WO2019143148A1 - 막 전극 접합체의 제조방법 및 적층체 - Google Patents

막 전극 접합체의 제조방법 및 적층체 Download PDF

Info

Publication number
WO2019143148A1
WO2019143148A1 PCT/KR2019/000700 KR2019000700W WO2019143148A1 WO 2019143148 A1 WO2019143148 A1 WO 2019143148A1 KR 2019000700 W KR2019000700 W KR 2019000700W WO 2019143148 A1 WO2019143148 A1 WO 2019143148A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
electrode
adhesive
film
electrolyte membrane
Prior art date
Application number
PCT/KR2019/000700
Other languages
English (en)
French (fr)
Inventor
김도영
김운조
박주용
김지헌
양재춘
윤성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980004461.7A priority Critical patent/CN111095641B/zh
Priority to EP19741480.8A priority patent/EP3667790A4/en
Priority to US16/644,667 priority patent/US11424467B2/en
Priority to JP2020513540A priority patent/JP6989180B2/ja
Publication of WO2019143148A1 publication Critical patent/WO2019143148A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a membrane electrode assembly and a laminate. Specifically, the present specification relates to a method for producing a membrane electrode assembly including an anode, a cathode, and an electrolyte membrane provided between the anode and the cathode, and a laminate which is a laminated intermediate during the production of the membrane electrode assembly.
  • fuel cells are highly efficient, do not emit pollutants such as NO x and SO x , are rich in fuel to be used, and related research is actively proceeding.
  • FIG. 1 schematically shows an electricity generating principle of a fuel cell.
  • the most basic unit for generating electricity is a membrane electrode assembly (MEA), which includes an electrolyte membrane M and an electrolyte membrane M, And an anode (A) and a cathode (C) formed on both sides of the cathode (C).
  • MEA membrane electrode assembly
  • FIG. 1 Showing the electricity generating principle of a fuel cell 1, an anode (A) in the hydrogen or methanol, butane and the oxidation of the fuel (F) of the hydrocarbon and so on up the hydrogen ions (H +) and electron (e -), such as And the hydrogen ions move to the cathode C through the electrolyte membrane M.
  • the hydrogen ions transferred through the electrolyte membrane (M) react with the oxidizing agent (O) such as oxygen, and water (W) is produced. This reaction causes electrons to migrate to the external circuit.
  • O oxidizing agent
  • the present specification is intended to provide a method for producing a membrane electrode assembly and a laminate. Specifically, this specification intends to provide a method for manufacturing a membrane electrode assembly including an anode, a cathode, and an electrolyte membrane provided between the anode and the cathode, and a laminate which is a laminated intermediate during the production of the membrane electrode assembly.
  • the present invention relates to a method for producing an electrode film, comprising: preparing an electrode film by forming an electrode catalyst layer on a substrate; A first adhesive layer is formed on one surface of a protective film having an opening corresponding to an electrode active area of the electrode catalyst layer and a second adhesive layer having a smaller adhesive force than the adhesive force of the first adhesive layer is formed on the other surface, Producing; Attaching the surface of the edge seal film on which the first adhesive layer is formed so as to face the surface of the electrode film on which the electrode catalyst layer is formed, thereby producing a laminate; Preparing an electrolyte membrane; Disposing the laminate on at least one side of the electrolyte membrane such that the side on which the second adhesive layer is formed faces the electrolyte membrane; Thermally bonding the laminate to a temperature of 50 ⁇ ⁇ or higher; And a step of removing the substrate and the first adhesive layer.
  • the disclosure also relates to a substrate; An electrode catalyst layer provided on the substrate; A protective film provided on the substrate and having an opening corresponding to an electrode active area of the electrode catalyst layer; A first adhesive layer provided between the substrate and the protective film and maintained or lowered in adhesive strength at a temperature of 50 ⁇ or higher; And a second adhesive layer formed on the protective film and having an increased adhesive strength at a temperature of 50 ° C or higher, wherein the adhesive force of the first adhesive layer is smaller than the adhesive force of the second adhesive layer.
  • the manufacturing method of the membrane electrode assembly of the present invention can improve the convenience and accuracy of the process by manufacturing a laminated body in which the edge seal film and the electrode film are laminated, and by using the laminated body, the membrane electrode assembly can be manufactured only by one thermocompression process.
  • 1 is a schematic view showing an electricity generation principle of a fuel cell.
  • FIG. 2 is a schematic view showing the structure of a membrane electrode assembly for a fuel cell.
  • FIG 3 is a schematic view showing one embodiment of a fuel cell.
  • FIG. 4 is a schematic view of an electrode film according to the present invention.
  • FIG. 5 is a schematic illustration of an edge seal film according to the present disclosure.
  • FIG. 6 is a schematic view showing a method of manufacturing a membrane electrode assembly according to the present invention.
  • FIG. 7 is a view showing an electrolyte membrane of a membrane electrode assembly manufactured according to Example 1.
  • FIG. 8 is a view showing an electrolyte membrane of a membrane electrode assembly manufactured according to Comparative Example 1. Fig.
  • FIG. 9 is a view showing an electrolyte membrane of a membrane electrode assembly manufactured according to Comparative Example 2.
  • the present invention relates to a method for producing an electrode film, comprising: preparing an electrode film by forming an electrode catalyst layer on a substrate; A first adhesive layer is formed on one surface of a protective film having an opening corresponding to an electrode active area of the electrode catalyst layer and a second adhesive layer having a smaller adhesive force than the adhesive force of the first adhesive layer is formed on the other surface, Producing; Attaching the surface of the edge seal film on which the first adhesive layer is formed so as to face the surface of the electrode film on which the electrode catalyst layer is formed, thereby producing a laminate; Preparing an electrolyte membrane; Disposing the laminate on at least one side of the electrolyte membrane such that the side on which the second adhesive layer is formed faces the electrolyte membrane; Thermally bonding the laminate to a temperature of 50 ⁇ ⁇ or higher; And a step of removing the substrate and the first adhesive layer. 6 shows a method of manufacturing a membrane electrode assembly according to the present invention.
  • a manufacturing method of a membrane electrode assembly according to the present invention includes a step of forming an electrode catalyst layer on a substrate to produce an electrode film.
  • Fig. 4 shows an electrode film on which an electrode catalyst layer is formed.
  • the material of the base material is not particularly limited as long as it can support the electrode catalyst layer to be formed on the base material and has good releasability upon transfer to the electrolyte membrane.
  • the base material used in the art can be employed, It may be a sheet of polytetrafluoroethylene (PTFE).
  • the electrode catalyst layer may be formed using an electrode composition.
  • the electrode catalyst layer may be formed by a conventional method known in the art. For example, spray coating, tape casting, screen printing, blade coating A method such as comma coating or die coating may be used.
  • the electrode composition may be variously applied depending on the type and application of the electrode catalyst layer, but the electrode composition may include a catalyst, a polymer ionomer, and a solvent.
  • the kind of the catalyst is not particularly limited, and a catalyst used in the art can be employed.
  • the catalyst may comprise metal particles selected from the group consisting of platinum, ruthenium, osmium, platinum-ruthenium alloys, platinum-osmium alloys, platinum-palladium alloys and platinum-transition metal alloys.
  • the metal particles may be solid particles, hollow metal particles, bowl-shaped particles, core-shell particles, and the like.
  • the catalysts can be used not only by themselves but also by being supported on a carbon-based carrier.
  • Examples of the carbon-based material include graphite, carbon black, acetylene black, denka black, cacao black, activated carbon, mesoporous carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, , Carbon nanowires, fullerene (C 60 ), and super P black (Super P black).
  • a sulfonated polymer such as a Nafion ionomer or a sulfonated polytrifluorostyrene may be used.
  • the solvent is not particularly limited, and solvents used in the art can be employed.
  • the solvent may be any one or a mixture of two or more selected from the group consisting of water, butanol, isopropanol, methanol, ethanol, n-propanol, n-butyl acetate, glycerol and ethylene glycol .
  • the method for manufacturing a membrane electrode assembly according to the present invention is characterized in that a first adhesive layer is formed on one surface of a protective film having an opening corresponding to an electrode active area of the electrode catalyst layer and the adhesive strength of the first adhesive layer is smaller than that of the first adhesive layer And forming a second adhesive layer to produce an edge seal film.
  • the opening corresponding to the electrode active area of the electrode catalyst layer means an opening having the same size as the electrode active area of the electrode catalyst layer or an opening having a size of 90% to 110% of the electrode active area of the electrode catalyst layer.
  • the step of preparing the edge seal film comprises: preparing a protective film having an opening corresponding to an electrode active area of the electrode catalyst layer; Forming a first adhesive layer on one side of the protective film, the adhesive strength of which is maintained or lowered at a temperature of 50 ⁇ or more; And forming a second adhesive layer on the other surface of the protective film to increase the adhesive strength at a temperature of 50 ° C or more.
  • the protective film of the edge seal film may be selected from among PET, PE, PP, PEN and PVC.
  • the first adhesive layer is partially or wholly provided on one surface of the protective film having an opening corresponding to the electrode active area of the electrode catalyst layer, and the adhesive strength may be lowered at a temperature of 50 ° C or higher.
  • a part or all of the first adhesive layer may be bonded to the substrate of the electrode film so that the edge seal film is fixed to the electrode film.
  • the adhesive force of the first adhesive layer may be 30 gf / in to 500 gf / in at room temperature. At this time, the adhesive force is a value measured by a Peel test.
  • the first adhesive layer has an adhesive strength at room temperature. As the temperature increases, the adhesive strength gradually decreases, and the adhesive strength may drop below 100 gf / in at a temperature of 50 ° C or higher. The lower the adhesive strength is, the better the release performance is. Therefore, the lower limit is not particularly limited, but it may be 10 gf / in or more, for example.
  • the second adhesive layer is provided on the other surface of the protective film having an opening corresponding to the electrode active area of the electrode catalyst layer, and the adhesive strength may increase at a temperature of 50 ° C or higher.
  • the second adhesive layer may be adhered to the electrolyte membrane to be described later so that the laminate is fixed to the electrolyte membrane.
  • the adhesive force of the second adhesive layer may be 20 gf / in at room temperature, and the adhesive force of the second adhesive layer may be 0 gf / in to 10 gf / in at room temperature.
  • the second adhesive layer has almost no adhesive force at room temperature. As the temperature rises, the adhesive strength becomes stronger, and the adhesive strength can be increased to 500 gf / in or more at a temperature of 50 ° C or higher. The higher the adhesive strength, the better the adhesion, so the upper limit is not particularly limited, but may be, for example, 3000 gf / in or less.
  • the adhesive strength of the second adhesive layer is 500 gf / in to 3000 gf / in at a temperature of 50 ⁇ or higher, specifically 500 gf / in to 2000 gf / in.
  • the upper limit of the adhesive strength of the second adhesive layer at room temperature and the adhesive strength at a temperature of 50 ° C or higher is 500 gf / in or more, and the larger the difference is, the better the adhesion.
  • the upper limit is not particularly limited. .
  • the adhesive force of the second adhesive layer starts to increase at a temperature of room temperature or higher, and the adhesive strength is increased and maintained at a temperature of a certain range. Specifically, the adhesive strength is maintained at a temperature of 50 ° C or higher and 200 ° C or lower.
  • Fig. 5 shows the structure of the edge seal film.
  • the method of manufacturing a membrane electrode assembly according to the present invention may include the step of attaching the edge seal film to the electrode film by the first adhesive layer to produce a laminate.
  • the step of fabricating the laminate may be a step of attaching the edge seal film to the electrode film with the adhesive force of the first adhesive layer without applying heat.
  • the step of fabricating the laminate may be a step of pressing the electrode film and the edge seal film by the first adhesive layer under a pressure of 10 kgf / cm 2 to 50 kgf / cm 2.
  • the opening of the protective film may be located in a region corresponding to the electrode active area of the electrode film so that the electrode active area is not covered by the protective film.
  • the method of manufacturing a membrane electrode assembly according to the present invention may include preparing an electrolyte membrane.
  • an electrolyte membrane produced from the outside may be obtained or a direct electrolyte membrane may be prepared.
  • the electrolyte membrane includes a polymer containing an ion conductive polymer and may be a reinforced membrane prepared by impregnating an ion conductive polymer in porous support pores or a pure membrane prepared by curing an ion conductive polymer without a porous support.
  • the ion conductive polymer is not particularly limited as long as it is a substance capable of ion exchange, and those generally used in the art can be used.
  • the ion conductive polymer may be a hydrocarbon-based polymer, a partially fluorinated polymer, or a fluorinated polymer.
  • the hydrocarbon-based polymer may be a hydrocarbon-based sulfonated polymer having no fluorine group.
  • the fluorine-based polymer may be a sulfonated polymer saturated with a fluorine group
  • the partial fluorine-based polymer may be saturated with a fluorine group But may be a sulfonated polymer.
  • the ion conductive polymer may be at least one selected from the group consisting of a perfluorosulfonic acid polymer, a hydrocarbon polymer, an aromatic sulfon polymer, an aromatic ketone polymer, a polybenzimidazole polymer, a polystyrene polymer, a polyester polymer, a polyimide polymer, Based polymers, polyether sulfone type polymers, polyphenylene sulfide type polymers, polyphenylene oxide type polymers, polyphosphazene type polymers, polyethylene naphthalate type polymers, polyester type polymers, doped polybenzimidazole type polymers, And may be one or two or more polymers selected from the group consisting of polyether ketone polymers, polyether ether ketone polymers, polyphenylquinoxaline polymers, polysulfone polymers, polypyrrole polymers and polyaniline polymers.
  • the polymer may be sulfonated and may be a single copolymer, an alternating copolymer, a random copolymer, a block copolymer, a multi-block copolymer or a graft copolymer, but is not limited thereto.
  • the ion conductive polymer may be a polymer having cation conductivity, for example, a perfluorosulfonic acid-based polymer, a sulfonated polyetheretherketone (sPEEK), a sulfonated polyetherketone (sPEK) Polyvinylidene fluoride-graft-poly (styrene sulfonic acid), PVDF-g-PSSA) and sulfonated poly (fluorenyl ether ketone )). ≪ / RTI >
  • the method of manufacturing a membrane electrode assembly according to the present invention may include disposing the laminate on at least one surface of the electrolyte membrane so that the surface on which the second adhesive layer is formed faces the electrolyte membrane.
  • the method of manufacturing a membrane electrode assembly according to the present invention may include a step of thermally bonding the laminate to a temperature of 50 ° C or higher.
  • thermo bonding step heat and pressure of 50 ⁇ ⁇ or more are applied to the entire surface of the laminate and the electrolyte membrane so that the electrode catalyst layer of the laminate is transferred to the electrolyte membrane and the adhesive strength of the second adhesive layer of the laminate is increased by heat, An edge seal film may be attached to the electrolyte membrane.
  • the adhesive strength of the first adhesive layer whose adhesive strength is lowered at a temperature of 50 ⁇ or higher may be deteriorated.
  • the method of manufacturing a membrane electrode assembly according to the present invention may include removing the substrate and the first adhesive layer.
  • the disclosure includes: a substrate; An electrode catalyst layer; Protective film; A first adhesive layer; And a second adhesive layer.
  • the electrode catalyst layer may be provided on the substrate.
  • the electrode catalyst layer may be used as at least one of a catalyst layer of the anode and a catalyst layer of the cathode.
  • the oxidation reaction of the fuel occurs in the catalyst layer of the anode, and the reduction reaction of the oxidant occurs in the catalyst layer of the cathode.
  • the thickness of the electrode catalyst layer may be 3 ⁇ ⁇ or more and 30 ⁇ ⁇ or less, respectively. At this time, the thickness of the catalyst layer of the anode and the thickness of the catalyst layer of the cathode may be the same or different from each other.
  • the protective film may have an opening corresponding to an electrode active area of the electrode catalyst layer.
  • the electrode active area of the electrode catalyst layer means an area that is not covered with the protective film but can be exposed to a fuel or an oxidant to serve as an electrode.
  • the electrode active area of the electrode catalyst layer may be the entire area of the electrode catalyst layer or may be narrower than the entire area of the electrode catalyst layer.
  • the size of the opening of the protective film is the same as the size of the electrode catalyst layer.
  • the size of the opening of the protective film is smaller than the size of the electrode catalyst layer so that a part of the area of the electrode catalyst layer can be covered with the protective film.
  • the first adhesive layer is provided between the substrate and the protective film, and the adhesive strength is lowered at a temperature of 50 ⁇ or higher.
  • the first adhesive layer may include at least one of nitrile rubber, silicone, acrylic, epoxy, and phenol.
  • the second adhesive layer is provided on the protective film, and the adhesive strength is increased at a temperature of 50 ° C or higher.
  • the second adhesive layer may include at least one of nitrile rubber, silicone, acrylic, epoxy, and phenolic components, and may include an epoxy or phenolic component having a thermosetting property.
  • the stack according to the present invention may further include an electrolyte membrane provided on the second adhesive layer.
  • the stack according to the present specification may include a first unit and a second unit.
  • the laminate according to the present invention may further include a first unit, a second unit, and an electrolyte membrane provided between the first unit and the second unit.
  • first unit and the second unit each comprise the substrate; An electrode catalyst layer provided on the substrate; A protective film provided on the substrate and having an opening corresponding to an electrode active area of the electrode catalyst layer; A first adhesive layer disposed between the substrate and the protective film and having a reduced adhesive strength at a temperature of 50 ⁇ or higher; And a second adhesive layer provided on the protective film and having an increased adhesion at a temperature of 50 ° C or higher.
  • the laminate according to the present invention may further include an electrolyte membrane provided between the second adhesive layer of the first unit and the second adhesive layer of the second unit.
  • the present disclosure relates to an anode; Cathode; And an electrolyte membrane provided between the anode and the cathode, wherein the electrochemical cell includes a membrane electrode assembly manufactured by the method for producing a membrane electrode assembly.
  • the cathode refers to an electrode that receives electrons when discharged, and may be an anode (oxidation electrode) that is oxidized when charged to emit electrons.
  • the anode refers to an electrode which is oxidized when discharged to emit electrons, and may be a cathode (reduction electrode) that is reduced by receiving electrons when charged.
  • the electrochemical cell means a cell using a chemical reaction.
  • the type of the electrochemical cell is not particularly limited as long as the polymer electrolyte membrane is provided.
  • the electrochemical cell may be a fuel cell, a metal secondary battery, or a flow cell.
  • the present invention provides an electrochemical cell module comprising an electrochemical cell as a unit cell.
  • the electrochemical cell module may be formed by stacking a bipolar plate between unit cells according to one embodiment of the present application.
  • the battery module may be specifically used as a power source for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device.
  • This specification provides a membrane electrode assembly manufactured by the above-described method for producing a membrane electrode assembly.
  • the present specification provides a fuel cell including the membrane electrode assembly.
  • the membrane electrode assembly for a fuel cell includes an electrolyte membrane 10, a cathode 50 positioned opposite to the electrolyte membrane 10, And an anode 51 may be provided.
  • the cathode includes a cathode catalyst layer 20 and a cathode gas diffusion layer 40 sequentially from an electrolyte membrane 10.
  • the anode includes an anode catalyst layer 21 and an anode gas diffusion layer 41 successively from the electrolyte membrane 10, .
  • FIG. 3 schematically shows the structure of a fuel cell, which includes a stack 60, an oxidant supply unit 70, and a fuel supply unit 80.
  • the stack 60 includes one or more of the membrane electrode assemblies described above and includes a separator interposed therebetween when two or more membrane electrode assemblies are included.
  • the separator serves to prevent the membrane electrode assemblies from being electrically connected and to transfer the fuel and oxidant supplied from the outside to the membrane electrode assembly.
  • the oxidant supply part 70 serves to supply the oxidant to the stack 60.
  • oxygen is typically used, and oxygen or air can be injected into the oxidizing agent supplying portion 70 and used.
  • the fuel supply unit 80 serves to supply the fuel to the stack 60 and includes a fuel tank 81 for storing the fuel and a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 Lt; / RTI >
  • a fuel tank 81 for storing the fuel
  • a pump 82 for supplying the fuel stored in the fuel tank 81 to the stack 60 Lt; / RTI >
  • gas or liquid hydrogen or hydrocarbon fuel may be used.
  • hydrocarbon fuels include methanol, ethanol, propanol, butanol or natural gas.
  • Phenolic resin or the like was pressed at a pressure of about 10 kgf / cm < 2 > using an acrylic resin double-faced adhesive tape on the opposite side of the adhesive side of the heat sealable film to produce an edge seal film.
  • the thermally fusible film used was a PET material heat-sealable film of Dae-Hyun Estee, and the acrylic resin-based double-sided adhesive tape was a 4910 double-sided tape of 3M's acrylic adhesive layer.
  • the catalyst slurry was coated on a polytetrafluoroethylene (PTFE) sheet using an inkjet coater. At this time, the amount of coating was 0.4 mg / cm 2 Pt by weight of Pt after drying.
  • PTFE polytetrafluoroethylene
  • the electrode catalyst layer of the prepared electrode film was pressed against the first adhesive layer surface of the above-mentioned edge seal film at a pressure of 10 kgf / cm 2 for 1 to 2 seconds to form a laminate. Through the pressing, the first adhesive layer came into contact with the base material of the electrode catalyst layer.
  • the second adhesive layer and the electrolyte membrane were placed in contact with each other in the laminate and hot pressed at 130 DEG C and 120 kgf / cm < 2 > for 5 minutes to remove the base material adhered by the first adhesive layer and the first adhesive layer, To finally produce a membrane electrode assembly.
  • An electrode film was prepared in the same manner as in Example 1.
  • Example 2 The electrolyte membrane and the thermally fusible film used in Example 1 were placed and thermocompression bonded at 80 DEG C for 10 seconds. An electrode film was disposed on the prepared electrolyte membrane-thermally fused film assembly, and thermocompression was performed at 130 ⁇ and 120 kgf / cm 2 for 5 minutes to produce a membrane electrode assembly.
  • Example 1 The electrolyte membrane and the thermally fusible film used in Example 1 were placed and thermocompression bonded at 80 DEG C for 10 seconds.
  • the catalyst slurry of Example 1 was prepared on the prepared electrolyte membrane-heat-sealable film combination and then directly coated. At this time, the amount of coating was 0.4 mg / cm 2 Pt by weight of Pt after drying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 기재 상에 전극 촉매층을 형성하여 전극 필름을 제조하는 단계; 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 일면에 제1 점착층을 형성하고, 타면에 상기 제1 점착층의 점착력보다 점착력이 작은 제2 점착층을 형성하는 엣지씰 필름을 제조하는 단계; 상기 엣지씰 필름의 제1 점착층이 형성된 면이 상기 전극 필름의 전극 촉매층이 형성된 면과 마주하도록 부착하여 적층체를 제조하는 단계; 전해질막을 준비하는 단계; 상기 제2 점착층이 형성된 면이 상기 전해질막과 마주하도록 상기 전해질막의 적어도 일면 상에 상기 적층체를 배치하는 단계; 상기 적층체를 50℃ 이상의 온도로 열접합하는 단계; 및 상기 기재와 제1 접착층을 제거하는 단계를 포함하는 막 전극 접합체의 제조방법 및 적층체에 관한 것이다.

Description

막 전극 접합체의 제조방법 및 적층체
본 출원은 2018년 01월 22일에 한국 특허청에 제출된 한국 특허 출원 제10-2018-0007875호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 막 전극 접합체의 제조방법 및 적층체에 관한 것이다. 구체적으로, 본 명세서는 애노드, 캐소드 및 상기 애노드와 캐소드 사이에 구비된 전해질막을 포함하는 막 전극 접합체의 제조방법 및 상기 막 전극 접합체의 제조 중 적층된 중간체인 적층체에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 수 있는 에너지에 대한 필요성이 높아지고 있으며, 대체에너지의 하나로서 연료전지, 금속 이차 전지, 플로우 배터리 등에 대한 관심이 집중되고 있다.
이러한 대체에너지의 하나로서 연료전지는 고효율이고, NOx 및 SOx 등의 공해 물질을 배출하지 않으며 사용되는 연료가 풍부하여 관련 연구가 활발히 진행되고 있다.
도 1은 연료전지의 전기 발생 원리를 개략적으로 도시한 것으로, 연료전지에 있어서, 전기를 발생시키는 가장 기본적인 단위는 막 전극 접합체(MEA)인데, 이는 전해질막(M)과 이 전해질막(M)의 양면에 형성되는 애노드(A) 및 캐소드(C)로 구성된다. 연료전지의 전기 발생 원리를 나타낸 도 1을 참조하면, 애노드(A)에서는 수소 또는 메탄올, 부탄과 같은 탄화수소 등의 연료(F)의 산화 반응이 일어나 수소 이온(H+) 및 전자(e-)가 발생하고, 수소 이온은 전해질막(M)을 통해 캐소드(C)으로 이동한다. 캐소드(C)에서는 전해질막(M)을 통해 전달된 수소 이온과, 산소와 같은 산화제(O) 및 전자가 반응하여 물(W)이 생성된다. 이러한 반응에 의해 외부회로에 전자의 이동이 발생하게 된다.
본 명세서는 막 전극 접합체의 제조방법 및 적층체를 제공하고자 한다. 구체적으로, 본 명세서는 애노드, 캐소드 및 상기 애노드와 캐소드 사이에 구비된 전해질막을 포함하는 막 전극 접합체의 제조방법 및 상기 막 전극 접합체의 제조 중 적층된 중간체인 적층체를 제공하고자 한다.
본 명세서는 기재 상에 전극 촉매층을 형성하여 전극 필름을 제조하는 단계; 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 일면에 제1 점착층을 형성하고, 타면에 상기 제1 점착층의 점착력보다 점착력이 작은 제2 점착층을 형성하여 엣지씰 필름을 제조하는 단계; 상기 엣지씰 필름의 제1 점착층이 형성된 면이 상기 전극 필름의 전극 촉매층이 형성된 면과 마주하도록 부착하여 적층체를 제조하는 단계; 전해질막을 준비하는 단계; 상기 제2 점착층이 형성된 면이 상기 전해질막과 마주하도록 상기 전해질막의 적어도 일면 상에 상기 적층체를 배치하는 단계; 상기 적층체를 50℃ 이상의 온도로 열접합하는 단계; 및 상기 기재와 제1 점착층을 제거하는 단계를 포함하는 막 전극 접합체의 제조방법을 제공한다.
또한, 본 명세서는 기재; 상기 기재 상에 구비된 전극 촉매층; 상기 기재 상에 구비되고 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름; 상기 기재와 보호 필름 사이에 구비된 50℃ 이상의 온도에서 접착력이 유지 또는 저하되는 제1 점착층; 및 상기 보호 필름 상에 구비된 50℃ 이상의 온도에서 접착력이 증가하는 제2 점착층을 포함하고, 상기 제1 점착층의 접착력은 상기 제2 점착층의 접착력보다 작은 것인 적층체를 제공한다.
본 명세서의 막 전극 접합체의 제조방법은 엣지씰 필름과 전극 필름이 적층된 적층체를 먼저 제조함으로써, 이를 이용해 1회의 열압착 공정만으로 막 전극 접합체를 제조하여 공정의 편의성과 정확성을 높일 수 있다.
도 1은 연료전지의 전기 발생 원리를 나타내는 개략적인 도면이다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 나타낸 도면이다.
도 3은 연료전지의 일 실시예를 개략적으로 나타낸 도면이다.
도 4는 본 명세서에 따른 전극 필름을 개략적으로 나타낸 도면이다.
도 5는 본 명세서에 따른 엣지씰 필름을 개략적으로 나타낸 도면이다.
도 6은 본 명세서에 따른 막 전극 접합체의 제조방법을 개략적으로 나타낸 도면이다.
도 7은 실시예 1에 따라 제조된 막 전극 접합체의 전해질막을 나타낸 도면이다.
도 8은 비교예 1에 따라 제조된 막 전극 접합체의 전해질막을 나타낸 도면이다.
도 9는 비교예 2에 따라 제조된 막 전극 접합체의 전해질막을 나타낸 도면이다.
10: 전극 필름
11: 전극 촉매층
12: 기재
20: 엣지씰 필름
21: 제2 점착층
22: 보호 필름
23: 제1 점착층
30: 적층체
40, 100: 전해질막
50: 막 전극 접합체
60: 스택
70: 산화제 공급부
80: 연료 공급부
81: 연료 탱크
82: 펌프
200: 캐소드 촉매층
210: 애노드 촉매층
400: 캐소드 기체확산층
410: 애노드 기체확산층
500: 캐소드
510: 애노드
이하에서 본 명세서에 대하여 상세히 설명한다.
[막 전극 접합체의 제조방법]
본 명세서는 기재 상에 전극 촉매층을 형성하여 전극 필름을 제조하는 단계; 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 일면에 제1 점착층을 형성하고, 타면에 상기 제1 점착층의 점착력보다 점착력이 작은 제2 점착층을 형성하여 엣지씰 필름을 제조하는 단계; 상기 엣지씰 필름의 제1 점착층이 형성된 면이 상기 전극 필름의 전극 촉매층이 형성된 면과 마주하도록 부착하여 적층체를 제조하는 단계; 전해질막을 준비하는 단계; 상기 제2 점착층이 형성된 면이 상기 전해질막과 마주하도록 상기 전해질막의 적어도 일면 상에 상기 적층체를 배치하는 단계; 상기 적층체를 50℃ 이상의 온도로 열접합하는 단계; 및 상기 기재와 제1 점착층을 제거하는 단계를 포함하는 막 전극 접합체의 제조방법을 제공한다. 도 6에 본 명세서에 따른 막 전극 접합체의 제조방법을 나타내었다.
[전극 필름 제조]
본 명세서에 따른 막 전극 접합체의 제조방법은 기재 상에 전극 촉매층을 형성하여 전극 필름을 제조하는 단계를 포함한다. 도 4에 기재 상에 전극 촉매층이 형성된 전극 필름을 나타내었다.
상기 기재의 재질은 상기 기재 상에 형성될 전극 촉매층을 지지할 수 있고 전해질막으로 전사 시 이형성이 좋다면 특별히 한정하지 않으나, 당 기술분야에서 사용되는 통상의 기재를 채용할 수 있으며, 바람직하게는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE) 시트일 수 있다.
상기 전극 촉매층은 전극 조성물을 이용하여 형성될 수 있으며, 상기 전극 촉매층의 형성방법은 당해 기술 분야에 알려져 있는 통상적인 방법으로 수행할 수 있는데, 예를 들면 스프레이 코팅, 테이프 캐스팅, 스크린 프린팅, 블레이드 코팅 콤마 코팅 또는 다이 코팅 등의 방법을 사용할 수 있다.
상기 전극 조성물은 전극 촉매층의 종류와 용도에 따라 다양하게 적용될 수 있으나, 상기 전극 조성물은 촉매, 폴리머 이오노머(polymer ionomer) 및 용매를 포함할 수 있다.
상기 촉매의 종류는 특별히 한정하지 않고 당 기술분야에서 사용되는 촉매를 채용할 수 있다. 예를 들면, 상기 촉매는 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 및 백금-전이 금속 합금으로 이루어진 군에서 선택되는 금속 입자를 포함할 수 있다. 이때, 상기 금속 입자는 솔리드 입자, 중공 금속 입자, 보울형 입자, 코어-쉘 입자 등일 수 있다.
상기 촉매들은 그 자체로 사용될 수 있을 뿐만 아니라 탄소계 담체에 담지되어 사용될 수 있다.
상기 탄소계 담체로는 탄소계 물질로는 흑연(그라파이트), 카본 블랙, 아세틸렌 블랙, 덴카 블랙, 캐천 블랙, 활성 카본, 중다공성 카본, 탄소나노튜브, 탄소나노섬유, 탄소나노혼, 탄소나노링, 탄소나노와이어, 플러렌(C60) 및 수퍼P블 랙(Super P black)으로 이루어진 군에서 선택되는 어느 하나 또는 2종 이상의 혼합물이 바람직한 예가 될 수 있다.
상기 폴리머 이오노머로는 나피온 이오노머 또는 술포네이티드 폴리트리플루오로스티렌과 같은 술포네이티드 폴리머가 대표적으로 사용될 수 있다.
상기 용매는 특별히 한정하지 않고, 당 기술분야에서 사용되는 용매를 채용할 수 있다. 예를 들면, 상기 용매는 물, 부탄올, 이소프로판올(isopropanol), 메탄올, 에탄올, n-프로판올, n-부틸 아세테이트, 글리세롤 및 에틸렌글리콜로 이루어진 군에서 선택되는 어느 하나 또는 2종 이상의 혼합물이 바람직하게 사용될 수 있다.
[엣지씰 필름 제조]
본 명세서에 따른 막 전극 접합체의 제조방법은 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 일면에 제1 점착층을 형성하고, 타면에 상기 제1 점착층의 점착력보다 점착력이 작은 제2 점착층을 형성하여 엣지씰 필름을 제조하는 단계를 포함한다.
상기 전극 촉매층의 전극활성면적에 대응하는 개구부란 상기 전극 촉매층의 전극 활성면적과 동일한 크기의 개구부 또는 상기 전극 촉매층의 전극 활성면적의 90% 내지 110%의 크기를 갖는 개구부를 의미한다.
상기 엣지씰 필름을 제조하는 단계는 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름을 준비하는 단계; 상기 보호 필름의 일면에 50℃이상의 온도에서 접착력이 유지 또는 저하되는 제1 점착층을 형성하는 단계; 및 상기 보호 필름의 타면에 50℃이상의 온도에서 접착력이 증가하는 제2 점착층을 형성하는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서 상기 엣지씰 필름의 보호필름은 PET, PE, PP, PEN 및 PVC 중 어느 하나를 선택할 수 있다.
[제1 점착층의 제조]
상기 제1 점착층은 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 일면에 일부 또는 전부 구비되고, 50℃ 이상의 온도에서 접착력이 저하될 수 있다.
상기 제1 점착층의 일부 또는 전부는 상기 전극 필름의 기재와 접촉하여 엣지씰 필름이 상기 전극 필름에 고정되도록 접착할 수 있다.
상기 제1 점착층의 접착력은 상온에서 30gf/in 이상 500gf/in 이하 일 수 있다. 이때, 상기 접착력은 Peel test로 측정된 값이다.
상기 제1 점착층은 상온에서 접착력을 가지며 온도가 상승할수록 점점 접착력이 약해지고 50℃ 이상의 온도에서 접착력이 100gf/in 이하로 하락할 수 있다. 접착력은 낮을수록 이형성(release performance)이 좋으므로 하한치는 특별히 한정하지 않으나, 예를 들면 10gf/in 이상일 수 있다.
[제2 점착층의 제조]
상기 제2 점착층은 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 타면에 구비되고, 50℃이상의 온도에서 접착력이 증가할 수 있다.
상기 제2 점착층은 후술할 전해질막과 접촉하여 적층체가 전해질막에 고정되도록 접착할 수 있다.
상기 제2 점착층의 접착력은 상온에서 20gf/in 이하 일 수 있으며, 상기 제2 점착층의 접착력은 상온에서 0gf/in 이상 10gf/in 이하 일 수 있다.
상기 제 2 점착층은 상온에서 거의 접착력을 가지지 않으며 온도가 상승할수록 접착력이 강해지고 50℃이상의 온도에서 접착력이 500gf/in 이상으로 상승 할 수 있다. 접착력이 높을수록 접착성이 좋으므로 상한치는 특별히 한정하지 않으나, 예를 들면 3000gf/in 이하일 수 있다. 상기 제 2점착층의 접착력은 50℃ 이상의 온도에서 500gf/in 이상이며 3000gf/in 이하이며, 구체적으로 500gf/in 이상 2000gf/in 이하 일 수 있다.
상기 제 2점착층은 상온에서의 접착력과 50℃이상의 온도에서의 접착력의 차이는 500gf/in 이상이며, 그 차이가 클수록 접착성이 좋으므로 상한치는 특별히 한정하지 않으나, 예를 들면 3000gf/in 이하일 수 있다. 제 2점착층의 성분은 상온 이상의 온도에서 접착력이 증가되기 시작하며, 일정 구간의 온도에서 접착력의 상승 및 유지가 진행되며, 구체적으로 50℃ 이상, 200℃ 이하의 온도에서 접착력이 유지된다. 도 5에 엣지씰 필름의 구조를 나타내었다.
[적층체 제조]
본 명세서에 따른 막 전극 접합체의 제조방법은 상기 제1 점착층에 의해, 상기 전극 필름에 상기 엣지씰 필름을 부착하여 적층체를 제조하는 단계를 포함할 수 있다.
상기 적층체를 제조하는 단계는 열을 가하지 않고, 제1 점착층의 접착력으로 전극 필름에 상기 엣지씰 필름을 부착하는 단계일 수 있다. 구체적으로, 상기 적층체를 제조하는 단계는 10kgf/㎠ 내지 50kgf/㎠ 압력으로 가압하여 상기 제1 점착층에 의해 상기 전극 필름과 상기 엣지씰 필름을 부착하는 단계일 수 있다.
상기 적층체를 제조하는 단계는 보호 필름의 개구부가 상기 전극 필름의 전극 활성면적에 대응되는 영역에 위치하여, 전극 활성면적이 보호필름에 의해 덮혀지지 않도록 부착할 수 있다.
[전해질막 준비]
본 명세서에 따른 막 전극 접합체의 제조방법은 전해질막을 준비하는 단계를 포함할 수 있다.
상기 전해질막을 준비하는 단계는 외부에서 제조된 전해질막을 입수하거나, 직접 전해질막을 제조할 수 있다.
상기 전해질막은 이온 전도성 고분자를 포함하는 고분자를 포함하며, 다공성 지지체 기공 내에 이온 전도성 고분자를 함침시켜 제조된 강화막이거나, 다공성 지지체 없이 이온 전도성 고분자를 경화시켜 제조된 순수막일 수 있다.
상기 이온 전도성 고분자는 이온 교환을 할 수 있는 물질이라면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 이용할 수 있다.
상기 이온 전도성 고분자는 탄화수소계 고분자, 부분불소계 고분자 또는 불소계 고분자일 수 있다.
상기 탄화수소계 고분자는 플루오린기가 없는 탄화수소계 술폰화(sulfonated) 고분자일 수 있으며, 반대로 불소계 고분자는 플루오린기로 포화된 술폰화(sulfonated) 고분자일 수 있고, 상기 부분불소계 고분자는 플루오린기로 포화되지 않은 술폰화(sulfonated) 고분자일 수 있다.
상기 이온 전도성 고분자는 퍼플루오르술폰산계 고분자, 탄화수소계 고분자, 방향족 술폰계 고분자, 방향족 케톤계 고분자, 폴리벤즈이미다졸계 고분자, 폴리스티렌계 고분자, 폴리에스테르계 고분자, 폴리이미드계 고분자, 폴리비닐리덴 플루오라이드계 고분자, 폴리에테르술폰계 고분자, 폴리페닐렌설파이드계 고분자, 폴리페닐렌옥사이드계 고분자, 폴리포스파젠계 고분자, 폴리에틸렌나프탈레이트계 고분자, 폴리에스테르계 고분자, 도핑된 폴리벤즈이미다졸계 고분자, 폴리에테르케톤계 고분자, 폴리에테르에테르케톤계 고분자, 폴리페닐퀴녹살린계 고분자, 폴리술폰계 고분자, 폴리피롤계 고분자 및 폴리아닐린계 고분자로 이루어진 군에서 선택되는 하나 또 는 둘 이상의 고분자일 수 있다. 상기 고분자는 술폰화(sulfonated)하여 사용될 수 있으며, 단일 공중합체, 교대 공중합체, 랜덤 공중합체, 블록 공중합체, 멀티블록 공중합체 또는 그라프트 공중합체일 수 있으나, 이에 한정되는 것은 아니다.
상기 이온 전도성 고분자는 양이온 전도성을 가지는 고분자일 수 있으며, 예를 들면, 퍼플루오르술폰산계 고분자, 술폰화 폴리에테르에테르케톤 (sPEEK, Sulfonated Polyetheretherketone), 술폰화 폴리에테르케톤 (sPEK, sulfonated (polyetherketone)), 폴리비닐리덴 플로라이드-그라프트-폴리스티렌 술폰산 (poly (vinylidene fluoride)-graft-poly(styrene sulfonic acid), PVDF-g-PSSA) 및 술폰화 폴리플루로레닐 에테르케톤 (Sulfonated poly (fluorenyl ether ketone)) 중 적어도 하나를 포함할 수 있다.
[적층체 배치]
본 명세서에 따른 막 전극 접합체의 제조방법은 상기 제2 점착층이 형성된 면이 상기 전해질막과 마주하도록 상기 전해질막의 적어도 일면 상에 상기 적층체를 배치하는 단계를 포함할 수 있다.
[열접합하는 단계]
본 명세서에 따른 막 전극 접합체의 제조방법은 상기 적층체를 50℃이상의 온도로 열접합하는 단계를 포함할 수 있다.
상기 열접합하는 단계는 적층체와 전해질막 전면에 50℃이상의 열과 압력을 가하여, 적층체의 전극 촉매층이 전해질막에 전사되고, 적층체의 제2 점착층이 열에 의해 접착력이 상승되어 적층체의 엣지씰 필름이 전해질막에 부착될 수 있다.
상기 열접합하는 단계에서, 50℃이상의 온도에서 접착력이 저하되는 제1 점착층은 접착력이 저하될 수 있다.
[제1 점착층 제거]
본 명세서에 따른 막 전극 접합체의 제조방법은 상기 기재와 제1 점착층을 제거하는 단계를 포함할 수 있다.
상기 열접합하는 단계의 열에 의해 접착력이 저하된 제1 점착층 및 상기 제1 점착층에 의해 부착되었던 기재를 제거할 수 있다.
[적층체]
본 명세서는 기재; 전극 촉매층; 보호 필름; 제1 점착층; 및 제2 점착층을 포함하는 적층체를 제공한다.
상기 적층체는 상술한 막 전극 접합체의 제조방법의 설명을 인용할 수 있다.
[전극 촉매층]
상기 전극 촉매층은 상기 기재 상에 구비될 수 있다.
상기 전극 촉매층은 애노드의 촉매층 및 캐소드의 촉매층 중 적어도 하나로 사용될 수 있으며, 애노드의 촉매층은 연료의 산화 반응이 일어나고, 캐소드의 촉매층은 산화제의 환원 반응이 일어난다.
본 명세서의 일 실시상태에서, 전극 촉매층의 두께는 각각 3㎛ 이상 30㎛ 이하일 수 있다. 이때, 상기 애노드의 촉매층과 캐소드의 촉매층의 두께는 서로 동일하거나, 각각 상이할 수 있다.
[보호 필름]
상기 보호 필름은 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 가질 수 있다.
상기 전극 촉매층의 전극 활성면적은 보호 필름에 덮여지지 않고 연료 또는 산화제에 노출되어 전극으로서 역할을 수행할 수 있는 면적을 의미한다.
상기 전극 촉매층의 전극 활성면적은 상기 전극 촉매층의 전체 면적이거나, 상기 전극 촉매층의 전체 면적보다 좁을 수 있다.
상기 전극 촉매층의 전극 활성면적이 상기 전극 촉매층의 전체 면적과 동일한 경우, 상기 보호필름의 개구부의 크기는 상기 전극 촉매층의 크기와 동일하다.
상기 전극 촉매층의 전극 활성면적이 상기 전극 촉매층의 전체 면적보다 좁은 경우, 상기 보호필름의 개구부의 크기가 상기 전극 촉매층의 크기보다 작아 전극 촉매층의 면적 중 일부가 보호 필름에 의해서 덮어질 수 있다.
[제1 점착층]
상기 제1 점착층은 상기 기재와 보호 필름 사이에 구비되며, 50℃이상의 온도에서 접착력이 저하된다.
상기 제1 점착층은 니트릴고무계, 실리콘계, 아크릴계, 에폭시계 및 페놀계 성분 중 적어도 하나 이상을 포함할 수 있다.
[제2 점착층]
상기 제2 점착층은 상기 보호 필름 상에 구비되며, 50℃이상의 온도에서 접착력이 증가된다.
상기 제2 점착층은 니트릴 고무계, 실리콘계, 아크릴계, 에폭시계 및 페놀계 성분 중 적어도 하나 이상을 포함하며, 구체적으로 열경화성을 가지는 에폭시계 또는 페놀계 성분을 포함할 수 있다.
[전해질막]
본 명세서에 따른 적층체는 상기 제2 점착층 상에 구비된 전해질막을 더 포함할 수 있다.
본 명세서에 따른 적층체는 제1 단위 및 제2 단위를 포함할 수 있다. 구체적으로, 본 명세서에 따른 적층체는 제1 단위, 제2 단위 및 상기 제1 단위와 상기 제2 단위 사이에 구비된 전해질막을 더 포함할 수 있다.
상기 제1 단위 및 제2 단위는 각각 상기 기재; 상기 기재 상에 구비된 전극 촉매층; 상기 기재 상에 구비되고 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름; 상기 기재와 보호 필름 사이에 구비된 50℃이상의 온도에서 접착력이 저하되는 제1 점착층; 및 상기 보호 필름 상에 구비된 50℃이상의 온도에서 접착력이 증가하는 제2 점착층을 포함할 수 있다. 이 경우, 본 명세서에 따른 적층체는 상기 제1 단위의 제2 점착층과 상기 제2 단위의 제2 점착층 사이에 구비된 전해질막을 더 포함할 수 있다.
[MEA/전지]
본 명세서는 애노드; 캐소드; 및 상기 애노드와 캐소드 사이에 구비된 전해질막을 포함하는 전기화학 전지에서, 상기 전기화학 전지가 막 전극 접합체의 제조방법에 의해 제조된 막 전극 접합체를 포함하는 것인 전기화학 전지를 제공한다.
상기 캐소드는 방전될 때 전자를 받아 환원되는 전극을 의미하고, 충전될 때 산화되어 전자를 내보내는 애노드(산화전극)일 수 있다. 상기 애노드는 방전될 때 산화되어 전자를 내보내는 전극을 의미하고, 충전될 때 전자를 받아 환원되는 캐소드(환원전극)일 수 있다.
상기 전기화학 전지는 화학반응을 이용한 전지를 의미하며 고분자 전해질막이 구비된다면 그 종류를 특별히 한정하지 않으나, 예를 들면, 상기 전기화학 전지는 연료전지, 금속 이차 전지 또는 흐름전지일 수 있다.
본 명세서는 전기화학 전지를 단위전지로 포함하는 것인 전기화학 전지모듈을 제공한다.
상기 전기화학 전지 모듈은 본 출원의 하나의 실시 상태에 따른 단위 전지 사이에 바이폴라(bipolar) 플레이트를 삽입하여 스택킹(stacking)하여 형성될 수 있다.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장장치의 전원으로 사용될 수 있다.
본 명세서는 상기 막 전극 접합체의 제조방법에 의해 제조된 막 전극 접합체를 제공한다.
본 명세서는 상기 막 전극 접합체를 포함하는 연료 전지를 제공한다.
도 2는 연료전지용 막 전극 접합체의 구조를 개략적으로 도시한 것으로, 연료전지용 막 전극 접합체는 전해질막(10)과, 이 전해질막(10)을 사이에 두고 서로 대향하여 위치하는 캐소드(50) 및 애노드(51)를 구비할 수 있다. 상기 캐소드에는 전해질막(10)으로부터 순차적으로 캐소드 촉매층(20)과 캐소드 기체확산층(40)이 구비되고, 상기 애노드에는 전해질막(10)으로부터 순차적으로 애노드 촉매층(21) 및 애노드 기체확산층(41)이 구비될 수 있다.
도 3은 연료전지의 구조를 개략적으로 도시한 것으로, 연료전지는 스택(60), 산화제 공급부(70) 및 연료 공급부(80)를 포함하여 이루어진다.
스택(60)은 상술한 막 전극 접합체를 하나 또는 둘 이상 포함하며, 막 전극 접합체가 둘 이상 포함되는 경우에는 이들 사이에 개재되는 세퍼레이터를 포함한다. 세퍼레이터는 막 전극 접합체들이 전기적으로 연결되는 것을 막고 외부에서 공급된 연료 및 산화제를 막 전극 접합체로 전달하는 역할을 한다.
산화제 공급부(70)는 산화제를 스택(60)으로 공급하는 역할을 한다. 산화제로는 산소가 대표적으로 사용되며, 산소 또는 공기를 산화제 공급부(70)로 주입하여 사용할 수 있다.
연료 공급부(80)는 연료를 스택(60)으로 공급하는 역할을 하며, 연료를 저장하는 연료탱크(81) 및 연료 탱크(81)에 저장된 연료를 스택(60)으로 공급하는 펌프(82)로 구성될 수 있다. 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료가 사용될 수 있다. 탄화수소 연료의 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연가스를 들 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
[엣지씰 필름]
페놀수지 등이 함유된 열융착 필름의 점착면의 반대면에 아크릴수지계 양면점착테이프를 이용하여 약 10kgf/㎠ 압력으로 압착하여 엣지씰 필름을 제조하였다.
상기 열융착필름은 대현에스티의 PET 재질 열융착필름을 사용하였으며, 상기 아크릴수지계 양면점착테이프는 3M사의 아크릴계 점착층의 4910 양면 테이프를 사용하였다.
[전극 필름]
백금 담지 카본 촉매(Pt/C)를 나피온 용액, 1-프로필알코올, 소량의 물과 글리콜을 첨가하여 고속교반하여 촉매슬러리를 제조하였다. 상기 촉매 슬러리의 백금 담지 카본 촉매(Pt/C), 20% 나피온 용액, 1-프로필알코올, 물 및 글리콜의 중량비는 1:2:10:1:1이다.
촉매 슬러리를 잉크젯 코터를 이용하여 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE) 시트에 코팅하였다. 이때 코팅량은 건조 후 Pt 중량으로 0.4㎎/㎠Pt 를 코팅하였다.
촉매 슬러리를 코팅 후 35℃에서 30분, 100℃에서 1시간 경화, 건조를 진행하여 전극 필름을 형성하였다.
[적층체]
제조된 전극 필름의 전극 촉매층과 전술한 엣지씰 필름의 제1 점착층 면과 맞닿게 하여 10kgf/㎠의 압력으로 1~2초간 압착하여 적층체를 형성하였다. 상기 압착을 통해 제1 점착층은 전극 촉매층의 기재와 맞닿게 되었다.
[막 전극 접합체]
상기 적층체에서 제 2점착층과 전해질막이 맞닿게 배치하여 130℃, 120kgf/㎠에서 5분간 열압착하고, 제1 점착층 및 상기 제1 점착층에 의해 부착되었던 기재를 기계적 박리방법을 통해 제거하여 최종적으로 막 전극 접합체를 제조하였다.
[비교예 1]
실시예 1과 같은 방법으로 전극 필름을 제조하였다.
전해질막과 실시예 1에서 사용된 열융착 필름을 배치하여 80℃ 10초 간 열압착하였다. 제조된 전해질막-열융착 필름 결합체에 전극 필름을 배치하고 130℃, 120kgf/㎠에서 5분간 열압착하여 막 전극 접합체를 제조하였다.
[비교예 2]
전해질막과 실시예 1에서 사용된 열융착 필름을 배치하여 80℃ 10초 간 열압착하였다. 제조된 전해질막-열융착 필름 결합체에 실시예 1의 촉매 슬러리를 제조한 후 직접 코팅하였다. 이때 코팅량은 건조 후 Pt 중량으로 0.4㎎/㎠Pt 를 코팅하였다.
[실험예 1]
실시예 1, 비교예 1 및 비교예 2에 따라 제조된 막 전극 접합체의 전해질막의 손상 정도를 비교하기 위해 사진을 촬영하였고, 이를 도 7(실시예 1), 도 8(비교예 1) 및 도 9(비교예 2)에 나타내었다.
실시예 1에 따른 막 전극 접합체의 전해질막은 활성면적이 안정되있음을 확인할 수 있으나, 비교예 1 및 비교예 2에 따른 막 전극 접합체의 전해질막은 활성면적의 전사가 불안정한 것을 확인할 수 있었다.

Claims (7)

  1. 기재 상에 전극 촉매층을 형성하여 전극 필름을 제조하는 단계;
    상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름의 일면에 제1 점착층을 형성하고, 타면에 상기 제1 점착층의 점착력보다 점착력이 작은 제2 점착층을 형성하여 엣지씰 필름을 제조하는 단계;
    상기 엣지씰 필름의 제1 점착층이 형성된 면이 상기 전극 필름의 전극 촉매층이 형성된 면과 마주하도록 부착하여 적층체를 제조하는 단계;
    전해질막을 준비하는 단계;
    상기 제2 점착층이 형성된 면이 상기 전해질막과 마주하도록 상기 전해질막의 적어도 일면 상에 상기 적층체를 배치하는 단계;
    상기 적층체를 50℃이상의 온도로 열접합하는 단계; 및
    상기 기재와 제1 점착층을 제거하는 단계를 포함하는 막 전극 접합체의 제조방법.
  2. 청구항 1에 있어서, 상기 적층체를 제조하는 단계는 10kgf/㎠ 내지 50kgf/㎠ 압력으로 가압하여 상기 제1 점착층에 의해 상기 전극 필름과 상기 엣지씰 필름이 부착되는 것인 막 전극 접합체의 제조방법.
  3. 청구항 1에 있어서, 상기 제1 점착층은 50℃이상의 온도에서 접착력이 유지 또는 저하되고, 상기 제2 점착층은 50℃이상의 온도에서 접착력이 증가하는 것인 막 전극 접합체의 제조방법.
  4. 기재;
    상기 기재 상에 구비된 전극 촉매층;
    상기 기재 상에 구비되고 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름;
    상기 기재와 보호 필름 사이에 구비된 50℃이상의 온도에서 접착력이 유지 또는 저하되는 제1 점착층; 및
    상기 보호 필름 상에 구비된 50℃이상의 온도에서 접착력이 증가하는 제2 점착층을 포함하고,
    상기 제1 점착층의 접착력은 상기 제2 점착층의 접착력보다 작은 것인 적층체.
  5. 청구항 4에 있어서, 상기 제2 점착층 상에 구비된 전해질막을 더 포함하는 것인 적층체.
  6. 청구항 4에 있어서, 상기 적층체는 제1 단위 및 제2 단위를 포함하고,
    상기 제1 단위 및 제2 단위는 각각
    상기 기재;
    상기 기재 상에 구비된 전극 촉매층;
    상기 기재 상에 구비되고 상기 전극 촉매층의 전극 활성면적에 대응하는 개구부를 갖는 보호 필름;
    상기 기재와 보호 필름 사이에 구비된 50℃이상의 온도에서 접착력이 유지 또는 저하되는 제1 점착층; 및
    상기 보호 필름 상에 구비된 50℃이상의 온도에서 접착력이 증가하는 제2 점착층을 포함하며,
    상기 제1 점착층의 접착력은 상기 제2 점착층의 접착력보다 작고,
    상기 제1 단위의 제2 점착층과 상기 제2 단위의 제2 점착층 사이에 구비된 전해질막을 더 포함하는 적층체.
  7. 청구항 6에 있어서, 상기 제1 점착층은 니트릴고무계, 실리콘계, 아크릴계, 에폭시계 및 페놀계 성분 중 적어도 하나 이상을 포함하는 적층체.
PCT/KR2019/000700 2018-01-22 2019-01-17 막 전극 접합체의 제조방법 및 적층체 WO2019143148A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980004461.7A CN111095641B (zh) 2018-01-22 2019-01-17 膜电极组件的制造方法及层叠体
EP19741480.8A EP3667790A4 (en) 2018-01-22 2019-01-17 METHOD OF MANUFACTURING A MEMBRANE-ELECTRODES ASSEMBLY, AND STACKING
US16/644,667 US11424467B2 (en) 2018-01-22 2019-01-17 Method for manufacturing membrane electrode assembly, and stack
JP2020513540A JP6989180B2 (ja) 2018-01-22 2019-01-17 膜電極接合体の製造方法および積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0007875 2018-01-22
KR1020180007875A KR102169843B1 (ko) 2018-01-22 2018-01-22 막 전극 접합체의 제조방법 및 적층체

Publications (1)

Publication Number Publication Date
WO2019143148A1 true WO2019143148A1 (ko) 2019-07-25

Family

ID=67301818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000700 WO2019143148A1 (ko) 2018-01-22 2019-01-17 막 전극 접합체의 제조방법 및 적층체

Country Status (6)

Country Link
US (1) US11424467B2 (ko)
EP (1) EP3667790A4 (ko)
JP (1) JP6989180B2 (ko)
KR (1) KR102169843B1 (ko)
CN (1) CN111095641B (ko)
WO (1) WO2019143148A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022244637A1 (ko) * 2021-05-19 2022-11-24
CN114497621B (zh) * 2022-02-17 2023-12-22 中星慧业新能源科技(北京)有限公司 一种多功能燃料电池用双面密封材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041073A (ko) * 2005-10-14 2007-04-18 주식회사 엘지화학 연료전지용으로 보호 필름 층을 갖는 촉매 코팅된 막의제조방법
KR20070045421A (ko) * 2005-10-27 2007-05-02 주식회사 엘지화학 막-전극-어셈블리의 제조방법
JP2007265733A (ja) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd 転写シート、触媒層−電解質膜積層体及びこれらの製造方法
JP2015164144A (ja) * 2015-06-19 2015-09-10 東芝燃料電池システム株式会社 燃料電池及びその製造方法
KR20160033909A (ko) * 2014-09-19 2016-03-29 현대자동차주식회사 전극막 접합체의 제조방법
KR20180007875A (ko) 2016-07-14 2018-01-24 (주)엘지하우시스 Plla 수지용 상용화제와 이를 이용한 plla 수지 조성물

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163442B2 (en) 2005-10-14 2012-04-24 Lg Chem, Ltd. Method for manufacturing catalyst-coated membrane using mask
US8012284B2 (en) * 2006-12-15 2011-09-06 3M Innovative Properties Company Method and apparatus for fabricating roll good fuel cell subassemblies
JP5581618B2 (ja) * 2009-07-02 2014-09-03 大日本印刷株式会社 固体高分子形燃料電池用部材、エッジシール付き触媒層−電解質膜積層体、エッジシール付き電極−電解質膜積層体及び固体高分子形燃料電池の製造方法
JP2015097195A (ja) * 2013-10-09 2015-05-21 日東電工株式会社 燃料電池用膜/電極複合体の製造方法
CN105849959B (zh) 2013-11-26 2019-11-19 株式会社Lg化学 聚合物电解质膜、包括聚合物电解质膜的膜电极组合件及包括膜电极组合件的燃料电池
EP3125345A4 (en) * 2014-03-25 2018-03-07 Toppan Printing Co., Ltd. Method for manufacturing membrane electrode assembly, membrane electrode assembly, and solid polymer fuel cell
JP6515648B2 (ja) 2015-04-08 2019-05-22 凸版印刷株式会社 触媒層転写基材、膜電極接合体の製造方法、および、膜電極接合体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041073A (ko) * 2005-10-14 2007-04-18 주식회사 엘지화학 연료전지용으로 보호 필름 층을 갖는 촉매 코팅된 막의제조방법
KR20070045421A (ko) * 2005-10-27 2007-05-02 주식회사 엘지화학 막-전극-어셈블리의 제조방법
JP2007265733A (ja) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd 転写シート、触媒層−電解質膜積層体及びこれらの製造方法
KR20160033909A (ko) * 2014-09-19 2016-03-29 현대자동차주식회사 전극막 접합체의 제조방법
JP2015164144A (ja) * 2015-06-19 2015-09-10 東芝燃料電池システム株式会社 燃料電池及びその製造方法
KR20180007875A (ko) 2016-07-14 2018-01-24 (주)엘지하우시스 Plla 수지용 상용화제와 이를 이용한 plla 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667790A4

Also Published As

Publication number Publication date
EP3667790A1 (en) 2020-06-17
CN111095641A (zh) 2020-05-01
KR102169843B1 (ko) 2020-10-26
JP2020533735A (ja) 2020-11-19
US20210075048A1 (en) 2021-03-11
CN111095641B (zh) 2023-04-04
US11424467B2 (en) 2022-08-23
EP3667790A4 (en) 2020-12-23
JP6989180B2 (ja) 2022-01-05
KR20190089418A (ko) 2019-07-31

Similar Documents

Publication Publication Date Title
KR100707162B1 (ko) 고온용 연료전지
WO2013147520A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2017175891A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
US20110097651A1 (en) Membrane Electrode Assembly (MEA) Fabrication Procedure on Polymer Electrolyte Membrane Fuel Cell
KR101072829B1 (ko) 연료전지용 막-전극 접합체의 연속제조방법 및연속제조장치
JP2002289230A (ja) 高分子電解質型燃料電池
WO2019143148A1 (ko) 막 전극 접합체의 제조방법 및 적층체
WO2016122200A1 (ko) 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
JPH08148170A (ja) 固体高分子型燃料電池のシ−ル方法
WO2009145568A2 (ko) 연료전지용 고분자 전해질막의 제조방법, 막 전극 접합체 및 고분자 전해질형 연료전지
KR102163539B1 (ko) 막-전극 어셈블리, 이의 제조 방법, 및 이를 포함하는 연료 전지 스택
WO2021137518A1 (ko) 막-전극 어셈블리, 그 제조방법, 및 그것을 포함하는 연료전지
JP4392222B2 (ja) 膜−電極構造体の製造方法
KR20090132214A (ko) 연료전지용 막전극 접합체, 그 제조방법 및 이를 포함하는연료전지
JP2010192392A (ja) 燃料電池用多孔膜複合体、燃料電池用電解質膜−電極−多孔膜複合体、及びこれらの製造方法
WO2017175892A1 (ko) 연료전지용 복합 전해질막, 이를 포함하는 막-전극 접합체, 이를 포함하는 연료전지, 및 이들의 제조방법
WO2016117915A1 (ko) 고분자 전해질 막 및 그 제조방법
JP2007193948A (ja) 燃料電池
US7097926B2 (en) Solid polymer electrolyte membrane and fuel cell comprising same
JP2004214172A (ja) 膜−電極構造体の製造方法
JP2009043712A (ja) 膜電極複合体の製造方法
JP2004296216A (ja) 固体高分子型燃料電池の膜電極接合体の製造方法
WO2019143097A1 (ko) 막 전극 접합체의 제조방법 및 적층체
KR20160051319A (ko) 응축수 제거용 발열부 가지는 연료전지 및 그 제조 방법
JP2004214001A (ja) 電極と固体高分子電解質膜との接合方法及び接合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513540

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019741480

Country of ref document: EP

Effective date: 20200310

NENP Non-entry into the national phase

Ref country code: DE