火により燃焼室6内の混合気の一部をSI燃焼させ、当該SI燃焼の後に(SI燃焼に伴うさらなる高温・高圧化により)燃焼室6内の残りの混合気を自己着火によりCI燃焼させる、という燃焼形態である。つまり、気筒2内の混合気の少なくとも一部が、自己着火により燃焼する燃焼モードである。
 本実施形態では、この火花点火制御圧縮着火燃焼において、燃焼室6に形成される混合気が、理論空燃比よりもリーンとする第1空燃比モード(λ>1)と、理論空燃比若しくは理論空燃比よりもリッチとする第2空燃比モード(λ≦1)とを有する。詳しくは、前記第1空燃比モードは、燃焼室6内の空気(新気)と燃料との重量比である空燃比(A/F)を、理論空燃比(14.7)よりも大きい値に設定しつつ火花点火制御圧縮着火燃焼を行うモードである。一方、前記第2空燃比モードは、空燃比を理論空燃比(λ=1)若しくはその近傍(λ<1)に設定しつつ火花点火制御圧縮着火燃焼を行うモードである。本実施形態では、前記第1空燃比モードにおいて形成される混合気の空燃比A/Fは、25~30/1程度の範囲に設定される。前記第2空燃比モードの空燃比A/Fは、言うまでもなくλ=1の14.7/1である。火花点火制御圧縮着火燃焼時において、上記の第1空燃比モード(λ>1)又は第2空燃比モード(λ≦1)のいずれかが、エンジンの運転状態に基づいて選択される(空燃比モード設定工程)。
 図5は、図4の運転マップの各領域A1~A4で実行される燃焼制御を概略的に説明するためのタイムチャートである。図5のチャート(a)は、図4に示す第2領域A2に含まれる運転ポイントP1でエンジンが運転されているときの、燃料噴射タイミング、点火タイミング及び燃焼の態様(熱発生率の波形)を示している。第2領域A2では、火花点火制御圧縮着火燃焼のうち、上記第1空燃比モード(λ>1)での燃焼が実行される。
 この運転ポイントP1において燃焼制御部61が実行する燃焼する燃焼制御は次の通りである。インジェクタ15には、チャート(a)に示すように、圧縮行程の中期から後期にかけて、燃料噴射(1回目)及び燃料噴射(2回目)の2回に分けて燃料を噴射させる。点火プラグ16には、圧縮上死点の近傍であってやや進角側のタイミングで混合気に点火させる。この点火をきっかけに火花点火制御圧縮着火燃焼が開始され、燃焼室6内の一部の混合気が火炎伝播により燃焼(SI燃焼)し、その後に残りの混合気が自着火により燃焼(CI燃焼)する。
 図6を参照して、火花点火制御圧縮着火燃焼の利点を説明する。図6は、火花点火制御圧縮着火燃焼の実行時における熱発生率を示すグラフである。火花点火制御圧縮着火燃焼では、SI燃焼が発現しているときよりもCI燃焼が発現しているときの方が、熱発生が急峻になるという性質がある。すなわち、図6に示すように、SI燃焼に対応する燃焼初期の立ち上がりの傾きが、その後のCI燃焼に対応して生じる立ち上がりの傾きよりも小さくなる。SI燃焼によって、燃焼室6内の温度および圧力が高まると、これに伴い未燃混合気が自己着火し、CI燃焼が開始される。このCI燃焼が開始するタイミング(図6の変曲点X=クランク角θci)で、熱発生率の波形の傾きが小から大へと変化する。また、このような熱発生率の傾向に対応して、火花点火制御圧縮着火燃焼では、SI燃焼時に生じる燃焼室6内の圧力上昇率(dp/dθ)がCI燃焼時のそれよりも小さくなる。
 CI燃焼の開始後は、SI燃焼とCI燃焼とが並行して行われる。CI燃焼は、SI燃焼よりも混合気の燃焼速度が速いため、熱発生率は相対的に大きくなる。ただし、CI燃焼は、圧縮上死点の後に発現するため、熱発生率の波形の傾きが過大になることはない。すなわち、圧縮上死点を過ぎるとピストン5の下降によりモータリング圧力が低下するので、このことが熱発生率の上昇を抑制する結果、CI燃焼時のdp/dθが過大になることが回避される。このように、火花点火制御圧縮着火燃焼では、SI燃焼の後にCI燃焼が行われるという性質上、燃焼騒音の指標となるdp/dθが過大になり難く、単純なCI燃焼(全ての燃料をCI燃焼させた場合)に比べて燃焼騒音を抑制することができる。
 CI燃焼の終了に伴い火花点火制御圧縮着火燃焼も終了する。CI燃焼はSI燃焼に比べて燃焼速度が速いので、単純なSI燃焼(全ての燃料をSI燃焼させた場合)に比べて燃焼終了時期を早めることができる。言い換えると、火花点火制御圧縮着火燃焼では、燃焼終了時期を膨張行程内において圧縮上死点に近づけることができる。これにより、火花点火制御圧縮着火燃焼では、単純なSI燃焼に比べて燃費性能を向上させることができる。
 図5に戻って、チャート(b)は、図4に示す第3領域A3に含まれる運転ポイントP2(第3領域A3において比較的負荷が低い領域内のポイント)でエンジンが運転されているときの、燃焼制御部61による燃焼制御の態様を示している。第3領域A3内の低負荷領域では、火花点火制御圧縮着火燃焼のうち、上記第2空燃比モード(λ≦1)の範疇であってλ=1に調製された混合気の燃焼が実行される。
 運転ポイントP2において燃焼制御部61は、インジェクタ15には、比較的多量の燃料を噴射する1回目の燃料噴射を吸気行程中に実行させ、次いで当該1回目の燃料噴射よりも少量の燃料を噴射する2回目の燃料噴射を圧縮行程中に実行させる。また、燃焼制御部61は、点火プラグ16には、圧縮上死点よりもやや進角側のタイミングで混合気に点火させる。この点火をきっかけに火花点火制御圧縮着火燃焼が開始される点は、上記の運転ポイントP1と同様である。
 図5のチャート(c)は、第3領域A3に含まれる運転ポイントP3(第3領域A3において比較的負荷が高い領域内のポイント)でエンジンが運転されているときの、燃焼制御部61による燃焼制御の態様を示している。第3領域A3の高負荷領域では、火花点火制御圧縮着火燃焼のうち、燃焼室6内の空燃比が理論空燃比よりもややリッチ(λ≦1)とされた混合気を火花点火制御圧縮着火燃焼させる制御が実行される。
 運転ポイントP3において燃焼制御部61は、インジェクタ15には、1サイクル中に噴射すべき燃料の全部または大半を吸気行程中に噴射させる。例えば、チャート(c)のように、吸気行程の後半から圧縮行程の初期にかけた一連の期間にわたって燃料を噴射させる。また、燃焼制御部61は、点火プラグ16には、圧縮上死点の近傍であってやや遅角側のタイミングで混合気に点火させる。この点火をきっかけに火花点火制御圧縮着火燃焼が開始される点は、上記の運転ポイントP1、P2と同様である。
 ここでは、第3領域A3において、混合気を理論空燃比のλ=1で形成させる場合と、理論空燃比よりもややリッチなλ≦1で形成させる場合とを、負荷に応じて使い分ける例を示している。これに代えて、第3領域A3の全域において、混合気を理論空燃比のλ=1で形成させるようにしても良い。後述の実施形態では、第3領域A3で実行される上記第2空燃比モードが、λ=1の混合気を火花点火制御圧縮着火燃焼させる態様について説明している。
 図5のチャート(d)は、低回転高負荷の第4領域A4に含まれる運転ポイントP4でエンジンが運転されているときの、燃焼制御部61による燃焼制御の態様を示している。第4領域A4では、火花点火制御圧縮着火燃焼ではなく、点火タイミングをリタードさせたSI燃焼(リタード_SI)が実行される。
 運転ポイントP4において燃焼制御部61は、インジェクタ15には、比較的多量の燃料を噴射する1回目の燃料噴射を吸気行程中に実行させ、続いて当該1回目の燃料噴射よりも少量の燃料を噴射する2回目の燃料噴射を圧縮行程の後期(圧縮上死点の直前)に実行させる。また、燃焼制御部61は、点火プラグ16にはリタード点火を実行させる。混合気への点火タイミングは、例えば圧縮上死点から5~20°CA程度経過した比較的遅めのタイミングとされる。この点火をきっかけにSI燃焼が開始され、燃焼室6内の混合気の全てが火炎伝播により燃焼する。なお、第4領域A4での点火時期が上記のように遅角されるのは、ノッキングやプリイグニッション等の異常燃焼を防止するためである。
 図5のチャート(e)は、第1領域A1における高負荷高回転領域に含まれる運転ポイントP5でエンジンが運転されているときの、燃焼制御部61による燃焼制御の態様を示している。第1領域A1では、火花点火制御圧縮着火燃焼ではなく、オーソドックスなSI燃焼(吸気_SI)が実行される。
 運転ポイントP5において燃焼制御部61は、インジェクタ15には、吸気行程から圧縮行程にかけた一連の期間にわたって燃料を噴射させる。なお、運転ポイントP5は、高負荷高回転の条件であるため、1サイクル中に噴射すべき燃料の量がそもそも多い上に、所要量の燃料を噴射するのに要するクランク角期間が長期化する。なお、第1領域A1における中・低負荷領域では、燃料噴射量はチャート(e)よりも低減される。また、燃焼制御部61は、点火プラグ16には圧縮上死点よりもやや進角側のタイミングで混合気に点火させる。この点火をきっかけにSI燃焼が開始され、燃焼室6内の混合気の全てが火炎伝播により燃焼する。
 [車両姿勢制御]
 続いて、車両姿勢制御部62が実行する車両姿勢制御について詳述する。図7は、本実施形態に係る車両姿勢制御の制御態様を概略的に示すタイムチャートである。図7には、ステアリング105による前輪102の操舵角と、車両姿勢制御による車両100の減速度及びその減速を実現する生成トルクとの関係が示されている。
 車両姿勢制御部62は、操舵角センサSN11で検出されたステアリング105の操舵角の変化量が予め設定された基準変化量以上になると(操舵速度が所定値以上となると)、車両100がコーナリング中であるとみなして、減速度を徐々に増加させる。既述の通り本実施形態では、点火プラグ16の点火タイミングのリタード制御若しくは気筒2内へ供給する燃料の減量制御によってエンジン本体1が生成するトルクを低減し、これによって車両100の駆動力を低下させて減速度を増加させる。
 具体的には、車両姿勢制御部62は、通常運転時の要求エンジントルクであって、クランク角センサSN1により検出される車速とアクセル開度センサSN10により検出されるアクセル107の開度とに基づいて決定される目標基本エンジントルクに対して、エンジントルクを低減する。また、車両姿勢制御部62は、操舵速度が所定値未満となると、減速度を徐々に低下させる。このようにすれば、コーナリング時に、前輪102のコーナリングフォースを高めることができ、車両100を円滑に旋回させることができる。
 図8に示すフローチャートを参照して、車両姿勢制御の具体的な制御例を説明する。図8では、目標基本エンジントルクに対するトルク低減によって減速度を付加するという意味合いにおいて、車両姿勢制御を「付加減速度設定処理」と称している。付加減速度設定処理が開始されると、車両姿勢制御部62は、操舵角センサSN11の検出結果より取得された操舵角の絶対値が増大中か否かを判定する(ステップ#1)。操舵角の絶対値が増大中である場合(ステップ#1でYES)、車両姿勢制御部62は、前記取得された操舵角より操舵速度を算出する(ステップ#2)。
 続いて車両姿勢制御部62は、ステップ#2で求めた操舵速度の絶対値が減少しているか否かを判定する(ステップ#3)。操舵速度の絶対値が減少していない場合(ステップ#3でYES)、すなわち操舵速度の絶対値が増大している、若しくは、操舵速度の絶対値が変化していない場合、車両姿勢制御部62は、操舵速度に基づき目標付加減速度を設定する(ステップ#4)。この目標付加減速度は、ドライバーが意図したステアリング105の操作に応じて車両100に付加すべき減速度である。
 具体的には、車両姿勢制御部62は、図9のマップに示された目標付加減速度と操舵速度との関係に基づき、ステップ#2で算出された操舵速度に対応する目標付加減速度を取得する。図9を参照して、操舵速度が所定の閾値Ts以下である場合、対応する目標付加減速度は0である。すなわち、車両姿勢制御部62は、操舵速度が閾値Ts以下である場合には、ステアリング105の切り込み操作があっても、車両100に減速度を付加するためにエンジントルクを低減する制御(車両姿勢制御)を実行しない。一方、操舵速度が閾値Tsを超過する場合には、その操舵速度が増大するに従って、当該操舵速度に対応する目標付加減速度は、所定の上限値Dmax(例えば1m/s2)に漸近する。すなわち、操舵速度が増大するほど目標付加減速度は増大し、且つ、その増大量の増加割合は小さくなる。
 次に車両姿勢制御部62は、今回の処理において車両100に減速度を付加する際の、付加減速度の閾値である最大増大率Rmaxを決定する。そして、車両姿勢制御部62は、付加減速度の増大率が最大増大率Rmax以下となる範囲で、今回の処理における付加減速度を決定する(ステップ#5)。
 具体的には、車両姿勢制御部62は、前回の処理において決定した付加減速度から今回の処理のステップ#4において設定した目標付加減速度への増大率が、上記最大増大率Rmax以下である場合には、ステップ#4において決定した目標付加減速度を今回の処理における付加減速度として決定する。一方、前回の付加減速度から今回の処理のステップ#4において決定した目標付加減速度への増大率がRmaxより大きい場合、車両姿勢制御部62は、前回決定の付加減速度を増大率=Rmaxで増大させた値を、今回の処理における付加減速度として決定する。
 上記ステップ#3において、操舵速度の絶対値が減少している場合(ステップ#3でYES)、車両姿勢制御部62は、前回の処理において決定した付加減速度を今回の処理における付加減速度として決定する(ステップ#6)。すなわち、操舵速度の絶対値が減少している場合、操舵速度の最大時における付加減速度(付加減速度の最大値)が保持される。
 上記ステップ#1において、操舵角の絶対値が増大中ではない場合(ステップ#1でNO)、車両姿勢制御部62は、前回の処理において決定した付加減速度を今回の処理において減少させる量(減速度減少量)を設定する(ステップ#7)。この減速度減少量は、予めECU60が備えるメモリ等に記憶されている一定の減少率(例えば0.3m/s3)に基づき算出される。或いは減速度減少量は、各種センサから得られる車両100の運転状態、又はステップ#2で算出された操舵速度に応じて決定された減少率等に基づき算出される。そして、車両姿勢制御部62は、前回の処理において決定した付加減速度からステップ#7で設定した減速度減少量を減算することにより、今回の処理における付加減速度を決定する(ステップ#8)。
 しかる後、車両姿勢制御部62は、ステップ#5、#6又は#8において決定した今回の付加減速度に基づき、トルク低減量を決定する(ステップ#9;低減トルク設定工程)。具体的には、車両姿勢制御部62は、今回の付加減速度を実現するために必要となるトルク低減量を、現在の車速、ギア段、路面勾配等に基づき決定する。そして、車両姿勢制御部62は、決定されたトルク低減量に相当する分だけエンジントルクを低減させるよう、燃焼制御部61を介して、点火プラグ16の点火タイミングのリタード制御、又は気筒2内へ供給する燃料の減量制御を実行させるものである。
 [トルク低減の実行方法の切換制御]
 上述の通り、本実施形態のエンジン本体1は、操舵角の単位時間当たりの変化量が予め設定された基準変化量以上になると(ここでは「第1条件の成立」という)、点火プラグ16の駆動のタイミングをリタードさせるリタード制御又は気筒2内へ供給する燃料を減量させる減量制御により、エンジン本体1の生成トルクを低下させる車両姿勢制御が実行される。他方、エンジン本体1は、燃焼室6における混合気の燃焼形態として、SI燃焼(第1燃焼モード)だけでなく、火花点火制御圧縮着火燃焼(第2燃焼モード)も実行する。すなわち、アクセル開度及び車速で定まる要求トルクが、図4に示した第2領域A2及び第3領域A3の範疇に入る場合(ここでは「第2条件の成立」という)では、混合気を所定時期に自己着火させる火花点火制御圧縮着火燃焼が実行される。これらSI燃焼又は火花点火制御圧縮着火燃焼のいずれかが、エンジンの運転状態に応じて選択される(燃焼モード設定工程)。
 車両姿勢制御部62は、上記第1条件の成立を判定したとき、車両姿勢制御を実行する(図8参照)。また、燃焼制御部61は、上記第2条件の成立を判定したとき、火花点火制御圧縮着火燃焼が発現するよう、インジェクタ15の燃料噴射タイミング及び点火プラグ16の駆動(点火)タイミングを制御する(図5参照)。さらに、火花点火制御圧縮着火燃焼では、混合気が理論空燃比よりもリーンに形成される第1空燃比モード(λ>1)と、混合気が理論空燃比若しくは理論空燃よりもリッチに形成される第2空燃比モード(λ≦1)との間でのモード切換が行われることになる(図5のチャート(b)(c)参照)。
 上記の第1条件及び第2条件が同時に成立した場合、車両姿勢制御と火花点火制御圧縮着火燃焼とが重畳的に実行されることになる。つまり、火花点火制御圧縮着火燃焼が行われている状態において、車両姿勢制御の実行のためにエンジントルクの低減が行われる場合がある。トルク低減の手法として最も簡易であるのが、点火プラグ16の点火タイミングの遅角(点火リタード)である。しかし、火花点火制御圧縮着火燃焼が行われている状態において、車両姿勢制御の実行のために点火リタードが実行されると、燃焼が不安定化する恐れがある。すなわち、点火リタードによって火花点火制御圧縮着火燃焼におけるSI燃焼の開始タイミングが遅角すると、燃焼室6内の筒内圧力が燃焼後半のCI燃焼のために必要な筒内圧力まで上昇しないことが起こり得る。この場合、燃焼室6において燃焼が安定しない状態若しくは失火の恐れが有る状態(燃焼不安定状態)が発生することがある。
 上記の点に鑑みて本実施形態では、判定部63が、上記燃焼不安定状態に至り得る運転状態であるか否かを判定する。具体的には、上記の第1条件及び第2条件が同時に成立しているかが判定される。そして、判定部63は、燃焼不安定状態に至り得ると判定した場合に、車両姿勢制御の実行のためのエンジントルク低減手法を、前記第1条件が成立した場合に行われるリタード制御(トルク低減工程)ではなく、当該リタード制御の程度を抑制するリタード抑制制御(抑制工程)によってエンジンの生成トルクを低下させる。つまり、火花点火制御圧縮着火燃焼時には、車両姿勢制御を通常の点火リタードではなく、抑制された点火リタードに変更して実行する。
 リタード抑制制御の態様としては、
  (1)点火リタードによるトルク低減の禁止、
  (2)点火リタードの程度の制限、
の2つが挙げられる。上記態様(1)の場合には、車両姿勢制御のためのトルク低減が完全に他の制御(燃料の減量制御)に代替される。上記態様(2)の場合には、点火リタードが所要のトルク低減の一部を担い、前記他の制御がトルク低減の残部を担う。このため、上記態様(1)では点火プラグ16による混合気への強制点火のタイミングは、火花点火制御圧縮着火燃焼用に設定されたタイミングに維持される。また、上記態様(2)では、通常のSI燃焼の際に行われる点火リタードに比較して、その遅角の程度が小さい点火リタードとすることができる。従って、所定の火花点火制御圧縮着火燃焼を発現させ易くすることができる。
 判定部63による上記のトルク低減手段の切換制御について、図10(A)及び(B)に示すフローチャートを参照して説明する。図10(A)の制御例は、火花点火制御圧縮着火燃焼が実行されているか否か、つまり図4の運転マップの第2領域A2又は第3領域A3でエンジンが運転されているか否かに応じて、車両姿勢制御の実行のためのエンジントルク低減の手法を切り換える例である。なお、ここでは前記リタード抑制制御が、上記態様(1)で実行される例を示す。
 エンジンの制御処理が開始されると、ECU60(図3)は、車両100の運転状態に関する各種のセンサ信号を読み込む(ステップ#11)。具体的にはECU60は、クランク角センサSN1の検出値から得られる車速、アクセル開度センサSN10によって検出されるアクセル107の開度、操舵角センサSN11によって検出されるステアリング105の操舵角、車両100の変速機に現在設定されているギア段等を含む、各種の情報を取得する。
 次に、判定部63は、付加減速度の要求が有るか否か、つまり、車両姿勢制御の実行のためのトルク低減の要求が存在するか否か(第1条件が成立しているか否か)を判定する(ステップ#12)。操舵角の増大量が基準増大量を超過している場合、車両姿勢制御部62は付加減速度の要求を出す(ステップ#12でYES)。この場合、判定部63は、さらに燃焼制御部61が火花点火制御圧縮着火燃焼を実行中であるか否か(第2条件が成立しているか否か)を判定する(ステップ#13)。なお、付加減速度の要求が無い場合(ステップ#12でNO)は、判定部63は処理を終える(ステップ#11へリターン)。
 火花点火制御圧縮着火燃焼が実行されている場合(ステップ#13でYES)、判定部63は、車両姿勢制御部62において、点火時期が遅角するように点火プラグ16を制御するリタード制御(点火リタード)によるトルク低減を禁止し、その代替として、インジェクタ15の燃料噴射量を減量させる減量制御にて、車両姿勢制御のためのトルク低減が行われるよう設定する(ステップ#14)。つまり、上記第1条件及び第2条件が成立している場合、判定部63は、少なくとも点火タイミングのリタード制御の程度を抑制するリタード抑制制御を実行させる(抑制工程)。
 これに対し、火花点火制御圧縮着火燃焼が実行されていない場合(ステップ#13でNO)、すなわち図4の運転マップの第1領域A1又は第4領域A4でエンジンが運転されている場合、判定部63は、車両姿勢制御部62において、点火プラグ16による混合気への点火タイミングをリタードさせる点火リタード制御にて、車両姿勢制御のためのトルク低減が行われるよう設定する(ステップ#15)。つまり、前記第1条件が成立する一方で前記第2条件が不成立の場合、判定部63は、エンジン本体1の生成トルクを低下させるために、点火プラグ16の駆動のタイミングをリタードさせる(トルク低減工程)。なお、トルク低減量が大きい程、点火タイミングのリタード度合いが大きく設定される。ステップ#14又は#15の実行後、判定部63は処理を終える(ステップ#11へリターン)。
 以上の通り、図10(A)の制御例では、判定部63が前記第1条件及び前記第2条件の成立を判定したときには、第1条件が成立した場合に行われるリタード制御ではなく、当該リタード制御の程度を抑制するリタード抑制制御(点火リタードの禁止)によってエンジンの生成トルクを低下させる。つまり、火花点火制御圧縮着火燃焼時には、点火リタードによる車両姿勢制御を禁止し、他のトルク低減方法、例えば燃料の減量制御によって実行させる。このため、火花点火制御圧縮着火燃焼におけるSI燃焼の開始タイミングが、前記リタード抑制制御では通常のリタード制御に比較して遅角されない。従って、前記SI燃焼によって発生する熱によって筒内温度及び圧力が十分に高められ、失火を発生させることなく燃焼後半のCI燃焼を良好に発生させることができる。一方、火花点火制御圧縮着火燃焼ではなくSI燃焼が実行されている場合、失火の問題は実質的に生じない。このようなケースでは、車両姿勢制御が点火リタードによって実行されるので、制御を簡素化することができる。
 図10(B)の制御例は、火花点火制御圧縮着火燃焼が実行され、且つ、当該火花点火制御圧縮着火燃焼が空燃比リーンの混合気で実行される第1空燃比モード(λ>1)にて実行されているか否か、つまり図4の運転マップの第2領域A2でエンジンが運転されているか否かに応じて、車両姿勢制御の実行のためのエンジントルク低減の手法を切り換える例である。
 ステップ#21及び#22の処理は、上述のステップ#11及び#12と同様であるので説明を省く。車両姿勢制御部62が付加減速度の要求を出している場合(ステップ#22でYES)、判定部63は、燃焼制御部61が前記第1空燃比モード(λ>1)の火花点火制御圧縮着火燃焼を実行中であるか否か(第2条件が成立し且つ第1モードが実行されているか否か)を判定する(ステップ#23)。
 前記第1空燃比モードの火花点火制御圧縮着火燃焼が実行されている場合(ステップ#23でYES)、判定部63は、車両姿勢制御部62において、リタード制御(点火リタード)によるトルク低減を禁止し、インジェクタ15の燃料噴射量を減量させる減量制御にて、車両姿勢制御のためのトルク低減が行われるよう設定する(ステップ#24)。つまり、上記第1条件及び第2条件が成立し、且つ、第1空燃比モード(λ>1)が実行されている場合、判定部63は、エンジン本体1の生成トルクを低下させる手法として点火リタードを禁止するリタード抑制制御(抑制工程)を実行させる。
 これに対し、前記第1モードの火花点火制御圧縮着火燃焼が実行されていない場合(ステップ#23でNO)、すなわち図4の運転マップの第1領域A1又は第4領域A4のSI燃焼、若しくは第3領域A3における第2空燃比モード(λ≦1)の火花点火制御圧縮着火燃焼でエンジンが運転されている場合、判定部63は、車両姿勢制御部62において、点火プラグ16による混合気への点火タイミングをリタードさせる点火リタード制御にて、車両姿勢制御のためのトルク低減が行われるよう設定する(ステップ#25)。つまり、前記第1条件が成立する一方で前記第2条件が不成立の場合、及び、前記第1条件及び前記第2条件が成立し、且つ、前記第2モードが実行されている場合に、判定部63は、エンジン本体1の生成トルクを低下させるために、点火プラグ16の駆動のタイミングをリタードさせる(トルク低減工程)。
 以上の通り、図10(B)の制御例では、判定部63が上記第1条件及び第2条件の成立を判定し、且つ、第1空燃比モード(λ>1)が実行されていると判定したときには、点火リタードの実行を禁止し、他の制御、すなわち燃料を減量させる減量制御によってエンジンの生成トルクを低下させる。つまり、空燃比リーンの混合気を用いる火花点火制御圧縮着火燃焼時には、車両姿勢制御を点火リタードではなく燃料の減量制御によって実行させる。第1空燃比モード(λ>1)で燃焼中において点火リタードを行うと、混合気がリーンであることから自己着火が起こり難くなり、失火の可能性が一層高くなる。しかし、上記制御例によれば、第1空燃比モード(λ>1)での火花点火制御圧縮着火燃焼が実行されている状況で車両姿勢制御を実行する場合においては燃料の減量制御が実行されるので、失火を効果的に抑止することができる。
 一方、混合気が空燃比リーンである場合に失火の可能性が高くなる裏返しとして、混合気が理論空燃比以上に形成される第2空燃比モードでは、上記点火リタードを行っても相対的に失火の可能性が低くなる。上記制御例によれば、第2空燃比モードでの火花点火制御圧縮着火燃焼が実行されている状況で車両姿勢制御を実行する場合には、点火リタードによるトルク低減が採用される。従って、点火プラグ16の駆動タイミング(点火タイミング)の制御という比較的簡易な制御によって、車両姿勢制御を実行させることができる。
 [エンジンの制御方法の具体例]
 続いて、本発明に係るエンジンの制御方法が適用された、運転制御の具体的実施形態を説明する。図11は、本実施形態に係るエンジン制御方法の基本動作を示すフローチャートである。処理が開始されると、ECU60(図3)は、各種のセンサSN1~SN13が出力する車両100の運転状態に関するセンサ信号を読み込む(ステップS1)。次にECU60(車両姿勢制御部62)は、ステップS1で読み込まれたセンサ信号から得られる車速(クランク角センサSN1)、アクセル開度(アクセル開度センサSN10)、操舵角(操舵角センサSN11)、車両100の変速機に現在設定されているギア段等を参照して、車両姿勢制御のための付加減速度(トルク低減量)を設定する処理を行う(ステップS2;低減トルク設定工程)。この付加減速度設定処理の具体例は、先に図8のフローチャートに基づき説明した通りである。次にECU60は、ステップS2で設定された付加減速度を加味して、エンジン制御処理を実行する(ステップS3)。以下、図12~図15に示すフローチャートを参照して、ステップS3のエンジン制御処理を詳述する。
 <燃焼動作の制御目標値の設定>
 図12は、エンジン制御処理の詳細を示すフローチャートであって、主に燃焼動作の制御目標値の設定するステップを示している。制御処理が開始されると、ECU60(燃焼制御部61)は、図11のステップS1で取得された車速及びアクセル開度、現状の変速機ギア段等を参照して、車両100の目標加速度(目標G)を設定する(ステップS11)。次にECU60は、設定された目標加速度を実現するための、目標基本エンジントルクを設定する(ステップS12)。この目標基本エンジントルクは、車両姿勢制御によるトルク低減を考慮する前の、ドライバーによるアクセル107の踏み込み量に基づいて算出される要求トルクである。
 続いてECU60は、上記目標基本エンジントルクと、クランク角センサSN1が検出するエンジン回転数とから、目標燃焼モードを設定する(ステップS13;燃焼モード設定工程)。この目標燃焼モードの設定には、エンジン回転数と負荷との関係で予め定められている、例えば図4に示す運転マップが参照される。すなわちECU60は、現状のエンジン回転数及びステップS12で設定された目標基本エンジントルク(負荷)が、前記運転マップの第1領域A1~第4領域A4のいずれに属するかを判定し、図5のチャート(a)~(e)に示したいずれかの燃焼モードを、目標燃焼モードとして設定する。
 そして、ECU60(判定部63)は、ステップS13で設定された目標燃焼モードに応じて、車両姿勢制御におけるトルク低減の実行方法を設定する(ステップS14)。上述の通り本実施形態では、トルク低減の実行方法として、インジェクタ15から噴射させる燃料噴射量の減量、又は、点火プラグ16の駆動のタイミングをリタードさせる点火リタードのいずれかが採用される。これらのいずれを選択するかの制御例は、先に図10(A)及び図10(B)のフローチャートに例示した通りである。例えば、図10(B)に示した制御例を採用する場合、目標燃焼モードとトルク低減の実行方法との関係は、下記の表1の通りとなる。
Figure JPOXMLDOC01-appb-T000001
 次にECU60(判定部63)は、火花点火制御圧縮着火燃焼において、第1空燃比モード(λ>1)と、第2空燃比モード(λ=1)との間で切り換えの要求が有るか否かを判定する(ステップS15)。なお、第1空燃比モード(λ>1)と第2空燃比モード(λ=1)との切換判定は、ステップS12で設定された、車両姿勢制御によるトルク低減量を減算する前の目標基本エンジントルクに基づいて実行される。
 ステップS15の判定ステップを介入させるのは、次の理由による。火花点火制御圧縮着火燃焼が第1空燃比モードで実行される場合、空燃比A/Fは25~30/1程度のリーンに設定され、第2空燃比モードでは空燃比A/F=14.7/1(λ=1)に設定される。このような第1空燃比モードと第2空燃比モードとの間のモード切換が実行される際には、各モードに合致する空燃比に移行するよう気筒内への吸気量又は燃料噴射量などが変化する不安定な状態となる。このような状態において車両姿勢制御のためのトルク低減制御が重畳されると、燃焼が不安定化したり失火が生じたりする不具合が生じ得る。この点に鑑み、判定部63は、前記モード切換の要求が無い場合(ステップS15でYES)には、車両姿勢制御のためのトルク低減制御を実行させるが(次述のステップS16~S18)、前記モード切換の要求が有る場合(ステップS15でNO)には、車両姿勢制御のためのトルク低減制御を禁止する。後者の場合、前記モード切換をトルク変動なしに実行させる等トルクモード切換制御(後述の図14又は図15の制御)が実行される。
 ECU60(燃焼制御部61)は、前記モード切換の要求が無い場合(ステップS15でYES)、ステップS12で設定した目標基本エンジントルクと、図11のステップS2(図8のステップ#9)で設定されたトルク低減量とから、目標最終エンジントルクを設定する(ステップS16)。この目標最終エンジントルクは、要求トルクから車両姿勢制御によるトルク低減分を差し引いたトルクである。もちろん、車両姿勢制御の実行要求が存在しない場合は、差し引くトルク低減分はゼロである。そして、ECU60は、目標最終エンジントルクに基づいて、燃焼室6内における目標燃焼圧を設定する(ステップS17)。
 しかる後、ECU60は、ステップS17で設定した目標燃焼圧及びステップS13で設定した目標燃焼モードから、燃焼動作の制御目標値を設定する(ステップS18)。具体的には、燃焼室6に供給する目標空気量、CI燃焼を発現させる目標自己着火時期、目標SI率、目標空燃比、点火プラグ16による混合気の目標点火時期などを設定する。
 なお、上記のSI率は、火花点火制御圧縮着火燃焼による全熱発生量に対するSI燃焼による熱発生量の割合である。図6を参照して、図中の変曲点Xは、燃焼形態がSI燃焼からCI燃焼に切り替わる時点である。この変曲点Xに対応するクランク角θciよりも進角側に位置する熱発生率の波形の面積R1をSI燃焼による熱発生量とし、θciよりも遅角側に位置する熱発生率の波形の面積R2をCI燃焼による熱発生率とする。SI率は、上記各面積R1,R2を用いて、SI率=R1/(R1+R2)で表すことができる。
 図16は、ステップS14のトルク低減の実行方法の設定において、図10(B)に示した制御例を採用した場合の、目標燃焼モードと、総燃料噴射量及び点火時期との関係示す表形式の図である。車両姿勢制御のための「トルク低減無し」の場合、火花点火制御圧縮着火燃焼の第1空燃比モード71A(λ>1)、SPCCI燃焼の第2空燃比モード72A(λ=1)及びSI燃焼モード73Aでは、それぞれ所定の総燃料噴射量f1、f2、f3に設定され、点火時期も所定のクランク角CA1に設定される。
 これに対し、車両姿勢制御のための「トルク低減有り」の場合、火花点火制御圧縮着火燃焼の第1空燃比モード71B(λ>1)では、総燃料噴射量が「トルク低減無し」の場合f1よりも所定量だけ減量されたf4に変更される。一方、目標点火時期はクランク角CA1のタイミングに維持され、点火リタードは行われない(点火リタードの禁止)。火花点火制御圧縮着火燃焼の第2空燃比モード72B(λ=1)では、「トルク低減有り」の場合、総燃料噴射量はf2に維持される一方で、目標点火時期をクランク角CA1からCA2へ遅角させる点火リタードが行われる。同様に、SI燃焼モード73Bでも、「トルク低減有り」の場合、総燃料噴射量はf3に維持される一方で、目標点火時期をクランク角CA1からCA2へ遅角させる点火リタードが行われる。
 <火花点火制御圧縮着火燃焼制御の詳細>
 図13は、エンジン制御処理の詳細を示すフローチャートであって、主に火花点火制御圧縮着火燃焼の詳細制御に関わるステップを示している。図12のステップS18に続いて、ECU60は、上述のSI率が100%未満であるか否か、つまり、目標燃焼モードが火花点火制御圧縮着火燃焼(SI率=100%はSI燃焼)であるか否かを判定する(ステップS20)。
 目標燃焼モードが火花点火制御圧縮着火燃焼(第2燃焼モード)である場合(ステップS20でYES)、先ずはインジェクタ15及び点火プラグ16以外のアクチュエータの制御値を設定する処理が為される(ステップS21~S24)。具体的には、ECU60(燃焼制御部61)は、ステップS18で設定した目標空気量と、目標自己着火時期に想定される筒内温度とから、目標EGR率を設定する(ステップS21)。本実施形態ではEGRとして、吸気弁11及び排気弁12(図2参照)の開閉タイミング操作(吸気弁11の早開け又は排気弁12の遅閉じ)により実行される内部EGRと、EGR通路51を通して排気ガスを還流させる外部EGRとが実行される。このため、ステップS21では、目標内部EGR率と、目標外部EGR率とが設定される。そして、目標内部EGR率を実現するための吸気弁11の開閉タイミングである目標吸気弁開閉時期及び排気弁12の開閉タイミングである目標排気弁開閉時期と、目標外部EGR率を実現するためのEGR弁53の開度である目標EGR弁開度とが設定される(ステップS22)。
 次にECU60は、上記目標空気量を実現するためのスロットル弁32の開度である目標スロットル開度、バイパス通路38のバイパス弁39の開度である目標バイパス弁開度、及び、過給機33の電磁クラッチ34の締結の程度である目標クラッチ締結度合を設定する(ステップS23)。そして、ECU60は、上掲の目標スロットル開度、目標吸気弁開閉時期、目標排気弁開閉時期、目標バイパス弁開度、目標EGR弁開度及び目標クラッチ締結度合の各目標を達成するよう、制御対象の各々が備えるアクチュエータに対して動作指令を発信する(ステップS24)。つまり、ステップS18で設定された火花点火制御圧縮着火燃焼を達成する目標値に応じて、各アクチュエータを動作させる。
 続いて、上記目標値に対する実際の燃焼応答性に応じて、インジェクタ15による燃焼噴射量及び噴射時期、並びに、点火プラグ16の点火時期の補正処理が実行される(ステップS25~S29)。アクチュエータで駆動される弁等は、目標値通りに即時には動かない、応答性が比較的悪いデバイスである。これらデバイスの動作遅延は、例えば目標空燃比の達成に影響を及ぼす。ECU60は、前記動作遅延に起因する、目標燃焼状態に対する実際の燃焼状態の乖離度合いを把握し、その乖離を是正するべく応答性に優れるインジェクタ15の燃焼噴射量及び噴射時期と、同じく応答性に優れる点火プラグ16の点火時期とを、燃焼室6で実際に形成されている内部ガスの状態に応じて補正する。
 具体的には、ECU60は、実際の吸気閉弁時点での気筒2の筒内温度、吸気充填量、筒内の酸素濃度を算出する(ステップS25)。この算出には、エアフローセンサSN4の検出値、第1、第2吸気温センサSN5、SN7及び外部EGR率等により求められる実際の吸気ガスの状態量、吸気カム角センサSN12及び排気カム角センサSN13の検出値等により求められる実際の気筒2内の内部ガスの状態量と、前回の燃焼結果とが参照される。前回の燃焼結果としては、筒内圧センサSN3が検出値から導出される実際の筒内圧の波形から得られる自己着火時期等が用いられる。
 次にECU60は、ステップS25で求めた吸気充填量及び筒内の酸素濃度に基づき、ステップS18で設定された目標空燃比となるように、インジェクタ15の目標燃焼噴射量及び目標噴射時期を設定する(ステップS26)。図5のチャート(a)、(b)に例示したように、火花点火制御圧縮着火燃焼の第1空燃比モード(λ>1)及び第2空燃比モード(λ=1)では、2回に分けて燃料噴射が実行される。従って、ECU60は、目標空燃比が得られるように、1回目及び2回目の燃焼噴射の噴射量及び噴射時期をそれぞれ決定する。そしてECU60は、目標燃焼噴射量及び目標噴射時期を達成するよう、インジェクタ15に指令を発信する(ステップS27)。
 続いてECU60は、実際の吸気閉弁時点での気筒2の筒内温度に基づいて、点火プラグ16の目標点火時期を設定する(ステップS28)。この目標点火時期は、ステップS18で設定された目標自己着火時期にCI燃焼が開始されるように、同じくステップS18で設定された目標点火時期が補正されたものとなる。そしてECU60は、補正された目標点火時期に混合気に点火するよう、点火プラグ16を駆動する(ステップS29)。
 以上に対し、ステップS20でSI率が100%未満ではないと判定された場合、つまり目標燃焼モードがSI燃焼(第1燃焼モード)である場合(ステップS20でNO)、ECU60は、ステップS18で設定された目標空気量に応じて、目標スロットル弁開度、目標吸気弁開閉時期、目標排気弁開閉時期、目標バイパス弁開度、目標クラッチ締結度合及び目標EGR弁開度等を設定する(ステップS30)。続いてECU60は、上記目標空気量と、同じくステップS18で設定された目標燃焼圧との基づき、インジェクタ15のための目標燃料噴射量及び目標噴射時期と、点火プラグ16の目標点火時期とを設定する(ステップS31)。そしてECU60は、上掲の目標値を達成するよう、各アクチュエータと、インジェクタ15及び点火プラグ16とを駆動する(ステップS32)。
 <モード切換制御_λ=1からリーンへの切換>
 次に、ステップS15において、火花点火制御圧縮着火燃焼における第1空燃比モード(λ>1)と、第2空燃比モード(λ=1)との間のモード切換要求が有る場合に実行される、等トルクモード切換制御(空燃比モード設定工程)について説明する。図14は、第2空燃比モードから第1空燃比モードへのモード切換要求が有る場合のモード切換制御を示すフローチャート、図17は、前記モード切換と、吸気量、燃料量、点火時期、エンジントルク及び空燃比との関係を示すタイムチャートである。
 図12に示すステップS15でモード切換要求が有る場合(ステップS15でNO)、処理は図14のステップS41に移行する。ECU60(判定部63)は、前記モード切換要求が第2空燃比モードから第1空燃比モードへのモード切換要求であるか否か、つまり火花点火制御圧縮着火燃焼をλ=1からリーンに変更するモード切換要求であるか否かを判定する(ステップS41)。第2空燃比モードから第1空燃比モードへのモード切換要求である場合(ステップS41でYES)、判定部63は燃焼制御部61に、エミッションを悪化させることなく、空燃比A/Fをλ=1からリーンへ移行させ、且つ、モード切換の間のエンジントルクを一定に維持する制御を実行するよう指示を与える。
 具体的にはECU60(燃焼制御部61)は、スロットル弁32の開度を調整して吸気量を増大させ(ステップS42)、インジェクタ15からの燃料噴射量を増大させる(ステップS43)。図17を参照すると、時刻T0~T1が第2モードの実行期間、時刻T1~T2間が第2空燃比モードから第1空燃比モードへのモード切換の期間である。ECU60は、第1空燃比モード(λ=1)を達成している時刻T0~T1の吸気量及び燃料量を、時刻T1~T2間のチャートに示すように、比例的に増大させる。吸気量を徐々に増大させてリーンを指向させながら、この間に燃料量も徐々に増大させるのは、NOxが発生する空燃比状態が形成されないようにするためである。
 これらと並行してECU60は、時刻T1~T2間に点火プラグ16の点火時期をリタードさせる(ステップS44)。これは、時刻T1~T2間に燃料量が増加することで、エンジントルクも増加側に変動してしまうことを抑止するためである。点火時期のリタードは、燃料量が徐々に増加するに伴い、点火時期が徐々に遅角側にシフトするように実行される。このような点火リタードによりエンジントルクが低減するので、燃料量の増大分を相殺でき、時刻T1~T2間を等トルクに維持することができる。
 ECU60は、吸気量が第1空燃比モード(λ>1)用に設定された吸気量の目標値に到達したか否かを確認する(ステップS45)。この吸気量目標値は、NOxを実質的に発生させない空燃比を形成可能な吸気量である。本実施形態では、空燃比A/F=25/1が、第1モードのリーン燃焼におけるNOxを発生させないリッチ限界とされ、空燃比A/F=30/1が第1空燃比モードの所定の空燃比とされている。従って、ステップS45では、空燃比=25に到達したか否かを判定し、未達の場合(ステップS45でNO)には、ステップS42~S44がリピートされる。すなわち、吸気量及び燃料量がさらに増量され、点火時期がさらにリタードされる。
 一方、空燃比=25を形成できる吸気量に到達すると(ステップS45でYES)、ECU60は、燃料量を第1空燃比モードのリーンの混合気の形成に必要とされる量まで急降下させる(ステップS46)。図17のタイムチャートの時刻T2が、その急降下の時点である。これにより、第1空燃比モード(λ>1)であって、NOxを発生させない空燃比の混合気が燃焼室6に形成されるようになる。この時点でトルク低減の操作は不必要になるので、ECU60は、点火リタードを終了させる(ステップS47)。なお、吸気量は時刻T2を過ぎても増量される。すなわち、所定の空燃比=30を形成可能な吸気量に到達する時刻T2Aまで、吸気量が増量される。
 <モード切換制御_リーンからλ=1への切換>
 次に、図15及び図17を参照して、第1空燃比モード(λ>1)から第2空燃比モード(λ=1)への切換要求が有る場合に実行される、等トルクモード切換制御について説明する。図15は、第1空燃比モードから第2空燃比モードへのモード切換要求が有る場合のモード切換制御を示すフローチャートである。
 図14のステップS41において、第2空燃比モードから第1空燃比モードへのモード切換要求ではない場合(ステップS41でNO)、処理を図15のステップS51へ移行させる。この場合、ECU60の判定部63は燃焼制御部61に、エミッションを悪化させることなく、空燃比A/Fをリーンからλ=1へ移行させ、且つ、モード切換の間のエンジントルクを一定に維持する制御を実行するよう指示を与える。
 具体的にはECU60(燃焼制御部61)は、スロットル弁32の開度を調整して吸気量を減少させる(ステップS51)。一方、インジェクタ15からの燃料噴射量は維持される(ステップS52)。図17を参照すると、時刻T2~T3が第1モードの実行期間、時刻T3~T5間が第1空燃比モードから第2空燃比モードへのモード切換の期間である。ECU60は、第1空燃比モード(λ>1)を達成している時刻T2A~T3の吸気量を、時刻T3~T4間のチャートに示すように減少させる。一方、時刻T3~T4間の燃料噴射量は、時刻T2A~T3と同じである。
 続いてECU60は、吸気量が所定の減量吸気量(空燃比)まで到達したか否かを確認する(ステップS53)。この減量吸気量は、第1空燃比モードのリーン燃焼においてNOxを発生させないリッチ限界である空燃比A/F=25/1を達成する吸気量である。空燃比=25に到達しない場合(ステップS53でNO)、ステップS51に戻ってさらに吸気量が減量される。
 これに対し、空燃比=25に到達する時刻T4に至ると(ステップS53でYES)、NOxの発生を防止する制御が実行される。具体的には、ECU60は、吸気量の減少を継続しながら(ステップS54)、その時刻T4時点の吸気量にて空燃比=14.7(λ=1)の混合気が形成されるように、インジェクタ15の燃料噴射量を急激に増大させる(ステップS55)。λ=1を維持するために、時刻T4以降は、吸気量の減少に合わせて燃料噴射量も減少される。これにより、NOxが発生する空燃比状態の形成を回避することができる。さらにECU60は、上述のステップS44と同様に、燃料量の増大によるエンジントルクの増加を相殺するために、点火プラグ16の点火時期を時刻T4における吸気量及び燃料噴射量に応じて急激にリタードさせる(ステップS56)。これにより、時刻T4前後でのトルク変動を防止することができる。
 ECU60は、吸気量が第2空燃比モード(λ=1)用に設定された吸気量の目標値に到達したか否かを確認する(ステップS57)。つまり、時刻T4の時点で空燃比=14.7に低下しているが、吸気量が第2空燃比モードを実行できる量まで低下したか否かが確認される。未達の場合(ステップS57でNO)には、ステップS54~S56がリピートされる。すなわち、吸気量及び燃料量がさらに減量され、一方で点火時期のリタードが徐々に復元される。これにより、時刻T4~T5間を等トルクに維持することができる。
 一方、第2空燃比モード(λ=1)用の吸気量に到達すると(ステップS57でYES)、ECU60は、吸気量及び燃料噴射量のさらなる減量を停止させる(ステップS58)。図17のタイムチャートの時刻T5が、その停止の時点である。これにより、第2空燃比モード用の吸気量を満たしたλ=1の混合気が燃焼室6に形成されるようになる。またECU60は、時刻T5で点火リタードを終了させる(ステップS59)。なお、時刻T5の直前の時点で、点火リタードによるトルク低減は自ずと極小に至っている。以上説明した図14のステップS47又は図15のステップS59を終えたら、処理は図13の「リターン」、つまり図12のステップS11に戻り、同様な処理が繰り返される。
 [変形例]
 以上、本発明の実施形態を説明したが、本発明はこれに限定されるものではなく、例えば次のような変形実施形態を採ることができる。
 (1)上記実施形態では、車両の例としてFF駆動車からなる車両100を例示した。本発明に係るエンジンの制御方法及び車両システムは、FR駆動車、4輪駆動車、さらにはバッテリー又はキャパシターから供給される電力により駆動されるモータとエンジンとを駆動源とするハイブリッド車両にも適用することができる。
 (2)上記実施形態では、第1空燃比モード(λ>1)と第2空燃比モード(λ=1)との間のモード切換の要求が有る場合(図12のステップS15でNOの場合)には、車両姿勢制御のためのトルク低減制御を禁止する例を示した。例えば第1空燃比モードにおいて形成される混合気の空燃比範囲がλ=1に近く、燃焼が不安定になる懸念が少ない場合には、ステップS15の判定を省き、車両姿勢制御のためのトルク低減制御を常に実行させるようにしても良い。
 (3)或いは、モード切換の要求が有る場合に車両姿勢制御のためのトルク低減制御を禁止するのではなく、車両姿勢制御が実行されている場合には、上記モード切換の実行を一時的に禁止させるようにしても良い。
 (4)上記実施形態では、火花点火制御圧縮着火燃焼時(図10(A)の例)、又は第1空燃比モードの火花点火制御圧縮着火燃焼時(図10(B)及び図12~図15の例)には、車両姿勢制御のためのトルク低減を、点火リタードではなく燃料の減量制御に完全に切り換えるリタード抑制制御の例を示した。このような点火リタードの禁止に代えて、車両姿勢制御のために必要なトルク低減の一部を点火リタード(点火リタードの程度を制限する制御)に担わせ、残部を燃料の減量制御に担わせるようなリタード抑制制御を採用しても良い。
 図18は、リタード抑制制御の変形例を示す表形式の図である。図18のチャート(a)は、SI燃焼モードにおける総燃料噴射量と、点火時期を示している。SI燃焼では、総燃料噴射量はf0~f11の量であり、点火時期は、「トルク低減無し」の場合はクランク角CA21、「トルク低減有り」の場合はCA21よりも遅角したクランク角CA23としている。チャート(b)は、火花点火制御圧縮着火燃焼モードであって、そのうちのチャート(b1)は「トルク低減無し」、チャート(b2)が「トルク低減有り」であって点火リタードを禁止するリタード抑制制御の例である。チャート(b1)に比べてチャート(b2)の火花点火制御圧縮着火燃焼では、総燃料噴射量がf13からf11まで減量されている。一方、両者の点火時期は同じであり、点火リタードは行われていない。これらチャート(b1)、(b2)は、先に図16に基づき説明した火花点火制御圧縮着火燃焼の第1モード71A、71Bに相当する。
 これに対し、チャート(b3)の火花点火制御圧縮着火燃焼は、リタード抑制制御の変形例を示している。当該火花点火制御圧縮着火燃焼における総燃料噴射量f12は、チャート(b1)の火花点火制御圧縮着火燃焼(トルク低減無し)のf13よりは少ないが、チャート(b2)の火花点火制御圧縮着火燃焼(トルク低減無し/点火リタード禁止)のf11よりは多い噴射量に設定されている。また、チャート(b3)の火花点火制御圧縮着火燃焼の点火時期のクランク角はCA22に設定されており、チャート(b1)、(b2)の火花点火制御圧縮着火燃焼の点火時期(CA21)よりは遅角しているが、チャート(a)のSI燃焼における「トルク低減有り」の点火時期(CA23)よりは進角している。このリタード抑制制御によれば、点火リタードの程度がクランク角CA23-CA22の分だけ抑制されるので、失火等の恐れを軽減することができる。また、十分に点火リタードさせない分を燃料噴射量の減量(f13-f12)で補うので、車両姿勢制御に必要なトルク低減を達成することができる。
 (5)さらなる変形例として、車両姿勢制御のために必要なトルク低減の一部を点火リタード(点火リタードの程度を制限する制御)に担わせる一方で、上記(4)の如き燃料の減量制御で残部を補填させないようにしても良い。すなわち、リタード抑制制御が実行された場合に、他の手段でトルク低減の補完を行わないようにしても良い。
 1 エンジン本体
 2 気筒
 15 インジェクタ(燃料噴射弁)
 16 点火プラグ
 60 ECU(制御器)
 61 燃焼制御部
 62 車両姿勢制御部
 63 判定部
 100 車両
 102 前輪102(操舵輪/駆動輪)
 107 アクセル
 SN10 アクセル開度センサ(運転状態センサ)
 SN11 操舵角センサ(舵角センサ)

Claims (6)

  1.  操舵輪を持つ車両に搭載されると共に前記車両の駆動輪に機械的に連結され、点火プラグを備えるエンジンを制御する方法であって、
     前記エンジンの運転状態に基づき、当該エンジンの気筒内の混合気の全てが前記点火プラグの生成した火炎の伝搬により燃焼する第1燃焼モードと、前記気筒内の混合気の少なくとも一部が自己着火により燃焼する第2燃焼モードとの間で前記エンジンの燃焼モードを選択する燃焼モード設定工程と、
     前記操舵輪の舵角に基づき、前記エンジンの発生トルクを低減させるトルク低減量を設定する低減トルク設定工程と、
     前記燃焼モード設定工程において前記第1燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、点火時期が遅角するように、前記点火プラグを制御するリタード制御を行うトルク低減工程と、
     前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、前記リタード制御の程度を抑制するリタード抑制制御を実行する抑制工程と、
    を有する、エンジンの制御方法。
  2.  請求項1に記載のエンジンの制御方法において、
     前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、上記エンジンの運転状態に基づき、前記混合気を理論空燃比よりもリーンとする第1空燃比モードと、理論空燃比若しくは当該理論空燃比よりもリッチとする第2空燃比モードとの間で空燃比モードを選択する空燃比モード設定工程を有し、
     前記抑制工程の前記リタード抑制制御は、前記空燃比モード設定工程において前記第1空燃比モードが選択されているときに実行される、エンジンの制御方法。
  3.  請求項1又は2に記載のエンジンの制御方法において、
     前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、上記エンジンの運転状態に基づき、前記混合気を理論空燃比よりもリーンとする第1空燃比モードと、理論空燃比若しくは当該理論空燃比よりもリッチとする第2空燃比モードとの間で空燃比モードを選択する空燃比モード設定工程を有し、
     前記トルク低減工程の前記リタード制御は、前記空燃比モード設定工程において前記第2空燃比モードが選択されているときに実行される、エンジンの制御方法。
  4.  請求項1~3のいずれか1項に記載のエンジンの制御方法において、
     前記リタード抑制制御が、前記点火プラグの点火時期の遅角を禁止するものである、エンジンの制御方法。
  5.  請求項1~3のいずれか1項に記載のエンジンの制御方法において、
     前記リタード抑制制御が、前記点火プラグの点火時期の遅角の程度を制限するものである、エンジンの制御方法。
  6.  操舵輪を持つ車両に搭載されると共に前記車両の駆動輪に機械的に連結され、点火プラグを備えるエンジンと、
     前記エンジンの運転状態を検出する運転状態センサと、
     前記操舵輪の舵角を検出する舵角センサと、
     制御器と、を有するエンジンシステムであって、
     前記制御器は、
      前記運転状態センサの検出結果に基づき、当該エンジンの気筒内の混合気の全てが前記点火プラグの生成した火炎の伝搬により燃焼する第1燃焼モードと、前記気筒内の混合気の少なくとも一部が自己着火により燃焼する第2燃焼モードとの間で前記エンジンの燃焼モードを選択し、
      前記舵角センサの検出結果に基づき、前記エンジンの発生トルクを低減させるトルク低減量を設定し、
      前記燃焼モード設定工程において前記第1燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、点火時期が遅角するように、前記点火プラグを制御するリタード制御を実行し、
     前記燃焼モード設定工程において前記第2燃焼モードが選択されているときに、前記低減トルク設定工程で設定されたトルク低減量に基づき、前記リタード制御の程度を抑制する制御を実行する、
    ように構成されるエンジンシステム。
PCT/JP2019/001859 2018-01-23 2019-01-22 エンジンの制御方法及びエンジンシステム WO2019146593A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/960,502 US11008930B2 (en) 2018-01-23 2019-01-22 Engine control method and engine system
DE112019000489.1T DE112019000489T5 (de) 2018-01-23 2019-01-22 Motorsteuerverfahren und Motorsystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018009078A JP7006303B2 (ja) 2018-01-23 2018-01-23 エンジンの制御方法及びエンジンシステム
JP2018-009078 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146593A1 true WO2019146593A1 (ja) 2019-08-01

Family

ID=67365954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001859 WO2019146593A1 (ja) 2018-01-23 2019-01-22 エンジンの制御方法及びエンジンシステム

Country Status (5)

Country Link
US (1) US11008930B2 (ja)
JP (1) JP7006303B2 (ja)
CN (1) CN110067687B (ja)
DE (1) DE112019000489T5 (ja)
WO (1) WO2019146593A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599361A1 (en) * 2018-07-26 2020-01-29 Mazda Motor Corporation Control system for compression ignition engine, method of controlling compression ignition engine, computer program product and compression ignition engine
EP3599362A1 (en) * 2018-07-26 2020-01-29 Mazda Motor Corporation Control system for compression ignition engine, method of controlling compression ignition engine and computer program product

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322746B2 (ja) * 2020-02-21 2023-08-08 トヨタ自動車株式会社 車両の回転数制御装置
KR20220131598A (ko) * 2021-03-22 2022-09-29 현대자동차주식회사 컴프레서 제어 장치 및 제어 방법
JP2023053508A (ja) * 2021-10-01 2023-04-13 マツダ株式会社 エンジンシステム、及びエンジンの制御方法
JP2023053507A (ja) * 2021-10-01 2023-04-13 マツダ株式会社 エンジンシステム、及びエンジンの制御方法
US12006884B1 (en) * 2023-03-02 2024-06-11 Hyundai Motor Company Split cycle waste heat method for combustion initiation in gasoline compression ignition engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258938A (ja) * 1990-01-30 1991-11-19 Mitsubishi Motors Corp 車両の旋回制御装置
JP2017115587A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 内燃機関の制御装置
JP6249084B1 (ja) * 2016-11-29 2017-12-20 マツダ株式会社 予混合圧縮着火式エンジン

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144931A (ja) 1983-02-07 1984-08-20 Advantest Corp 情報処理装置
US5036728A (en) * 1986-10-02 1991-08-06 Mazda Motor Corporation Engine control system for vehicle with automatic transmission
JP2001073775A (ja) 1999-08-30 2001-03-21 Nissan Motor Co Ltd 圧縮着火式内燃機関
JP4477249B2 (ja) * 2001-02-07 2010-06-09 本田技研工業株式会社 筒内噴射型内燃機関の制御装置
JP2006336511A (ja) * 2005-05-31 2006-12-14 Hitachi Ltd 内燃機関の制御装置
US7484498B2 (en) * 2006-03-31 2009-02-03 Mazda Motor Corporation Spark-ignition gasoline engine
JP4924353B2 (ja) * 2007-10-16 2012-04-25 株式会社豊田自動織機 予混合圧縮自着火機関
JP5087569B2 (ja) * 2009-02-23 2012-12-05 日立オートモティブシステムズ株式会社 圧縮自己着火式内燃機関の制御装置
JP4873038B2 (ja) * 2009-03-31 2012-02-08 マツダ株式会社 過給機付き直噴エンジン
JP5418032B2 (ja) * 2009-07-16 2014-02-19 マツダ株式会社 エンジンの制御方法および制御装置
US8428836B2 (en) * 2009-09-16 2013-04-23 GM Global Technology Operations LLC Driveline protection systems and methods using measured steering angle
KR101234645B1 (ko) * 2010-12-01 2013-02-19 기아자동차주식회사 드라이브 샤프트 보호장치 및 방법
US9038596B2 (en) * 2011-12-02 2015-05-26 Ford Global Technologies, Llc Method and system for pre-ignition control
JP5569545B2 (ja) * 2012-02-13 2014-08-13 株式会社デンソー エンジン制御装置
US9002623B2 (en) * 2012-08-02 2015-04-07 GM Global Technology Operations LLC Fully flexible exhaust valve actuator control systems and methods
JP6112304B2 (ja) 2013-10-31 2017-04-12 マツダ株式会社 車両用挙動制御装置
JP6296425B2 (ja) * 2016-02-15 2018-03-20 マツダ株式会社 ターボ過給機付きエンジンの制御装置
JP6270244B2 (ja) * 2016-03-03 2018-01-31 マツダ株式会社 エンジンの制御装置
US10422288B1 (en) * 2018-03-29 2019-09-24 Saudi Arabian Oil Company Adsorbent circulation for onboard octane on-demand and cetane on-demand
JP7137146B2 (ja) * 2019-01-28 2022-09-14 マツダ株式会社 エンジンの制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258938A (ja) * 1990-01-30 1991-11-19 Mitsubishi Motors Corp 車両の旋回制御装置
JP2017115587A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 内燃機関の制御装置
JP6249084B1 (ja) * 2016-11-29 2017-12-20 マツダ株式会社 予混合圧縮着火式エンジン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3599361A1 (en) * 2018-07-26 2020-01-29 Mazda Motor Corporation Control system for compression ignition engine, method of controlling compression ignition engine, computer program product and compression ignition engine
EP3599362A1 (en) * 2018-07-26 2020-01-29 Mazda Motor Corporation Control system for compression ignition engine, method of controlling compression ignition engine and computer program product

Also Published As

Publication number Publication date
JP2019127867A (ja) 2019-08-01
CN110067687A (zh) 2019-07-30
CN110067687B (zh) 2021-06-22
US20210062709A1 (en) 2021-03-04
JP7006303B2 (ja) 2022-01-24
DE112019000489T5 (de) 2020-10-22
US11008930B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2019146593A1 (ja) エンジンの制御方法及びエンジンシステム
JP6555322B2 (ja) 圧縮着火式エンジンの制御装置
JP7077768B2 (ja) 圧縮着火式エンジンの制御装置
JP7077769B2 (ja) 圧縮着火式エンジンの制御装置
WO2019146592A1 (ja) エンジンの制御方法及びエンジンシステム
JP7077771B2 (ja) 圧縮着火式エンジンの制御装置
JP7137146B2 (ja) エンジンの制御装置
JP7052536B2 (ja) 圧縮着火式エンジンの制御装置
JP7047581B2 (ja) 圧縮着火式エンジンの制御装置
JP7024586B2 (ja) 圧縮着火式エンジンの制御装置
JP7077770B2 (ja) 圧縮着火式エンジンの制御装置
JP7043960B2 (ja) 圧縮着火式エンジンの制御装置
JP7047580B2 (ja) 圧縮着火式エンジンの制御装置
JP7052535B2 (ja) 圧縮着火式エンジンの制御装置
JP2020176571A (ja) 圧縮着火式エンジンの制御装置
JP7024585B2 (ja) 圧縮着火式エンジンの制御装置
WO2019146462A1 (ja) エンジンの制御方法及びエンジンシステム
JP7043961B2 (ja) 圧縮着火式エンジンの制御装置
JP7024584B2 (ja) 圧縮着火式エンジンの制御装置
JP6935783B2 (ja) 圧縮着火式エンジンの制御装置
WO2019146463A1 (ja) エンジンの制御方法及びエンジンシステム
JP7239880B2 (ja) 車両システム
JP7088049B2 (ja) 圧縮着火式エンジンの制御装置
JP7239881B2 (ja) 車両システム
JP2020176595A (ja) エンジンの制御方法およびエンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743364

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19743364

Country of ref document: EP

Kind code of ref document: A1