WO2019143073A1 - 가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법 - Google Patents

가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법 Download PDF

Info

Publication number
WO2019143073A1
WO2019143073A1 PCT/KR2019/000483 KR2019000483W WO2019143073A1 WO 2019143073 A1 WO2019143073 A1 WO 2019143073A1 KR 2019000483 W KR2019000483 W KR 2019000483W WO 2019143073 A1 WO2019143073 A1 WO 2019143073A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
lithium
reaction
rti
Prior art date
Application number
PCT/KR2019/000483
Other languages
English (en)
French (fr)
Inventor
이재용
이종수
강병규
이병우
이상오
윤대명
방제훈
손기영
Original Assignee
주식회사 엔지켐생명과학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔지켐생명과학 filed Critical 주식회사 엔지켐생명과학
Priority to JP2020539756A priority Critical patent/JP7032550B2/ja
Publication of WO2019143073A1 publication Critical patent/WO2019143073A1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/106Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being cyclic, e.g. DOTA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings

Definitions

  • the present invention relates to intermediates of gadoterides used as MRI contrast agents, and methods for preparing gadoterides using the same.
  • Gadoteridor a type of MRI contrast agent containing gadolinium with a large asymmetric ring, is marketed worldwide under the trade name ProHance®.
  • the conformational action of gadoteriol is a reaction between gadolinium cation and a macrocyclic ligand such as 10- (2-hydroxylpropyl) -1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid Stones), which is a non-ionic complex.
  • the macrocyclic nonionic structure of the gadoteridol has comparatively excellent physical properties and high safety in comparison with gadopentetate monomeglumin and gadopentetate dimeglumin, which are commercially available ionic gadolinium-containing MRI contrast agents .
  • Non-ionic gadoteridol has lower osmotic pressure and viscosity than ionic gadolinium-containing MRI contrast agents, which can reduce adverse effects such as local reactions during the extracorporeal drainage of the contrast agent,
  • Based macrocyclic ligand structure is strongly bonded to gadolinium cations in the form of cage, so that gadolinium cations can not easily be liberated compared to goit pentetate monomeglumin and gadopentate dimeglumin, which have a linear ligand structure.
  • the toxicity of gadolinium cations in the body of the body also provides greater safety for NSF.
  • teridol a key precursor of gadoteridol, is synthesized through 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (hereinafter referred to as DO3A).
  • DO3A 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid
  • the synthesis of DO3A can be divided into two main processes. First, a protecting group is introduced through a condensation reaction using a reagent such as DMF Acetal and the like to the starting cyclic siloxane. The N-alkylation reaction is then carried out. After the triacetyl group is introduced, (EP9803408, US005962679A).
  • the second method is a method of synthesizing DO3A (International Publication WO1999-005145) by introducing a triacetic acid group through N-alkylation reaction and then hydrolyzing using a Bicyclic type intermediate synthesizable from a precursor of cyclene.
  • DO3A International Publication WO1999-005145
  • Another object of the present invention is to provide an economical and high-purity gadoteride using the gadoteride intermediate.
  • Another object of the present invention is to provide an economical and high-purity gadoteride using the gadoteride intermediate.
  • the gadoteride intermediate according to the present invention and the gadoteride using the same can be prepared by isolating a chloride-type intermediate and producing a high-purity gadoteride using a high-purity intermediate.
  • the present invention includes a gadoteride intermediate represented by the following general formula (1) or (3).
  • the present invention includes a process for preparing the above-described gadoterol intermediate.
  • 1,4,7,10-tetraazacyclododecane hereinafter referred to as "
  • a lithium-halogen salt are reacted to prepare a silane-lithium halide complex.
  • the reaction may be carried out in an alcohol solvent such as isopropyl alcohol, ethanol or methanol, and the reaction temperature is generally 20 to 30 ° C.
  • the lithium-halogen salt includes lithium fluoride, lithium chloride, lithium bromide, lithium iodide, etc.
  • the amount of the lithium-halogen salt to be used is 0.1 to 5 equivalents, preferably 1 to 2 equivalents, relative to 1 equivalent of the cyclone . If the amount of the lithium-halogen salt used is too small, the selectivity of the next reaction is decreased and the yield is lowered. If the amount is too large, there is no economical advantage.
  • a 10- (2-hydroxylpropyl) -1,4,7,10-tetraaza cyclododecane-lithium halogen complex represented by the following formula .
  • X is fluorine, chlorine, bromine, iodine.
  • propylene oxide may be added to the above-mentioned cyclohexane-lithium halide complex to reduce byproducts due to excessive reaction and selectively react.
  • the content of the propylene oxide is 1.5 to 5 equivalents, preferably 1.5 to 3 equivalents, based on the silane-lithium halogen complex. If the content of propylene oxide is too low, there is a problem that the purity and yield of the unreacted product of the starting material, thylarene, decrease. If the content of propylene oxide is too much, there is a problem that yield is lowered due to the formation of reactants.
  • the reaction temperature is generally 0 to 40 ⁇ ⁇ , preferably 20 to 30 ⁇ ⁇ , and the reaction time is usually 36 to 60 hours.
  • a lithium halide complex represented by the above-mentioned formula (2) is reacted with hydrochloric acid to prepare a gadoterol intermediate (10- (2-hydroxylpropyl) -1,4,7,10-tetraazacyclocro Dodecane dihydrochloride).
  • the content of hydrochloric acid is 1 to 20 equivalents, preferably 3 to 8 equivalents, relative to the lithium halogen complex represented by the general formula (2). If the content of hydrochloric acid is too small, there is a problem that the production of hydrochloric acid is low and the yield is low, and if it is too much, there is no economical advantage.
  • the reaction temperature is 0 to 50 ° C, and the reaction time is 1 to 3 hours.
  • the reaction for synthesizing the hydrochloride can be carried out by directly adding hydrochloric acid to the reaction solution in which the compound of formula (1) is synthesized without separately separating the compound of formula (2).
  • the hydrochloride salt represented by the above formula (3) is isolated and purified from the reaction product by a method such as filtration to obtain the high-purity crystalline intermediate of the intermediate of formula (3).
  • a gadoteride stone is prepared by using a gadoteride intermediate represented by the above formula (3).
  • alkylation of the gadoterol intermediate represented by the formula (3) with 2-chloroacetic acid yields a compound (10- (2-hydroxylpropyl) -1,4,7,10-tetraazacyclododecane Decane-1,4,7-triacetic acid, (hereinafter teristol).
  • the reaction can be carried out in an alkaline water solvent.
  • sodium hydroxide NaOH
  • the above reaction can be generally carried out at 10 ° C to 100 ° C.
  • the content of 2-chloroacetic acid is 3 to 10 equivalents, preferably 4 to 6 equivalents, based on the total amount of the hydrazone derivative represented by the general formula (3). If the content of the 2-chloroacetic acid is too small, the reaction proceeds poorly and the yield and purity drop, and if it is too much, there is no economical advantage.
  • the nanofilter system is a reverse osmosis device designed to filter or concentrate materials having a molar mass of 200 to 300 daltons or more in a spiral type of an organic film.
  • the nanofiltration system is a reverse osmosis device in which salts and other water-soluble organic / It can be separated and purified through a membrane to recover only the desired substance.
  • gadoteridol a gadolinium complex of 4,7-triacetic acid
  • the content of gadolinium oxide is 0.1 to 1 equivalent, preferably 0.4 to 0.6 equivalent, relative to 1 equivalent of the teristir represented by the general formula (4). If the content of gadolinium oxide is too low, there is a problem that the reaction is not terminated. Too much gadolinium oxide increases the purity of the product, and the purification is difficult.
  • the reaction temperature is generally 60 to 90 ⁇ ⁇ , and the reaction time is 6 to 12 hours.
  • a gadoteride having a purity of 99.9% or more can be obtained.
  • a method such as an ion exchange resin
  • cation and anion resin can be sequentially passed through.
  • the filtrate thus purified can be concentrated, dissolved in purified water, and crystallized and isolated with a quantum or aprotic polar organic solvent.
  • the filtrate can generally be crystallized at 20 to 25 ° C under water-acetone conditions.
  • the crystallization solvent may be an organic solvent such as acetone, ethanol or isopropanol, preferably acetone.
  • the thus obtained gadoteride crystals are dried to obtain a high purity gadolite having a purity of 99.7% or more without any additional recrystallization or decontamination process.
  • the reaction product obtained by the nanofilter is concentrated under reduced pressure at 60 to 80 ° C and water is removed, and 20 L of methanol is dissolved at 50 to 60 ° C., and the temperature is cooled to 0 to 10 ° C. and stirred to solidify.
  • the resultant solid was further stirred at 0 to 10 ° C for 12 hours, filtered, washed with 20 L of methanol cooled to 0 to 10 ° C, and dried to obtain 9 kg of terrystone (yield: 42%, purity: 99% (HPLC)) .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

MRI조영제로 사용되는 가도테리돌의 중간체 및 이를 이용한 가도테리돌의 제조방법이 개시된다. 가도테리돌 중간체로서 명세서 내에 화학식 1로 표시되는 10-(2-하이드록시프로필)-1,4,7,10-테트라아자싸이클로도데칸 또는 명세서 내에 화학식 3으로 표시되는 그의 염산염을 제공한다.

Description

가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법
본 발명은 가도테리돌의 중간체 및 이를 이용한 가도테리돌의 제조방법에 관한 것으로서, 더욱 상세하게는 MRI조영제로 사용되는 가도테리돌의 중간체 및 이를 이용한 가도테리돌의 제조방법에 관한 것이다.
비대칭의 거대고리를 가지고 가돌리늄을 함유한 MRI 조영제의 한 종류인 가도테리돌은 프로핸스(ProHanceⓡ)라는 상품명으로 전세계에 시판되고 있다. 가도테리돌의 조영작용은 가돌리늄 양이온과 거대고리형 리간드인 10-(2-하이드록실프로필)-1,4,7,10-테트라아자싸이클로도데칸-1,4,7-트리아세트산 (이하 테리돌)로 구성되는 비이온성 착체에 기초하고 있다. 이러한 가도테리돌의 거대고리 비이온성 구조는 기존에 시판되는 이온성 가돌리늄 함유 MRI 조영제인 가도펜테테이트 모노메글루민, 가도펜테테이트 디메글루민 등과 비교하여 상대적으로 뛰어난 물성과 높은 체내 안전성을 가지게 한다.
비이온성인 가도테리돌은 이온성 가돌리늄 함유 MRI 조영제들에 비해 낮은 삼투압과 점도를 가지고 있어 조영제의 혈관 외 유출시 국소반응 등의 부작용을 줄일 수 있으며, 가도테리돌의 싸이클렌 구조를 기반으로 한 거대고리형 리간드 구조는 새장(Cage) 형태로 가돌리늄 양이온과 강하게 결합하여 선형 리간드 구조를 가지는 가도펜테테이트 모노메글루민, 가도펜테테이트 디메글루민 등에 비해 가돌리늄 양이온이 쉽게 유리되지 않으므로 주사 시 체내 유리 가돌리늄 양이온의 독성에 의한 신원성 전신 섬유증(NSF)에 대한 안전성 또한 더욱 높다.
현재 가도테리돌의 핵심 전구체인 테리돌은 모두 1,4,7,10-테트라아자싸이클로도데칸-1,4,7-트리아세트산(이하 DO3A)을 통하여 합성된다. DO3A의 합성방법은 크게 두 가지로 나뉘는데 첫 번째는 출발물질인 싸이클렌에 DMF Acetal등의 시약을 사용 축합반응을 통해 보호기를 도입 하고 N-알킬화 반응을 진행, 트리아세트산기를 도입 한 후 탈보호기 과정을 거치는 방법(EP9803408, US005962679A)이다.
[화학식6]
Figure PCTKR2019000483-appb-I000001
두 번째 방법은 싸이클렌의 전구체로부터 합성 가능한 Bicyclic 형태의 중간체를 사용, N-알킬화 반응을 통해 트리아세트산기를 도입한 후 가수분해를 하여 DO3A를 합성하는 방법(국제공개공보 WO1999-005145)이 있다.
[화학식7]
Figure PCTKR2019000483-appb-I000002
그러나 이와 같은 개개의 방법의 경우 보호기 도입에 태아기형물질로 알려져 있으며 비교적 비용이 많이 드는 DMF Acetal과 같은 물질을 사용하거나(EP9803408, US005962679A) 싸이클렌이 아닌 싸이클렌의 유도체로서 합성이 어렵고 인체, 환경 유해성이 큰 Glyoxal등을 사용해야 하는 Bicyclic 중간체를 사용(WO9905145)하는 등의 문제가 있다. 또한, 두 방법 모두 반응 중간체가 트리아세트산기 도입을 위한 N-알킬화 반응조건인 강염기성 수용액 상태에서 보호기가 쉽게 떨어져나가 정제하기 힘든 유연물질의 생성이 심하고 순도와 수율이 저하되는 현상이 있다. 또한, 가도테리돌 뿐만 아니라 가도부트롤, 도타렘 등 주사제의 형태로 사용되는 MRI 조영제들의 특성상, 유기용매에 대한 용해도가 낮으며, 친수성이 커서 제품 합성 중에 생기는 무기염 종류의 부생성물이 단순한 추출, 세척 또는 결정화의 방식으로 제거가 어려운 공통적 어려움이 있어 고순도의 가도테리돌을 생산하기 위한 공정의 개선이 필요하다.
따라서, 본 발명의 목적은 염화물 형태의 중간체를 단리하여, 고순도의 가도테리돌 중간체 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 가도테리돌 중간체를 이용하여, 경제적이며 고순도의 가도테리돌을 제공하는 것이다.
따라서, 본 발명의 목적은 염화물 형태의 중간체를 단리하여, 고순도의 가도테리돌 중간체 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 가도테리돌 중간체를 이용하여, 경제적이며 고순도의 가도테리돌을 제공하는 것이다.
이상 상술한 바와 같이, 본 발명에 따른 가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법은 염화물 형태의 중간체를 단리하여 고순도의 중간체를 사용하여 고순도의 가도테리돌을 제조할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명은 하기 화학식 1 또는 하기 화학식 3으로 표시되는 가도테리돌 중간체를 포함한다.
[화학식 1]
Figure PCTKR2019000483-appb-I000003
[화학식 3]
Figure PCTKR2019000483-appb-I000004
본 발명은 상기 가도테리돌 중간체의 제조방법을 포함하며, 상기 가도테리돌 중간체를 제조하기 위해서는 먼저, 출발물질로서 1,4,7,10-테트라아자사이클로도데칸(이하, “싸이클렌”이라 한다)과 리튬-할로겐염을 반응시켜 싸이클렌-리튬할로겐 착체를 제조한다. 상기 반응은 이소프로필알코올, 에탄올, 메탄올 등의 알코올 용매 중에서 수행될 수 있으며, 반응온도는 일반적으로 20 내지 30 ℃이다. 상기 리튬-할로겐염으로는 불화 리튬, 염화 리튬, 브롬화 리튬, 요오드화 리튬 등을 포함하고, 상기 리튬-할로겐염의 사용량은 싸이클렌 1 당량에 대하여, 0.1 내지 5 당량, 바람직하게는 1 내지 2 당량이다. 여기서, 상기 리튬-할로겐염의 사용량이 너무 적으면, 다음 반응의 선택성이 감소하여 수율이 떨어지는 문제가 있고, 너무 많으면 경제적으로 이득이 없다. 이와 같이 얻어진 싸이클렌-리튬할로겐 착체와 프로필렌 옥사이드를 반응시키면, 하기 화학식 2로 표시되는 10-(2-하이드록실프로필)-1,4,7,10-테트라아자싸이클로도데칸-리튬할로겐 착체를 얻는다.
[화학식 2]
Figure PCTKR2019000483-appb-I000005
상기 화학식에서, X는 불소, 염소, 브롬, 요오드이다.
상기 반응에 있어서, 프로필렌 옥사이드는 상기 싸이클렌-리튬할로겐 착체에 첨가하여 과반응으로 인한 부산물을 줄이고, 선택적으로 반응시킬 수 있다. 상기 프로필렌 옥사이드의 함량은 싸이클렌-리튬할로겐 착체에 대하여, 1.5 내지 5 당량, 바람직하게는 1.5 내지 3 당량이다. 여기서, 상기 프로필렌 옥사이드의 함량이 너무 적으면 출발물질인 싸이클렌의 미반응물이 남아 순도 및 수율이 감소하는 문제가 있고, 너무 많으면 과반응물의 생성으로 수율이 떨어지는 문제가 있다. 상기 반응온도는 일반적으로 0 내지 40℃, 바람직하게는 20 내지 30 ℃에서 이루어지며, 반응시간은 통상적으로 36시간 내지 60시간이다.
다음으로, 상기 화학식 2로 표시되는 리튬할로겐 착체와 염산을 반응시켜, 하기 화학식 3으로 표시되는 가도테리돌 중간체(10-(2-하이드록실프로필)-1,4,7,10-테트라아자싸이클로도데칸 4염산염)를 얻는다.
[화학식 3]
Figure PCTKR2019000483-appb-I000006
상기 반응에 있어, 염산의 함량은 화학식 2로 표시되는 리튬할로겐 착체에 대하여, 1 내지 20 당량, 바람직하게 3 내지 8 당량이다. 여기서, 상기 염산의 함량이 너무 적으면, 염산염의 생성이 저조해 수율이 떨어지는 문제가 있고, 너무 많으면, 경제적으로 이득이 없다. 상기 반응온도는 0 내지 50 ℃이고, 반응시간은 1시간 내지 3시간 이다.
상기 염산염을 합성하는 반응은 화학식 2의 화합물을 별도로 분리하지 않고, 화학식 1의 화합물이 합성된 반응액에 염산을 투입하여, 그대로 수행될 수 있다. 상기 반응물로부터 여과 등의 방법으로 상기 화학식 3으로 표시되는 염산염을 분리 및 정제하면, 상기 화학식 3으로 표시되는 가도테리돌 중간체를 고순도의 결정 형태로 얻을 수 있다.
다음으로, 상기 화학식 3으로 표시되는 가도테리돌 중간체를 이용하여 가도테리돌을 제조하는 방법이다. 먼저, 화학식 3으로 표시되는 가도테리돌 중간체를 2-클로로아세트산으로 알킬화하여, 하기 화학식 4로 표시되는 화합물(10-(2-하이드록실프로필)-1,4,7,10-테트라아자싸이클로도데칸-1,4,7-트리아세트산, (이하 테리돌)을 얻는다.
[화학식 4]
Figure PCTKR2019000483-appb-I000007
상기 반응은 알칼리성 물 용매 중에서 수행될 수 있다. 예를 들면, 상기 반응의 용매로서, 물에 수산화나트륨(NaOH)을 적가하여, 일반적으로 pH 9 내지 12를 형성할 수 있다. 상기 반응은 일반적으로 10℃ 내지 100℃ 에서 수행될 수 있다. 상기 반응에 있어서 2-클로로아세트산의 함량은 상기 화학식 3으로 표시되는 가도테리돌 중간체에 대하여, 3 내지 10 당량, 바람직하게는 4 내지 6 당량이다. 여기서 상기 2-클로로아세트산의 함량이 너무 적으면 반응 진행도가 떨어져 수율과 순도가 떨어지는 문제가 있고, 너무 많으면 경제적으로 이득이 없다.
상기 반응물을 pH 0.5 내지 1.5로 조절한 후, 나노필터를 이용하여 무기염 및 기타 수용성 저분자 물질들을 역삼투 여과, 제거한 후 농축하고, 유기 용매를 추가하여, 재결정하면 불순물이 제거된 상기 화학식 4로 표시되는 화합물을 얻을 수 있다. 상기 나노필터 시스템은 유기막의 나사선 형태(Spiral type)로 200 내지 300 dalton 이상의 몰질량을 가지는 물질들을 여과 또는 농축하기 위해 설계된 역삼투압 장치로, 염 및 기타 저분자량을 가지는 수용성 유기/무기물질들을 유기막을 통해 분리 및 정제하여 원하는 물질만을 회수할 수 있다.
다음으로, 상기 화학식 4로 표시되는 테리돌과 가돌리늄 옥사이드를 반응시켜, 하기 화학식 5로 표시되는 10-(2-하이드록시프로필)-1,4,7,10-테트라아자싸이클로도데칸-1,4,7-트리아세트산 가돌리늄 착물(이하, 가도테리돌)을 얻는다.
[화학식 5]
Figure PCTKR2019000483-appb-I000008
상기 반응에 있어서, 가돌리늄 옥사이드의 함량은 상기 화학식 4로 표시되는 테리돌 1 당량에 대하여, 0.1 내지 1 당량, 바람직하게 0.4 내지 0.6 당량이다. 여기서, 상기 가돌리늄 옥사이드 함량이 너무 적으면, 반응이 종료되지 않는 문제가 있고, 너무 많으면 유연 물질이 증가하여 제품의 순도가 떨어지고 정제가 어려운 문제가 있다. 상기 반응온도는 일반적으로 60 내지 90 ℃이고, 반응시간은 6시간 내지 12시간이다.
상기 반응물을 이온교환수지 등의 방법으로 정제 및 분리하면, 순도 99.9% 이상의 가도테리돌을 얻을 수 있다. 상기 이온교환수지로는 양이온과 음이온 레진을 순차적으로 통과시켜 사용할 수 있다. 이와 같이 정제한 여액을 농축한 후, 정제수에 용해하고, 양자성 또는 비양자성 극성 유기용매로 결정화 및 단리 할 수 있다. 구체적으로, 상기 여액을 일반적으로 20 내지 25℃에서 물-아세톤 조건에서 결정화할 수 있다. 상기 결정화 용매로는 아세톤, 에탄올, 이소프로판올 등의 유기용매를 사용할 수 있으며, 바람직하게는 아세톤이다. 이와 같이 얻어진 가도테리돌의 결정을 건조하여, 99.7% 이상의 고순도 가도테리돌을 추가적인 재결정이나 제염과정 없이 경제적으로 얻을 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.
[실시예 1] 화학식 3으로 표시되는 가도테리돌 중간체 제조
1,4,7,10-테트라아자싸이클로도데칸 25 Kg, 염화리튬 8 Kg, 이소프로필 알코올 100L를 반응기에 투입하고 30℃ 이하를 유지하며 프로필렌 옥사이드 11Kg을 적가 한다. 적가 완료 후 20 내지 30℃를 유지하며 60시간 교반, 반응 진행한 후 14w% 염산 수용액 200Kg에 적가 하여 반응을 종결한다. 10 내지 20℃를 유지하며 1시간 추가 교반 한 후 60 내지 70℃에서 감압 농축한다. 농축물에 무수에탄올 250L를 가하고 0 내지 5℃로 냉각, 12시간 추가교반 한다. 생성된 고체를 여과 무수 에탄올 50L로 세척하며 10-(2-하이드록시프로필)-1,4.7,10-테트라아자싸이클로도데칸 4염산염 20.82Kg(수율: 38.1%, 순도 99.7%(HPLC))을 수득하였다.
[실시예 2] 화학식 4로 표시되는 테리돌 제조
상기 10-(2-하이드록시프로필)-1,4,7,10-테트라아자싸이클로도데칸 4 염산염 20Kg, 2-클로로아세트산 18.1Kg과 정제수 100L를 반응기로 투입한 다음 40w% 수산화나트륨 수용액을 적가하여 pH를 9~12로 유지하며 80~90℃로 가열 교반하여 반응을 종결시킨다. 반응물을 5~10℃로 냉각한 후 35w% 염산을 적가 pH 0.5~1.5로 조절하고 나노필터를 진행, 무기염과 저분자 수용성 유기물들을 제거한다. 나노필터로 얻어진 반응물은 60~80℃에서 감압 농축, 수분을 제거하고 50~60℃에서 메탄올 20L를 가해 녹인 후 온도를 0~10℃로 냉각, 교반하여 고체화한다. 생성된 고체는 0~10℃로 12시간 추가 교반 후 여과하고 0~10℃로 냉각한 메탄올 20L로 세척, 건조하여 테리돌 9Kg(수율:42%, 순도:99%(HPLC))을 수득하였다.
[실시예 3] 화학식 5로 표시되는 가도테리돌 제조
상기 테리돌 9Kg과 정제수 36L를 반응기에 투입한 후, 가돌리늄옥사이드 4.87Kg을 투입하고 80~90 ℃로 승온한다. 12시간 동안 온도를 유지하며 가열 교반하여 반응을 진행한 후, 반응액을 양이온과 음이온 레진을 순차적으로 통과시켜 정제한다. 정제된 여액을 반응기로 이송, 60~80℃에서 감압농축 한다. 농축물을 20~25℃에서 정제수 9L에 녹인 후 아세톤 36L를 투입해 고체화시킨 후 반응물을 5시간 추가 교반한다. 생성된 고체를 여과, 아세톤 9L로 세척한 후 건조하여 가도테리돌 8.8Kg(수율: 71%, 순도: 99.9%(HPLC))을 수득하였다.

Claims (6)

  1. 가도테리돌 중간체로서 하기 화학식 1로 표시되는 10-(2-하이드록시프로필)-1,4,7,10-테트라아자싸이클로도데칸 또는 하기 화학식 3으로 표시되는 그의 염산염.
    [화학식 1]
    Figure PCTKR2019000483-appb-I000009
    [화학식 3]
    Figure PCTKR2019000483-appb-I000010
  2. 1,4,7,10-테트라아자사이클로도데칸과 리튬-할로겐염을 반응시켜 싸이클렌-리튬할로겐 착체를 제조하고, 이를 프로필렌 옥사이드와 반응시켜 하기 화학식 2로 표시되는 10-(2-하이드록실프로필)-1,4,7,10-테트라아자싸이클로도데칸-리튬할로겐 착체를 얻는 단계; 및
    [화학식 2]
    Figure PCTKR2019000483-appb-I000011
    (상기 화학식 2에서, X는 불소, 염소, 브롬, 요오드이다.)
    상기 화학식 2로 표시되는 리튬할로겐 착체와 염산을 반응시켜, 하기 화학식 3으로 표시되는 가도테리돌 중간체(10-(2-하이드록실프로필)-1,4,7,10-테트라아자싸이클로도데칸 4염산염)를 얻는 단계;를 포함하는 가도테리돌 중간체 제조방법.
    [화학식 3]
    Figure PCTKR2019000483-appb-I000012
  3. 제2항에 있어서, 상기 프로필렌 옥사이드의 당량은 싸이클렌-리튬할로겐 착체에 대하여, 1.5 내지 3 당량이며, 상기 염산의 당량은 화학식 2로 표시되는 싸이클렌-리튬할로겐 착체에 대하여, 3 내지 8 당량인 것인, 가도테리돌 중간체 제조방법.
  4. 상기 화학식 3으로 표시되는 가도테리돌 중간체를 2-클로로아세트산으로 알킬화 하여, 하기 화학식 4로 표시되는 테리돌을 얻는 단계; 및
    [화학식 4]
    Figure PCTKR2019000483-appb-I000013
    상기 화학식 4로 표시되는 테리돌과 가돌리늄 옥사이드를 반응시켜, 하기 화학식 5로 표시되는 가도테리돌을 합성한 후, 유기 용매를 추가하여 고체로 석출하는 단계; 를 포함하는 가도테리돌 제조방법.
    [화학식 5]
    Figure PCTKR2019000483-appb-I000014
  5. 제4항에 있어서, 상기 가도테리돌 중간체와 2-클로로아세트산의 반응물을 나노필터를 사용하여 정제하는 것인, 가도테리돌의 제조 방법.
  6. 제4항에 있어서, 상기 유기용매는 아세톤인 것인, 가도테리돌의 제조 방법.
PCT/KR2019/000483 2018-01-19 2019-01-11 가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법 WO2019143073A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539756A JP7032550B2 (ja) 2018-01-19 2019-01-11 ガドテリドール中間体及びこれを利用したガドテリドール製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180007310A KR102033964B1 (ko) 2018-01-19 2018-01-19 가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법
KR10-2018-0007310 2018-01-19

Publications (1)

Publication Number Publication Date
WO2019143073A1 true WO2019143073A1 (ko) 2019-07-25

Family

ID=67301080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/000483 WO2019143073A1 (ko) 2018-01-19 2019-01-11 가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법

Country Status (3)

Country Link
JP (1) JP7032550B2 (ko)
KR (1) KR102033964B1 (ko)
WO (1) WO2019143073A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249701A (zh) * 2022-01-04 2022-03-29 海南普利制药股份有限公司 一种钆特醇化合物的晶型及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268131A (ja) * 1996-01-31 1997-10-14 Nihon Medi Physics Co Ltd 高濃度核磁気共鳴造影剤
KR100269081B1 (ko) * 1992-06-04 2000-10-16 에바-마리아 시마-메이어, 얼설라 멜져, 마거, 하르트만 N-베타-히드록시알킬-트리-n-카르복시알킬-1,4,7,10-테트라아자시클로도데칸및n-베타-히드록시알킬-트리-n-카르복시알킬-1,4,8,11-테트라아자시클로테트라데칸유도체및그들의금속착화합물의제조방법
JP2002508755A (ja) * 1997-06-02 2002-03-19 シェリング アクチェンゲゼルシャフト モノ−及び1、7−ビス−n−ヒドロキシアルキル−シクレン並びにそのリチウム塩錯体の製造
JP3471836B2 (ja) * 1991-12-06 2003-12-02 シエーリング アクチエンゲゼルシヤフト モノ−n−置換されたテトラアザシクロドデカン誘導体および−テトラデカン誘導体の製造方法、ならびに診断および治療用の金属錯体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237943C2 (de) * 1992-11-06 1997-10-23 Schering Ag Verfahren zur Herstellung von Metallkomplexen der N-beta-Hydroxyalkyl-tri-N-carboxyalkyl-1,4,7,10-tetraazacyclododecan- und N-beta-Hydroxyalkyl-tri-N-carboxyalkyl-1,4,8,11-tetraazacyclotetradecan-Derivate
DE10064467C2 (de) * 2000-12-15 2002-10-31 Schering Ag Lithium-Komplexe von N-(1-Hydroxymethyl-2,3-dihydroxypropyl)-1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecan, deren Herstellung und Verwendung
CN106543094A (zh) 2016-11-04 2017-03-29 嘉实(湖南)医药科技有限公司 高纯度钆布醇的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3471836B2 (ja) * 1991-12-06 2003-12-02 シエーリング アクチエンゲゼルシヤフト モノ−n−置換されたテトラアザシクロドデカン誘導体および−テトラデカン誘導体の製造方法、ならびに診断および治療用の金属錯体の製造方法
KR100269081B1 (ko) * 1992-06-04 2000-10-16 에바-마리아 시마-메이어, 얼설라 멜져, 마거, 하르트만 N-베타-히드록시알킬-트리-n-카르복시알킬-1,4,7,10-테트라아자시클로도데칸및n-베타-히드록시알킬-트리-n-카르복시알킬-1,4,8,11-테트라아자시클로테트라데칸유도체및그들의금속착화합물의제조방법
JPH09268131A (ja) * 1996-01-31 1997-10-14 Nihon Medi Physics Co Ltd 高濃度核磁気共鳴造影剤
JP2002508755A (ja) * 1997-06-02 2002-03-19 シェリング アクチェンゲゼルシャフト モノ−及び1、7−ビス−n−ヒドロキシアルキル−シクレン並びにそのリチウム塩錯体の製造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLOGARD, C. ET AL.: "Synthesis and physicochemical characterisation of new amphophilic gadolinium DO3A complexes as contrast agents for MRI", JOURNAL OF THE CHEMICAL SOCIETY PERKIN TRANSACTIONS 2, vol. 2, no. 5, 2000, pages 1047 - 1052, XP001147817, doi:10.1039/a908979i *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249701A (zh) * 2022-01-04 2022-03-29 海南普利制药股份有限公司 一种钆特醇化合物的晶型及其制备方法

Also Published As

Publication number Publication date
KR20190088792A (ko) 2019-07-29
JP2021511322A (ja) 2021-05-06
KR102033964B1 (ko) 2019-10-18
JP7032550B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
AU2004226239B2 (en) Method for the production of telmisartan
AU2007298855B2 (en) Process for preparing N-alkyl naltrexone halides
EP1712556B1 (en) Azithromycin monohydrate
KR100433436B1 (ko) 벤즈이미다졸화합물의합성방법
WO2019143074A1 (ko) 칼코부트롤의 제조방법
WO2019143073A1 (ko) 가도테리돌 중간체 및 이를 이용한 가도테리돌 제조방법
WO2019045436A1 (ko) 가도부트롤 중간체 및 이를 이용한 가도부트롤의 제조 방법
EP0524634B1 (en) Process for the preparation of 1,2-naphtho-quinonediazido-5-sulfonyl chloride
US4791210A (en) Process for the production of 5-methyltetrazole
US8952148B2 (en) Process for the preparation of taurolidine and its intermediates thereof
KR20210112910A (ko) 가도부트롤 주사제 제조를 위한 부형제인 칼코부트롤의 제조 방법
US7507812B2 (en) Process for producing 3-chloromethyl-3-cephem derivatives
US11319294B2 (en) Method for manufacturing calteridol
US7847093B2 (en) Processes for the preparations of cefepime
KR20070110617A (ko) 로사탄의 개선된 제조방법
CN112661716A (zh) 一种三苯甲基氨噻肟酸的制备方法
EP0090202B1 (en) Process for preparing p.chlorophenoxyacetyl-piperonylpiperazine
JP4795968B2 (ja) N,n−カルボニルジアゾール類の製造方法
CN117624070A (zh) 一种缬沙坦及其中间体的制备方法
KR100701420B1 (ko) 비페닐테트라졸 유도체의 제조방법
HU209450B (en) Process for preparing adriamycin and its hydrochloride salt
JPS60169482A (ja) アミノ化フタライド−イソキノリン類の製法
JPH0288543A (ja) アリルジアルキルアミンの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741252

Country of ref document: EP

Kind code of ref document: A1