WO2019146110A1 - Laser processing method - Google Patents

Laser processing method Download PDF

Info

Publication number
WO2019146110A1
WO2019146110A1 PCT/JP2018/002755 JP2018002755W WO2019146110A1 WO 2019146110 A1 WO2019146110 A1 WO 2019146110A1 JP 2018002755 W JP2018002755 W JP 2018002755W WO 2019146110 A1 WO2019146110 A1 WO 2019146110A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
laser
conformal
mask
processing
Prior art date
Application number
PCT/JP2018/002755
Other languages
French (fr)
Japanese (ja)
Inventor
幸利 工藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020207020844A priority Critical patent/KR102213648B1/en
Priority to JP2018528355A priority patent/JP6451903B1/en
Priority to CN201880087421.9A priority patent/CN111629857A/en
Priority to PCT/JP2018/002755 priority patent/WO2019146110A1/en
Priority to TW107147445A priority patent/TWI669180B/en
Publication of WO2019146110A1 publication Critical patent/WO2019146110A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/386Removing material by boring or cutting by boring of blind holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to a laser processing method for performing conformal processing.
  • Laser processing is an alternative to processing.
  • the laser processing method has been conventionally adopted as a method of forming a conduction hole for carrying an interlayer electrical connection of a printed wiring board.
  • the material of the circuit board newly adopted for the on-vehicle electronic device is characterized by using, as the insulating material, a composite material in which a resin is impregnated into a glass cloth having a high glass transition temperature.
  • the insulating layer thickness of the substrate used in the on-vehicle electronic device is generally 100 ⁇ m or more, and a CO 2 pulse laser with high light intensity is adopted as a light source in order to efficiently remove the insulating material in the through hole portion.
  • the present invention has been made to solve the above-described problems, and has an object of efficiently forming holes by suppressing the heat storage amount inside the insulating material.
  • the laser processing method is a laser processing method in which the number of holes to be formed is a plurality of conformal processings, which is a first mask constituting a plurality of conformal masks provided corresponding to the number of holes. Processing different from the first processing step of irradiating laser light to the region defined inside or outside and the first processing step of irradiating laser light to the inside or the outside of the mask different from the first mask constituting the conformal mask The process is repeated a plurality of times of processing steps for carrying out from the first processing step to the different processing steps, and the processing is completed while changing the position to which the laser light is applied every time the processing procedure is repeated a plurality of times.
  • the laser beam to be irradiated subsequently is to a certain degree at a position different from the generation position of the laser light absorbing material which has been decomposed and removed in advance. Since it is irradiated after the lapse of time, the laser light absorbing material diffuses with the lapse of time, the heat storage amount to one conformal mask is suppressed, and the radiation interval sufficient for cooling the glass cloth inside the insulating material to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently. .
  • FIG. 1 is a block diagram of a laser processing apparatus showing a first embodiment of the present invention.
  • the laser processing apparatus shown in FIG. 1 comprises a laser oscillator 2 for generating a laser beam 1 which is a pulse, an energy adjusting device 3 for adjusting the energy of the laser beam 1 and an optical scanning device 4 for deflecting the irradiation direction of the laser beam 1. And an f ⁇ lens 5 for condensing the laser light 1.
  • the workpiece 6 is placed on the movable table 9 so that the surface of the workpiece 6 coincides with the focal plane 7 of the f ⁇ lens 5 or the laser light 1 is irradiated out of focus.
  • the reference numeral 6 is disposed on a plane 8 translated from the focal plane 7 toward the movable table 9.
  • the control device 50 controls the laser operation of the laser oscillator and controls the light scanning device 4 and the moving table 9 in order to realize the processing method shown in the first embodiment of the present invention.
  • the energy adjustment device 3 adjusts the energy of the laser light 1 generated by the laser oscillator 2 to a value optimum for processing, and enters the light scanning device 4 that deflects the irradiation direction of the laser light 1.
  • the light scanning device 4 controlled by the control device 50 deflects the irradiation direction of the laser light 1 corresponding to the laser light irradiation position calculated in advance.
  • the laser beam 1 whose laser beam irradiation position is positioned by the light scanning device 4 is incident on the f ⁇ lens 5 and is irradiated on the workpiece 6.
  • FIG. 2 shows the irradiation position of the laser light 1 on the base material 10 on which the three conformal masks 30a to 30c are formed, which is the workpiece 6.
  • the conformal mask 30a taking the conformal mask 30a as an example, the surface of the substrate 10 is originally covered with the surface conductor layer 16, but the surface conductor layer on the inner side of the outer peripheral portion 11 of the conformal mask 30a. 16 is removed in advance in a separate process.
  • An outer peripheral portion 12 having a similar shape to the outer peripheral portion 11 of the conformal mask 30a is defined on the inner side of the conformal mask 30a as a laser light irradiation point 13 with the center of gravity of the conformal mask 30a as a region.
  • the laser beam irradiation points 13 are determined so as to equally divide the lengths. Alternatively, a radial equiangular line is extended from the center of gravity of the conformal mask 30a, and an outer peripheral portion 12 similar to the conformal mask 30a is defined as an area inside the conformal mask 30a, and an intersection point with the outer periphery of the outer peripheral portion 12 is determined. The irradiation point 13 may be used. When the conformal mask is circular, the center of gravity of the conformal mask is the center of the conformal mask.
  • an outer peripheral portion 12 having a similar shape to the outer peripheral portion 11 of the conformal mask 30a is defined on the inner side of the conformal mask 30a as a region starting from the center of gravity of the conformal mask 30a.
  • the outer peripheral portion 12 having a similar shape to the conformal mask 30a may be defined as a region, and the enlargement / reduction ratio of the outer peripheral portion 12 having a similar shape to the conformal mask 30a may be a value suitable for processing.
  • FIG. 3 is a cross-sectional view of each of the conformal masks 30a to 30c in FIG.
  • the base 10 is composed of a surface conductor layer 16, an insulating layer 17 and a back surface conductor layer 19. Inside the insulating layer 17, a glass cloth 18 which is a reinforcing material of the base material 10 is contained.
  • Reference numeral 14 denotes a laser absorbing material generated by being decomposed and removed by the laser light 1.
  • FIG. 4 is a view showing the order of laser beam irradiation in the case where a plurality of conformal masks exist on a substrate.
  • four or more positions where the laser light 1 is irradiated are determined in advance, and for example, positions where the eight laser light 1 is irradiated are determined for the conformal masks 30a to 30c. ing.
  • the N conformal masks when there are M laser light irradiation points in each conformal mask, there are M ⁇ N processing steps, and the m th of the n th conformal masks
  • the laser light irradiation position of is set to k (n, m).
  • the processing conditions at the time of irradiating the laser light 1 to the laser light irradiation position k (n, m) are the same.
  • the pulse irradiation number of the laser beam 1 is 1 pulse is demonstrated.
  • FIG. 4 there are a total of M ⁇ N, ie, 48 laser light irradiation positions k (n, m), 1 ⁇ n ⁇ 6, 1 ⁇ m ⁇ 8, and the laser light 1 is given in the following order: Irradiate.
  • first processing step first, laser light 1 is applied to k (1, 1) of the conformal mask 30a, which is the first mask, for one pulse.
  • the laser light 1 is irradiated with one pulse to k (2, 1) of the conformal mask 30b which is a second mask different from the first mask.
  • k (4, 1) and 5th processing process of conformal mask 30d which is a mask k (5, 1) and 6th processing process of conformal mask 30e which is the 5th mask different from the 1st mask,
  • One pulse is irradiated to k (6, 1) of the conformal mask 30 f which is a sixth mask different from the first mask.
  • the laser beam 1 is irradiated to one conformal mask, the laser beam 1 is most irradiated from the position where the laser beam 1 has been irradiated, each time the processing procedure for performing a series of processing steps from the first processing step to the sixth processing step is repeated.
  • the laser beam 1 is irradiated to the remote position and the non-irradiated position of the laser light 1.
  • 1 pulse of the laser light 1 is irradiated to k (1, 2) of the conformal mask 30 a as a second processing procedure.
  • the laser light 1 is applied to k (2, 2) of the conformal mask 30b for one pulse.
  • the laser beam 1 is set to k (3, 2) of the conformal mask 30c, k (4, 2) of the conformal mask 30d, k (5, 2) of the conformal mask 30e, k (5) of the conformal mask 30f. Irradiate one pulse to 6, 2).
  • the laser light 1 is applied to k (1, 3) of the conformal mask 30 a for one pulse.
  • the laser light 1 is irradiated to k (2, 3) of the conformal mask 30b for one pulse.
  • the laser light 1 is k (3, 3) of the conformal mask 30c, k (4, 3) of the conformal mask 30d, k (5, 3) of the conformal mask 30e, k (conformal mask 30f Irradiate one pulse to 6, 3).
  • the laser light 1 is applied to k (1, 4) of the conformal mask 30 a for one pulse.
  • the laser light 1 is irradiated to k (2, 4) of the conformal mask 30 b for one pulse.
  • the laser light 1 is k (3, 4) of the conformal mask 30c, k (4, 4) of the conformal mask 30d, k (5, 4) of the conformal mask 30e, k (c of the conformal mask 30f Irradiate one pulse to 6, 4).
  • laser light 1 is applied to k (1, 5) of the conformal mask 30a for one pulse.
  • the laser light 1 is applied to k (2, 5) of the conformal mask 30b for one pulse.
  • the laser light 1 is k (3, 5) of the conformal mask 30c, k (4, 5) of the conformal mask 30d, k (5, 5) of the conformal mask 30e, k (conformal mask 30f Irradiate one pulse to 6, 5).
  • the laser light 1 is applied to k (1, 6) of the conformal mask 30 a for one pulse.
  • the laser light 1 is applied to k (2, 6) of the conformal mask 30b for one pulse.
  • the laser light 1 is k (3, 6) of the conformal mask 30c, k (4, 6) of the conformal mask 30d, k (5, 6) of the conformal mask 30e, k (c of the conformal mask 30f Irradiate one pulse to 6, 6).
  • the laser light 1 is applied to k (1, 7) of the conformal mask 30 a for one pulse.
  • the laser light 1 is applied to k (2, 7) of the conformal mask 30b for one pulse.
  • the laser light 1 is k (3, 7) of the conformal mask 30c, k (4, 7) of the conformal mask 30d, k (5, 7) of the conformal mask 30e, k (c of the conformal mask 30f Irradiate one pulse to 6, 7).
  • laser light 1 is applied to k (1, 8) of the conformal mask 30a for one pulse.
  • the laser light 1 is applied to k (2, 8) of the conformal mask 30b for one pulse.
  • the laser light 1 is k (3, 8) of the conformal mask 30c, k (4, 8) of the conformal mask 30d, k (5, 8) of the conformal mask 30e, k (c of the conformal mask 30f 6. Apply 1 pulse to 6, 8) to complete the processing.
  • the mth laser beam irradiation of the nth conformal mask (1 ⁇ n ⁇ N) The point is irradiated with the laser light 1, that is, after the laser light irradiation position k (n, m) is irradiated with the laser light 1, the laser light irradiation point is sequentially repeated to the laser light irradiation position k (n + 1, m) The laser beam 1 is irradiated.
  • the nth conformal mask for emitting the laser beam 1 is the last Nth conformal mask and the mth laser beam irradiation point is not the last Mth laser beam irradiation point
  • the m-th laser light irradiation point is irradiated with the laser light 1, that is, after the laser light irradiation position k (N, m) is irradiated with the laser light 1, the laser light irradiation point Is returned to the first conformal mask, and moved to the laser light irradiation position k (1, m + 1) to irradiate the laser light 1.
  • the nth conformal mask for emitting the laser beam 1 is the last Nth conformal mask and the mth laser beam irradiation point is the last Mth laser beam irradiation point
  • the laser beam 1 is irradiated to the Mth laser beam irradiation point of the Nth conformal mask, that is, the laser beam 1 is irradiated to the laser beam irradiation position k (N, M), and then the processing is completed.
  • the laser light irradiation position k (N, M) is irradiated with the laser light 1
  • the laser light irradiation position k (1, 1) is returned again, and the same processing procedure is repeated multiple times to complete the processing.
  • the number of irradiation pulses of the laser light 1 is one pulse as an example, after irradiating the laser light 1 of one pulse to the laser light irradiation position k (n, m) of an arbitrary conformal mask, The laser beam 1 is irradiated to laser beam irradiation positions k (n + 1, m) belonging to different conformal masks.
  • the next laser light 1 belongs to the same conformal mask
  • the time interval until the laser beam irradiation position k (n, m + 1) is irradiated is a time interval during which the laser beam irradiation position belonging to the other N-1 conformal masks is irradiated while changing the position one pulse at a time Is the same as
  • the focused conformal mask is again irradiated with the laser light 1 after the time when one processing procedure is completed, but the laser light irradiation position is the laser light irradiation position irradiated in the previous processing procedure. Since the laser beam 1 is at a different position from that of the laser absorbing material 14 which is generated by decomposition and removal, the laser beam 1 is irradiated to a position different from the laser absorbing material 14 after a certain period of time. Therefore, the laser light absorbing material diffuses with the passage of time, the heat storage amount in one conformal mask is suppressed, and a sufficient irradiation interval can be secured until the glass cloth inside the insulating material is cooled to the glass transition temperature or less.
  • the same conformal mask was irradiated with the laser beam 1, so that it was affected by the heat storage due to the presence of the laser absorbing material 14 generated by the irradiation of the laser beam 1 irradiated earlier.
  • the laser beam absorbing material diffuses with the passage of time, Attenuation of the intensity of the laser beam 1 to be irradiated in the subsequent line and change in the intensity distribution are less likely to occur, and a good hole can be formed.
  • the irradiation position of the laser beam 1 is deflected by the light scanning device 4 controlled by the control device 50, or parallel movement of the workpiece 6 by driving the moving table 9, or deflection and moving table 9 by the light scanning device 4. It is positioned by both of the drive of. If it is within the scanning range of the light scanning device 4, the irradiation position of the laser light 1 may be changed only by the scanning of the light scanning device 4 in a state where the movable table 9 is stationary.
  • the laser light irradiation positions k (n, m) which are at the same relative position with respect to the center of gravity of each conformal mask, that is, m are divided into groups, and light is irradiated to the laser light irradiation position group where m is the same Positioning is performed by irradiating the laser light 1 only by deflection by the scanning device 4, and in the case of irradiation to the laser light irradiation position group at the relative position where m is different, the movement table 9 is driven by the difference of the coordinates between the groups. By moving the work material 6 in parallel, relative displacement may be given to the laser light irradiation position between the groups.
  • an optical scanning device 20 is additionally disposed at a position closer to the oscillator 2 than the installation position of the f ⁇ lens 5, A relative displacement may be given to the laser beam irradiation position by 20.
  • the laser beam to be irradiated following is at a position different from the generation position of the laser light absorbing material that has been decomposed and removed in advance, and after a certain amount of time has elapsed Because it is irradiated, the laser light absorbing material diffuses with the passage of time, the heat storage amount to one conformal mask is suppressed, and a sufficient irradiation interval is secured until the glass cloth inside the insulating material cools to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently.
  • the laser beam irradiation point is defined based on the center of gravity of the conformal mask as one outer peripheral part of the conformal mask and the outer peripheral part of the conformal mask is determined.
  • a plurality of outer peripheral portions similar in shape to the outer peripheral portion of the formal mask may be defined.
  • the center of gravity of the conformal mask is the center of the conformal mask.
  • FIG. 6 shows the irradiation position of the laser light 1 on the base material 10 on which two conformal masks 60a to 60b, which are the workpieces 6 showing the second embodiment of the present invention, are formed.
  • the conformal mask 60a will be described by way of example.
  • An inner peripheral portion of the conformal mask 60a is similar to the outer peripheral portion 61 of the conformal mask 60a based on the center of gravity of the conformal mask 60a.
  • 21 and the outer peripheral portion 22 are determined, and the laser beam irradiation point 62 is determined so as to equally divide the outer peripheral length of the outer peripheral portion 21 and the outer peripheral portion 22.
  • each of the N conformal masks there are P laser light irradiation points for the outer peripheral portion 21 and Q laser light irradiation points for the outer peripheral portion 22 in each conformal mask.
  • the p-th laser beam irradiation position for irradiating the outer peripheral portion 21 is a (n, p)
  • the q-th laser light irradiation position for irradiating the outer peripheral portion 22 is Let b (n, q).
  • the laser light irradiation position a (n, p) for irradiating the outer peripheral portion 21 and the laser light irradiation position b (n, q) for irradiating the outer peripheral portion 22 are described in the first embodiment without distinction.
  • the order may be determined in the same order as the laser light irradiation order.
  • four or more positions where the laser light 1 is irradiated are determined in advance, and when one conformal mask is irradiated with the laser light 1 every time one processing procedure is completed, The laser light 1 is irradiated to the position farthest from the irradiated position and at the non-irradiated position of the laser light 1.
  • the processing conditions at the time of irradiating the laser light 1 to the laser light irradiation positions a (n, p) and b (n, q) are all the same.
  • the laser beam to be irradiated following is at a position different from the generation position of the laser light absorbing material that has been decomposed and removed in advance, and after a certain amount of time has elapsed Because it is irradiated, the laser light absorbing material diffuses with the passage of time, the heat storage amount to one conformal mask is suppressed, and a sufficient irradiation interval is secured until the glass cloth inside the insulating material cools to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently.
  • Example 3 the processing conditions for irradiating the laser light 1 to the laser light irradiation positions a (n, p) and b (n, q) are all the same, but as shown in FIG. And at least one of parameters such as the pulse width of the laser beam 1 to be irradiated, beam intensity, the number of shots, and the distance between the surface of the substrate 10 and the focal plane 7 of the f ⁇ lens You may change the parameters.
  • the laser beam 1 precedes the outermost peripheral portion 21 of the outer peripheral portion similar to the outer peripheral portion of the conformal mask 60a from the center of gravity of the conformal mask 60a.
  • the inner peripheral portion 22 is irradiated with the laser light 1.
  • the outer peripheral portion precedes the inner peripheral portion 22.
  • the laser light 21 is irradiated under the same processing conditions as the laser light 1, the heat input may be excessive, and a melted portion may occur in the bottom surface conduction layer. Therefore, the laser beam 1 irradiated to the inner peripheral portion 22 can be formed with a low beam intensity to avoid melting and form a good hole.
  • the laser beam 1 is applied to the inner peripheral portion 22 in order to effectively remove the lower portion on the back surface conductor layer 19 side of the insulating layer 17.
  • the focal plane 7 of the f ⁇ lens 5 is lowered or the workpiece 6 is raised so that the laser light 1 is condensed more at the lower portion of the insulating layer 17 on the back surface conductor layer 19 side, In the lower part on the back surface conductor layer 19 side of the insulating layer 17, it is possible to perform hole formation in which the area for removing the insulator is enlarged.
  • the laser beam to be irradiated following is at a position different from the generation position of the laser light absorbing material that has been decomposed and removed in advance, and after a certain amount of time has elapsed Because it is irradiated, the laser light absorbing material diffuses with the passage of time, the heat storage amount to one conformal mask is suppressed, and a sufficient irradiation interval is secured until the glass cloth inside the insulating material cools to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laser Beam Processing (AREA)

Abstract

There is a problem in conventional laser processing methods in that when pulse laser light continuously irradiates an outer peripheral part, a large amount of heat accumulates in a single conformal mask and thus an insulating material is selectively decomposed and eliminated so that glass cloth protrusions may easily be produced. This laser processing method, designed to implement conformal processing in which a plurality of holes are formed, solves the problem stated above and has: a first processing step for radiating laser light 1 on a region defined on the inside or outside of a first mask 30a from among a plurality of conformal masks 30a - 30f provided in conformity with the number of holes; and processing steps, different from the first processing step, for radiating laser light 1 on the inside or outside of masks 30b - 30f, differing from the first mask 30a, from among the conformal masks 30a - 30f. A processing procedure in which the first processing step and the different processing steps are carried out is repeated multiple times and the laser light 1 irradiation position is varied each time said processing procedure is repeated, to complete the processing.

Description

レーザ加工方法Laser processing method
この発明は、コンフォーマル加工を行うレーザ加工方法に関する。 The present invention relates to a laser processing method for performing conformal processing.
近年、車載用電子機器等、冷熱環境・振動環境下での接続信頼性が要求される電子回路形成工程において、高密度実装が可能であることから、回路基板の穴あけ加工方法として、従来のドリル加工法からレーザ加工法に代替が進んでいる。レーザ加工法は、プリント配線板の層間電気接続を担う導通穴を形成する方法として、従来から採用されている。車載用電子機器に新規採用される回路基板の材料は、絶縁材として、ガラス転移温度の高いガラスクロスに樹脂を含侵させた複合材料を用いる特徴を有する。 In recent years, high density mounting is possible in electronic circuit formation processes such as automotive electronic devices that require connection reliability in cold and heat environments and vibration environments, so that a conventional drill can be used as a drilling method for circuit boards. Laser processing is an alternative to processing. The laser processing method has been conventionally adopted as a method of forming a conduction hole for carrying an interlayer electrical connection of a printed wiring board. The material of the circuit board newly adopted for the on-vehicle electronic device is characterized by using, as the insulating material, a composite material in which a resin is impregnated into a glass cloth having a high glass transition temperature.
一方、絶縁材の除去には、ガラス転移温度が高いほど高強度のレーザ光を照射する必要がある。車載用電子機器に用いられる基板の絶縁層厚さは、一般に100μm以上あり、貫通穴部分の絶縁材を効率的に除去するために、光強度の高いCO2パルスレーザが光源として採用されている。 On the other hand, to remove the insulating material, it is necessary to irradiate a laser beam with high intensity as the glass transition temperature is higher. The insulating layer thickness of the substrate used in the on-vehicle electronic device is generally 100 μm or more, and a CO 2 pulse laser with high light intensity is adopted as a light source in order to efficiently remove the insulating material in the through hole portion.
特開2011-110598号公報(第17頁、第1図)JP, 2011-110598, A (page 17 and figure 1)
従来では、レーザ走査装置を用いて、一つのコンフォーマルマスクの外周に沿ってパルスレーザを順次連続照射する加工方法が用いられているが、外周部分に連続してパルスレーザを照射すると、コンフォーマルマスクの外周部分では、先行して分解除去されプラズマ化したレーザ光吸収物質が、後行して照射されるレーザ光を吸収して、その場に滞留し、滞留近傍の絶縁材内部の蓄熱量が増加する。蓄熱量が増加すると、絶縁材内部のガラスクロスがガラス転移温度以下まで十分に冷却されず、その結果、ガラスクロスが十分に分解除去されず、ガラスクロスの突出が発生しやすい、穴底部へガラス玉が残留するという問題点がある。 Conventionally, a processing method in which a pulsed laser is sequentially and successively irradiated along the outer periphery of one conformal mask using a laser scanning device is used, but if the pulse laser is continuously irradiated to the outer peripheral portion, the conformal In the outer peripheral portion of the mask, the laser beam absorbing material which has been decomposed and removed in advance to form a plasma absorbs the laser beam to be irradiated following and is retained in place, and the heat storage amount inside the insulating material in the vicinity of retention. Will increase. When the heat storage amount is increased, the glass cloth inside the insulating material is not sufficiently cooled to below the glass transition temperature, and as a result, the glass cloth is not sufficiently decomposed and removed, and the glass cloth tends to be protruded. There is a problem that balls remain.
この発明は、上述のような問題を解決するためになされたもので、絶縁材内部の蓄熱量を抑制して効率良く穴を形成することを目的とする。 The present invention has been made to solve the above-described problems, and has an object of efficiently forming holes by suppressing the heat storage amount inside the insulating material.
この発明に係るレーザ加工方法においては、形成する穴数が複数のコンフォーマル加工を行うレーザ加工方法であって、穴数に対応して設けられた複数のコンフォーマルマスクを構成する第1マスクの内側又は外側に定めた領域にレーザ光を照射する第1加工工程と、コンフォーマルマスクを構成する第1マスクとは異なるマスクの内側又は外側にレーザ光を照射する第1加工工程とは異なる加工工程と、を有し、第1加工工程から異なる加工工程までを実施する加工手順を複数回繰り返すと共に、加工手順を複数回繰り返す毎にレーザ光を照射する位置を変えながら加工を完了する。 The laser processing method according to the present invention is a laser processing method in which the number of holes to be formed is a plurality of conformal processings, which is a first mask constituting a plurality of conformal masks provided corresponding to the number of holes. Processing different from the first processing step of irradiating laser light to the region defined inside or outside and the first processing step of irradiating laser light to the inside or the outside of the mask different from the first mask constituting the conformal mask The process is repeated a plurality of times of processing steps for carrying out from the first processing step to the different processing steps, and the processing is completed while changing the position to which the laser light is applied every time the processing procedure is repeated a plurality of times.
この発明は、任意のコンフォーマルマスク1穴に着目すると、後行して照射されるレーザ光は、先行して分解除去されプラズマ化したレーザ光吸収物質の発生位置とは異なる位置に、ある程度の時間経過後に照射されるため、レーザ光吸収物質が時間経過と共に拡散し、1つのコンフォーマルマスクへの蓄熱量が抑制され、絶縁材内部のガラスクロスがガラス転移温度以下まで冷却する十分な照射間隔を確保でき、その結果、ガラスクロスが十分に分解除去され、ガラスクロスの突出が発生せず、穴底部へのガラス玉の残留を抑制することができるので、効率良く穴を形成することができる。 According to the present invention, focusing on any conformal mask 1 hole, the laser beam to be irradiated subsequently is to a certain degree at a position different from the generation position of the laser light absorbing material which has been decomposed and removed in advance. Since it is irradiated after the lapse of time, the laser light absorbing material diffuses with the lapse of time, the heat storage amount to one conformal mask is suppressed, and the radiation interval sufficient for cooling the glass cloth inside the insulating material to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently. .
この発明の実施例1を示すレーザ加工装置の構成図である。It is a block diagram of the laser processing apparatus which shows Example 1 of this invention. この発明の実施例1を示すレーザ光の照射位置の図である。It is a figure of the irradiation position of the laser beam which shows Example 1 of this invention. この発明の実施例1を示す被加工材の表面に対し垂直に切断した断面図である。It is sectional drawing cut | disconnected perpendicularly | vertically with respect to the surface of the workpiece which shows Example 1 of this invention. この発明の実施例1を示すレーザ光照射順序の図である。It is a figure of the laser beam irradiation order which shows Example 1 of this invention. この発明の実施例1を示すレーザ加工装置の構成図である。It is a block diagram of the laser processing apparatus which shows Example 1 of this invention. この発明の実施例2を示すレーザ光の照射位置の図である。It is a figure of the irradiation position of the laser beam which shows Example 2 of this invention. この発明の実施例3を示すレーザ光の照射位置の図である。It is a figure of the irradiation position of the laser beam which shows Example 3 of this invention.
実施例1.
図1は、この発明の実施例1を示すレーザ加工装置の構成図である。図1に示すレーザ加工装置は、パルスであるレーザ光1を発生させるレーザ発振器2と、レーザ光1のエネルギーを調整するエネルギー調整装置3と、レーザ光1の照射方向を偏向させる光走査装置4と、レーザ光1を集光させるfθレンズ5から構成される。被加工材6は、移動テーブル9上に設置され、被加工材6の表面がfθレンズ5の焦点面7と一致する、もしくはレーザ光1が焦点から外れて照射されるように、被加工材6は焦点面7から移動テーブル9方向に平行移動させた面8に配置される。制御装置50はレーザ発振器のレーザ動作を制御すると共に、この発明の実施例1に示す加工方法を実現するために、光走査装置4と移動テーブル9を制御する。
Example 1
FIG. 1 is a block diagram of a laser processing apparatus showing a first embodiment of the present invention. The laser processing apparatus shown in FIG. 1 comprises a laser oscillator 2 for generating a laser beam 1 which is a pulse, an energy adjusting device 3 for adjusting the energy of the laser beam 1 and an optical scanning device 4 for deflecting the irradiation direction of the laser beam 1. And an fθ lens 5 for condensing the laser light 1. The workpiece 6 is placed on the movable table 9 so that the surface of the workpiece 6 coincides with the focal plane 7 of the fθ lens 5 or the laser light 1 is irradiated out of focus. The reference numeral 6 is disposed on a plane 8 translated from the focal plane 7 toward the movable table 9. The control device 50 controls the laser operation of the laser oscillator and controls the light scanning device 4 and the moving table 9 in order to realize the processing method shown in the first embodiment of the present invention.
レーザ発振器2にて生成されたレーザ光1は、エネルギー調整装置3により加工に最適な値にエネルギー調整され、レーザ光1の照射方向を偏向させる光走査装置4に入射する。制御装置50によって制御された光走査装置4は、予め算出されたレーザ光照射位置に対応して、レーザ光1の照射方向を偏向させる。光走査装置4によりレーザ光照射位置を位置決めされたレーザ光1は、fθレンズ5へ入射し、被加工材6へ照射される。 The energy adjustment device 3 adjusts the energy of the laser light 1 generated by the laser oscillator 2 to a value optimum for processing, and enters the light scanning device 4 that deflects the irradiation direction of the laser light 1. The light scanning device 4 controlled by the control device 50 deflects the irradiation direction of the laser light 1 corresponding to the laser light irradiation position calculated in advance. The laser beam 1 whose laser beam irradiation position is positioned by the light scanning device 4 is incident on the fθ lens 5 and is irradiated on the workpiece 6.
図2は、被加工材6である、3つのコンフォーマルマスク30a~30cが形成された基材10に対するレーザ光1の照射位置を示す。図2において、コンフォーマルマスク30aを例にして説明すると、基材10の表面は、元々は表面導体層16で覆われているが、コンフォーマルマスク30aの外周部11より内側部分の表面導体層16は、別工程にて予め除去されている。レーザ光照射点13として、コンフォーマルマスク30aの内側に、領域としてコンフォーマルマスク30aの重心を基点に、コンフォーマルマスク30aの外周部11と相似形状の外周部12を定め、外周部12の外周長を等分するように、レーザ光照射点13を決定する。もしくは、コンフォーマルマスク30aの重心から放射状の等角線を伸ばし、コンフォーマルマスク30aの内側に、領域としてコンフォーマルマスク30aと相似形状の外周部12を定め、外周部12の外周との交点を照射点13としても良い。コンフォーマルマスクが円形状の場合は、コンフォーマルマスクの重心はコンフォーマルマスクの中心となる。 FIG. 2 shows the irradiation position of the laser light 1 on the base material 10 on which the three conformal masks 30a to 30c are formed, which is the workpiece 6. Referring to FIG. 2, taking the conformal mask 30a as an example, the surface of the substrate 10 is originally covered with the surface conductor layer 16, but the surface conductor layer on the inner side of the outer peripheral portion 11 of the conformal mask 30a. 16 is removed in advance in a separate process. An outer peripheral portion 12 having a similar shape to the outer peripheral portion 11 of the conformal mask 30a is defined on the inner side of the conformal mask 30a as a laser light irradiation point 13 with the center of gravity of the conformal mask 30a as a region. The laser beam irradiation points 13 are determined so as to equally divide the lengths. Alternatively, a radial equiangular line is extended from the center of gravity of the conformal mask 30a, and an outer peripheral portion 12 similar to the conformal mask 30a is defined as an area inside the conformal mask 30a, and an intersection point with the outer periphery of the outer peripheral portion 12 is determined. The irradiation point 13 may be used. When the conformal mask is circular, the center of gravity of the conformal mask is the center of the conformal mask.
図2では、コンフォーマルマスク30aの内側に、領域としてコンフォーマルマスク30aの重心を基点に、コンフォーマルマスク30aの外周部11と相似形状の外周部12を定めたが、コンフォーマルマスク30aの外側に、領域としてコンフォーマルマスク30aと相似形状の外周部12を定めても良く、コンフォーマルマスク30aと相似形状の外周部12の拡大縮小率は、加工に適する値として良い。 In FIG. 2, an outer peripheral portion 12 having a similar shape to the outer peripheral portion 11 of the conformal mask 30a is defined on the inner side of the conformal mask 30a as a region starting from the center of gravity of the conformal mask 30a. Alternatively, the outer peripheral portion 12 having a similar shape to the conformal mask 30a may be defined as a region, and the enlargement / reduction ratio of the outer peripheral portion 12 having a similar shape to the conformal mask 30a may be a value suitable for processing.
図3は、図2においてコンフォーマルマスク30a~30cのそれぞれ重心を通り、被加工材6である基材10の表面に対し垂直に切断した断面図である。基材10は表面導体層16と、絶縁層17と、裏面導体層19で構成されている。絶縁層17の内部には、基材10の補強材であるガラスクロス18が内含されている。14は、レーザ光1により分解除去されて発生したレーザ吸収物質である。 FIG. 3 is a cross-sectional view of each of the conformal masks 30a to 30c in FIG. The base 10 is composed of a surface conductor layer 16, an insulating layer 17 and a back surface conductor layer 19. Inside the insulating layer 17, a glass cloth 18 which is a reinforcing material of the base material 10 is contained. Reference numeral 14 denotes a laser absorbing material generated by being decomposed and removed by the laser light 1.
図4は、基材に複数のコンフォーマルマスクが存在する場合のレーザ光照射順序を示した図である。1つのコンフォーマルマスクには、レーザ光1を照射する位置が予め4つ以上が定められており、例えば、コンフォーマルマスク30a~30cには、各々8つのレーザ光1を照射する位置が定められている。N個のコンフォーマルマスクにおいて、各コンフォーマルマスク中にM個のレーザ光照射点が存在する場合、M×N個の加工工程が存在し、第n番目のコンフォーマルマスクのうち、第m番目のレーザ光照射位置をk(n、m)とする。ここで、1≦n≦N、1≦m≦Mである。例えば、図4においては、コンフォーマルマスク30a~30fの数が6(N=6)、レーザ光照射点の数が8(M=8)となる。なお、レーザ光照射位置k(n、m)にレーザ光1を照射する際の加工条件は全て同じ条件とする。なお、図4では、レーザ光1のパルス照射数は1パルスの場合について説明する。 FIG. 4 is a view showing the order of laser beam irradiation in the case where a plurality of conformal masks exist on a substrate. For one conformal mask, four or more positions where the laser light 1 is irradiated are determined in advance, and for example, positions where the eight laser light 1 is irradiated are determined for the conformal masks 30a to 30c. ing. In the N conformal masks, when there are M laser light irradiation points in each conformal mask, there are M × N processing steps, and the m th of the n th conformal masks The laser light irradiation position of is set to k (n, m). Here, 1 ≦ n ≦ N and 1 ≦ m ≦ M. For example, in FIG. 4, the number of conformal masks 30a to 30f is 6 (N = 6), and the number of laser beam irradiation points is 8 (M = 8). The processing conditions at the time of irradiating the laser light 1 to the laser light irradiation position k (n, m) are the same. In addition, in FIG. 4, the case where the pulse irradiation number of the laser beam 1 is 1 pulse is demonstrated.
図4においては、合計でM×N個、すなわち48個のレーザ光照射位置k(n、m)、1≦n≦6、1≦m≦8が存在し、以下の順序でレーザ光1を照射する。 In FIG. 4, there are a total of M × N, ie, 48 laser light irradiation positions k (n, m), 1 ≦ n ≦ 6, 1 ≦ m ≦ 8, and the laser light 1 is given in the following order: Irradiate.
第1加工工程として、最初にレーザ光1を第1マスクであるコンフォーマルマスク30aのk(1、1)に1パルス照射する。次に、第2加工工程として、レーザ光1を第1マスクとは異なる第2マスクであるコンフォーマルマスク30bのk(2、1)に1パルス照射する。さらに順次、第3加工工程として、レーザ光1を第1マスクとは異なる第3マスクであるコンフォーマルマスク30cのk(3、1)、第4加工工程として、第1マスクとは異なる第4マスクであるコンフォーマルマスク30dのk(4、1)、第5加工工程として、第1マスクとは異なる第5マスクであるコンフォーマルマスク30eのk(5、1)、第6加工工程として、第1マスクとは異なる第6マスクであるコンフォーマルマスク30fのk(6、1)に1パルス照射していく。 In the first processing step, first, laser light 1 is applied to k (1, 1) of the conformal mask 30a, which is the first mask, for one pulse. Next, as a second processing step, the laser light 1 is irradiated with one pulse to k (2, 1) of the conformal mask 30b which is a second mask different from the first mask. Further, sequentially, as the third processing step, k (3, 1) of the conformal mask 30c which is the third mask different from the first mask as the third processing step; fourth, the fourth processing step different from the first mask; As k (4, 1) and 5th processing process of conformal mask 30d which is a mask, k (5, 1) and 6th processing process of conformal mask 30e which is the 5th mask different from the 1st mask, One pulse is irradiated to k (6, 1) of the conformal mask 30 f which is a sixth mask different from the first mask.
第1加工工程から第6加工工程までの一連の加工工程を実施する加工手順を繰り返す毎に、1つのコンフォーマルマスクにレーザ光1を照射する際は、レーザ光1を照射済の位置から最も離れた位置であり、かつレーザ光1の未照射位置に照射する。まず、コンフォーマルマスク30fのk(6、1)に1パルス照射後は、2回目の加工手順としてレーザ光1をコンフォーマルマスク30aのk(1、2)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、2)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、2)、コンフォーマルマスク30dのk(4、2)、コンフォーマルマスク30eのk(5、2)、コンフォーマルマスク30fのk(6、2)に1パルス照射していく。 Whenever the laser beam 1 is irradiated to one conformal mask, the laser beam 1 is most irradiated from the position where the laser beam 1 has been irradiated, each time the processing procedure for performing a series of processing steps from the first processing step to the sixth processing step is repeated. The laser beam 1 is irradiated to the remote position and the non-irradiated position of the laser light 1. First, after irradiating 1 pulse to k (6, 1) of the conformal mask 30 f, 1 pulse of the laser light 1 is irradiated to k (1, 2) of the conformal mask 30 a as a second processing procedure. Next, the laser light 1 is applied to k (2, 2) of the conformal mask 30b for one pulse. Further sequentially, the laser beam 1 is set to k (3, 2) of the conformal mask 30c, k (4, 2) of the conformal mask 30d, k (5, 2) of the conformal mask 30e, k (5) of the conformal mask 30f. Irradiate one pulse to 6, 2).
次に、3回目の加工手順として、レーザ光1をコンフォーマルマスク30aのk(1、3)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、3)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、3)、コンフォーマルマスク30dのk(4、3)、コンフォーマルマスク30eのk(5、3)、コンフォーマルマスク30fのk(6、3)に1パルス照射していく。 Next, as a third processing procedure, the laser light 1 is applied to k (1, 3) of the conformal mask 30 a for one pulse. Next, the laser light 1 is irradiated to k (2, 3) of the conformal mask 30b for one pulse. Further sequentially, the laser light 1 is k (3, 3) of the conformal mask 30c, k (4, 3) of the conformal mask 30d, k (5, 3) of the conformal mask 30e, k (conformal mask 30f Irradiate one pulse to 6, 3).
次に、4回目の加工手順として、レーザ光1をコンフォーマルマスク30aのk(1、4)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、4)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、4)、コンフォーマルマスク30dのk(4、4)、コンフォーマルマスク30eのk(5、4)、コンフォーマルマスク30fのk(6、4)に1パルス照射していく。 Next, as a fourth processing procedure, the laser light 1 is applied to k (1, 4) of the conformal mask 30 a for one pulse. Next, the laser light 1 is irradiated to k (2, 4) of the conformal mask 30 b for one pulse. Further sequentially, the laser light 1 is k (3, 4) of the conformal mask 30c, k (4, 4) of the conformal mask 30d, k (5, 4) of the conformal mask 30e, k (c of the conformal mask 30f Irradiate one pulse to 6, 4).
次に、5回目の加工手順として、レーザ光1をコンフォーマルマスク30aのk(1、5)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、5)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、5)、コンフォーマルマスク30dのk(4、5)、コンフォーマルマスク30eのk(5、5)、コンフォーマルマスク30fのk(6、5)に1パルス照射していく。 Next, as a fifth processing procedure, laser light 1 is applied to k (1, 5) of the conformal mask 30a for one pulse. Next, the laser light 1 is applied to k (2, 5) of the conformal mask 30b for one pulse. Further sequentially, the laser light 1 is k (3, 5) of the conformal mask 30c, k (4, 5) of the conformal mask 30d, k (5, 5) of the conformal mask 30e, k (conformal mask 30f Irradiate one pulse to 6, 5).
次に、6回目の加工手順として、レーザ光1をコンフォーマルマスク30aのk(1、6)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、6)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、6)、コンフォーマルマスク30dのk(4、6)、コンフォーマルマスク30eのk(5、6)、コンフォーマルマスク30fのk(6、6)に1パルス照射していく。 Next, as a sixth processing procedure, the laser light 1 is applied to k (1, 6) of the conformal mask 30 a for one pulse. Next, the laser light 1 is applied to k (2, 6) of the conformal mask 30b for one pulse. Further sequentially, the laser light 1 is k (3, 6) of the conformal mask 30c, k (4, 6) of the conformal mask 30d, k (5, 6) of the conformal mask 30e, k (c of the conformal mask 30f Irradiate one pulse to 6, 6).
次に、7回目の加工手順として、レーザ光1をコンフォーマルマスク30aのk(1、7)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、7)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、7)、コンフォーマルマスク30dのk(4、7)、コンフォーマルマスク30eのk(5、7)、コンフォーマルマスク30fのk(6、7)に1パルス照射していく。 Next, as a seventh processing procedure, the laser light 1 is applied to k (1, 7) of the conformal mask 30 a for one pulse. Next, the laser light 1 is applied to k (2, 7) of the conformal mask 30b for one pulse. Further sequentially, the laser light 1 is k (3, 7) of the conformal mask 30c, k (4, 7) of the conformal mask 30d, k (5, 7) of the conformal mask 30e, k (c of the conformal mask 30f Irradiate one pulse to 6, 7).
最後に、8回目の加工手順として、レーザ光1をコンフォーマルマスク30aのk(1、8)に1パルス照射する。次に、レーザ光1をコンフォーマルマスク30bのk(2、8)に1パルス照射する。さらに順次、レーザ光1をコンフォーマルマスク30cのk(3、8)、コンフォーマルマスク30dのk(4、8)、コンフォーマルマスク30eのk(5、8)、コンフォーマルマスク30fのk(6、8)に1パルス照射していき、加工を完了する。 Finally, as an eighth processing procedure, laser light 1 is applied to k (1, 8) of the conformal mask 30a for one pulse. Next, the laser light 1 is applied to k (2, 8) of the conformal mask 30b for one pulse. Further sequentially, the laser light 1 is k (3, 8) of the conformal mask 30c, k (4, 8) of the conformal mask 30d, k (5, 8) of the conformal mask 30e, k (c of the conformal mask 30f 6. Apply 1 pulse to 6, 8) to complete the processing.
コンフォーマルマスクの数がN個、各コンフォーマルマスク中にM個のレーザ光照射点が存在する一般の場合の加工工程を次に説明する。 The processing steps in the general case where the number of conformal masks is N and the number of laser light irradiation points is in each conformal mask will be described next.
レーザ光1を照射する第n番目のコンフォーマルマスクが最後の第N番目のコンフォーマルマスクではない場合、第n番目のコンフォーマルマスク(1≦n<N)のうち第m番目のレーザ光照射点にレーザ光1を照射、すなわち、レーザ光照射位置k(n、m)にレーザ光1を照射後、レーザ光照射点をレーザ光照射位置k(n+1、m)に順次加工工程を繰り返してレーザ光1を照射する。 When the nth conformal mask that emits the laser beam 1 is not the last Nth conformal mask, the mth laser beam irradiation of the nth conformal mask (1 ≦ n <N) The point is irradiated with the laser light 1, that is, after the laser light irradiation position k (n, m) is irradiated with the laser light 1, the laser light irradiation point is sequentially repeated to the laser light irradiation position k (n + 1, m) The laser beam 1 is irradiated.
レーザ光1を照射する第n番目のコンフォーマルマスクが最後の第N番目のコンフォーマルマスクであり、かつ、第m番目のレーザ光照射点が最後の第M番目のレーザ光照射点ではない場合、第N番目のコンフォーマルマスクのうち、第m番目のレーザ光照射点にレーザ光1を照射、すなわち、レーザ光照射位置k(N、m)にレーザ光1を照射後、レーザ光照射点を第1番目のコンフォーマルマスクに戻ると共に、レーザ光照射位置k(1、m+1)に移動させてレーザ光1を照射する。レーザ光照射位置k(N、m)からレーザ光照射位置k(1、m+1)に移動する場合、すなわち、同一のコンフォーマルマスク内での照射順序は、蓄熱の影響が最小となるように対角位置を逐次選択することが望ましい。 The case where the nth conformal mask for emitting the laser beam 1 is the last Nth conformal mask and the mth laser beam irradiation point is not the last Mth laser beam irradiation point Of the N-th conformal mask, the m-th laser light irradiation point is irradiated with the laser light 1, that is, after the laser light irradiation position k (N, m) is irradiated with the laser light 1, the laser light irradiation point Is returned to the first conformal mask, and moved to the laser light irradiation position k (1, m + 1) to irradiate the laser light 1. When moving from the laser light irradiation position k (N, m) to the laser light irradiation position k (1, m + 1), that is, the irradiation order in the same conformal mask is paired so as to minimize the influence of heat storage. It is desirable to select angular positions sequentially.
レーザ光1を照射する第n番目のコンフォーマルマスクが最後の第N番目のコンフォーマルマスクであり、かつ、第m番目のレーザ光照射点が最後の第M番目のレーザ光照射点である場合、第N番目のコンフォーマルマスクの第M番目のレーザ光照射点にレーザ光1を照射、すなわち、レーザ光照射位置k(N、M)にレーザ光1を照射後、加工を完了する。あるいは、レーザ光照射位置k(N、M)にレーザ光1を照射後、再び、レーザ光照射位置k(1、1)に戻り、同一の加工手順を複数回繰り返し、加工を完了する。 In the case where the nth conformal mask for emitting the laser beam 1 is the last Nth conformal mask and the mth laser beam irradiation point is the last Mth laser beam irradiation point The laser beam 1 is irradiated to the Mth laser beam irradiation point of the Nth conformal mask, that is, the laser beam 1 is irradiated to the laser beam irradiation position k (N, M), and then the processing is completed. Alternatively, after the laser light irradiation position k (N, M) is irradiated with the laser light 1, the laser light irradiation position k (1, 1) is returned again, and the same processing procedure is repeated multiple times to complete the processing.
レーザ光1の照射パルス数が1パルスを例にして説明すると、任意のコンフォーマルマスクのレーザ光照射位置k(n、m)に1パルスのレーザ光1を照射した後、後行するパルスのレーザ光1は、異なるコンフォーマルマスクに属するレーザ光照射位置k(n+1、m)に照射される。また、あるコンフォーマルマスクに着目すれば、着目したコンフォーマルマスクに属するレーザ光照射位置k(n、m)へレーザ光1が照射された後、次のレーザ光1が同じコンフォーマルマスクに属するレーザ光照射位置k(n、m+1)に照射されるまでの時間間隔は、他のN-1個のコンフォーマルマスクに属するレーザ光照射位置に1パルスずつ位置を変えて照射していく時間間隔と同じである。 When the number of irradiation pulses of the laser light 1 is one pulse as an example, after irradiating the laser light 1 of one pulse to the laser light irradiation position k (n, m) of an arbitrary conformal mask, The laser beam 1 is irradiated to laser beam irradiation positions k (n + 1, m) belonging to different conformal masks. Moreover, if attention is paid to a certain conformal mask, after the laser light 1 is irradiated to the laser light irradiation position k (n, m) belonging to the focused conformal mask, the next laser light 1 belongs to the same conformal mask The time interval until the laser beam irradiation position k (n, m + 1) is irradiated is a time interval during which the laser beam irradiation position belonging to the other N-1 conformal masks is irradiated while changing the position one pulse at a time Is the same as
着目したコンフォーマルマスクは、一つの加工手順が完了する時間を経過した後に、再度レーザ光1の照射を受けるが、そのレーザ光照射位置は、前の加工手順の時に照射されたレーザ光照射位置とは異なる位置であるため、後行するレーザ光1は、分解除去されて発生したレーザ吸収物質14と異なる位置に、ある程度の時間経過後に照射されることになる。このため、レーザ光吸収物質が時間経過と共に拡散し、1つのコンフォーマルマスクへの蓄熱量が抑制され、絶縁材内部のガラスクロスがガラス転移温度以下まで冷却するまで十分な照射間隔を確保できる。 The focused conformal mask is again irradiated with the laser light 1 after the time when one processing procedure is completed, but the laser light irradiation position is the laser light irradiation position irradiated in the previous processing procedure. Since the laser beam 1 is at a different position from that of the laser absorbing material 14 which is generated by decomposition and removal, the laser beam 1 is irradiated to a position different from the laser absorbing material 14 after a certain period of time. Therefore, the laser light absorbing material diffuses with the passage of time, the heat storage amount in one conformal mask is suppressed, and a sufficient irradiation interval can be secured until the glass cloth inside the insulating material is cooled to the glass transition temperature or less.
また、従来では同じコンフォーマルマスクにレーザ光1を照射するため、先行で照射したレーザ光1の照射により発生するレーザ吸収物質14の存在により蓄熱の影響を受けていたが、この発明の実施例1では、後行するレーザ光1は、分解除去されて発生したレーザ吸収物質14と異なる位置に、ある程度の時間経過後に照射されることになるので、レーザ光吸収物質が時間経過と共に拡散し、後行にて照射するレーザ光1の強度の減衰や強度分布の変化も発生しにくくなり、良好な穴を形成することができる。 Also, in the past, the same conformal mask was irradiated with the laser beam 1, so that it was affected by the heat storage due to the presence of the laser absorbing material 14 generated by the irradiation of the laser beam 1 irradiated earlier. In 1, since the following laser beam 1 is irradiated to a position different from the laser absorbing material 14 generated after decomposition and removal after a certain period of time, the laser beam absorbing material diffuses with the passage of time, Attenuation of the intensity of the laser beam 1 to be irradiated in the subsequent line and change in the intensity distribution are less likely to occur, and a good hole can be formed.
レーザ光1の照射位置は、制御装置50によって制御された光走査装置4による偏向、あるいは、移動テーブル9の駆動による被加工材6の平行移動、あるいは、光走査装置4による偏向と移動テーブル9の駆動の両方により位置決めされる。光走査装置4の走査範囲内であれば、移動テーブル9を静止させた状態で、光走査装置4の走査のみでレーザ光1の照射位置を変化させても良い。 The irradiation position of the laser beam 1 is deflected by the light scanning device 4 controlled by the control device 50, or parallel movement of the workpiece 6 by driving the moving table 9, or deflection and moving table 9 by the light scanning device 4. It is positioned by both of the drive of. If it is within the scanning range of the light scanning device 4, the irradiation position of the laser light 1 may be changed only by the scanning of the light scanning device 4 in a state where the movable table 9 is stationary.
各コンフォーマルマスクの重心に対し同一の相対位置にある、すなわち、mが同じレーザ光照射位置k(n、m)をグループに分け、mが同じレーザ光照射位置グループへの照射においては、光走査装置4による偏向のみにてレーザ光1を照射する位置決めを行い、mが異なる相対位置にあるレーザ光照射位置グループへの照射の際は、グループ間の座標の差分だけ移動テーブル9を駆動させて、被加工材6を平行移動させることで、グループ間のレーザ光照射位置に相対的変位を与えても良い。 The laser light irradiation positions k (n, m) which are at the same relative position with respect to the center of gravity of each conformal mask, that is, m are divided into groups, and light is irradiated to the laser light irradiation position group where m is the same Positioning is performed by irradiating the laser light 1 only by deflection by the scanning device 4, and in the case of irradiation to the laser light irradiation position group at the relative position where m is different, the movement table 9 is driven by the difference of the coordinates between the groups. By moving the work material 6 in parallel, relative displacement may be given to the laser light irradiation position between the groups.
移動テーブル9の駆動により被加工材6を平行移動させる代替として、図5に示すように、fθレンズ5の設置位置よりも発振器2側の位置に光走査装置20を追加配置し、光走査装置20により、レーザ光照射位置に相対的変位を与えても良い。 As an alternative to moving the workpiece 6 in parallel by driving the moving table 9, as shown in FIG. 5, an optical scanning device 20 is additionally disposed at a position closer to the oscillator 2 than the installation position of the fθ lens 5, A relative displacement may be given to the laser beam irradiation position by 20.
実施例1では、レーザ光照射位置k(n、m)のそれぞれの位置に対して、1パルス照射する場合にについて説明したが、複数のパルス数を連続照射し、穴形成を進展させても良い。 In the first embodiment, the case where one pulse irradiation is performed to each position of the laser light irradiation position k (n, m) has been described, but even if a plurality of pulse numbers are continuously irradiated and the hole formation is advanced good.
このように、任意のコンフォーマルマスクに着目すると、後行して照射されるレーザ光は、先行して分解除去されプラズマ化したレーザ光吸収物質の発生位置と異なる位置に、ある程度の時間経過後に照射されるため、レーザ光吸収物質が時間経過と共に拡散し、1つのコンフォーマルマスクへの蓄熱量が抑制され、絶縁材内部のガラスクロスがガラス転移温度以下まで冷却するまで十分な照射間隔を確保でき、その結果、ガラスクロスが十分に分解除去され、ガラスクロスの突出が発生せず、穴底部へのガラス玉の残留を抑制することができるので、効率良く穴を形成することができる。 In this way, focusing on any conformal mask, the laser beam to be irradiated following is at a position different from the generation position of the laser light absorbing material that has been decomposed and removed in advance, and after a certain amount of time has elapsed Because it is irradiated, the laser light absorbing material diffuses with the passage of time, the heat storage amount to one conformal mask is suppressed, and a sufficient irradiation interval is secured until the glass cloth inside the insulating material cools to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently.
実施例2.
実施例1では、レーザ光照射点をコンフォーマルマスクの重心を基点にコンフォーマルマスクの外周部と相似形状の外周部を1個定めた場合について説明したが、コンフォーマルマスクの重心を基点にコンフォーマルマスクの外周部と相似形状の外周部を複数個定めても良い。コンフォーマルマスクが円形状の場合は、コンフォーマルマスクの重心はコンフォーマルマスクの中心となる。
Example 2
In the first embodiment, the laser beam irradiation point is defined based on the center of gravity of the conformal mask as one outer peripheral part of the conformal mask and the outer peripheral part of the conformal mask is determined. A plurality of outer peripheral portions similar in shape to the outer peripheral portion of the formal mask may be defined. When the conformal mask is circular, the center of gravity of the conformal mask is the center of the conformal mask.
図6は、この発明の実施例2を示す被加工材6である2つのコンフォーマルマスク60a~60bが形成された基材10に対するレーザ光1の照射位置を示す。この発明の実施例2では、コンフォーマルマスク60aを例にして説明すると、コンフォーマルマスク60aの内側にコンフォーマルマスク60aの重心を基点に、コンフォーマルマスク60aの外周部61と相似形状の外周部21と外周部22を定め、外周部21と外周部22の外周長を等分するようにレーザ光照射点62を決定する。N個のコンフォーマルマスクにおいて、各コンフォーマルマスク中に、外周部21に対してはP個のレーザ光照射点が存在し、外周部22に対してはQ個のレーザ光照射点が存在する場合、第n番目のコンフォーマルマスクのうち、外周部21に照射する第p番目のレーザ光照射位置をa(n、p)とし、外周部22に照射する第q番目のレーザ光照射位置をb(n、q)とする。ここで、1≦n≦N、1≦p≦P、1≦q≦Qである。 FIG. 6 shows the irradiation position of the laser light 1 on the base material 10 on which two conformal masks 60a to 60b, which are the workpieces 6 showing the second embodiment of the present invention, are formed. In the second embodiment of the present invention, the conformal mask 60a will be described by way of example. An inner peripheral portion of the conformal mask 60a is similar to the outer peripheral portion 61 of the conformal mask 60a based on the center of gravity of the conformal mask 60a. 21 and the outer peripheral portion 22 are determined, and the laser beam irradiation point 62 is determined so as to equally divide the outer peripheral length of the outer peripheral portion 21 and the outer peripheral portion 22. In each of the N conformal masks, there are P laser light irradiation points for the outer peripheral portion 21 and Q laser light irradiation points for the outer peripheral portion 22 in each conformal mask. In this case, of the n-th conformal mask, the p-th laser beam irradiation position for irradiating the outer peripheral portion 21 is a (n, p), and the q-th laser light irradiation position for irradiating the outer peripheral portion 22 is Let b (n, q). Here, 1 ≦ n ≦ N, 1 ≦ p ≦ P, and 1 ≦ q ≦ Q.
加工順序について、外周部21に照射するレーザ光照射位置a(n、p)と、外周部22に照射するレーザ光照射位置b(n、q)は区別せずに、実施例1で説明したレーザ光照射順序と同様の順序で決定すれば良い。1つのコンフォーマルマスクには、レーザ光1を照射する位置は、予め4つ以上が定められており、一つの加工手順が完了する毎に1つのコンフォーマルマスクにレーザ光1を照射する際は、レーザ光1を照射済の位置から最も離れた位置で、かつ、レーザ光1の未照射位置に照射する。なお、レーザ光照射位置a(n、p)とb(n、q)にレーザ光1を照射する際の加工条件は全て同じとする。 Regarding the processing order, the laser light irradiation position a (n, p) for irradiating the outer peripheral portion 21 and the laser light irradiation position b (n, q) for irradiating the outer peripheral portion 22 are described in the first embodiment without distinction. The order may be determined in the same order as the laser light irradiation order. For one conformal mask, four or more positions where the laser light 1 is irradiated are determined in advance, and when one conformal mask is irradiated with the laser light 1 every time one processing procedure is completed, The laser light 1 is irradiated to the position farthest from the irradiated position and at the non-irradiated position of the laser light 1. The processing conditions at the time of irradiating the laser light 1 to the laser light irradiation positions a (n, p) and b (n, q) are all the same.
このように、任意のコンフォーマルマスクに着目すると、後行して照射されるレーザ光は、先行して分解除去されプラズマ化したレーザ光吸収物質の発生位置と異なる位置に、ある程度の時間経過後に照射されるため、レーザ光吸収物質が時間経過と共に拡散し、1つのコンフォーマルマスクへの蓄熱量が抑制され、絶縁材内部のガラスクロスがガラス転移温度以下まで冷却するまで十分な照射間隔を確保でき、その結果、ガラスクロスが十分に分解除去され、ガラスクロスの突出が発生せず、穴底部へのガラス玉の残留を抑制することができるので、効率良く穴を形成することができる。 In this way, focusing on any conformal mask, the laser beam to be irradiated following is at a position different from the generation position of the laser light absorbing material that has been decomposed and removed in advance, and after a certain amount of time has elapsed Because it is irradiated, the laser light absorbing material diffuses with the passage of time, the heat storage amount to one conformal mask is suppressed, and a sufficient irradiation interval is secured until the glass cloth inside the insulating material cools to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently.
実施例3.
実施例2では、レーザ光照射位置a(n、p)とb(n、q)にレーザ光1を照射する際の加工条件は全て同じである場合について説明したが、図7に示すように、レーザ光1を照射する外周部ごとに、照射するレーザ光1のパルス幅、ビーム強度、ショット数、基材10の表面とfθレンズ5の焦点面7の距離といったパラメータのうち、少なくとも1つのパラメータを変更しても良い。
Example 3
In the second embodiment, the processing conditions for irradiating the laser light 1 to the laser light irradiation positions a (n, p) and b (n, q) are all the same, but as shown in FIG. And at least one of parameters such as the pulse width of the laser beam 1 to be irradiated, beam intensity, the number of shots, and the distance between the surface of the substrate 10 and the focal plane 7 of the fθ lens You may change the parameters.
コンフォーマルマスク60aを例にして説明すると、コンフォーマルマスク60aの重心を基点に、コンフォーマルマスク60aの外周部と相似形状の外周部のうち、最も外側の外周部21に先行してレーザ光1を照射し、続いて、内側の外周部22にレーザ光1を照射する場合を考える。コンフォーマルマスク60aの重心部分は、先行して外周部21に照射するレーザ光1によって樹脂およびガラスクロスの大部分が除去されているため、内側の外周部22に対して、先行して外周部21に照射するレーザ光1と同一の加工条件にて照射すると、入熱が過多となり、底面導通層に溶融部分が発生する場合がある。そこで、内側の外周部22に照射するレーザ光1は、ビーム強度を低くして加工することで、溶融を回避して良好な穴形成を行うことができる。 Taking the conformal mask 60a as an example, the laser beam 1 precedes the outermost peripheral portion 21 of the outer peripheral portion similar to the outer peripheral portion of the conformal mask 60a from the center of gravity of the conformal mask 60a. Then, consider the case where the inner peripheral portion 22 is irradiated with the laser light 1. In the center of gravity of the conformal mask 60a, most of the resin and the glass cloth are removed by the laser beam 1 applied to the outer peripheral portion 21 in advance, so the outer peripheral portion precedes the inner peripheral portion 22. When the laser light 21 is irradiated under the same processing conditions as the laser light 1, the heat input may be excessive, and a melted portion may occur in the bottom surface conduction layer. Therefore, the laser beam 1 irradiated to the inner peripheral portion 22 can be formed with a low beam intensity to avoid melting and form a good hole.
また、コンフォーマルマスク内部の絶縁層17の厚みが、例えば、200μm以上と厚い場合、絶縁層17の裏面導体層19側下部を効果的に除去するため、内側の外周部22にレーザ光1を照射する場合は、絶縁層17の裏面導体層19側下部にて、レーザ光1がより集光するようにfθレンズ5の焦点面7を降下、あるいは、被加工材6を上昇させることで、絶縁層17の裏面導体層19側下部において、絶縁物除去面積を拡大した穴形成を行うことができる。 When the thickness of the insulating layer 17 inside the conformal mask is as thick as, for example, 200 μm or more, the laser beam 1 is applied to the inner peripheral portion 22 in order to effectively remove the lower portion on the back surface conductor layer 19 side of the insulating layer 17. In the case of irradiation, the focal plane 7 of the fθ lens 5 is lowered or the workpiece 6 is raised so that the laser light 1 is condensed more at the lower portion of the insulating layer 17 on the back surface conductor layer 19 side, In the lower part on the back surface conductor layer 19 side of the insulating layer 17, it is possible to perform hole formation in which the area for removing the insulator is enlarged.
このように、任意のコンフォーマルマスクに着目すると、後行して照射されるレーザ光は、先行して分解除去されプラズマ化したレーザ光吸収物質の発生位置と異なる位置に、ある程度の時間経過後に照射されるため、レーザ光吸収物質が時間経過と共に拡散し、1つのコンフォーマルマスクへの蓄熱量が抑制され、絶縁材内部のガラスクロスがガラス転移温度以下まで冷却するまで十分な照射間隔を確保でき、その結果、ガラスクロスが十分に分解除去され、ガラスクロスの突出が発生せず、穴底部へのガラス玉の残留を抑制することができるので、効率良く穴を形成することができる。 In this way, focusing on any conformal mask, the laser beam to be irradiated following is at a position different from the generation position of the laser light absorbing material that has been decomposed and removed in advance, and after a certain amount of time has elapsed Because it is irradiated, the laser light absorbing material diffuses with the passage of time, the heat storage amount to one conformal mask is suppressed, and a sufficient irradiation interval is secured until the glass cloth inside the insulating material cools to the glass transition temperature or less. As a result, the glass cloth is sufficiently decomposed and removed, and the projection of the glass cloth does not occur, and the retention of the glass ball at the bottom of the hole can be suppressed, so that the hole can be formed efficiently.
1 レーザ光、2 レーザ発振器、3 エネルギー調整装置、4、20 光走査装置、5 fθレンズ、6 被加工材、7 焦点面、8 平行移動させた面、9 移動テーブル、10 基材、11、12、21、22、61 外周部、13 レーザ光照射点、14 レーザ吸収物質、16 表面導体層、17 絶縁層、18 ガラスクロス、19 裏面導体層、30a~30f、50 制御装置、60a、60b コンフォーマルマスク。 Reference Signs List 1 laser light 2 laser oscillator 3 energy adjustment device 4 20 light scanning device 5 fθ lens 6 work material 7 focal plane 8 parallel moved plane 9 moving table 10 base 11 12, 21, 22, 61 outer peripheral portion, 13 laser light irradiation point, 14 laser absorbing material, 16 surface conductor layer, 17 insulating layer, 18 glass cloth, 19 back surface conductor layer, 30a to 30f, 50 control device, 60a, 60b Conformal mask.

Claims (8)

  1. 形成する穴数が複数のコンフォーマル加工を行うレーザ加工方法であって、前記穴数に対応して設けられた複数のコンフォーマルマスクを構成する第1マスクの内側又は外側に定めた領域にレーザ光を照射する第1加工工程と、前記コンフォーマルマスクを構成する前記第1マスクとは異なるマスクの内側又は外側に前記レーザ光を照射する前記第1加工工程とは異なる加工工程と、を有し、
    前記第1加工工程から前記異なる加工工程までを実施する加工手順を複数回繰り返すと共に、前記加工手順を複数回繰り返す毎に前記レーザ光を照射する位置を変えながら加工を完了することを特徴とするレーザ加工方法。
    A laser processing method for performing a plurality of conformal processings in which the number of holes to be formed is a laser, in a region defined inside or outside of a first mask constituting a plurality of conformal masks provided corresponding to the number of holes A first processing step for irradiating light, and a processing step different from the first processing step for irradiating the laser light to the inside or the outside of the mask different from the first mask constituting the conformal mask And
    The processing procedure for carrying out the first processing step to the different processing step is repeated a plurality of times, and the processing is completed while changing the position to which the laser light is applied every time the processing procedure is repeated a plurality of times. Laser processing method.
  2. 1つの前記コンフォーマルマスクに前記レーザ光を照射する位置は、予め4つ以上が定められていることを特徴とする請求項1に記載のレーザ加工方法。 The laser processing method according to claim 1, wherein four or more positions where the laser light is irradiated to one of the conformal masks are determined in advance.
  3. 前記加工手順を複数回繰り返す毎に1つの前記コンフォーマルマスクに前記レーザ光を照射する際は、前記レーザ光を照射済の位置から最も離れた位置で、かつ前記レーザ光の未照射位置に照射することを特徴とする請求項2に記載のレーザ加工方法。 When irradiating the laser beam to one of the conformal masks every time the processing procedure is repeated a plurality of times, the laser beam is irradiated at the position farthest from the position where the laser light has been irradiated and at the unirradiated position of the laser light The laser processing method according to claim 2, further comprising:
  4. 前記領域は前記コンフォーマルマスクの重心を基点に前記コンフォーマルマスクと相似形状であり、該相似形状の外周部に前記レーザ光を照射することを特徴とする請求項3に記載のレーザ加工方法。 4. The laser processing method according to claim 3, wherein the area has a shape similar to that of the conformal mask based on the center of gravity of the conformal mask, and the outer peripheral portion of the shape has the same shape.
  5. 前記レーザ光を照射する位置は前記外周部の外周長を複数個に等分した位置であることを特徴とする請求項4に記載のレーザ加工方法。 5. The laser processing method according to claim 4, wherein the laser beam irradiation position is a position obtained by equally dividing the outer peripheral length of the outer peripheral portion into a plurality of portions.
  6. 前記領域は前記コンフォーマルマスクの内側又は外側に複数個定めたことを特徴とする請求項3に記載のレーザ加工方法。 4. The laser processing method according to claim 3, wherein a plurality of the regions are defined inside or outside the conformal mask.
  7. 前記レーザ光はパルス光であることを特徴とする請求項1乃至請求項6のいずれかに記載のレーザ加工方法。 The laser processing method according to any one of claims 1 to 6, wherein the laser light is pulsed light.
  8. 前記パルス光の数は1パルスであることを特徴とする請求項7に記載のレーザ加工方法。 8. The laser processing method according to claim 7, wherein the number of pulsed lights is one pulse.
PCT/JP2018/002755 2018-01-29 2018-01-29 Laser processing method WO2019146110A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207020844A KR102213648B1 (en) 2018-01-29 2018-01-29 Laser processing method
JP2018528355A JP6451903B1 (en) 2018-01-29 2018-01-29 Laser processing method
CN201880087421.9A CN111629857A (en) 2018-01-29 2018-01-29 Laser processing method
PCT/JP2018/002755 WO2019146110A1 (en) 2018-01-29 2018-01-29 Laser processing method
TW107147445A TWI669180B (en) 2018-01-29 2018-12-27 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/002755 WO2019146110A1 (en) 2018-01-29 2018-01-29 Laser processing method

Publications (1)

Publication Number Publication Date
WO2019146110A1 true WO2019146110A1 (en) 2019-08-01

Family

ID=65020443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002755 WO2019146110A1 (en) 2018-01-29 2018-01-29 Laser processing method

Country Status (5)

Country Link
JP (1) JP6451903B1 (en)
KR (1) KR102213648B1 (en)
CN (1) CN111629857A (en)
TW (1) TWI669180B (en)
WO (1) WO2019146110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543320B2 (en) 2019-06-10 2024-09-02 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser processing apparatus, method of operating same, and method of using same to process a workpiece - Patents.com

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113001414B (en) * 2021-03-11 2022-06-07 泰极微技术(苏州)有限公司 Processing method of glass surface microstructure
CN114985905B (en) * 2022-04-24 2023-07-21 广州德擎光学科技有限公司 Laser processing control method, device and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285177A (en) * 2002-03-26 2003-10-07 Sumitomo Heavy Ind Ltd Laser beam machining method and machining device
JP2011103374A (en) * 2009-11-11 2011-05-26 Panasonic Corp Laser processing apparatus
JP5162977B2 (en) * 2006-07-28 2013-03-13 日立化成株式会社 Laser drilling method
JP2014034045A (en) * 2012-08-08 2014-02-24 Nippon Sharyo Seizo Kaisha Ltd Laser-processed substrate manufacturing method, and laser processing apparatus
DE102014220526A1 (en) * 2014-10-09 2016-04-14 Siemens Aktiengesellschaft Method for producing through holes by means of laser radiation in a wall of a component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW521310B (en) * 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
JP2004243404A (en) * 2003-02-17 2004-09-02 Internatl Business Mach Corp <Ibm> Hole forming method, and hole forming device
JP2011110598A (en) 2009-11-30 2011-06-09 Panasonic Corp Laser machining method and laser machining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003285177A (en) * 2002-03-26 2003-10-07 Sumitomo Heavy Ind Ltd Laser beam machining method and machining device
JP5162977B2 (en) * 2006-07-28 2013-03-13 日立化成株式会社 Laser drilling method
JP2011103374A (en) * 2009-11-11 2011-05-26 Panasonic Corp Laser processing apparatus
JP2014034045A (en) * 2012-08-08 2014-02-24 Nippon Sharyo Seizo Kaisha Ltd Laser-processed substrate manufacturing method, and laser processing apparatus
DE102014220526A1 (en) * 2014-10-09 2016-04-14 Siemens Aktiengesellschaft Method for producing through holes by means of laser radiation in a wall of a component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543320B2 (en) 2019-06-10 2024-09-02 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser processing apparatus, method of operating same, and method of using same to process a workpiece - Patents.com

Also Published As

Publication number Publication date
KR20200093067A (en) 2020-08-04
KR102213648B1 (en) 2021-02-08
TW201932221A (en) 2019-08-16
JP6451903B1 (en) 2019-01-16
JPWO2019146110A1 (en) 2020-02-06
TWI669180B (en) 2019-08-21
CN111629857A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
US8729426B2 (en) Method and apparatus for laser machining relatively narrow and relatively wide structures
JP3691221B2 (en) Laser processing method
CN101198218B (en) Laser machining method for printed circuit board
WO2019146110A1 (en) Laser processing method
US20220241901A1 (en) Manufacturing method of processed resin substrate and laser processing apparatus
EP1082883B1 (en) Apparatus and method for drilling microvia holes in electrical circuit interconnection packages
JP5183826B2 (en) Laser processing method and laser processing machine
JP2020109820A (en) Laser processing method for printed circuit board and laser processing machine for printed circuit board
JP7404043B2 (en) Laser processing equipment and laser processing method
Zheng et al. Investigation of laser via formation technology for the manufacturing of high density substrates
JP5286485B2 (en) Laser processing apparatus and laser processing method
JPWO2019038860A1 (en) Laser processing method and laser processing apparatus
JPH11277272A (en) Laser beam drill and laser beam drilling method
JP2002263873A (en) Method and device for laser machining
JP3720034B2 (en) Drilling method
JPH11245071A (en) Laser processing device
JP2004322106A (en) Laser beam machining method, and laser beam machining apparatus
JP2000202664A (en) Lasder drilling method
JP2006202876A (en) Laser beam machining method
JP4163319B2 (en) Desmear method and desmear apparatus for laser drilling apparatus
JPH05208288A (en) Laser beam machining method and device therefor
JP3338927B2 (en) Desmear apparatus and desmear method for laser drilling machine
JP2002273590A (en) Method and apparatus for laser beam machining
Yu et al. Laser drilling for improving circuit board manufacturing
JP3137074B2 (en) Laser processing equipment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528355

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902095

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207020844

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902095

Country of ref document: EP

Kind code of ref document: A1