WO2019142635A1 - 磁気検出装置およびその製造方法 - Google Patents

磁気検出装置およびその製造方法 Download PDF

Info

Publication number
WO2019142635A1
WO2019142635A1 PCT/JP2018/047858 JP2018047858W WO2019142635A1 WO 2019142635 A1 WO2019142635 A1 WO 2019142635A1 JP 2018047858 W JP2018047858 W JP 2018047858W WO 2019142635 A1 WO2019142635 A1 WO 2019142635A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bias
magnetic
magnetic field
film
Prior art date
Application number
PCT/JP2018/047858
Other languages
English (en)
French (fr)
Inventor
正路 齋藤
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2019566392A priority Critical patent/JP6978518B2/ja
Priority to CN201880086933.3A priority patent/CN111630402B/zh
Publication of WO2019142635A1 publication Critical patent/WO2019142635A1/ja
Priority to US16/929,812 priority patent/US11249151B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/007Environmental aspects, e.g. temperature variations, radiation, stray fields
    • G01R33/0076Protection, e.g. with housings against stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a magnetic detection device provided with a full bridge circuit including a plurality of magnetic detection elements having a magnetoresistive film, and a method of manufacturing the same.
  • a magnetic detection device using a magnetic detection element having a magnetoresistive film including a fixed magnetic layer and a free magnetic layer is used in various fields such as geomagnetic sensors, position sensors, current sensors, and the like. From the viewpoint of enhancing the detection accuracy of such various sensors or expanding the measurable range, half-bridge circuits formed by connecting in series two types of magnetic detection elements with different responsiveness to external magnetic fields are connected in parallel.
  • the magnetic sensor may be equipped with a full bridge circuit (Wheatstone bridge circuit) configured.
  • the two types of magnetic detection elements used in the full bridge circuit usually respond to an external magnetic field based on the difference in the relative relationship between the magnetization direction of the free magnetic layer and the sensitivity axis direction when no external magnetic field is applied. Sex is different.
  • Patent Document 1 describes two types of magnetic detection elements in which fixed magnetization axes are set antiparallel to each other.
  • Patent Document 2 describes two types of magnetic detection elements in which the fixed magnetization axes are set in the same direction but the directions of the bias magnetic fields applied to the free magnetic layer are different.
  • Patent Document 1 in order to set the directions of fixed magnetization axes of a plurality of magnetic detection elements formed on a substrate to be different from each other, one of the plurality of magnetic detection elements is selectively energized while a magnetic field is applied.
  • the antiferromagnetic layer of the magnetically heated magnetic sensing element is heated to the blocking temperature or more, and the magnetization direction of the antiferromagnetic layer is set to the magnetization direction of the pinned magnetic layer aligned with the application direction of the external magnetic field.
  • the fixed magnetization axis of the magnetically heated magnetic sensing element is set in a desired direction.
  • Patent Document 2 two types of magnetic detection elements are arranged on the same substrate by aligning the directions of fixed magnetization axes of two types of magnetic detection elements and making the directions of free magnetic layers different from each other in the state where no external magnetic field is applied. It is formed in.
  • an exchange coupling magnetic field is generated by laminating an antiferromagnetic layer on a free magnetic layer using a bias magnetic field by a permanent magnet using shape anisotropy of a magnetoresistive film. , Etc. are described.
  • the present invention is a full bridge circuit (Wheatstone bridge circuit having two types of magnetic detection elements different in response to an external magnetic field on the same substrate with a configuration different from the configuration described in Patent Document 1 and Patent Document 2)
  • the present invention aims to provide a magnetic detection device comprising Another object of the present invention is to provide a method of manufacturing the above magnetic detection device.
  • the present invention which is provided to solve the above problems, according to one aspect, is a method for biasing a first magnetoresistive film in which a first pinned magnetic layer and a first free magnetic layer are stacked, and the first free magnetic layer
  • a first magnetic detection element including a first magnetic field application bias film applying a magnetic field, a second magnetoresistive film in which a second pinned magnetic layer and a second free magnetic layer are stacked, and the second free magnetic layer
  • a magnetic detection device comprising a full bridge circuit having a second magnetic detection element comprising a second magnetic field application bias film applying a bias magnetic field, wherein the full bridge circuit comprises the first magnetic detection element and the second magnetic detection A first half bridge circuit in which the elements are connected in series, and a second half bridge circuit in which the second magnetic detection element and the first magnetic detection element are connected in series;
  • the first magnetic detection element and the second magnetic detection element are provided on the same substrate, and the first magnetoresistance effect film is the first fixed element.
  • the second magnetic field application bias film has a coupling film, and has a second bias exchange coupling film in which a second ferromagnetic layer and a second bias antiferromagnetic layer are stacked, and the first fixed magnetic film
  • the fixed magnetization axis of the layer and the fixed magnetization axis of the second fixed magnetic layer are set coaxially, and the exchange coupling for the first bias is performed.
  • the direction of the exchange coupling magnetic field of the film and the direction of the fixed magnetization axis of the first fixed magnetic layer are set non-parallel, and the direction of the exchange coupling magnetic field of the second bias exchange coupling film and the direction of the second fixed magnetic layer
  • the blocking temperature Tbf1 of the first fixing antiferromagnetic layer and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer are respectively set to be nonparallel to the direction of the fixed magnetization axis.
  • the blocking temperature Tb1 of the ferromagnetic layer is higher than both of the blocking temperature Tb1 of the ferromagnetic layer and the blocking temperature Tb2 of the second bias antiferromagnetic layer, and the blocking temperature Tb1 of the first bias antiferromagnetic layer is the second bias antiferromagnetic layer
  • the magnetic detection device is characterized in that it is higher than the blocking temperature Tb2.
  • the direction of the fixed magnetization axis and the application direction of the bias magnetic field of the free magnetic layer can be freely increased with respect to two types of magnetoresistive effect elements. It becomes possible to set.
  • setting of the fixed magnetization axis and setting of the bias magnetic field are both performed using the exchange coupling magnetic field between the antiferromagnetic layer and the ferromagnetic layer, the resistance to a strong magnetic field is excellent.
  • two types of magnetoresistive elements arranged adjacent to each other hardly affect each other. Therefore, the magnetic detection device can be miniaturized as compared with, for example, setting of a bias magnetic field using a permanent magnet.
  • the direction of the fixed magnetization axis of the first fixed magnetic layer and the direction of the fixed magnetization axis of the second fixed magnetic layer are set antiparallel to each other, and the first bias antiferromagnetic layer
  • the direction of the exchange coupling magnetic field and the direction of the exchange coupling magnetic field of the second bias antiferromagnetic layer are set in parallel, and the direction of the fixed magnetization axis of the first pinned magnetic layer and the first bias antiferromagnetic layer
  • the direction of the exchange coupling magnetic field may be set non-parallel (specifically, orthogonally in the stacking direction).
  • the direction of the fixed magnetization axis of the first fixed magnetic layer and the direction of the fixed magnetization axis of the second fixed magnetic layer are set in parallel, and the bias magnetic field of the first bias exchange coupling film And the direction of the bias magnetic field of the second bias exchange coupling film may be set non-parallel to each other.
  • the inclination angle in the stacking direction of the direction of the bias magnetic field of the first bias exchange coupling film with respect to the direction of the fixed magnetization axis of the first fixed magnetic layer is the fixed magnetization axis of the second fixed magnetic layer.
  • the absolute value is equal in the opposite direction to the inclination angle in the stacking direction of the direction of the bias magnetic field of the second bias exchange coupling film with respect to the direction of.
  • the absolute values of the inclination angles are all 45 degrees, and as a result, the case where they are orthogonal in the stacking direction is exemplified.
  • the fixing antiferromagnetic layer which is at least one of the first fixing antiferromagnetic layer and the second fixing antiferromagnetic layer is selected from the group consisting of platinum group elements and Ni.
  • a ferromagnetic ferromagnetic material for fixation comprising an X (Cr-Mn) layer containing one or more elements X and Mn and Cr, wherein the X (Cr-Mn) layer is exchange-coupled to the antiferromagnetic layer for fixation
  • the content of Mn in the first region is preferably higher than the content of Mn in the second region. It is preferable that both the first fixing antiferromagnetic layer and the second fixing antiferromagnetic layer be the above-mentioned fixing antiferromagnetic layer.
  • FIG. 1 is a diagram for explaining the hysteresis loop of the magnetization curve of the exchange coupling film having the above-mentioned fixing antiferromagnetic layer.
  • FIG. 1 is a diagram for explaining the hysteresis loop of the magnetization curve of the exchange coupling film having the above-mentioned fixing antiferromagnetic layer.
  • FIG. 1 is a diagram for explaining the
  • the hysteresis loop of the exchange coupling film causes the exchange coupling magnetic field Hex to act on the ferromagnetic layer that is exchange coupled with the fixing antiferromagnetic layer, and hence the magnitude of the exchange coupling magnetic field Hex Depending on the height, the shape is shifted along the H axis. Since the fixing ferromagnetic layer of the exchange coupling film is less likely to reverse the direction of magnetization even when the external magnetic field is applied as the exchange coupling magnetic field Hex is larger, the magnetic detection device including the fixing antiferromagnetic layer is stronger Excellent in magnetic field resistance.
  • the above-mentioned fixing antiferromagnetic layer has a blocking temperature Tb higher than that of an antiferromagnetic layer formed of a conventional antiferromagnetic material such as IrMn or PtMn described in Patent Document 1, and thus, for example, about 350 ° C. Even in an environment where an external magnetic field is applied, the exchange coupling magnetic field Hex can be maintained.
  • the first region may be in contact with the fixing ferromagnetic layer.
  • the first region may have a portion in which an Mn / Cr ratio, which is a ratio of the content of Mn to the content of Cr, is 0.3 or more. In this case, it is preferable that the first region have a portion in which the Mn / Cr ratio is 1 or more.
  • the fixing antiferromagnetic layer, and PtCr layer, proximal of X 0 Mn layer in the fixed ferromagnetic layer than the PtCr layer (where, X 0 May be a stack of one or more elements selected from the group consisting of platinum group elements and Ni.
  • the fixing antiferromagnetic layer is formed by stacking a PtCr layer and a PtMn layer in this order so that the PtMn layer is in proximity to the fixing ferromagnetic layer. It may be one. In this case, an IrMn layer may be further laminated closer to the fixing ferromagnetic layer than the PtMn layer. In this case, the above X 0 Mn layer has a laminated structure of a PtMn layer and an IrMn layer.
  • the fixing antiferromagnetic layer which is at least one of the first fixing antiferromagnetic layer and the second fixing antiferromagnetic layer is an X 1 Cr layer (wherein X 1 is platinum).
  • Group element and Ni, and X 2 Mn layer (wherein X 2 is one or more elements selected from the group consisting of platinum group elements and Ni) , And X 1 ) may have a three or more layer alternately laminated structure in which two or more layers may be alternately laminated.
  • the magnetic detection device has high magnetic field resistance.
  • the X 1 may be Pt
  • the X 2 may be Pt or Ir.
  • the fixing antiferromagnetic layer may have a unit laminate portion in which a plurality of units each including an X 1 Cr layer and an X 2 Mn layer are stacked.
  • the X 1 Cr layer and the X 2 Mn layer in the unit laminate portion have the same film thickness, and the film thickness of the X 1 Cr layer is greater than the film thickness of the X 2 Mn layer It may be large.
  • the ratio of the film thickness of the X 1 Cr layer to the film thickness of the X 2 Mn layer is 5: 1 to 100: 1.
  • the first bias antiferromagnetic layer is made of a PtMn layer
  • the second bias antiferromagnetic layer is made of an IrMn layer.
  • the direction of the fixed magnetization axis is set by the antiferromagnetic layer which has a blocking temperature higher than before and which can generate a strong exchange coupling magnetic field.
  • a first magnetoresistive film in which a first pinned magnetic layer and a first free magnetic layer are stacked, and a first magnetic field application for applying a bias magnetic field to the first free magnetic layer A first magnetic detection element having a bias film, a second magnetoresistance effect film in which a second pinned magnetic layer and a free magnetic layer are stacked, and a second magnetic field application for applying a bias magnetic field to the second free magnetic layer It is a manufacturing method of a magnetic detection apparatus provided with the full bridge circuit which has the 2nd magnetic detection element provided with a bias film.
  • the full bridge circuit includes a first half bridge circuit in which the first magnetic detection element and the second magnetic detection element are connected in series, the second magnetic detection element, and the second magnetic detection element.
  • a second half bridge circuit in which one magnetic detection element is connected in series is connected in parallel between the power supply terminal and the ground terminal, and the first magnetic detection element and the second magnetic detection element Is provided on the same substrate, and the first magnetoresistive film has a first fixed exchange coupling film in which the first fixed magnetic layer and the first fixed antiferromagnetic layer are stacked,
  • the first magnetic field application bias film has a first bias exchange coupling film in which a first ferromagnetic layer and a first bias antiferromagnetic layer are stacked, and the second magnetoresistance effect film is the second magnetic resistance effect film.
  • the second on which the pinned magnetic layer and the second pinned antiferromagnetic layer are stacked The second magnetic field application bias film has a second bias exchange coupling film in which a second ferromagnetic layer and a second bias antiferromagnetic layer are stacked; (1)
  • the blocking temperature Tbf1 of the fixing antiferromagnetic layer and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer are respectively the blocking temperature Tb1 of the first bias antiferromagnetic layer and the anti-strong for the second bias
  • the blocking temperature Tb1 of the first bias antiferromagnetic layer is higher than any of the blocking temperatures Tb2 of the magnetic layer, and the blocking temperature Tb2 of the second bias antiferromagnetic layer is higher.
  • the first fixing antiferromagnetic layer and the second fixing antiferromagnetic layer are ordered by heat treatment to exchange the first bias exchange coupling film and the second bias exchange coupling film.
  • Heat treatment is performed while applying an external magnetic field at a temperature lower than the blocking temperature Tbf1 of the magnetic layer and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer, whereby the direction of the bias magnetic field by the first bias exchange coupling film is
  • the first bias magnetic field setting step of setting the first magnetic bias field nonparallel to the direction of the fixed magnetization axis of the first fixed magnetic layer, and the first bias magnetic field setting step the first bias antiferromagnetic layer By performing heat treatment while applying an external magnetic field at a temperature lower than the blocking temperature Tb1, the direction of the bias magnetic field by the second bias exchange coupling film
  • the magnetic detection device has a full bridge circuit (Wheatstone bridge circuit) having two types of magnetic detection elements having different responsiveness to the external magnetic field on the same substrate, and is excellent in high magnetic field resistance. It is possible to manufacture without the step of applying an external magnetic field in element units.
  • the direction of the exchange coupling magnetic field of the first fixed exchange coupling film is aligned with the magnetization direction of the first fixed ferromagnetic layer, and the second fixed exchange coupling film
  • the direction of the exchange coupling magnetic field may be aligned with the magnetization direction of the second pinned ferromagnetic layer.
  • the magnetization direction of the first pinned ferromagnetic layer that aligns the direction of the exchange coupling magnetic field of the first pinned exchange coupling film.
  • the magnetization of the second pinned ferromagnetic layer that aligns the direction of the exchange coupling magnetic field of the second pinned exchange coupling film.
  • the directions may be aligned in a predetermined direction at the film forming stage, or may be aligned by heating while applying an external magnetic field in the fixed magnetization axis setting step.
  • the direction of the fixed magnetization axis of the first fixed magnetic layer is set antiparallel to the direction of the fixed magnetization axis of the second fixed magnetic layer, and a first bias is set.
  • the direction of the exchange coupling magnetic field of the first bias antiferromagnetic layer is set nonparallel to the direction of the fixed magnetization axis of the first fixed magnetic layer, and in the second bias magnetic field setting step
  • the direction of the exchange coupling magnetic field of the second bias antiferromagnetic layer may be set parallel to the direction of the exchange coupling magnetic field of the first bias antiferromagnetic layer.
  • the direction of the fixed magnetization axis of the first fixed magnetic layer and the direction of the fixed magnetization axis of the second fixed magnetic layer are set in parallel, and the first bias is set.
  • the direction of the bias magnetic field of the first bias exchange coupling film is set nonparallel to the direction of the fixed magnetization axis of the first fixed magnetic layer
  • the second bias magnetic field setting step The direction of the bias magnetic field of the second bias exchange coupling film may be set nonparallel to either the direction of the fixed magnetization axis of the first fixed magnetic layer or the direction of the bias magnetic field of the first bias exchange coupling film.
  • a magnetic detection device excellent in resistance to a strong magnetic field provided with a full bridge circuit having two types of magnetic detection elements different in response to an external magnetic field on the same substrate.
  • the present invention also provides a method of manufacturing the above magnetic detection device.
  • FIG. 3A is a cross-sectional view taken along line V1-V1 in FIG. 3A;
  • FIG. 3B is a cross-sectional view taken along line V2-V2 in FIG.
  • FIG. 7 is a graph showing the ratio of the Cr content to the Mn content (Mn / Cr ratio) determined based on FIG. 6 with the range of the horizontal axis being equal to FIG. 6.
  • FIG. 10 (a) is a cross-sectional view taken along line V3-V3 of FIG. 10 (a);
  • FIG. 10 (b) is a cross-sectional view taken along line V4-V4 of FIG. 10 (b);
  • FIG. 2 is a circuit block diagram of a magnetic sensor (magnetic detection device) according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory view showing the configuration of the magnetic detection element according to the first embodiment of the present invention
  • FIG. 3 (a) is a view of the first magnetic detection element from the Z1-Z2 direction.
  • (B) is the figure which looked at the 2nd magnetic detection element from Z1-Z2 direction.
  • FIG. 4A is a cross-sectional view taken along line V1-V1 of FIG.
  • FIG. 4B is a cross-sectional view taken along line V2-V2 of FIG.
  • the magnetic sensor 100 includes a full bridge circuit FB in which a first half bridge circuit HB1 and a second half bridge circuit HB2 are connected in parallel between a power supply terminal Vdd and a ground terminal GND.
  • the first half bridge circuit HB1 is formed by connecting the first magnetic detection element M1 and the second magnetic detection element M2 in series, and the second half bridge circuit HB2 is connected to the second magnetic detection element M2 and the first magnetic detection The element M1 is connected in series.
  • the first magnetic detection element M1 and the second magnetic detection element M2 are provided on the same substrate SB.
  • the first magnetic detection element M1 includes the first magnetoresistance effect film MR1, and the first magnetoresistance effect film MR1 is the first pinned magnetic layer 15 whose magnetization is pinned in the X1-X2 direction X2 direction (fixed magnetization direction P). And a first free magnetic layer 13 which is easily magnetized along the applied external magnetic field H.
  • the first pinned antiferromagnetic layer 16 is stacked on the first pinned magnetic layer 15 and the side (Z1-Z2 direction Z1 side) opposite to the side of the first pinned magnetic layer 15 opposite to the first free magnetic layer 13. And constitute the first fixing exchange coupling film 511.
  • An exchange coupling magnetic field Hex is generated between the first fixed magnetic layers 15 of the first fixing exchange coupling film 511 (interface), and black arrows in FIGS. 2 and 3 (a) are generated based on the exchange coupling magnetic field Hex.
  • the fixed magnetization direction P of the first pinned magnetic layer 15 is set in the X1-X2 direction X2.
  • the first magnetic detection element M1 includes two first magnetic field application bias films MB11 and MB12 for applying a bias magnetic field to the first free magnetic layer 13, and the first magnetic field application bias film MB11, the first magnetoresistance effect film MR1, and The first magnetic field application bias films MB12 are arranged in this order on the substrate SB from the Y1-Y2 direction Y1 side to the Y1-Y2 direction Y2 side.
  • each of the first magnetic field application bias films MB11 and MB12 is provided with the underlayer 81 on the substrate SB, and the first ferromagnetic layer 83 and the first bias are provided thereon.
  • the antiferromagnetic layer 84 is stacked to form the first bias exchange coupling film 512.
  • an exchange coupling magnetic field Hex directed in the Y1-Y2 direction Y1 is generated.
  • the bias exchange coupling magnetic field Hex11 generated in the first magnetic field application bias film MB11 and the bias exchange coupling magnetic field Hex12 generated in the first magnetic field application bias film MB12 are hatched arrows in FIGS. 3A and 4A. Indicated.
  • the first free magnetic layer 13 has generated exchange coupling as shown by white arrows in FIG. 2, FIG. 3 (a) and FIG. 4 (a).
  • a bias magnetic field in the Y1-Y2 direction Y1 direction (bias application direction F) is applied along the direction of the magnetic field Hex.
  • the first free magnetic layer 13 is magnetized in the bias application direction F based on the bias magnetic field.
  • the second magnetic detection element M2 includes the second magnetoresistance effect film MR2, and the second magnetoresistance effect film MR2 is the second pinned magnetic layer 25 whose magnetization is pinned in the X1-X2 direction X1 direction (fixed magnetization direction P). And a second free magnetic layer 23 that is easily magnetized along the applied external magnetic field H.
  • the second pinned antiferromagnetic layer 26 is stacked on the second pinned magnetic layer 25 and the second pinned magnetic layer 25 on the side (Z1-Z2-direction Z1 side) opposite to the side facing the second free magnetic layer 23. And constitute the second fixing exchange coupling film 521.
  • An exchange coupling magnetic field Hex is generated between the second fixed magnetic layers 25 of the second fixing exchange coupling film 521 (interface), and black arrows in FIGS. 2 and 3 (b) based on the exchange coupling magnetic field Hex. 4B, the fixed magnetization direction P of the second fixed magnetic layer 25 is set in the X1-X2 direction X1. That is, the fixed magnetization direction P of the first fixed magnetic layer 15 and the fixed magnetization direction P of the second fixed magnetic layer 25 are set to be coaxial but opposite to each other, that is, antiparallel.
  • the second magnetic detection element M2 includes two second magnetic field application bias films MB21 and MB22 for applying a bias magnetic field to the second free magnetic layer 23, and the second magnetic field application bias film MB21, the second magnetoresistance effect film MR2, and The second magnetic field application bias films MB22 are arranged in this order on the substrate SB from the Y1-Y2 direction Y1 side to the Y1-Y2 direction Y2 side.
  • each of the second magnetic field application bias films MB21 and MB22 has a base layer 91 provided on the substrate SB, and the second ferromagnetic layer 93 and the second bias layer are provided thereon.
  • the antiferromagnetic layer 94 is stacked to form the second bias exchange coupling film 522.
  • An exchange coupling magnetic field Hex directed in the Y1-Y2 direction Y1 is generated between the second bias antiferromagnetic layer 94 and the second ferromagnetic layer 93 (interface).
  • the bias exchange coupling magnetic field Hex21 generated in the second magnetic field application bias film MB21 and the bias exchange coupling magnetic field Hex22 generated in the second magnetic field application bias film MB22 are hatched by hatching in FIGS. 3B and 4B. Indicated.
  • the second free magnetic layer 23 contains the generated exchange coupling magnetic field Hex.
  • a bias magnetic field in the Y1-Y2 direction Y1 direction (bias application direction F) is applied along the direction.
  • the second free magnetic layer 23 is magnetized in the bias application direction F based on the bias magnetic field.
  • the direction of the bias magnetic field applied to the first free magnetic layer 13 (bias application direction F) and the direction of the bias magnetic field applied to the second free magnetic layer 23 (bias application direction F) are coaxial and the same. It is set to be parallel, that is, parallel.
  • the direction of the exchange coupling magnetic field Hex of the first fixing exchange coupling film 511 and the direction of the exchange coupling magnetic field Hex of the first bias exchange coupling film 512 are not parallel (specifically, viewed from the Z1-Z2 direction).
  • the magnetization direction P of the first pinned magnetic layer 15 and the bias application direction F of the first free magnetic layer 13 are orthogonal to each other when viewed from the Z1-Z2 direction because they are set orthogonally (as viewed in the stacking direction). .
  • the direction of the exchange coupling magnetic field Hex of the second fixing exchange coupling film 521 and the direction of the exchange coupling magnetic field Hex of the second bias exchange coupling film 522 are not parallel (specifically, orthogonally viewed from the Z1-Z2 direction) Since the fixed magnetization direction P of the second fixed magnetic layer 25 and the bias application direction F of the second free magnetic layer 23 are orthogonal to each other as viewed from the Z1-Z2 direction.
  • the magnetization direction of the first free magnetic layer 13 and the magnetization direction of the second free magnetic layer 23 rotate along the direction of the external magnetic field H
  • the resistance value of the first magnetic detection element M1 and the resistance value of the second magnetic detection element M2 change according to the magnetization direction of the pinned magnetic layer and the magnetization direction and direction of the free magnetic layer.
  • the fixed magnetization direction P (X1-X2 direction X2 direction) of the first magnetic detection element M1 and the fixed magnetization direction P (X1) of the second magnetic detection element M2 are generated by the exchange coupling magnetic field Hex.
  • Magnetizations are set in three directions: (X2 direction X1 direction), and bias magnetic field directions (bias application direction F, Y1-Y2 direction Y1 direction) with respect to the first magnetic detection element M1 and the second magnetic detection element M2.
  • three kinds of materials having different blocking temperatures Tb are used as an antiferromagnetic layer related to the generation of the exchange coupling magnetic field Hex as follows. .
  • the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 16 and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 26 are the blocking temperature Tb1 of the first bias antiferromagnetic layer 12 and the blocking temperature Tb1 of the first bias antiferromagnetic layer 12, respectively. It is made higher than any of the blocking temperature Tb2 of the second bias antiferromagnetic layer 22. Also, the blocking temperature Tb1 of the first bias antiferromagnetic layer 12 is made higher than the blocking temperature Tb2 of the second bias antiferromagnetic layer 22. As such, when the blocking temperatures Tb are different, the directions of the exchange coupling magnetic fields can be set in three different directions.
  • Table 1 shows a specific example of the first magnetoresistive film MR1.
  • the left end row of Table 1 shows each layer of the first magnetoresistive film MR1, and examples of the materials constituting each are shown in the second row from the right.
  • the numerical values in the rightmost column indicate the thickness of each layer (unit: angstrom ( ⁇ )). Since the first magnetoresistance effect film MR1 is a giant magnetoresistance effect film, the nonmagnetic material layer 14 is located between the first pinned magnetic layer 15 and the first free magnetic layer 13, and the spin valve structure is It is formed.
  • the underlayer 11 provided on the substrate SB is formed of a NiFeCr alloy (nickel-iron-chromium alloy), Cr, Ta or the like.
  • the underlayer 1 is made of a 42 ⁇ thick NiFeCr alloy.
  • the first free magnetic layer 13 is stacked on the underlayer 11.
  • the material which comprises the 1st free magnetic layer 13 can use CoFe alloy (cobalt iron alloy), NiFe alloy (nickel iron alloy), etc., and it is formed as a single layer structure, lamination structure, lamination ferric structure etc. Can.
  • CoFe alloy cobalt iron alloy
  • NiFe alloy nickel iron alloy
  • Table 1 from the side close to the first bias antiferromagnetic layer 12, a 18 ⁇ thick Ni 81.5 at% Fe 18.5 at% layer and a 14 ⁇ thick Co 90 at% Fe 10 A layer consisting of atomic percent is stacked to form the first free magnetic layer 13.
  • the nonmagnetic material layer 14 is stacked on the first free magnetic layer 13.
  • the nonmagnetic material layer 14 can be formed using Cu (copper) or the like.
  • the nonmagnetic material layer 14 is made of Cu with a thickness of 30 ⁇ .
  • the first pinned magnetic layer 15 is stacked on the nonmagnetic material layer 14.
  • the first pinned magnetic layer 15 is formed of a ferromagnetic CoFe alloy (cobalt-iron alloy).
  • the CoFe alloy has a high coercivity by increasing the content of Fe.
  • the first pinned magnetic layer 15 is a layer that contributes to the spin valve type giant magnetoresistance effect, and the direction in which the pinned magnetization direction P of the first pinned magnetic layer 15 extends is the sensitivity axis direction of the first magnetic detection element M1.
  • the first fixed magnetic layer 15 preferably has a self-pinned structure as shown in Table 1.
  • the first pinned antiferromagnetic layer 16 is stacked on the ferromagnetic layer of 17 atomic percent Fe 60 at% Co 40 at % that constitutes the first pinned magnetic layer 15.
  • a 20 ⁇ thick Pt 50 atomic% Mn 50 atomic% layer and a 280 ⁇ thick Pt 51 A layer consisting of atomic percent Cr and 49 atomic percent is deposited.
  • the first fixing antiferromagnetic layer 16 By annealing the first fixing antiferromagnetic layer 16, the first fixing antiferromagnetic layer 16 is ordered to form the first fixed magnetic layer 15 and the first fixing exchange coupling film 511, An exchange coupling magnetic field Hex is generated between the fixing antiferromagnetic layer 16 and the first fixed magnetic layer 15 (interface).
  • the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 16 is about 500.degree. Therefore, even if the first fixing exchange coupling film 511 is heated to about 400 ° C., the exchange coupling magnetic field Hex is maintained.
  • a plurality of types of metals forming the alloy may be supplied simultaneously, or a plurality of metals forming the alloy may be supplied alternately.
  • a specific example of the former includes simultaneous sputtering of a plurality of types of metals forming an alloy, and a specific example of the latter includes alternating lamination of different types of metal films. Simultaneous delivery of multiple metals to form an alloy may be preferable to enhancing the exchange coupling magnetic field Hex over alternating delivery.
  • a protective layer 17 is stacked on the first fixing antiferromagnetic layer 16.
  • the protective layer 17 can be formed using Ta (tantalum) or the like. In Table 1, Ta of 90 ⁇ in thickness is stacked.
  • Table 2 shows specific examples of the first magnetic field application bias films MB11 and MB12.
  • the left end column of Table 2 shows the layers of the first magnetic field application bias films MB11 and MB12, and an example of the material constituting each is shown in the second column from the right.
  • the numerical values in the rightmost column indicate the thickness of each layer (unit: angstrom ( ⁇ )).
  • the underlayer 81 is made of a 42 ⁇ thick NiFeCr alloy, on which a 40 ⁇ thick Cu and a 10 ⁇ thick Ru are stacked as a nonmagnetic material layer 82.
  • a first ferromagnetic layer 83 consisting of Co 90 at% Fe 50 at % having a thickness of 100 ⁇ is stacked.
  • a first bias antiferromagnetic layer 84 of Pt 50 at% Mn 10 at % having a thickness of 300 ⁇ is stacked.
  • the first bias antiferromagnetic layer 84 is ordered and exchange-coupled to the first ferromagnetic layer 83 to form the first bias exchange coupling film 512.
  • bias exchange coupling magnetic fields Hex11 and Hex12 are generated between the first bias antiferromagnetic layer 84 and the first ferromagnetic layer 83 (interface).
  • the blocking temperature Tb1 of the first bias antiferromagnetic layer 84 is about 400.degree. Therefore, even if the first bias exchange coupling film 512 is heated to about 300 ° C., the exchange coupling magnetic field Hex is maintained.
  • a protective layer of Ta having a thickness of 100 ⁇ is laminated on the first bias antiferromagnetic layer 84.
  • Table 3 shows a specific example of the second magnetoresistive film MR2.
  • the left end column of Table 3 shows the layers of the second magnetoresistive film MR2, and examples of the materials constituting each are shown in the second column from the right.
  • the numerical values in the rightmost column indicate the thickness of each layer (unit: angstrom ( ⁇ )). Since the second magnetoresistance effect film MR2 is a giant magnetoresistance effect film, the nonmagnetic material layer 24 is located between the second pinned magnetic layer 25 and the second free magnetic layer 23, and the spin valve structure is It is formed.
  • the configuration of the underlayer 21, the second free magnetic layer 23, the nonmagnetic material layer 24, the second pinned magnetic layer 25, and the protective layer 27 is the same as that of the corresponding underlayer 11, the first free magnetic layer 13, and the nonmagnetic material layer 14. Since the configuration is the same as the configuration of the first pinned magnetic layer 15 and the protective layer 17, the description will be omitted.
  • the second fixing antiferromagnetic layer 26 In order to form the second pinned antiferromagnetic layer 26, from the side close to the second pinned magnetic layer 25, a layer consisting of Pt 50 atomic% Mn 50 atomic% with a thickness of 20 ⁇ and Pt 51 with a thickness of 280 ⁇ A layer consisting of atomic percent Cr and 49 atomic percent is deposited.
  • the second fixing antiferromagnetic layer 26 is ordered and exchange-coupled to the second fixed magnetic layer 25 to form a second fixing exchange coupling film 521.
  • An exchange coupling magnetic field Hex is generated between (the interface with) the second pinned antiferromagnetic layer 26 and the second pinned magnetic layer 25.
  • the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 26 is about 500.degree. Therefore, even if the second fixing exchange coupling film 521 is heated to about 400 ° C., the exchange coupling magnetic field Hex is maintained.
  • Table 4 shows specific examples of the second magnetic field application bias films MB21 and MB22.
  • the left end column of Table 4 shows the layers of the second magnetic field application bias films MB21 and MB22, and an example of the material constituting each is shown in the second column from the right.
  • the numerical values in the rightmost column indicate the thickness of each layer (unit: angstrom ( ⁇ )).
  • base layer 91 The configuration of base layer 91, nonmagnetic material layer 92, second ferromagnetic layer 93, and protective layer 95 is the same as the configuration of corresponding base layer 81, nonmagnetic material layer 82, first ferromagnetic layer 83, and protective layer 85. Description is omitted because it is equal to.
  • the second bias antiferromagnetic layer 94 is made of 80 ⁇ thick Ir 20 at% Mn 80 at% .
  • the second bias antiferromagnetic layer 94 is exchange coupled with the second ferromagnetic layer 93 to form a second bias exchange coupled film 522, and the second bias antiferromagnetic layer 94 and the second ferromagnetic layer 93 are formed. In the meantime (interface), exchange coupling magnetic fields Hex21 and Hex22 for bias are generated.
  • the blocking temperature Tb2 of the second bias antiferromagnetic layer 94 is approximately 300 ° C., which is lower than the blocking temperature Tb1 (approximately 400 ° C.) of the first bias antiferromagnetic layer 84.
  • each magnetic detection element is formed by performing the heat treatment as described below after forming each layer.
  • the magnetic sensor 100 can be manufactured in which the fixed magnetization direction P and the bias application direction F of the (first magnetic detection element M1 and the second magnetic detection element M2) are set to predetermined directions.
  • the layers constituting the first magnetoresistance effect film MR1 and the second magnetoresistance effect film MR2 are stacked, and a fixed magnetization axis setting step is performed on the obtained laminate.
  • the next first fixing antiferromagnetic layer 16 and the second fixing antiferromagnetic layer 26 are ordered by heat treatment.
  • the temperature is not particularly limited as long as regularization is realized.
  • the temperature is set to a temperature slightly lower than the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 16 and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 26, for example, about 300 ° C. to 400 ° C.
  • the heat treatment time is also arbitrary as long as regularization is realized. As a non-limiting example, one or more hours, specifically about 5 hours may be mentioned.
  • the first fixing antiferromagnetic layer 16 and the second fixing antiferromagnetic layer 26 are ordered, and an exchange coupling magnetic field Hex is generated in the first fixing exchange coupling film 511 and the second fixing exchange coupling film 521.
  • the magnetization direction of the first pinned antiferromagnetic layer 16 is aligned with the magnetization direction of the first pinned magnetic layer 15. Therefore, the exchange coupling magnetic field Hex of the first fixing exchange coupling film 511 is generated so as to be aligned with the magnetization direction of the first fixed magnetic layer 15.
  • the magnetization direction of the second pinned antiferromagnetic layer 26 is ordered, the magnetization direction of the second pinned magnetic layer 25 is aligned. Therefore, the exchange coupling magnetic field Hex of the second fixing exchange coupling film 521 is generated so as to be aligned with the magnetization direction of the second fixed magnetic layer 25.
  • the magnetization direction is set to the X1-X2-direction X2 direction
  • the magnetization direction is set to the X1-X2-direction X1.
  • the fixed magnetization direction P of the first fixed magnetic layer 15 and the fixed magnetization direction P of the second fixed magnetic layer 25 are coaxial (specifically, antiparallel). ) Can be set.
  • the two first magnetic field application bias films are arranged in parallel to the first magnetoresistive film MR1.
  • the layers constituting MB11 and MB12 are stacked, and the layers constituting two second magnetic field application bias films MB21 and MB22 are stacked so as to be juxtaposed to the second magnetoresistance effect film MR2.
  • the first bias magnetic field is heat-treated at a temperature (for example, 350 ° C.) lower than the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 16 and lower than the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 26 Perform the setting process.
  • a temperature for example, 350 ° C.
  • the first ferromagnetic layer 83 and the exchange coupling magnetic fields Hex11 and Hex12 for bias are generated.
  • bias application direction F A bias magnetic field in the Y1-Y2 direction Y1 direction (bias application direction F) is applied to the first free magnetic layer 13 based on the bias exchange coupling magnetic fields Hex11 and Hex12.
  • the bias application direction F of the first free magnetic layer 13 thus set is not parallel to the pinned magnetization direction P of the first pinned magnetic layer 15, and specifically orthogonal to the Z1-Z2 direction.
  • the heat treatment temperature in the first bias magnetic field setting step is lower than the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 16 and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 26.
  • the set fixed magnetization direction P and the fixed magnetization direction P set in the second fixed magnetic layer 25 do not follow the direction of the applied external magnetic field, and can maintain their respective directions.
  • a second bias magnetic field setting step of performing heat treatment at a temperature (for example, 300 ° C.) lower than the blocking temperature Tb1 of the first bias antiferromagnetic layer 12 is performed.
  • a temperature for example, 300 ° C.
  • the second bias antiferromagnetic layer 94 of the second magnetic field application bias films MB21 and MB22 and the second strong magnetic field are applied along the direction of the applied magnetic field.
  • the magnetic layer 93 and the exchange coupling magnetic fields Hex21 and Hex22 for bias are generated.
  • bias application direction F A bias magnetic field in the Y1-Y2 direction Y1 direction (bias application direction F) is applied to the second free magnetic layer 23 based on the bias exchange coupling magnetic fields Hex21 and Hex22.
  • the bias application direction F of the second free magnetic layer 23 set in this manner is not parallel to the pinned magnetization direction P of the second pinned magnetic layer 25, and specifically orthogonal to the Z1-Z2 direction.
  • the heat treatment temperature in the second bias magnetic field setting step is the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 16, the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 26, and the blocking of the first bias antiferromagnetic layer 12 Since it is also lower than the temperature Tb 1, the fixed magnetization direction P set in the first fixed magnetic layer 15 and the fixed magnetization direction P set in the second fixed magnetic layer 25 and the bias magnetic field applied to the first free magnetic layer 13
  • the direction (bias application direction F) is not along the direction of the applied magnetic field, and each direction can be maintained.
  • the exchange coupling with the respective antiferromagnetic layers is realized by performing the above-described steps.
  • An exchange coupling magnetic field Hex in any direction can be generated in the magnetic layers (the first pinned magnetic layer 15 and the second pinned magnetic layer 25, the first free magnetic layer 13, and the second free magnetic layer 23).
  • the laminated antiferromagnetic layer according to one embodiment of the present invention is a platinum group element and an X (Cr—Mn) layer containing one or more elements X selected from the group consisting of Ni and Mn and Cr.
  • the first fixing antiferromagnetic layer 16 and the second fixing antiferromagnetic layer 26 described above become Pt (Cr—Mn) layers because the element X is Pt.
  • the Pt (Cr-Mn) layer is a ferromagnetic layer (first fixed magnetic layer 15) which is exchange-coupled to the antiferromagnetic layer (the first fixing antiferromagnetic layer 16 and the second fixing antiferromagnetic layer 26).
  • the content of Mn in the first region is higher than the content of Mn in the second region.
  • the Pt (Cr—Mn) layer having such a structure is formed by subjecting the stacked PtMn layer and PtCr layer to annealing treatment.
  • the content distribution (depth profile) in the depth direction of the constituent elements obtained by performing surface analysis while sputtering can be confirmed.
  • FIG. 5A is an explanatory view of the configuration of a film 60 including an exchange coupling film 55 provided with an antiferromagnetic layer 64 similar to the laminated antiferromagnetic layer according to one embodiment of the present invention.
  • FIG. 5 (b) is an example of the depth profile of this film 60.
  • the film 60 has the following laminated configuration.
  • the numerical values in parentheses indicate the film thickness ( ⁇ ).
  • stacked layers of the IrMn layer 641, the PtMn layer 642, and the PtCr layer 643 are stacked from the side close to the pinned magnetic layer 63.
  • Substrate / underlayer 61 NiFeCr (40) / nonmagnetic material layer 62: [Cu (40) / Ru (20)] / fixed magnetic layer 63: Co40at% Fe60at % (20) / antiferromagnetic layer 64 [ IrMn layer 641: Ir 22 at% Mn 78 at% (10) / PtMn layer 642: Pt 50 at% Mn 50 at% (16) / PtCr layer 643: Pt 51 at% Cr 49 at% (300)] / protective layer 65: Ta (100 )
  • the depth profile shown in FIG. 5 (b) is obtained from a film that has been subjected to annealing treatment at 350 ° C. for 20 hours in a magnetic field of 15 kOe for a film 60 having the following configuration and ordered. .
  • the depth profile in FIG. 5B is obtained by performing surface analysis with an Auger electron spectrometer while performing argon sputtering from the protective layer 65 side, and Pt, Ir, Cr, and Mn in the depth direction.
  • Content distribution of The sputtering rate by argon was determined in terms of SiO 2 and was 1.1 nm / min.
  • FIG. 6 is an enlarged view of a part of FIG. 5 (b).
  • the content distribution of Co one of the constituent elements of the pinned magnetic layer 63
  • the content distribution of Ru and Ru is also included in the depth profile.
  • the thickness of the antiferromagnetic layer 64 is about 30 nm, and Pt and Ir as one or two or more elements X selected from the group consisting of platinum group elements and Ni. It comprises an X (Cr-Mn) layer containing N, Mn and Cr, and specifically comprises a (Pt-Ir) (Cr-Mn) layer.
  • the X (Cr-Mn) layer ((Pt-Ir) (Cr-Mn) layer) is relatively far from the first region R1 relatively proximal to the pinned magnetic layer 63 and the pinned magnetic layer 63.
  • the content of Mn in the first region R1 is higher than the content of Mn in the second region R2.
  • Such a structure can be obtained by appropriately laminating a layer composed of XCr, a layer composed of XMn and the like to form a multilayer laminate, and subjecting this multilayer laminate to the above-mentioned annealing treatment.
  • FIG. 7 shows the ratio of the Mn content to the Cr content (Mn / Cr ratio) calculated based on the Mn content and Cr content of each depth determined by the depth profile. It is the graph which made the range of (b) and the horizontal axis equal.
  • the depth at which the Mn / Cr ratio is 0.1 is defined as the boundary between the first region R1 and the second region R2. That is, in the antiferromagnetic layer 64, a region having a Mn / Cr ratio of 0.1 or more in a region proximal to the pinned magnetic layer 63 is defined as a first region R1, and a region other than the first region in the antiferromagnetic layer 64 is defined. An area is defined as a second area. Based on this definition, in the depth profile shown in FIG. 5B, the boundary between the first region R1 and the second region R2 is located at a depth of about 44.5 nm.
  • the first region R1 preferably has a portion with a Mn / Cr ratio of 0.3 or more, more preferably a portion with a Mn / Cr ratio of 0.7 or more, and the Mn / Cr ratio It is particularly preferred that is have one or more moieties.
  • the exchange coupling film 55 can generate a high exchange coupling magnetic field Hex.
  • the antiferromagnetic layer 64 has a high blocking temperature Tb because the content of Mn is low and the content of Cr is relatively high in the second region R2. Therefore, the exchange coupling film 55 maintains the exchange coupling magnetic field Hex even when it is placed in a high temperature environment.
  • the layers stacked on the side of the pinned magnetic layer 63 with respect to the PtCr layer 643 are the PtMn layer 642 and the IrMn layer 641, but the present invention is not limited to this.
  • An X 0 Mn layer (wherein X 0 is one or more elements selected from the group consisting of a platinum group element and Ni) closer to the ferromagnetic layer than the PtCr layer 643 may be stacked.
  • the X 0 Mn layer is composed of a PtMn layer (50 PtMn in Table 1).
  • FIG. 8A is a view for explaining the configuration of the laminated antiferromagnetic layer according to another embodiment.
  • the antiferromagnetic layer (a first fixing antiferromagnetic layer 16, a second fixing antiferromagnetic layer 26, an antiferromagnet layer 26 according to an embodiment of the present invention) in the laminated antiferromagnetic layer according to the present embodiment
  • the difference from the ferromagnetic layer 64 is the configuration of a plurality of stacked layers for forming the antiferromagnetic layer.
  • the antiferromagnetic layer 74 provided in the exchange coupling film 56 of the film 70 has an alternate laminated structure in which three X 1 Cr layers 74A and X 2 Mn layers 74B are alternately stacked.
  • X 1 and X 2 are one or more elements selected from the group consisting of platinum group elements and Ni, respectively, and X 1 and X 2 may be the same or different). These layers are formed, for example, by a sputtering process or a CVD process. After film formation, the antiferromagnetic layer 74 is ordered by annealing, and is exchange-coupled to the pinned magnetic layer 73 stacked on the underlayer 71 and the nonmagnetic material layer 72 to form the pinned magnetic layer 73. An exchange coupling magnetic field Hex is generated.
  • X 1 Cr layer 74A / X 2 Mn layer 74B / X 1 Cr is shown as an embodiment of an alternate lamination structure in which three or more X 1 Cr layers 74A and X 2 Mn layers 74B are stacked.
  • the three-layer structure of the layer 74A is shown, and the antiferromagnetic layer 74 in which the X 1 Cr layer 74A contacts the pinned magnetic layer 73 is shown.
  • X 1 Cr layer 74A and X 2 Mn layer 74B may have a three-layer structure of X 2 Mn layer 74B / X 1 Cr layer 74A / X 2 Mn layer 74B.
  • the X 2 Mn layer 74 B is in contact with the pinned magnetic layer 73.
  • An embodiment in which the number of layers related to the antiferromagnetic layer 74 is four or more will be described later.
  • the thickness D1 of the X 1 Cr layer 74A on the protective layer 75 side is the thickness D3 of the X 1 Cr layer 74A in contact with the pinned magnetic layer 73. It is preferable from the viewpoint of raising the exchange coupling magnetic field Hex to make it larger.
  • the film thickness D1 of the X 1 Cr layer 74A of the antiferromagnetic layer 74 is preferably larger than the film thickness D2 of the X 2 Mn layer 74B.
  • the ratio (D1: D2) of the film thickness D1 to the film thickness D2 is more preferably 5: 1 to 100: 1, and still more preferably 10: 1 to 50: 1.
  • the ratio (D1: D3) of the film thickness D1 to the film thickness D3 is more preferably 5: 1 to 100: 1, and still more preferably 10: 1 to 50: 1.
  • X 2 Mn layer 74B is a three-layer structure of X 2 Mn layer 74B / X 1 Cr layer 74A / X 2 Mn layer 74B is most proximal to the fixed magnetic layer 73 is most proximal to the fixed magnetic layer 73 a X 2 and Mn layer 74B having a thickness D3 may be equal to the protective layer 75 side of the X 2 thickness of Mn layer 74B D1.
  • X 1 is Pt are preferable X 1 Cr layer 74A
  • X 2 of X 2 Mn layer 74B is, Pt or Ir are preferred, Pt is more preferable.
  • the X 1 Cr layer 74A is a PtCr layer
  • Pt X Cr 100-X (X is 45 atomic% or more and 62 atomic% or less) is preferable
  • X 1 X Cr 100-X (X is 50 atoms) % Or more and 57 atomic% or less) is more preferable.
  • the X 2 Mn layer 74 B is preferably a PtMn layer.
  • FIG. 8B is a view for explaining the configuration of a laminated antiferromagnetic layer according to a modification of the other embodiment.
  • the point in which the exchange coupling film 57 shown in FIG. 8B is different from the exchange coupling film 56 in FIG. 8A is that the number of layers related to the antiferromagnetic layer 74 is four or more, and the X 1 Cr layer 74A.
  • the X 2 Mn layer 74 B is a point having a unit laminated portion in which a plurality of units are laminated.
  • X 1 Cr layer 74A1, ⁇ X 1 Cr layer 74An are the same thickness D1 respectively, X 2 Mn layer 74B1, ⁇ X 2 Mn layer 74Bn also respectively identical It is the film thickness D2.
  • the antiferromagnetic layer 74 shown in FIG. 8B is composed of unit laminated portions 4U1 to 4Un and an X 1 Cr layer 74A, and the X 1 Cr layer 74A is in contact with the pinned magnetic layer 73. It may consist only of 4U1 to 4Un.
  • the X 2 Mn layer 74Bn is in contact with the pinned magnetic layer 73.
  • the number of stacked layers of unit stacked portions 4U1 to 4Un can be set according to the size of antiferromagnetic layer 74, film thickness D1 and film thickness D2.
  • the number of stacked layers is preferably 3 to 15, and more preferably 5 to 12 in order to increase the exchange coupling magnetic field Hex under high temperature environment. .
  • FIG. 9 is a circuit block diagram of a magnetic sensor (magnetic detection device) according to a second embodiment of the present invention.
  • FIG. 10 is an explanatory view showing the configuration of the magnetic detection element according to the second embodiment of the present invention
  • FIG. 10 (a) is a view of the first magnetic detection element from the Z1-Z2 direction.
  • (B) is the figure which looked at the 2nd magnetic detection element from Z1-Z2 direction.
  • FIG. 11A is a cross-sectional view taken along line V3-V3 of FIG.
  • FIG. 11 (b) is a cross-sectional view taken along line V4-V4 of FIG. 10 (b).
  • the magnetic sensor 101 includes a full bridge circuit FB including a first half bridge circuit HB1 and a second half bridge circuit HB2, and includes a first magnetic detection element M1 and a first magnetic detection element M1 included in each half bridge circuit.
  • the two magnetic detection elements M2 are common to the magnetic sensor 100 in that they are provided on the same substrate SB.
  • the magnetic sensor 101 differs from the magnetic sensor 100 in the fixed magnetization direction P and the bias application direction F of each magnetic detection element.
  • the first magnetic detection element M1 includes the first magnetoresistance effect film MR1, and the first magnetoresistance effect film MR1 is the first pinned magnetic layer 34 whose magnetization is pinned in the Y1-Y2 direction Y1 direction (fixed magnetization direction P). And a first free magnetic layer 36 which is easily magnetized along the applied external magnetic field H.
  • the first pinned antiferromagnetic layer 33 is stacked on the first pinned magnetic layer 34 and the side (Z1-Z2 direction Z2 side) opposite to the side of the first pinned magnetic layer 34 facing the first free magnetic layer 36. And constitute the first fixing exchange coupling film 532.
  • An exchange coupling magnetic field Hex is generated between the first fixed magnetic layer 34 and the first fixing antiferromagnetic layer 33 (interface), and based on this exchange coupling magnetic field Hex, FIG. 9, FIG. 10 (a) and FIG.
  • the fixed magnetization direction P is set in the Y1-Y2 direction Y1 direction of the first fixed magnetic layer.
  • the first magnetic detection element M1 includes two first magnetic field application bias films MB11 and MB12 for applying a bias magnetic field to the first free magnetic layer 36, and the first magnetic field application bias film MB11, the first magnetoresistance effect film MR1, and The first magnetic field application bias films MB12 are arranged in this order on the substrate SB from the Y1-Y2 direction Y1 side to the Y1-Y2 direction Y2 side.
  • the first magnetic field application bias film MB11, the first magnetoresistance effect film MR1, and the first magnetic field application bias film MB12 are shifted in this order from the X2 side in the X1-X2 direction to the X1 side in the X1-X2 direction. It is arranged on SB.
  • each of the first magnetic field application bias films MB11 and MB12 is provided with the underlayer 81 on the substrate SB, and the first ferromagnetic layer 83 and the first bias are provided thereon.
  • the antiferromagnetic layer 84 is stacked to form the first bias exchange coupling film 531. Between the first bias antiferromagnetic layer 84 and the first ferromagnetic layer 83 (interface), an exchange coupling magnetic field Hex directed in the Y1-Y2 direction Y1 is generated.
  • the bias exchange coupling magnetic field Hex11 generated in the first magnetic field application bias film MB11 and the bias exchange coupling magnetic field Hex12 generated in the first magnetic field application bias film MB12 are hatched arrows in FIGS. 10A and 11A. Indicated.
  • the first free magnetic layer 36 is magnetized in the bias application direction F based on the bias magnetic field.
  • the second magnetic detection element M2 includes the second magnetoresistance effect film MR2, and the second magnetoresistance effect film MR2 is the second pinned magnetic layer 44 whose magnetization is pinned in the Y1-Y2 direction Y1 direction (fixed magnetization direction P). And a second free magnetic layer 46 which is easily magnetized along the applied external magnetic field H.
  • the second pinned antiferromagnetic layer 43 is stacked on the second pinned magnetic layer 44 and the side (Z1-Z2 direction Z2 side) opposite to the side of the second pinned magnetic layer 44 opposite to the second free magnetic layer 46. And constitute the second fixing exchange coupling film 542.
  • An exchange coupling magnetic field Hex is generated between the second fixed magnetic layer 44 and the second fixing antiferromagnetic layer 43 (interface), and based on this exchange coupling magnetic field Hex, FIG. 9, FIG. 10 (b) and FIG.
  • the fixed magnetization direction P of the second fixed magnetic layer 44 is set in the Y1-Y2 direction Y1 direction. That is, the fixed magnetization direction P of the first fixed magnetic layer 34 and the fixed magnetization direction P of the second fixed magnetic layer 44 are set to be coaxial and in the same direction (parallel).
  • the second magnetic detection element M2 includes two second magnetic field application bias films MB21 and MB22 for applying a bias magnetic field to the second free magnetic layer 46, and the second magnetic field application bias film MB21, the second magnetoresistance effect film MR2, and The second magnetic field application bias films MB22 are arranged in this order on the substrate SB from the Y1-Y2 direction Y1 side to the Y1-Y2 direction Y2 side.
  • the second magnetic field application bias film MB21, the second magnetoresistance effect film MR2, and the second magnetic field application bias film MB22 are shifted in this order from the X1-X2 direction X1 side to the X1-X2 direction X2 side. It is also arranged on SB.
  • each of the second magnetic field application bias films MB21 and MB22 has a base layer 91 provided on the substrate SB, and the second ferromagnetic layer 93 and the second bias layer are provided thereon.
  • the antiferromagnetic layer 94 is stacked to form the second bias exchange coupling film 541.
  • An exchange coupling magnetic field Hex directed in the Y1-Y2 direction Y1 is generated between the second bias antiferromagnetic layer 94 and the second ferromagnetic layer 93 (interface).
  • the bias exchange coupling magnetic field Hex21 generated in the second magnetic field application bias film MB21 and the bias exchange coupling magnetic field Hex22 generated in the second magnetic field application bias film MB22 are hatched by hatching in FIGS. 10B and 11B. Indicated.
  • the bias exchange coupling magnetic field Hex21 of the second magnetic field application bias film MB21 and the second magnetic field application bias film MB21 are used.
  • the bias exchange coupling magnetic field Hex22 of the magnetic field application bias film MB22 as shown by the outlined arrows in FIGS. 9, 10 (b) and 11 (b), the Y1-Y2 direction in the XY in-plane direction A bias magnetic field is applied in a direction (X1-Y1 direction) inclined 45 degrees to the X1-X2 direction X1 side from the Y1 direction (bias application direction F).
  • the second free magnetic layer 46 is magnetized in the bias application direction F based on the bias magnetic field.
  • the direction (bias application direction F) of the bias magnetic field applied to the first free magnetic layer 36 and the direction (bias application direction F) of the bias magnetic field applied to the second free magnetic layer 46 are orthogonal as viewed from the Z1-Z2 direction. doing.
  • the pinned magnetization direction P of the first pinned magnetic layer 34 and the pinned magnetization direction P of the second pinned magnetic layer 44 are parallel.
  • the bias application direction F of the first free magnetic layer 36 and the bias application direction F of the second free magnetic layer 46 are inclined in opposite directions from the above fixed magnetization direction P, and as a result, they are orthogonal as viewed from the Z1-Z2 direction. It is set to.
  • the external magnetic field H is applied to the magnetic sensor 101 in the X1-X2 direction, and the magnetization direction of the first free magnetic layer 36 and the magnetization direction of the second free magnetic layer 46 rotate so as to follow the external magnetic field H direction.
  • the relationship with the fixed magnetization direction P (Y1-Y2 direction Y1 direction) is different.
  • the magnetization direction of the first free magnetic layer 36 and the magnetization direction of the second free magnetic layer 46 both rotate counterclockwise in FIG.
  • the magnetization direction of the first free magnetic layer 36 approaches orthogonality with the fixed magnetization direction P (Y1-Y2 direction Y1 direction), but the magnetization direction of the second free magnetic layer 46 is temporarily fixed magnetization direction P (P It has a parallel relationship with Y1-Y2 direction Y1 direction) and then an orthogonal relationship. Therefore, immediately after the external magnetic field H is applied, the resistance value of the first magnetic detection element M1 increases, but the resistance value of the first magnetic detection element M1 decreases. Therefore, the output of the differential output (OutX1)-(OutX2) becomes negative.
  • the output polarity of the differential output (OutX1)-(OutX2) is different according to the application direction of the external magnetic field H. It becomes possible to control appropriately the direction of the coil current for generating the cancellation magnetic field which cancels out the magnetic field H.
  • the fixed magnetization direction P (Y1-Y2 direction Y2-direction) of the first magnetic detection element M1 and the second magnetic detection element M2 is generated by the exchange coupling magnetic field Hex, the first magnetic detection element M1.
  • Magnetization is set in three directions of a bias application direction F (X2-Y1 direction) and a bias application direction F (X1-Y1 direction) of the second magnetic detection element M2.
  • a bias application direction F (X2-Y1 direction)
  • F bias application direction F
  • the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 33 and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 43 are the blocking temperature Tb1 of the first bias antiferromagnetic layer 37 and the blocking temperature Tb1 of the first bias antiferromagnetic layer 37, respectively. It is made to be higher than any of the blocking temperature Tb2 of the second bias antiferromagnetic layer 47. Further, the blocking temperature Tb1 of the first bias antiferromagnetic layer 37 is made higher than the blocking temperature Tb2 of the second bias antiferromagnetic layer 47. Thus, the different blocking temperatures make it possible to set the direction of the exchange coupling magnetic field in three different directions.
  • the first magnetoresistive film MR1 made of a tunnel magnetoresistive film is formed on the lower electrode 31 formed on the substrate SB from the bottom, the seed layer 32, and the first magnetoresistive film.
  • the fixing antiferromagnetic layer 33, the first fixed magnetic layer 34, the insulating barrier layer 35, the first free magnetic layer 36, and the upper electrode 38 are stacked in this order.
  • Table 5 shows a specific example of the first magnetoresistive film MR1.
  • the left end column of Table 5 shows each layer of the first magnetoresistive film MR1, and examples of the materials constituting each are shown in the second column from the right.
  • the numerical values in the rightmost column indicate the thickness of each layer (unit: angstrom ( ⁇ )).
  • the lower electrode 31 is formed by laminating a 30 ⁇ Ta layer, a 200 ⁇ Cu layer, a 30 ⁇ Ta layer, a 200 ⁇ Cu layer and a 150 ⁇ Ta layer from the substrate SB side.
  • the seed layer 32 is formed on the lower electrode 31, is used to adjust the crystal orientation of each layer formed thereon, and is formed of Ru, Ni-Fe-Cr or the like.
  • seed layer 32 comprises a 42 ⁇ thick NiFeCr alloy.
  • the first fixing antiferromagnetic layer 33 is stacked on the seed layer 32.
  • a layer of 50 at% and a layer of 8 ⁇ thick of Ir 20 at% Mn 80 at % are deposited.
  • the first fixing antiferromagnetic layer 33 By annealing the first fixing antiferromagnetic layer 33, the first fixing antiferromagnetic layer 33 is ordered and exchange-coupled to the first fixed magnetic layer 34 to form a first fixing exchange coupling film 532 An exchange coupling magnetic field Hex is generated between the first fixing antiferromagnetic layer 33 and the first fixed magnetic layer 34 (interface).
  • the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 33 is about 500.degree. Therefore, even if the first fixing exchange coupling film 532 is heated to about 400 ° C., the exchange coupling magnetic field Hex is maintained.
  • Each layer stacked to form the first fixing antiferromagnetic layer 33 is formed, for example, by a sputtering process or a CVD process.
  • a plurality of types of metals may be simultaneously supplied to form an alloy, or a plurality of types of alloys may be formed.
  • Metals may be supplied alternately.
  • a specific example of the former includes simultaneous sputtering of a plurality of types of metals forming an alloy, and a specific example of the latter includes alternating lamination of different types of metal films. Simultaneous delivery of multiple metals to form an alloy may be preferable to enhancing the exchange coupling magnetic field Hex over alternating delivery.
  • the first pinned magnetic layer 34 includes a ferromagnetic layer (90CoFe), a nonmagnetic intermediate layer (Ru), and a ferromagnetic layer (from the side close to the first pinned antiferromagnetic layer 33). 50FeCo) in the order of lamination. Furthermore, a barrier layer (Ta) and a ferromagnetic layer ((50CoFe) B30, 50FeCo) are provided.
  • the first pinned magnetic layer 34 has the exchange coupling magnetic field Hex generated with the first pinned antiferromagnetic layer 33 as described above, and RKKY produced between two ferromagnetic layers (90CoFe, 60FeCo) sandwiching the nonmagnetic intermediate layer. By the interaction, the magnetization is fixed in one direction (in Y1-Y2 direction Y1 direction in FIG. 11A).
  • An insulating barrier layer 35 is formed on the first pinned magnetic layer 34.
  • the insulating barrier layer 35 is formed of MgO with a thickness of 20 ⁇ .
  • the composition ratio of Mg is preferably in the range of 40 at% to 60 at%. More preferably, Mg 50 at% O 50 at% .
  • the first free magnetic layer 36 is stacked on the insulating barrier layer 35.
  • the first free magnetic layer 36 has, for example, a laminated structure of a Co—Fe layer and a Co—Fe—B layer. In the example shown in Table 5, it is a two-layer configuration (50FeCo, (50CoFe) B30).
  • the magnetization direction of the first free magnetic layer 36 can be varied in the XY plane according to the direction in which the external magnetic field H is applied.
  • the first bias exchange coupling film of the first magnetic field application bias film MR11 with respect to the first free magnetic layer 36
  • a bias magnetic field based on the bias exchange coupling magnetic field Hex11 of 531 and the exchange coupling magnetic field Hex12 of the first bias exchange coupling film 531 of the first magnetic field application bias film MR12 is applied in the X2-Y1 direction (bias application direction F) ing.
  • the upper electrode 38 is stacked on the first free magnetic layer 36.
  • the upper electrode 38 is formed by stacking a 50 ⁇ thick Ru layer, a 100 ⁇ thick Ta layer and a 70 ⁇ thick Ru layer from the side close to the first free magnetic layer 36. .
  • the specific example of the first magnetic field application bias films MR11 and MB12 has the same configuration as the specific example (Table 2) of the first magnetic field application bias films MR11 and MB12 included in the magnetic sensor 100 according to the first embodiment of the present invention. Therefore, the detailed description is omitted.
  • the first bias antiferromagnetic layer 84 is stacked on the first ferromagnetic layer 83. As also shown in Table 2, the first bias antiferromagnetic layer 84 is composed of Pt 50 at% Mn 50 at % with a thickness of 300 ⁇ .
  • the first bias antiferromagnetic layer 84 By annealing the first bias antiferromagnetic layer 84, the first bias antiferromagnetic layer 84 is ordered and exchange coupled with the first ferromagnetic layer 83 to form a first bias exchange coupling film 531. As a result, bias exchange coupling magnetic fields Hex11 and Hex12 are generated between the first bias antiferromagnetic layer 84 and the first ferromagnetic layer 83 (interface).
  • the blocking temperature Tb1 of the first bias antiferromagnetic layer 84 is about 400.degree. Therefore, even if the first bias exchange coupling film 531 is heated to about 300 ° C., the bias exchange coupling magnetic fields Hex11 and Hex12 are maintained.
  • the bias magnetic field applied to the first free magnetic layer 36 of the first magnetoresistance effect film MR1 based on the exchange coupling magnetic fields Hex11 and Hex12 for bias causes the first magnetic detection element M1 to be heated to about 300 ° C. Is also maintained.
  • Table 6 shows a specific example of the second magnetoresistive film MR2.
  • the leftmost column of Table 6 shows the layers of the second magnetoresistive film MR2, and examples of the materials constituting each are shown in the second column from the right.
  • the numerical values in the rightmost column indicate the thickness of each layer (unit: angstrom ( ⁇ )).
  • the configurations of the lower electrode 41, the seed layer 42, the second fixed magnetic layer 44, the insulating barrier layer 45, the second free magnetic layer 46, and the upper electrode 48 are respectively the lower electrode 31, the seed layer 32, and the first fixed magnetic layer.
  • the structure is the same as the structure 34, the insulating barrier layer 35, the first free magnetic layer 36, and the upper electrode 38, so the description will be omitted.
  • the second fixing antiferromagnetic layer 43 In order to form the second fixing antiferromagnetic layer 43, from the side close to the seed layer 42, a layer consisting of Pt 50 at% Cr 50 at % with a thickness of 300 ⁇ , Pt 50 at % Mn with a thickness of 14 ⁇ A layer of 50 at% and a layer of 8 ⁇ thick of Ir 20 at% Mn 80 at % are deposited.
  • the second fixing antiferromagnetic layer 43 is ordered and exchange-coupled to the second fixed magnetic layer 44 to form a second fixing exchange coupling film 542
  • An exchange coupling magnetic field Hex is generated between (the interface with) the second pinned antiferromagnetic layer 43 and the second pinned magnetic layer 44.
  • the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 43 is about 500.degree. Therefore, even if the second fixing exchange coupling film 542 is heated to about 400 ° C., the exchange coupling magnetic field Hex is maintained.
  • Each layer laminated to form the second fixing antiferromagnetic layer 43 is formed, for example, by a sputtering process or a CVD process.
  • the specific example of the second magnetic field application bias films MR21 and MB22 has the same configuration as the specific example (Table 4) of the second magnetic field application bias films MR21 and MB22 included in the magnetic sensor 100 according to the first embodiment of the present invention. Therefore, the detailed description is omitted.
  • the second bias antiferromagnetic layer 94 is stacked on the second ferromagnetic layer 93. As also shown in Table 4, the second bias antiferromagnetic layer 94 is made of 80 ⁇ thick Ir 20 at% Mn 80 at% .
  • the second bias antiferromagnetic layer 94 forms a second ferromagnetic layer 93 and a second bias exchange coupling film 541, and between the second bias antiferromagnetic layer 94 and the second ferromagnetic layer 93 (interface ) Generate exchange coupling magnetic fields Hex21 and Hex22 for bias.
  • the blocking temperature Tb2 of the second bias antiferromagnetic layer 47 is about 300 ° C., which is lower than the blocking temperature Tb1 (about 400 ° C.) of the first bias antiferromagnetic layer 37.
  • each magnetic detection element is formed by performing the heat treatment as described below after forming each layer.
  • a magnetic sensor 101 can be manufactured in which the fixed magnetization direction P and the bias application direction F of the (first magnetic detection element M1 and the second magnetic detection element M2) are set to predetermined directions.
  • the layers constituting the first magnetoresistance effect film MR1 and the second magnetoresistance effect film MR2 are stacked, and a fixed magnetization axis setting step is performed on the obtained laminate.
  • the following first fixing antiferromagnetic layer 33 and second fixing antiferromagnetic layer 43 are ordered by heat treatment.
  • the temperature is not particularly limited as long as regularization is realized.
  • the temperature is set to a temperature slightly lower than the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 33 and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 43, for example, about 300 ° C. to 400 ° C.
  • the heat treatment time is also arbitrary as long as regularization is realized. As a non-limiting example, one or more hours, specifically about 5 hours may be mentioned.
  • the first fixing antiferromagnetic layer 33 and the second fixing antiferromagnetic layer 43 are ordered, and the exchange coupling magnetic field Hex is generated in the first fixing exchange coupling film 532 and the second fixing exchange coupling film 542.
  • the magnetization direction of the first fixing antiferromagnetic layer 33 is aligned with the magnetization direction of the first fixed magnetic layer 34. Therefore, the exchange coupling magnetic field Hex of the first fixing exchange coupling film 532 is generated so as to be aligned with the magnetization direction of the first fixed magnetic layer 34.
  • the magnetization direction of the second fixing antiferromagnetic layer 43 is ordered, the magnetization direction of the second fixed magnetic layer 44 is aligned. Therefore, the exchange coupling magnetic field Hex of the second fixing exchange coupling film 542 is generated so as to be aligned with the magnetization direction of the second fixed magnetic layer 44.
  • the magnetization direction is set in the Y1-Y2-direction Y1 direction in the step of setting the fixed magnetization axis in the step of setting the fixed magnetization axis.
  • the fixed magnetization direction P of the layer 15 and the fixed magnetization direction P of the second fixed magnetic layer 25 can be set coaxially (specifically, in parallel).
  • the first pinned magnetic layer 34 and the second pinned magnetic layer 44 can be manufactured by the same film forming process.
  • the two first magnetic field application bias films are arranged in parallel to the first magnetoresistive film MR1.
  • the layers constituting MB11 and MB12 are stacked, and the layers constituting two second magnetic field application bias films MB21 and MB22 are stacked so as to be juxtaposed to the second magnetoresistance effect film MR2.
  • the first bias magnetic field is heat-treated at a temperature (for example, 350 ° C.) lower than the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 33 and lower than the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 43 Perform the setting process.
  • a temperature for example, 350 ° C.
  • the first ferromagnetic layer 83 and the exchange coupling magnetic fields Hex11 and Hex12 for bias are generated.
  • bias application direction F A bias magnetic field in the X2-Y1 direction (bias application direction F) is applied to the first free magnetic layer 36 based on the bias exchange coupling magnetic fields Hex11 and Hex12.
  • the bias application direction F of the first free magnetic layer 36 thus set is not parallel to the fixed magnetization direction P of the first pinned magnetic layer 34, and more specifically, in the X1-X2 direction X2 viewed from the Z1-Z2 direction. It is inclined 45 degrees in the direction.
  • the heat treatment temperature in the first bias magnetic field setting step is lower than the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 33 and the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 43.
  • the set fixed magnetization direction P and the fixed magnetization direction P set in the second fixed magnetic layer 44 do not follow the direction of the applied external magnetic field, and can maintain the respective directions.
  • the exchange coupling magnetic field Hex is generated between the second bias antiferromagnetic layer 47 and the second free magnetic layer 46 in the first bias magnetic field setting step
  • the second bias magnetic field setting step described below performs the second operation.
  • the direction of the exchange coupling magnetic field Hex between the bias antiferromagnetic layer 47 and the second free magnetic layer 46 can be set arbitrarily.
  • a second bias magnetic field setting step of performing heat treatment at a temperature (for example, 300 ° C.) lower than the blocking temperature Tb1 of the first bias antiferromagnetic layer 37 is performed.
  • a temperature for example, 300 ° C.
  • the second bias antiferromagnetic layer 94 of the second magnetic field application bias films MB21 and MB22 and the second strong magnetic field are applied along the direction of the applied magnetic field.
  • the magnetic layer 93 and the exchange coupling magnetic fields Hex21 and Hex22 for bias are generated.
  • a bias magnetic field in the X1-Y1 direction bias application direction F
  • bias application direction F bias application direction
  • the bias application direction F of the second free magnetic layer 46 is not parallel to the pinned magnetization direction P of the second pinned magnetic layer 44, and more specifically, in the X1-X2 direction X1 viewed from the Z1-Z2 direction. It is inclined 45 degrees in the direction.
  • the heat treatment temperature in the second bias magnetic field setting step is the blocking temperature Tbf1 of the first fixing antiferromagnetic layer 33, the blocking temperature Tbf2 of the second fixing antiferromagnetic layer 43, and the blocking of the first bias antiferromagnetic layer 37. Since the temperature is also lower than the temperature Tb 1, the fixed magnetization direction P set in the first fixed magnetic layer 34 and the fixed magnetization direction P set in the second fixed magnetic layer 44 and the bias magnetic field applied to the first free magnetic layer 36 The direction (bias application direction F) is not along the direction of the applied magnetic field, and each direction can be maintained.
  • the exchange coupling with the respective antiferromagnetic layers is realized by performing the above-described steps.
  • An exchange coupling magnetic field Hex in any direction can be generated in the magnetic layers (the first and second pinned magnetic layers 34 and 44, the first free magnetic layer 36, and the second free magnetic layer 46).
  • the fixed magnetization direction P and the bias application direction F are orthogonal to each other, and the first magnetic detection element
  • the first magnetic The fixed magnetization directions P of the detection element M1 and the second magnetic detection element M2 are parallel
  • the bias application direction F of the first magnetic detection element M1 and the bias application direction F of the second magnetic detection element M2 are fixed magnetization directions P And may be inclined in opposite directions and orthogonal to each other.
  • the relationship between the fixed magnetization direction P and the bias application direction F of the magnetic sensor 101 according to the second embodiment may be set as in the magnetic sensor 100 according to the first embodiment.
  • the first magnetoresistance effect film MR1 and the second magnetoresistance effect film MR2 included in the magnetic sensor 100 according to the first embodiment are giant magnetoresistance effect films, but the tunnel magnetoresistance effect is the same as in the second embodiment. It may be a membrane.
  • the first magnetoresistive film MR1 and the second magnetoresistive film MR2 included in the magnetic sensor 101 according to the second embodiment are tunnel magnetoresistive films, the giant magnetoresistive effect is the same as the first embodiment. It may be a membrane.
  • the first magnetoresistive film MR1 and the second magnetoresistive film MR2 included in the magnetic sensor 100 according to the first embodiment have a so-called top pin structure in which the free magnetic layer is located on the side proximal to the substrate SB.
  • it may be a so-called bottom pin structure in which the fixed magnetic layer is located on the side proximal to the substrate SB.
  • the first magnetoresistive film MR1 and the second magnetoresistive film MR2 included in the magnetic sensor 101 according to the second embodiment have a so-called bottom pin structure in which the fixed magnetic layer is located on the side proximal to the substrate SB.
  • it may be a so-called top pin structure in which the free magnetic layer is located on the side proximal to the substrate SB.
  • the free magnetic layer and the pinned magnetic layer have a multilayer structure, but either one or both have a single layer structure. It may be.
  • bias application is performed by shifting the arrangement of the first magnetic field application bias film MB11 and the first magnetic field application bias film MB12 in directions different from the Y1-Y2 direction to the X1-X2 direction.
  • the direction F is set to the X2-Y1 direction, as shown in FIG. 12, the bias application direction F may be set to the X2-Y1 direction by a method other than the above method.
  • FIG. 12A is an explanatory view showing a configuration of a modification of the magnetic sensing element according to the second embodiment of the present invention.
  • FIG. 12B is an explanatory view showing another configuration of the modification of the magnetic sensing element according to the second embodiment of the present invention.
  • the first magnetic field application bias film MB11, the first magnetoresistance effect film MR1, and the first magnetic field application bias film MB12 are arranged in this order from the Y1-Y2-direction Y2 side to the Y1-Y2-direction Y1 side.
  • the direction F is set to the X2-Y1 direction.
  • the first magnetic field application bias film MB11 and the first magnetic field application bias film MB12 in the X1-X2 direction from the viewpoint of easily aligning the direction of the bias magnetic field applied to the first magnetoresistive film MR1. It is preferable to make the length longer than the length in the X1-X2 direction of the first magnetoresistive film MR1 located between them.
  • both of the bias exchange coupling magnetic field Hex11 generated in the first magnetic field application bias film MB11 and the bias exchange coupling magnetic field Hex12 generated in the first magnetic field application bias film MB12 are directed in the Y1-Y2 direction Y1.
  • the distance between the first magnetic field application bias film MB11 and the first magnetic field application bias film MB12, which are juxtaposed in the Y1-Y2 direction with respect to the first magnetoresistance effect film MR1, to the first magnetoresistance effect film MR1, is X1-X2.
  • the bias application direction F is set to the X2-Y1 direction by making the. Specifically, in contrast to the configuration of FIG.
  • the first magnetic field application bias film MB11 and the first magnetic field application bias film MB12 are both disposed in a state of being inclined counterclockwise. Therefore, the distance between the first magnetic field application bias film MB11 and the first magnetoresistance effect film MR1 is shorter toward the X2-X2 direction X2. Therefore, the bias magnetic field is applied to the first free magnetic layer 36 as strongly as it approaches the X1-X2 direction X2. Further, since the distance between the first magnetic field application bias film MB12 and the first magnetoresistance effect film MR1 is shorter toward the X1-X2-direction X1 side, the bias magnetic field is stronger toward the X1-X2-direction X1 side. 36 is applied. As a result, as shown in FIG. 12B, the bias application direction F to the first magnetoresistive film MR1 is inclined counterclockwise (X1-X2 direction X2 side) from the Y1-Y2 direction Y1 direction.
  • Example 1 In order to confirm the relationship between the strength of the exchange coupling magnetic field Hex and the environmental temperature, a laminated film having the following configuration was produced. The parentheses indicate the thickness of each layer (unit: ⁇ ). Substrate / underlayer: NiFeCr (42) / antiferromagnetic layer / fixed magnetic layer: 90CoFe (100) / protective layer: Ta (90) In this example, the laminated structure of the antiferromagnetic layer is 54PtCr (280) / 50PtMn (20) from the side close to the underlayer, and the obtained laminated film is annealed at 400 ° C. for 5 hours in a 1 kOe magnetic field. Then, the magnetizations of the pinned magnetic layer and the antiferromagnetic layer were fixed to obtain an exchange coupled film.
  • Example 2 The laminated film of the antiferromagnetic layer of Example 1 is formed as 50PtMn (300) from the side close to the underlayer, and the laminated film obtained is annealed at 300 ° C. for 4 hours in a magnetic field of 1 kOe. Then, the magnetizations of the pinned magnetic layer and the antiferromagnetic layer were fixed to obtain an exchange coupled film.
  • Example 3 The laminated film of the antiferromagnetic layer of Example 1 is formed as 20 IrMn (80) from the side close to the underlayer, and the laminated film obtained is annealed at 300 ° C. for 1 hour in a magnetic field of 1 kOe. Then, the magnetizations of the pinned magnetic layer and the antiferromagnetic layer were fixed to obtain an exchange coupled film.
  • the magnetization curves of the exchange coupling films according to Examples 1 to 3 were measured using a VSM (vibrating sample magnetometer) while changing the environmental temperature (unit: ° C.), and from the hysteresis loop obtained, The exchange coupling magnetic field Hex (unit: Oe) of each temperature was determined.
  • Table 7 to Table 9 show the exchange coupling magnetic field Hex at each temperature and the value (exchange coupling magnetic field at room temperature normalization) normalized by the exchange coupling magnetic field Hex at room temperature with the exchange coupling magnetic field Hex at each temperature.
  • a graph showing the relationship between the exchange coupling magnetic field and the measured temperature is shown in FIG.
  • the exchange coupling films according to Example 1 to Example 3 differ in the degree of maintenance of the exchange coupling magnetic field Hex with respect to the environmental temperature.
  • the exchange coupling film including the laminated antiferromagnetic layer according to the first embodiment has a temperature of 350 ° C. to 400 ° C. at which the exchange coupling magnetic field Hex of the exchange coupling films according to the second embodiment and the third embodiment substantially disappears. In the above, the exchange coupling magnetic field Hex can be maintained.
  • Hex exchange coupling magnetic field Hex11, Hex12, Hex21, Hex22: exchange magnetic field coupling for bias Hc: coercivity 100
  • 101 magnetic sensor (magnetic detection device)
  • FB full bridge circuit
  • HB1 first half bridge circuit
  • HB2 second half bridge circuit
  • GND ground terminal
  • Vdd power supply terminal
  • M1 first magnetic detection element
  • M2 second magnetic detection element
  • MB11, MB12 first magnetic field application bias
  • Films MB21 and MB22 second magnetic field application bias film
  • MR1 first magnetoresistance film
  • MR2 second magnetoresistance film H: external magnetic field
  • P fixed magnetization direction
  • F bias application direction SB: substrates 1, 11, 21; 61, 71, 81, 91: Underlayer 13
  • 36 First free magnetic layer 14, 24, 82, 92: Nonmagnetic material layer 15, 34: First fixed magnetic layer (ferromagnetic layer for fixing) 16, 33: first fixing antiferromagnetic layer 17, 27, 65, 75, 85

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

固定磁化方向Pとバイアス印加方向Fとの関係が互いに異なる2種類の磁気抵抗効果膜MR1,MR2を備える磁気検出素子M1,R2が同一基板SB上に設けられたフルブリッジ回路HBを備える磁気検出装置100は、ブロッキング温度Tbが異なる反強磁性層を備える3種類以上の交換結合膜511,512,521,522によって固定磁化方向Pおよびバイアス印加方向Fが設定されているため、強磁場耐性を有し、製造も容易であって製造自由度が高い。

Description

磁気検出装置およびその製造方法
 本発明は磁気抵抗効果膜を有する磁気検出素子を複数備えるフルブリッジ回路を備える磁気検出装置およびその製造方法に関する。
 固定磁性層およびフリー磁性層を含む磁気抵抗効果膜を有する磁気検出素子を用いた磁気検出装置(磁気センサ)は、地磁気センサ、位置センサ、電流センサなどの様々な分野に使用されている。こうした各種センサの検出精度を高めたり測定可能な範囲を広げたりする観点から、外部磁場への応答性が異なる2種類の磁気検出素子を直列に接続してなるハーフブリッジ回路を並列に接続して構成されるフルブリッジ回路(ホイートストンブリッジ回路)を磁気センサが備える場合がある。フルブリッジ回路に用いられる2種類の磁気検出素子は、通常、外部磁場が印加されていない状態におけるフリー磁性層の磁化方向と感度軸方向との相対関係が異なることに基づき、外部磁場への応答性が相違する。
 例えば、特許文献1には、固定磁化軸が互いに反平行な設定された2種類の磁気検出素子が記載されている。また、特許文献2には、固定磁化軸は同じ方向に設定されているがフリー磁性層に印加されるバイアス磁界の方向が異なるように設定された2種類の磁気検出素子が記載されている。
特開2006-527497号公報 特表2014-516406号公報
 特許文献1では、基板上に形成された複数の磁気検出素子の固定磁化軸の方向を互いに異なるように設定するために、磁場を印加しながら複数の磁気検出素子のいずれかを選択的に通電加熱することによって、通電加熱された磁気検出素子の反強磁性層をそのブロッキング温度以上に加熱し、外部磁場の印加方向に揃っている固定磁性層の磁化方向に反強磁性層の磁化方向を揃え、結果、通電加熱された磁気検出素子の固定磁化軸を所望の方向に設定している。
 特許文献2では、2種類の磁気検出素子について固定磁化軸の方向を揃え、外部磁場が印加されていない状態のフリー磁性層の方向を互いに異なるようにして2種類の磁気検出素子を同一基板上に形成している。このフリー磁性層の方向を制御する方法として、磁気抵抗効果膜の形状異方性を用いる、永久磁石によるバイアス磁界を用いる、フリー磁性層に反強磁性層を積層して交換結合磁界を発生させる、といった方法が記載されている。
 本発明は、こうした特許文献1および特許文献2に記載される構成とは異なる構成により、外部磁場への応答性が異なる2種類の磁気検出素子を同一基板上に有するフルブリッジ回路(ホイートストンブリッジ回路)を備える磁気検出装置を提供することを目的とする。また、本発明は、上記の磁気検出装置を製造する方法を提供することも目的とする。
 上記課題を解決するために提供される本発明は、一態様において、第1固定磁性層と第1フリー磁性層とが積層された第1磁気抵抗効果膜、および前記第1フリー磁性層にバイアス磁界を印加する第1磁界印加バイアス膜を備える第1磁気検出素子、ならびに第2固定磁性層と第2フリー磁性層とが積層された第2磁気抵抗効果膜、および前記第2フリー磁性層にバイアス磁界を印加する第2磁界印加バイアス膜を備える第2磁気検出素子を有するフルブリッジ回路を備える磁気検出装置であって、前記フルブリッジ回路は、前記第1磁気検出素子と前記第2磁気検出素子とが直列に接続されてなる第1ハーフブリッジ回路と、前記第2磁気検出素子と前記第1磁気検出素子とが直列に接続されてなる第2ハーフブリッジ回路と、が、電源端子とグランド端子との間で並列接続されてなり、前記第1磁気検出素子と前記第2磁気検出素子とは同一の基板上に設けられ、前記第1磁気抵抗効果膜は、前記第1固定磁性層と第1固定用反強磁性層とが積層された第1固定用交換結合膜を有し、前記第1磁界印加バイアス膜は、第1強磁性層と第1バイアス用反強磁性層とが積層された第1バイアス用交換結合膜を有し、前記第2磁気抵抗効果膜は、前記第2固定磁性層と第2固定用反強磁性層とが積層された第2固定用交換結合膜を有し、前記第2磁界印加バイアス膜は、第2強磁性層と第2バイアス用反強磁性層とが積層された第2バイアス用交換結合膜を有し、前記第1固定磁性層の固定磁化軸と前記第2固定磁性層の固定磁化軸とは共軸に設定され、前記第1バイアス用交換結合膜の交換結合磁界の方向と前記第1固定磁性層の固定磁化軸の方向とは非平行に設定され、前記第2バイアス用交換結合膜の交換結合磁界の方向と前記第2固定磁性層の固定磁化軸の方向とは非平行に設定され、前記第1固定用反強磁性層のブロッキング温度Tbf1および前記第2固定用反強磁性層のブロッキング温度Tbf2は、それぞれ、前記第1バイアス用反強磁性層のブロッキング温度Tb1および前記第2バイアス用反強磁性層のブロッキング温度Tb2のいずれよりも高く、前記第1バイアス用反強磁性層のブロッキング温度Tb1は前記第2バイアス用反強磁性層のブロッキング温度Tb2よりも高いことを特徴とする磁気検出装置である。
 上記のように、ブロッキング温度Tbが異なる反強磁性層を少なくとも3種類用いることにより、2種類の磁気抵抗効果素子について、固定磁化軸の方向およびフリー磁性層のバイアス磁界の印加方向を自由度高く設定することが可能となる。しかも、固定磁化軸の設定およびバイアス磁界の設定をいずれも反強磁性層と強磁性層との交換結合磁界を用いて行うため、強磁場耐性に優れる。また、隣り合って配置される2種類の磁気抵抗効果素子が相互に影響を与えにくい。それゆえ、例えば永久磁石を用いてバイアス磁界の設定する場合に比べて、磁気検出装置の小型化が可能となる。
 上記の磁気検出装置において、前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とは反平行に設定され、前記第1バイアス用反強磁性層の交換結合磁界の方向と前記第2バイアス用反強磁性層の交換結合磁界の方向とは平行に設定され、前記第1固定磁性層の固定磁化軸の方向と前記第1バイアス用反強磁性層の交換結合磁界の方向とは非平行に(具体的には積層方向視で直交するように)設定されていてもよい。
 上記の磁気検出装置において、前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とは平行に設定され、前記第1バイアス用交換結合膜のバイアス磁界の方向と前記第2バイアス用交換結合膜のバイアス磁界の方向とは非平行に設定されていてもよい。この場合において、前記第1固定磁性層の固定磁化軸の方向に対する前記第1バイアス用交換結合膜のバイアス磁界の方向の積層方向視での傾き角度が、前記第2固定磁性層の固定磁化軸の方向に対する前記第2バイアス用交換結合膜のバイアス磁界の方向の積層方向視での傾き角度と反対向きで絶対値が等しいことが好ましい。具体的には傾き角度の絶対値がいずれも45度で、結果、積層方向視で直交する場合が例示される。
 上記の磁気検出装置において、前記第1固定用反強磁性層および前記第2固定用反強磁性層の少なくとも一方である固定用反強磁性層は、白金族元素およびNiからなる群から選ばれる一種または二種以上の元素XならびにMnおよびCrを含有するX(Cr-Mn)層を備え、前記X(Cr-Mn)層は、前記固定用反強磁性層と交換結合する固定用強磁性層(第1固定磁性層および/または第2固定磁性層)に相対的に近位な第1領域と、前記固定用強磁性層から相対的に遠位な第2領域とを有し、前記第1領域におけるMnの含有量は、前記第2領域におけるMnの含有量よりも高いことが好ましい。第1固定用反強磁性層および前記第2固定用反強磁性層の双方が上記の固定用反強磁性層であることが好ましい。
 図1は、上記の固定用反強磁性層を有する交換結合膜の磁化曲線のヒステリシスループを説明する図である。通常、軟磁性体のM-H曲線(磁化曲線)が作るヒステリシスループは、H軸とM軸との交点(磁界H=0A/m、磁化M=0A/m)を中心として対称な形状となるが、図1に示されるように、交換結合膜のヒステリシスループは、固定用反強磁性層と交換結合する強磁性層に対して交換結合磁界Hexが作用するため、交換結合磁界Hexの大きさに応じてH軸に沿ってシフトした形状となる。交換結合膜の固定用強磁性層は、この交換結合磁界Hexが大きいほど外部磁界が印加されても磁化の向きが反転しにくいため、かかる固定用反強磁性層を備える磁気検出装置は、強磁場耐性に優れる。
 しかも、上記の固定用反強磁性層は、特許文献1に記載されるIrMn、PtMnといった従来の反強磁性材料から形成された反強磁性層よりもブロッキング温度Tbが高いため、例えば350℃程度であって外部磁場が印加される環境に置かれていても、交換結合磁界Hexを維持することができる。
 上記の磁気検出装置において、前記第1領域が前記固定用強磁性層に接していてもよい。
 上記の磁気検出装置において、前記第1領域は、Mnの含有量のCrの含有量に対する比であるMn/Cr比が0.3以上の部分を有していてもよい。この場合において、前記第1領域は、前記Mn/Cr比が1以上である部分を有することが好ましい。
 上記の磁気検出装置の具体的な一態様として、前記固定用反強磁性層は、PtCr層と、前記PtCr層よりも前記固定用強磁性層に近位なXMn層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素)とが積層されてなるものであってもよい。
 上記の磁気検出装置の具体例として、前記固定用反強磁性層は、PtCr層とPtMn層とがこの順番で前記PtMn層が前記固定用強磁性層に近位になるように積層されてなるものであってもよい。この場合において、前記PtMn層よりも前記固定用強磁性層に近位にさらにIrMn層が積層されてもよい。この場合には、上記のXMn層がPtMn層とIrMn層との積層構造を有している。
 上記の磁気検出装置において、前記第1固定用反強磁性層および前記第2固定用反強磁性層の少なくとも一方である固定用反強磁性層は、XCr層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素)とXMn層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素であって、Xと同じでも異なっていてもよい)とが交互に積層された三層以上の交互積層構造を有していてもよい。このような構成を有する場合も、磁気検出装置は強磁場耐性を有する。
 上記の磁気検出装置において、前記XがPtであり、前記XがPtまたはIrであってもよい。
 上記の磁気検出装置において、前記固定用反強磁性層は、XCr層とXMn層とからなるユニットが複数積層されたユニット積層部を有していてもよい。この場合において、前記ユニット積層部における、前記XCr層および前記XMn層は、それぞれ同じ膜厚であり、前記XCr層の膜厚が、前記XMn層の膜厚よりも大きくてもよい。このとき、前記XCr層の膜厚と前記XMn層の膜厚との比が、5:1~100:1であることが好ましい場合がある。
 上記の磁気検出装置において、前記第1バイアス用反強磁性層はPtMn層からなり、前記第2バイアス用反強磁性層はIrMn層からなることが好ましい。この場合には、ブロッキング温度が従来になく高く、しかも強い交換結合磁界を発生させうる反強磁性層によって固定磁化軸の方向が設定される。
 本発明は、他の一態様として、第1固定磁性層と第1フリー磁性層とが積層された第1磁気抵抗効果膜、および前記第1フリー磁性層にバイアス磁界を印加する第1磁界印加バイアス膜を備える第1磁気検出素子、ならびに第2固定磁性層と2フリー磁性層とが積層された第2磁気抵抗効果膜、および前記第2フリー磁性層にバイアス磁界を印加する第2磁界印加バイアス膜を備える第2磁気検出素子を有するフルブリッジ回路を備える磁気検出装置の製造方法である。上記の磁気検出装置において、前記フルブリッジ回路は、前記第1磁気検出素子と前記第2磁気検出素子とが直列に接続されてなる第1ハーフブリッジ回路と、前記第2磁気検出素子と前記第1磁気検出素子とが直列に接続されてなる第2ハーフブリッジ回路と、が、電源端子とグランド端子との間で並列接続されてなり、前記第1磁気検出素子と前記第2磁気検出素子とは同一の基板上に設けられ、前記第1磁気抵抗効果膜は、前記第1固定磁性層と第1固定用反強磁性層とが積層された第1固定用交換結合膜を有し、前記第1磁界印加バイアス膜は、第1強磁性層と第1バイアス用反強磁性層とが積層された第1バイアス用交換結合膜を有し、前記第2磁気抵抗効果膜は、前記第2固定磁性層と第2固定用反強磁性層とが積層された第2固定用交換結合膜を有し、前記第2磁界印加バイアス膜は、第2強磁性層と第2バイアス用反強磁性層とが積層された第2バイアス用交換結合膜を有し、前記第1固定用反強磁性層のブロッキング温度Tbf1および前記第2固定用反強磁性層のブロッキング温度Tbf2は、それぞれ、前記第1バイアス用反強磁性層のブロッキング温度Tb1および前記第2バイアス用反強磁性層のブロッキング温度Tb2のいずれよりも高く、前記第1バイアス用反強磁性層のブロッキング温度Tb1は前記第2バイアス用反強磁性層のブロッキング温度Tb2よりも高い。かかる製造方法は、熱処理により前記第1固定用反強磁性層および前記第2固定用反強磁性層を規則化して、前記第1バイアス用交換結合膜および前記第2バイアス用交換結合膜に交換結合磁界を生じさせることにより、前記第1固定磁性層の固定磁化軸と前記第2固定磁性層の固定磁化軸とを共軸に設定する固定磁化軸設定工程と、前記第1固定用反強磁性層のブロッキング温度Tbf1および前記第2固定用反強磁性層のブロッキング温度Tbf2より低い温度で外部磁場を印加しながら熱処理することにより、前記第1バイアス用交換結合膜によるバイアス磁界の方向を前記第1固定磁性層の固定磁化軸の方向とは非平行に設定する第1バイアス磁界設定工程と、前記第1バイアス磁界設定工程の後に、前記第1バイアス用反強磁性層のブロッキング温度Tb1より低い温度で外部磁場を印加しながら熱処理することにより、前記第2バイアス用交換結合膜によるバイアス磁界の方向を前記第2固定磁性層の固定磁化軸の方向とは非平行に設定する第2バイアス磁界設定工程と、を備える。
 かかる製造方法によれば、外部磁場への応答性が異なる2種類の磁気検出素子を同一基板上に有するフルブリッジ回路(ホイートストンブリッジ回路)を備え、強磁場耐性に優れる磁気検出装置を、磁気検出素子単位で外部磁場を印加する工程なしに製造することが可能である。
 上記の製造方法において、前記固定磁化軸設定工程では、前記第1固定用交換結合膜の交換結合磁界の方向を第1固定用強磁性層の磁化方向に揃え、前記第2固定用交換結合膜の交換結合磁界の方向を第2固定用強磁性層の磁化方向に揃えてもよい。第1固定用交換結合膜の交換結合磁界の方向を揃える第1固定用強磁性層の磁化方向および第2固定用交換結合膜の交換結合磁界の方向を揃える第2固定用強磁性層の磁化方向は、成膜段階で所定の方向に揃えられていてもよいし、固定磁化軸設定工程において外部磁場を印加しながら加熱することにより揃えてもよい。
 上記の製造方法において、前記固定磁化軸設定工程では、前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とを反平行に設定し、第1バイアス磁界設定工程では、前記第1バイアス用反強磁性層の交換結合磁界の方向を、前記第1固定磁性層の固定磁化軸の方向とは非平行に設定し、第2バイアス磁界設定工程では、前記第2バイアス用反強磁性層の交換結合磁界の方向を、前記第1バイアス用反強磁性層の交換結合磁界の方向と平行に設定してもよい。このように設定することにより、特許文献1に開示される構成のフルブリッジ回路を、磁気抵抗効果膜を通電加熱することなく形成することが可能である。
 上記の製造方法において、前記固定磁化軸設定工程では、前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とを平行に設定し、前記第1バイアス磁界設定工程では、前記第1バイアス用交換結合膜のバイアス磁界の方向を、前記第1固定磁性層の固定磁化軸の方向とは非平行に設定し、前記第2バイアス磁界設定工程では、前記第2バイアス用交換結合膜のバイアス磁界の方向を前記第1固定磁性層の固定磁化軸の方向および前記第1バイアス用交換結合膜のバイアス磁界の方向のいずれとも非平行に設定してもよい。このように設定することにより、特許文献2に開示される構成のフルブリッジ回路を、永久磁石バイアスやバイアス磁界発生用の電流導体を不要として形成することが可能である。
 本発明によれば、外部磁場への応答性が異なる2種類の磁気検出素子を同一基板上に有するフルブリッジ回路を備え、強磁場耐性に優れる磁気検出装置が提供される。また、本発明によれば、上記の磁気検出装置を製造する方法も提供される。
本発明に係る磁界印加バイアス膜の磁化曲線のヒステリシスループを説明する図である。 本発明の第1の実施形態に係る磁気センサの回路ブロック図である。 本発明の第1の実施形態に係る磁気検出素子の構成を示す説明図であって、(a)第1磁気検出素子をZ1-Z2方向からみた図、(b)第2磁気検出素子をZ1-Z2方向からみた図である。 (a)図3(a)のV1-V1線での断面図、(b)図3(b)のV2-V2線での断面図である。 (a)本発明の一実施形態に係る積層型の反強磁性層と同様の反強磁性層を備える交換結合膜を含む膜の構成の説明図、(b)図4(a)のデプスプロファイルの一例である。 図5のデプスプロファイルの一部を拡大したプロファイルである。 図6に基づき求めたMnの含有量に対するCrの含有量の比(Mn/Cr比)を、図6と横軸の範囲を等しくして示したグラフである。 (a)本発明の第1の実施形態の変形例に係る第1磁気検出素子の磁気抵抗効果膜の構成を示す説明図、(b)本発明の第1の実施形態の別の変形例に係る第1磁気検出素子の磁気抵抗効果膜の構成を示す説明図である。 本発明の第2の実施形態に係る磁気センサの回路ブロック図である。 本発明の第2の実施形態に係る磁気検出素子の構成を示す説明図であって、(a)第1磁気検出素子をZ1-Z2方向からみた図、(b)第2磁気検出素子をZ1-Z2方向からみた図である。 (a)図10(a)のV3-V3線での断面図、(b)図10(b)のV4-V4線での断面図である。 (a)本発明の第2の実施形態に係る磁気検出素子の変形例の一つの構成を示す説明図、(b)本発明の第2の実施形態に係る磁気検出素子の変形例の他の一つの構成を示す説明図である。 交換結合磁界Hexの強度の温度依存性を示すグラフである。
<第1の実施形態に係る磁気検出素子>
 図2は、本発明の第1の実施形態に係る磁気センサ(磁気検出装置)の回路ブロック図である。図3は本発明の第1の実施形態に係る磁気検出素子の構成を示す説明図であって、図3(a)は第1磁気検出素子をZ1-Z2方向からみた図であり、図3(b)は第2磁気検出素子をZ1-Z2方向からみた図である。図4(a)は、図3(a)のV1-V1線での断面図である。図4(b)は、図3(b)のV2-V2線での断面図である。
 図2に示されるように、磁気センサ100は、第1ハーフブリッジ回路HB1と第2ハーフブリッジ回路HB2とが電源端子Vddとグランド端子GNDとの間で並列接続されてなるフルブリッジ回路FBを備える。第1ハーフブリッジ回路HB1は、第1磁気検出素子M1と第2磁気検出素子M2とが直列に接続されてなり、第2ハーフブリッジ回路HB2は、第2磁気検出素子M2と前記第1磁気検出素子M1とが直列に接続されてなる。第1磁気検出素子M1と第2磁気検出素子M2とは同一の基板SB上に設けられている。
 フルブリッジ回路FBを構成する第1ハーフブリッジ回路HB1の中点V1の出力電位(OutX1)と、第2ハーフブリッジ回路HB2の中点V2の出力電位(OutX2)との差動出力(OutX1)-(OutX2)がX1-X2方向の検知出力(検知出力電圧)VXsとして得られる。
 第1磁気検出素子M1は第1磁気抵抗効果膜MR1を備え、第1磁気抵抗効果膜MR1は、X1-X2方向X2向き(固定磁化方向P)に磁化が固定された第1固定磁性層15と、印加された外部磁場Hに沿って容易に磁化される第1フリー磁性層13とを有する巨大磁気抵抗効果膜からなる。
 第1固定磁性層15と、第1固定磁性層15の第1フリー磁性層13に対向する側とは反対側(Z1-Z2方向Z1側)に積層された第1固定用反強磁性層16とが第1固定用交換結合膜511を構成する。第1固定用交換結合膜511の第1固定磁性層15の間(界面)には交換結合磁界Hexが生じ、この交換結合磁界Hexに基づいて、図2および図3(a)に黒矢印で示し、図4(a)では紙面奥向きに示すように、第1固定磁性層15はX1-X2方向X2向きに固定磁化方向Pが設定される。
 第1磁気検出素子M1は、第1フリー磁性層13にバイアス磁界を印加する2つの第1磁界印加バイアス膜MB11、MB12を備え、第1磁界印加バイアス膜MB11、第1磁気抵抗効果膜MR1および第1磁界印加バイアス膜MB12は、この順番で、Y1-Y2方向Y1側からY1-Y2方向Y2側へと基板SB上に並置される。
 第1磁界印加バイアス膜MB11、MB12のそれぞれは、図4(a)に示されるように、基板SB上に、下地層81が設けられ、その上に第1強磁性層83と第1バイアス用反強磁性層84とが積層されて、第1バイアス用交換結合膜512を構成する。第1バイアス用反強磁性層84と第1強磁性層83との間(界面)にはY1-Y2方向Y1向きの交換結合磁界Hexが生じる。第1磁界印加バイアス膜MB11に生じるバイアス用交換結合磁界Hex11および第1磁界印加バイアス膜MB12に生じるバイアス用交換結合磁界Hex12を、図3(a)および図4(a)では斜線でハッチングした矢印で示す。
 これらのバイアス用交換結合磁界Hex11、Hex12に基づいて、図2、図3(a)および図4(a)に白抜き矢印で示すように、第1フリー磁性層13には、発生した交換結合磁界Hexの向きに沿ってY1-Y2方向Y1向き(バイアス印加方向F)のバイアス磁界が印加される。外部磁場Hが印加されていない状態では、このバイアス磁界に基づき、第1フリー磁性層13はバイアス印加方向Fに磁化した状態となる。
 第2磁気検出素子M2は第2磁気抵抗効果膜MR2を備え、第2磁気抵抗効果膜MR2は、X1-X2方向X1向き(固定磁化方向P)に磁化が固定された第2固定磁性層25と、印加された外部磁場Hに沿って容易に磁化される第2フリー磁性層23とを有する巨大磁気抵抗効果膜からなる。
 第2固定磁性層25と、第2固定磁性層25の第2フリー磁性層23に対向する側とは反対側(Z1-Z2方向Z1側)に積層された第2固定用反強磁性層26とが第2固定用交換結合膜521を構成する。第2固定用交換結合膜521の第2固定磁性層25の間(界面)には交換結合磁界Hexが生じ、この交換結合磁界Hexに基づいて、図2および図3(b)に黒矢印で示し、図4(b)では紙面手前向きに示すように、第2固定磁性層25はX1-X2方向X1向きに固定磁化方向Pが設定される。すなわち、第1固定磁性層15の固定磁化方向Pと第2固定磁性層25の固定磁化方向Pとは共軸であるが反対向き、つまり反平行になるように設定されている。
 第2磁気検出素子M2は、第2フリー磁性層23にバイアス磁界を印加する2つの第2磁界印加バイアス膜MB21、MB22を備え、第2磁界印加バイアス膜MB21、第2磁気抵抗効果膜MR2および第2磁界印加バイアス膜MB22は、この順番で、Y1-Y2方向Y1側からY1-Y2方向Y2側へと基板SB上に並置される。
 第2磁界印加バイアス膜MB21、MB22のそれぞれは、図4(b)に示されるように、基板SB上に、下地層91が設けられ、その上に第2強磁性層93と第2バイアス用反強磁性層94とが積層されて、第2バイアス用交換結合膜522を構成する。第2バイアス用反強磁性層94と第2強磁性層93との間(界面)にはY1-Y2方向Y1向きの交換結合磁界Hexが生じる。第2磁界印加バイアス膜MB21に生じるバイアス用交換結合磁界Hex21および第2磁界印加バイアス膜MB22に生じるバイアス用交換結合磁界Hex22を、図3(b)および図4(b)では斜線でハッチングした矢印で示す。
 これらのバイアス用交換結合磁界Hex21、Hex22に基づいて、図3(b)および図4(b)に白抜き矢印で示すように、第2フリー磁性層23には、発生した交換結合磁界Hexの向きに沿ってY1-Y2方向Y1向き(バイアス印加方向F)のバイアス磁界が印加される。外部磁場Hが印加されていない状態では、このバイアス磁界に基づき、第2フリー磁性層23はバイアス印加方向Fに磁化した状態となる。第1フリー磁性層13に印加されるバイアス磁界の方向(バイアス印加方向F)と第2フリー磁性層23に印加されるバイアス磁界の方向(バイアス印加方向F)とは共軸であってかつ同じ向き、つまり平行になるように設定されている。
 このように、第1固定用交換結合膜511の交換結合磁界Hexの方向と第1バイアス用交換結合膜512の交換結合磁界Hexの方向とが非平行(具体的にはZ1-Z2方向からみて(積層方向視で)直交)に設定されているため、第1固定磁性層15の固定磁化方向Pと第1フリー磁性層13のバイアス印加方向FとはZ1-Z2方向からみて直交している。また、第2固定用交換結合膜521の交換結合磁界Hexの方向と第2バイアス用交換結合膜522の交換結合磁界Hexの方向とが非平行(具体的にはZ1-Z2方向からみて直交)に設定されているため、第2固定磁性層25の固定磁化方向Pと第2フリー磁性層23のバイアス印加方向FとはZ1-Z2方向からみて直交している。磁気センサ100にX1-X2方向の外部磁場Hが印加されたときに、第1フリー磁性層13の磁化方向および第2フリー磁性層23の磁化方向は外部磁場Hの方向に沿うように回転し、このとき、固定磁性層の磁化方向とフリー磁性層の磁化方向と向きに応じて、第1磁気検出素子M1の抵抗値および第2磁気検出素子M2の抵抗値が変化する。
 ここで、第1固定磁性層15の固定磁化方向Pと第2固定磁性層25の固定磁化方向Pとは反平行であるから、外部磁場HがX1-X2方向X2向きである場合には、第1磁気検出素子M1の抵抗が小さくなり、第2磁気検出素子M2の抵抗が大きくなる。このため、差動出力(OutX1)-(OutX2)の出力は正となる。これに対し、外部磁場HがX1-X2方向X1向きである場合には、第1磁気検出素子M1の抵抗が大きくなり、第2磁気検出素子M2の抵抗が小さくなる。このため、差動出力(OutX1)-(OutX2)の出力は負となる。すなわち、差動出力(OutX1)-(OutX2)の極性によって外部磁場Hの向きを検知することができる。
 以上説明したように、磁気センサ100では、交換結合磁界Hexによって、第1磁気検出素子M1に関する固定磁化方向P(X1-X2方向X2向き)、第2磁気検出素子M2に関する固定磁化方向P(X1-X2方向X1向き)、第1磁気検出素子M1および第2磁気検出素子M2に関するバイアス磁界の方向(バイアス印加方向F、Y1-Y2方向Y1向き)の3方向に磁化が設定されている。この3方向の磁化設定を実現するために、磁気センサ100では、次のように、交換結合磁界Hexの発生に関わる反強磁性層として、ブロッキング温度Tbが互いに異なる3種類の材料を用いている。
 具体的には、第1固定用反強磁性層16のブロッキング温度Tbf1および第2固定用反強磁性層26のブロッキング温度Tbf2が、それぞれ、第1バイアス用反強磁性層12のブロッキング温度Tb1および第2バイアス用反強磁性層22のブロッキング温度Tb2のいずれよりも高くなるようにしている。また、第1バイアス用反強磁性層12のブロッキング温度Tb1は第2バイアス用反強磁性層22のブロッキング温度Tb2よりも高くなるようにしている。このようにブロッキング温度Tbが異なることにより、互いに異なる3方向に交換結合磁界の方向を設定することができる。
 表1に第1磁気抵抗効果膜MR1の具体例を示す。表1の左端列は第1磁気抵抗効果膜MR1の各層を示し、それぞれを構成する材料の例が右から2列目に示されている。右端列の数値は各層の厚さ(単位:オングストローム(Å))を示している。第1磁気抵抗効果膜MR1は巨大磁気抵抗効果膜であるから、第1固定磁性層15と第1フリー磁性層13との間には、非磁性材料層14が位置して、スピンバルブ構造が形成されている。
Figure JPOXMLDOC01-appb-T000001
 基板SB上に設けられる下地層11は、NiFeCr合金(ニッケル・鉄・クロム合金)、CrあるいはTaなどで形成される。表1では、下地層1は厚さ42ÅのNiFeCr合金からなる。
 下地層11の上に第1フリー磁性層13が積層される。第1フリー磁性層13を構成する材料はCoFe合金(コバルト・鉄合金)、NiFe合金(ニッケル・鉄合金)などを用いることができ、単層構造、積層構造、積層フェリ構造などとして形成することができる。表1では、第1バイアス用反強磁性層12に近位な側から、厚さ18ÅのNi81.5原子%Fe18.5原子%からなる層および厚さ14ÅのCo90原子%Fe10原子%からなる層が積層されて第1フリー磁性層13が構成される。
 第1フリー磁性層13の上に非磁性材料層14が積層される。非磁性材料層14は、Cu(銅)などを用いて形成することができる。表1では、非磁性材料層14は厚さ30ÅのCuからなる。
 非磁性材料層14の上に第1固定磁性層15が積層される。第1固定磁性層15は、強磁性のCoFe合金(コバルト・鉄合金)で形成される。CoFe合金は、Feの含有割合を高くすることにより、保磁力が高くなる。第1固定磁性層15はスピンバルブ型の巨大磁気抵抗効果に寄与する層であり、第1固定磁性層15の固定磁化方向Pが延びる方向が第1磁気検出素子M1の感度軸方向である。第1固定用交換結合膜511の強磁場耐性を高める観点から、第1固定磁性層15は表1に示されるようなセルフピン止め構造を有していることが好ましい。表1では、非磁性材料層14に近位な側から、強磁性層として厚さ24ÅのCo90原子%Fe10原子%、非磁性中間層として厚さ3.6ÅのRu、強磁性層として厚さ17ÅのFe60原子%Co40原子%が積層されている。
 第1固定磁性層15を構成する厚さ17ÅのFe60原子%Co40原子%からなる強磁性層の上に第1固定用反強磁性層16が積層される。第1固定用反強磁性層16を形成するために、第1固定磁性層15に近位な側から、厚さ20ÅのPt50原子%Mn50原子%からなる層および厚さ280ÅのPt51原子%Cr49原子%からなる層が積層される。第1固定用反強磁性層16をアニール処理することにより、第1固定用反強磁性層16は規則化して第1固定磁性層15と第1固定用交換結合膜511を形成し、第1固定用反強磁性層16と第1固定磁性層15との間(界面)に交換結合磁界Hexが生じる。第1固定用反強磁性層16のブロッキング温度Tbf1は500℃程度である。したがって、第1固定用交換結合膜511が400℃程度に加熱されても、その交換結合磁界Hexは維持される。なお、第1固定用反強磁性層16など合金層を成膜する際には、合金を形成する複数種類の金属(第1固定用反強磁性層16の場合には、PtおよびMn、PtおよびCr)を同時に供給してもよいし、合金を形成する複数種類の金属を交互に供給してもよい。前者の具体例として合金を形成する複数種類の金属の同時スパッタが挙げられ、後者の具体例として異なる種類の金属膜の交互積層が挙げられる。合金を形成する複数種類の金属の同時供給が交互供給よりも交換結合磁界Hexを高めることにとって好ましい場合がある。
 第1固定用反強磁性層16の上に保護層17が積層される。保護層17は、Ta(タンタル)などを用いて形成することができる。表1では厚さ90ÅのTaが積層される。
 表2に第1磁界印加バイアス膜MB11、MB12の具体例を示す。表2の左端列は第1磁界印加バイアス膜MB11、MB12の各層を示し、それぞれを構成する材料の例が右から2列目に示されている。右端列の数値は各層の厚さ(単位:オングストローム(Å))を示している。
Figure JPOXMLDOC01-appb-T000002
 下地層81は厚さ42ÅのNiFeCr合金からなり、その上に、非磁性材料層82として、厚さ40ÅのCuおよび厚さ10ÅのRuが積層される。この非磁性材料層82の上に、厚さ100ÅのCo90原子%Fe50原子%からなる第1強磁性層83が積層される。第1強磁性層83の上に厚さ300ÅのPt50原子%Mn10原子%からなる第1バイアス用反強磁性層84が積層される。第1バイアス用反強磁性層12をアニール処理することにより、第1バイアス用反強磁性層84は規則化して第1強磁性層83と交換結合して第1バイアス用交換結合膜512を形成し、第1バイアス用反強磁性層84と第1強磁性層83との間(界面)にバイアス用交換結合磁界Hex11、Hex12が生じる。第1バイアス用反強磁性層84のブロッキング温度Tb1は400℃程度である。したがって、第1バイアス用交換結合膜512が300℃程度に加熱されても、その交換結合磁界Hexは維持される。
 第1バイアス用反強磁性層84の上には厚さ100ÅのTaからなる保護層が積層される。
 表3に第2磁気抵抗効果膜MR2の具体例を示す。表3の左端列は第2磁気抵抗効果膜MR2の各層を示し、それぞれを構成する材料の例が右から2列目に示されている。右端列の数値は各層の厚さ(単位:オングストローム(Å))を示している。第2磁気抵抗効果膜MR2は巨大磁気抵抗効果膜であるから、第2固定磁性層25と第2フリー磁性層23との間には、非磁性材料層24が位置して、スピンバルブ構造が形成されている。
Figure JPOXMLDOC01-appb-T000003
 下地層21、第2フリー磁性層23、非磁性材料層24、第2固定磁性層25、および保護層27の構成は、対応する下地層11、第1フリー磁性層13、非磁性材料層14、第1固定磁性層15、および保護層17の構成と等しいので説明を省略する。
 第2固定用反強磁性層26を形成するために、第2固定磁性層25に近位な側から、厚さ20ÅのPt50原子%Mn50原子%からなる層および厚さ280ÅのPt51原子%Cr49原子%からなる層が積層される。第2固定用反強磁性層26をアニール処理することにより、第2固定用反強磁性層26は規則化して第2固定磁性層25と交換結合して第2固定用交換結合膜521を形成し、第2固定用反強磁性層26と第2固定磁性層25との間(界面)に交換結合磁界Hexが生じる。第2固定用反強磁性層26のブロッキング温度Tbf2は500℃程度である。したがって、第2固定用交換結合膜521が400℃程度に加熱されても、その交換結合磁界Hexは維持される。
 表4に第2磁界印加バイアス膜MB21、MB22の具体例を示す。表4の左端列は第2磁界印加バイアス膜MB21、MB22の各層を示し、それぞれを構成する材料の例が右から2列目に示されている。右端列の数値は各層の厚さ(単位:オングストローム(Å))を示している。
Figure JPOXMLDOC01-appb-T000004
 下地層91、非磁性材料層92、第2強磁性層93、および保護層95の構成は、対応する下地層81、非磁性材料層82、第1強磁性層83、および保護層85の構成と等しいので説明を省略する。
 第2バイアス用反強磁性層94は、厚さ80ÅのIr20原子%Mn80原子%からなる。第2バイアス用反強磁性層94は第2強磁性層93と交換結合して第2バイアス用交換結合膜522を形成し、第2バイアス用反強磁性層94と第2強磁性層93との間(界面)にバイアス用交換結合磁界Hex21、Hex22が生じる。第2バイアス用反強磁性層94のブロッキング温度Tb2は300℃程度であり、第1バイアス用反強磁性層84のブロッキング温度Tb1(400℃程度)よりも低い。
 このように、磁気センサ100が互いに異なる3種類のブロッキング温度Tbを有する反強磁性層を含むため、各層を成膜したのち次のように熱処理を行う製造方法を行うことによって、各磁気検出素子(第1磁気検出素子M1、第2磁気検出素子M2)の固定磁化方向Pおよびバイアス印加方向Fが所定の方向に設定された磁気センサ100を製造することができる。
 まず、第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2を構成する各層を積層し、得られた積層体に対して、固定磁化軸設定工程を行う。この工程では、次の第1固定用反強磁性層16および第2固定用反強磁性層26を、熱処理により規則化する。その温度は、規則化が実現される限り特に限定されない。通常、第1固定用反強磁性層16のブロッキング温度Tbf1および第2固定用反強磁性層26のブロッキング温度Tbf2よりもやや低い温度、例えば300℃から400℃程度とされる。熱処理の時間も規則化が実現される限り任意である。限定されない例示として、1位時間以上、具体的には5時間程度が挙げられる。
 こうして第1固定用反強磁性層16および第2固定用反強磁性層26が規則化して、第1固定用交換結合膜511および第2固定用交換結合膜521に交換結合磁界Hexが生じる。この規則化の際に、第1固定用反強磁性層16の磁化方向は第1固定磁性層15の磁化方向に揃う。このため、第1固定磁性層15の磁化方向に揃うように第1固定用交換結合膜511の交換結合磁界Hexが生じる。また、第2固定用反強磁性層26の磁化方向の規則化の際に第2固定磁性層25の磁化方向に揃う。このため、第2固定磁性層25の磁化方向に揃うように第2固定用交換結合膜521の交換結合磁界Hexが生じる。
 そこで、第1固定磁性層15を成膜する際にその磁化方向をX1-X2方向X2向きに設定し、第2固定磁性層25を成膜する際にその磁化方向をX1-X2方向X1向きに設定しておくことにより、固定磁化軸設定工程において、第1固定磁性層15の固定磁化方向Pと第2固定磁性層25の固定磁化方向Pとを共軸に(具体的には反平行に)設定することができる。
 上記のように第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2について固定磁化軸の設定が終了したら、第1磁気抵抗効果膜MR1に並置されるように2つの第1磁界印加バイアス膜MB11、MB12を構成する各層を積層し、第2磁気抵抗効果膜MR2に並置されるように2つの第2磁界印加バイアス膜MB21、MB22を構成する各層を積層する。
 次に、第1固定用反強磁性層16のブロッキング温度Tbf1よりも低く、第2固定用反強磁性層26のブロッキング温度Tbf2よりも低い温度(例えば350℃)で熱処理を行う第1バイアス磁界設定工程を行う。この熱処理において、Y1-Y2方向Y1向きに外部磁場を印加することにより、印加された外部磁場の方向に沿って、第1磁界印加バイアス膜MB11、MB12の第1バイアス用反強磁性層84と第1強磁性層83との間にバイアス用交換結合磁界Hex11、Hex12が生じる。これらのバイアス用交換結合磁界Hex11、Hex12に基づき、第1フリー磁性層13には、Y1-Y2方向Y1向き(バイアス印加方向F)のバイアス磁界が印加される。こうして設定された第1フリー磁性層13のバイアス印加方向Fは、第1固定磁性層15の固定磁化方向Pとは非平行であり、具体的にはZ1-Z2方向からみて直交している。
 第1バイアス磁界設定工程の熱処理温度は、第1固定用反強磁性層16のブロッキング温度Tbf1および第2固定用反強磁性層26のブロッキング温度Tbf2よりも低いため、第1固定磁性層15において設定された固定磁化方向Pおよび第2固定磁性層25において設定された固定磁化方向Pは印加された外部磁場の方向に沿うことはなく、それぞれの方向を維持することができる。
 最後に、第1バイアス用反強磁性層12のブロッキング温度Tb1よりも低い温度(例えば300℃)で熱処理を行う第2バイアス磁界設定工程を行う。この熱処理において、Y1-Y2方向Y1向きに外部磁場を印加すると、印加された磁場の方向に沿って、第2磁界印加バイアス膜MB21、MB22の第2バイアス用反強磁性層94と第2強磁性層93との間にバイアス用交換結合磁界Hex21、Hex22が生じる。これらのバイアス用交換結合磁界Hex21、Hex22に基づき、第2フリー磁性層23には、Y1-Y2方向Y1向き(バイアス印加方向F)のバイアス磁界が印加される。こうして設定された第2フリー磁性層23のバイアス印加方向Fは、第2固定磁性層25の固定磁化方向Pとは非平行であり、具体的にはZ1-Z2方向からみて直交している。
 第2バイアス磁界設定工程の熱処理温度は、第1固定用反強磁性層16のブロッキング温度Tbf1および第2固定用反強磁性層26のブロッキング温度Tbf2ならび第1バイアス用反強磁性層12のブロッキング温度Tb1によりも低いため、第1固定磁性層15において設定された固定磁化方向Pおよび第2固定磁性層25において設定された固定磁化方向Pならびに第1フリー磁性層13に印加されるバイアス磁界の方向(バイアス印加方向F)は印加された磁場の方向に沿うことはなく、それぞれの方向を維持することができる。
 このように、磁気センサ100が互いに異なる3種類のブロッキング温度Tbを有する反強磁性層を含む場合には、上記のような工程を実施することにより、それぞれの反強磁性層と交換結合する強磁性層(第1固定磁性層15および第2固定磁性層25、第1フリー磁性層13ならびに第2フリー磁性層23)に任意の方向の交換結合磁界Hexを生じさせることができる。
 以下、第1固定用交換結合膜511の第1固定用反強磁性層16および第2固定用交換結合膜521の第2固定用反強磁性層26に用いられうる積層型の反強磁性層について、詳しく説明する。
 本発明の一実施形態に係る積層型の反強磁性層は、白金族元素およびNiからなる群から選ばれる一種または二種以上の元素XならびにMnおよびCrを含有するX(Cr-Mn)層を有する。上記の第1固定用反強磁性層16および第2固定用反強磁性層26は、元素XがPtであるから、Pt(Cr-Mn)層となる。このPt(Cr-Mn)層は、反強磁性層(第1固定用反強磁性層16、第2固定用反強磁性層26)と交換結合する強磁性層(第1固定磁性層15、第2固定磁性層25)に相対的に近位な第1領域と、強磁性層(第1固定磁性層15、第2固定磁性層25)から相対的に遠位な第2領域とを有し、第1領域におけるMnの含有量は、第2領域におけるMnの含有量よりも高い。このような構造を有するPt(Cr-Mn)層は、積層されたPtMn層およびPtCr層がアニール処理を受けることにより形成される。スパッタリングしながら表面分析を行うことにより得られる構成元素の深さ方向の含有量分布(デプスプロファイル)により確認することができる。
 図5(a)は、本発明の一実施形態に係る積層型の反強磁性層と同様の反強磁性層64を備える交換結合膜55を含む膜60の構成の説明図である。図5(b)は、この膜60のデプスプロファイルの一例である。図5(a)に示されるように、膜60は、以下の積層構成を有する。()内の数値は膜厚(Å)を示す。反強磁性層64を形成するために、固定磁性層63に近位な側から、IrMn層641、PtMn層642およびPtCr層643積層が積層される。
 基板/下地層61:NiFeCr(40)/非磁性材料層62:[Cu(40)/Ru(20)]/固定磁性層63:Co40at%Fe60at%(20)/反強磁性層64[IrMn層641:Ir22at%Mn78at%(10)/PtMn層642:Pt50at%Mn50at%(16)/PtCr層643:Pt51at%Cr49at%(300)]/保護層65:Ta(100)
 図5(b)に示されるデプスプロファイルは、以下の構成を備えた膜60に対して、15kOeの磁場中において350℃で20時間アニール処理して規則化させた膜から得られたものである。
 図5(b)のデプスプロファイルは、具体的には、保護層65側からアルゴンスパッタリングしながらオージェ電子分光装置により表面分析を行うことによって得られた、深さ方向におけるPt,Ir,CrおよびMnの含有量分布からなる。アルゴンによるスパッタ速度はSiO換算で求め、1.1nm/分であった。
 図6は、図5(b)の一部を拡大したものである。図5(b)および図6のいずれについても、固定磁性層63および非磁性材料層62の深さ位置を確認するために、Co(固定磁性層63の構成元素の1つ)の含有量分布およびRu(非磁性材料層62の反強磁性層64側を構成する元素)の含有量分布についてもデプスプロファイルに含めてある。
 図5(b)に示されるように、反強磁性層64の厚さは30nm程度であって、白金族元素およびNiからなる群から選ばれる一種または二種以上の元素XとしてのPtおよびIrとMnおよびCrとを含有するX(Cr-Mn)層を備え、具体的には(Pt-Ir)(Cr-Mn)層からなるものである。そして、X(Cr-Mn)層((Pt-Ir)(Cr-Mn)層)は、固定磁性層63に相対的に近位な第1領域R1と、固定磁性層63から相対的に遠位な第2領域R2とを有し、および第1領域R1におけるMnの含有量は、第2領域R2におけるMnの含有量よりも高い。このような構造は、XCrからなる層およびXMnからなる層などを適宜積層して多層積層体を形成し、この多層積層体に対して上記のようなアニール処理を行うことにより得ることができる。
 図7は、デプスプロファイルにより求められた各深さのMnの含有量およびCrの含有量に基づき算出された、Mnの含有量のCrの含有量に対する比(Mn/Cr比)を、図5(b)と横軸の範囲を等しくして示したグラフである。図7に示される結果に基づき、本明細書において、Mn/Cr比が0.1となる深さを第1領域R1と第2領域R2との境界とする。すなわち、反強磁性層64において、固定磁性層63に近位な領域でMn/Cr比が0.1以上の領域を第1領域R1と定義し、反強磁性層64における第1領域以外の領域を第2領域と定義する。この定義に基づくと、図5(b)に示されるデプスプロファイルにおいて第1領域R1と第2領域R2との境界は深さ44.5nm程度に位置する。
 Mn/Cr比が大きいことは交換結合磁界Hexの大きさに影響を与えるのみならず、Mn/Cr比が大きいほど、Hex/Hcの値が正の値で絶対値が大きくなりやすい。具体的には、第1領域R1は、Mn/Cr比が0.3以上の部分を有することが好ましく、Mn/Cr比が0.7以上の部分を有することがより好ましく、Mn/Cr比が1以上の部分を有することが特に好ましい。
 このように第1領域R1にMnを相対的に多く含有するため、交換結合膜55は高い交換結合磁界Hexを発生させることができる。一方、第2領域R2においてMnの含有量が低く、相対的にCrの含有量が高いため、反強磁性層64は、高いブロッキング温度Tbを有する。このため、交換結合膜55はは高温環境下に置かれても交換結合磁界Hexが維持される。なお、上記の説明では、PtCr層643に対して固定磁性層63側に積層される層はPtMn層642およびIrMn層641であったが、これに限定されない。PtCr層643よりも強磁性層に近位なXMn層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素)が積層されてもよい。上記の第1固定用交換結合膜511では、XMn層はPtMn層(表1の50PtMn)からなる。
 図8(a)は、他の一実施形態に係る積層型の反強磁性層の構成を説明するための図である。本実施形態に係る積層型の反強磁性層における、前述の本発明の一実施形態に係る反強磁性層(第1固定用反強磁性層16、第2固定用反強磁性層26、反強磁性層64)との相違は、反強磁性層を形成するための積層される複数の層の構成である。図8(a)に示されるように、膜70の交換結合膜56が備える反強磁性層74は、XCr層74AとXMn層74Bとが交互に三層積層された交互積層構造(ただし、XおよびXはそれぞれ白金族元素およびNiからなる群から選ばれる一種または二種以上の元素であり、XとXとは同じでも異なっていてもよい)である。これら各層は、例えばスパッタ工程やCVD工程で成膜される。反強磁性層74は、成膜後、アニール処理されることにより規則化し、下地層71および非磁性材料層72の上に積層された固定磁性層73と交換結合して、固定磁性層73に交換結合磁界Hexが発生する。
 図8(a)には、XCr層74AとXMn層74Bとが三層以上積層された交互積層構造の一態様として、XCr層74A/XMn層74B/XCr層74Aの三層構造であってXCr層74Aが固定磁性層73に接する反強磁性層74を示した。しかし、XCr層74AとXMn層74Bとを入れ替えた、XMn層74B/XCr層74A/XMn層74Bの三層構造としてもよい。この三層構造の場合、XMn層74Bが固定磁性層73に接する。反強磁性層74に係る層数が4以上である場合の形態については、後述する。
 XCr層74Aが固定磁性層73に最近位である場合には、保護層75側のXCr層74Aの膜厚D1を、固定磁性層73に接するXCr層74Aの膜厚D3よりも大きくすることが、交換結合磁界Hexを高くする観点から好ましい。また、反強磁性層74のXCr層74Aの膜厚D1は、XMn層74Bの膜厚D2よりも大きいことが好ましい。膜厚D1と膜厚D2の比(D1:D2)は、5:1~100:1がより好ましく、10:1~50:1がさらに好ましい。膜厚D1と膜厚D3の比(D1:D3)は、5:1~100:1がより好ましく、10:1~50:1がさらに好ましい。
 なお、XMn層74Bが固定磁性層73に最近位であるXMn層74B/XCr層74A/XMn層74Bの三層構造の場合には、固定磁性層73に最近位なXMn層74Bの膜厚D3と保護層75側のXMn層74Bの膜厚D1とを等しくしてもよい。
 交換結合磁界Hexを高くする観点から、XCr層74AのXはPtが好ましく、XMn層74BのXは、PtまたはIrが好ましく、Ptがより好ましい。XCr層74AをPtCr層とする場合には、PtCr100-X(Xは45原子%以上62原子%以下)であることが好ましく、X Cr100-X(Xは50原子%以上57原子%以下)であることがより好ましい。同様の観点から、XMn層74Bは、PtMn層が好ましい。
 図8(b)は、他の一実施形態の変形例に係る積層型の反強磁性層の構成を説明するための図である。本例では、図8(a)に示す膜70と機能が等しい層に同じ符号を付して、説明を省略する。図8(b)に示す膜70Aにおいては、固定磁性層73と反強磁性層741とが交換結合膜57を構成する。
 図8(b)に示す交換結合膜57が図8(a)の交換結合膜56と相違している点は、反強磁性層74に係る層数が4以上であり、XCr層74AとXMn層74Bとからなるユニットが複数積層されたユニット積層部を有する点である。図8(b)では、XCr層74A1とXMn層74B1とからなるユニット積層部4U1からXCr層74AnとXMn層74Bnとからなるユニット4Unまで、n層積層されたユニット積層部4U1~4Unを有している(nは2以上の整数)。
 ユニット積層部4U1~4Unにおける、XCr層74A1、・・・XCr層74Anは、それぞれ同じ膜厚D1であり、XMn層74B1、・・・XMn層74Bnも、それぞれ同じ膜厚D2である。同じ構成のユニット積層部4U1~4Unを積層し、得られた積層体をアニール処理することにより、交換結合膜57の固定磁性層73に高い交換結合磁界Hexを発生させるとともに、反強磁性層74の高温安定性を高めることが実現される。
 なお、図8(b)の反強磁性層74は、ユニット積層部4U1~4UnとXCr層74Aとからなり、XCr層74Aが固定磁性層73に接しているが、ユニット積層部4U1~4Unのみからなるものであってもよい。ユニット積層部4U1~4Unのみからなる積層体から形成された反強磁性層74は、XMn層74Bnが固定磁性層73に接する。
 ユニット積層部4U1~4Unの積層数は、反強磁性層74、膜厚D1および膜厚D2の大きさに応じて、設定することができる。例えば、膜厚D1が5~15Å、膜厚D1が30~40Åの場合、高温環境下における交換結合磁界Hexを高くするために、積層数は、3~15が好ましく、5~12がより好ましい。
<第2の実施形態に係る磁気検出素子>
 図9は、本発明の第2の実施形態に係る磁気センサ(磁気検出装置)の回路ブロック図である。図10は本発明の第2の実施形態に係る磁気検出素子の構成を示す説明図であって、図10(a)は第1磁気検出素子をZ1-Z2方向からみた図であり、図10(b)は第2磁気検出素子をZ1-Z2方向からみた図である。図11(a)は、図10(a)のV3-V3線での断面図である。図11(b)は、図10(b)のV4-V4線での断面図である。
 本実施形態では、図2から図4に示す磁気センサ100と機能が同じ構成に同じ符号を付して、説明を省略する。
 図9に示されるように、磁気センサ101は、第1ハーフブリッジ回路HB1と第2ハーフブリッジ回路HB2とからなるフルブリッジ回路FBを備え、各ハーフブリッジ回路が備える第1磁気検出素子M1と第2磁気検出素子M2とが同一の基板SB上に設けられている点で、磁気センサ100と共通する。磁気センサ101は、各磁気検出素子の固定磁化方向Pおよびバイアス印加方向Fが磁気センサ100と相違する。
 第1磁気検出素子M1は第1磁気抵抗効果膜MR1を備え、第1磁気抵抗効果膜MR1は、Y1-Y2方向Y1向き(固定磁化方向P)に磁化が固定された第1固定磁性層34と、印加された外部磁場Hに沿って容易に磁化される第1フリー磁性層36とを有するトンネル磁気抵抗効果膜からなる。
 第1固定磁性層34と、第1固定磁性層34の第1フリー磁性層36に対向する側とは反対側(Z1-Z2方向Z2側)に積層された第1固定用反強磁性層33とが第1固定用交換結合膜532を構成する。第1固定磁性層34と第1固定用反強磁性層33の間(界面)とには交換結合磁界Hexが生じ、この交換結合磁界Hexに基づいて、図9、図10(a)および図11(a)に黒矢印で示すように、第1固定磁性層34はY1-Y2方向Y1向きに固定磁化方向Pが設定される。
 第1磁気検出素子M1は、第1フリー磁性層36にバイアス磁界を印加する2つの第1磁界印加バイアス膜MB11、MB12を備え、第1磁界印加バイアス膜MB11、第1磁気抵抗効果膜MR1および第1磁界印加バイアス膜MB12は、この順番で、Y1-Y2方向Y1側からY1-Y2方向Y2側へと基板SB上に並置される。また、第1磁界印加バイアス膜MB11、第1磁気抵抗効果膜MR1および第1磁界印加バイアス膜MB12は、この順番で、X1-X2方向X2側からX1-X2方向X1側へとずれるように基板SB上に配置される。
 第1磁界印加バイアス膜MB11、MB12のそれぞれは、図11(a)に示されるように、基板SB上に、下地層81が設けられ、その上に第1強磁性層83と第1バイアス用反強磁性層84とが積層されて、第1バイアス用交換結合膜531を構成する。第1バイアス用反強磁性層84と第1強磁性層83との間(界面)にはY1-Y2方向Y1向きの交換結合磁界Hexが生じる。第1磁界印加バイアス膜MB11に生じるバイアス用交換結合磁界Hex11および第1磁界印加バイアス膜MB12に生じるバイアス用交換結合磁界Hex12を、図10(a)および図11(a)では斜線でハッチングした矢印で示す。
 第1磁界印加バイアス膜MB11、第1磁気抵抗効果膜MR1および第1磁界印加バイアス膜MB12は上記のように配置されるため、第1磁界印加バイアス膜MB11のバイアス用交換結合磁界Hex11および第1磁界印加バイアス膜MB12のバイアス用交換結合磁界Hex12に基づいて、図9、図10(a)および図11(a)に白抜き矢印で示すように、X-Y面内方向でY1-Y2方向Y1向きからX1-X2方向X2側に45度傾いた向き(X2-Y1方向)のバイアス磁界が印加される(バイアス印加方向F)。外部磁場Hが印加されていない状態では、このバイアス磁界に基づき、第1フリー磁性層36はバイアス印加方向Fに磁化した状態となる。
 第2磁気検出素子M2は第2磁気抵抗効果膜MR2を備え、第2磁気抵抗効果膜MR2は、Y1-Y2方向Y1向き(固定磁化方向P)に磁化が固定された第2固定磁性層44と、印加された外部磁場Hに沿って容易に磁化される第2フリー磁性層46とを有するトンネル磁気抵抗効果膜からなる。
 第2固定磁性層44と、第2固定磁性層44の第2フリー磁性層46に対向する側とは反対側(Z1-Z2方向Z2側)に積層された第2固定用反強磁性層43とが第2固定用交換結合膜542を構成する。第2固定磁性層44と第2固定用反強磁性層43との間(界面)には交換結合磁界Hexが生じ、この交換結合磁界Hexに基づいて、図9、図10(b)および図11(b)に黒矢印で示すように、第2固定磁性層44はY1-Y2方向Y1向きに固定磁化方向Pが設定される。すなわち、第1固定磁性層34の固定磁化方向Pと第2固定磁性層44の固定磁化方向Pとは共軸であって等しい向き(平行)になるように設定されている。
 第2磁気検出素子M2は、第2フリー磁性層46にバイアス磁界を印加する2つの第2磁界印加バイアス膜MB21、MB22を備え、第2磁界印加バイアス膜MB21、第2磁気抵抗効果膜MR2および第2磁界印加バイアス膜MB22は、この順番で、Y1-Y2方向Y1側からY1-Y2方向Y2側へと基板SB上に並置される。また、第2磁界印加バイアス膜MB21、第2磁気抵抗効果膜MR2および第2磁界印加バイアス膜MB22は、この順番で、X1-X2方向X1側からX1-X2方向X2側へとずれるように基板SB上にも配置される。
 第2磁界印加バイアス膜MB21、MB22のそれぞれは、図11(b)に示されるように、基板SB上に、下地層91が設けられ、その上に第2強磁性層93と第2バイアス用反強磁性層94とが積層されて、第2バイアス用交換結合膜541を構成する。第2バイアス用反強磁性層94と第2強磁性層93との間(界面)にはY1-Y2方向Y1向きの交換結合磁界Hexが生じる。第2磁界印加バイアス膜MB21に生じるバイアス用交換結合磁界Hex21および第2磁界印加バイアス膜MB22に生じるバイアス用交換結合磁界Hex22を、図10(b)および図11(b)では斜線でハッチングした矢印で示す。
 第2磁界印加バイアス膜MB21、第2磁気抵抗効果膜MR2および第2磁界印加バイアス膜MB22は上記のように配置されるため、第2磁界印加バイアス膜MB21のバイアス用交換結合磁界Hex21および第2磁界印加バイアス膜MB22のバイアス用交換結合磁界Hex22に基づいて、図9、図10(b)および図11(b)に白抜き矢印で示すように、X-Y面内方向でY1-Y2方向Y1向きからX1-X2方向X1側に45度傾いた向き(X1-Y1方向)のバイアス磁界が印加される(バイアス印加方向F)。外部磁場Hが印加されていない状態では、このバイアス磁界に基づき、第2フリー磁性層46はバイアス印加方向Fに磁化した状態となる。第1フリー磁性層36に印加されるバイアス磁界の方向(バイアス印加方向F)と第2フリー磁性層46に印加されるバイアス磁界の方向(バイアス印加方向F)とはZ1-Z2方向からみて直交している。
 このように、第1固定磁性層34の固定磁化方向Pと第2固定磁性層44の固定磁化方向Pとが平行である。一方、第1フリー磁性層36のバイアス印加方向Fと第2フリー磁性層46のバイアス印加方向Fとは、上記の固定磁化方向Pから互いに反対向きに傾き、結果、Z1-Z2方向からみて直交に設定されている。
 このため、磁気センサ101にX1-X2方向に外部磁場Hが印加されて、第1フリー磁性層36の磁化方向および第2フリー磁性層46の磁化方向が外部磁場Hの方向に沿うように回転する際に、固定磁化方向P(Y1-Y2方向Y1向き)との関係が相違する。例えば、外部磁場HがX1-X2方向X2向きである場合には、第1フリー磁性層36の磁化方向および第2フリー磁性層46の磁化方向はいずれも図9において反時計回りに回転する。この回転によって、第1フリー磁性層36の磁化方向は固定磁化方向P(Y1-Y2方向Y1向き)と直交関係に近づくが、第2フリー磁性層46の磁化方向は、いったん固定磁化方向P(Y1-Y2方向Y1向き)と平行関係となり、その後、直交関係となる。したがって、外部磁場Hが印加された直後は、第1磁気検出素子M1の抵抗値は大きくなるが、第1磁気検出素子M1の抵抗値は小さくなる。このため、差動出力(OutX1)-(OutX2)の出力は負となる。これに対し、外部磁場HがX1-X2方向X1向きである場合には、外部磁場Hが印加された直後は、第1磁気検出素子M1の抵抗値は小さくなるが、第1磁気検出素子M1の抵抗値は大きくなる。このため、差動出力(OutX1)-(OutX2)の出力は正となる。
 このように、外部磁場Hが印加された直後は、外部磁場Hの印加方向に応じて差動出力(OutX1)-(OutX2)の出力極性が相違するため、例えばフィードバックコイルを併用すれば、外部磁場Hを打ち消すキャンセル磁界を発生させるためのコイル電流の向きを適切に制御することが可能となる。
 以上説明したように、磁気センサ101では、交換結合磁界Hexによって、第1磁気検出素子M1および第2磁気検出素子M2に関する固定磁化方向P(Y1-Y2方向Y2向き)、第1磁気検出素子M1に関するバイアス印加方向F(X2-Y1方向)、第2磁気検出素子M2に関するバイアス印加方向F(X1-Y1方向)の3方向に磁化が設定されている。この3方向の磁化設定を実現するために、磁気センサ101では、磁気センサ100と同様に、交換結合磁界Hexの発生に関わる反強磁性層として、ブロッキング温度が互いに異なる3種類の材料を用いている。
 具体的には、第1固定用反強磁性層33のブロッキング温度Tbf1および第2固定用反強磁性層43のブロッキング温度Tbf2が、それぞれ、第1バイアス用反強磁性層37のブロッキング温度Tb1および第2バイアス用反強磁性層47のブロッキング温度Tb2のいずれよりも高くなるようにしている。また、第1バイアス用反強磁性層37のブロッキング温度Tb1は第2バイアス用反強磁性層47のブロッキング温度Tb2よりも高くなるようにしている。このようにブロッキング温度が異なることにより、互いに異なる3方向に交換結合磁界の方向を設定することができる。
 図11(a)に示されるように、トンネル磁気抵抗効果膜からなる第1磁気抵抗効果膜MR1は、基板SB上に形成された下部電極31の上に、下から、シード層32、第1固定用反強磁性層33、第1固定磁性層34、絶縁障壁層35、第1フリー磁性層36、上部電極38の順に積層されて形成される。
 表5に第1磁気抵抗効果膜MR1の具体例を示す。表5の左端列は第1磁気抵抗効果膜MR1の各層を示し、それぞれを構成する材料の例が右から2列目に示されている。右端列の数値は各層の厚さ(単位:オングストローム(Å))を示している。
Figure JPOXMLDOC01-appb-T000005
 下部電極31は、基板SB側から30ÅのTa層、200ÅのCu層、30ÅのTa層、200ÅのCu層および150ÅのTa層が積層されてなる。
 シード層32は下部電極31上に形成され、その上に形成される各層の結晶配向性を整えるために用いられ、RuやNi-Fe-Cr等で形成される。表5では、シード層32は厚さ42ÅのNiFeCr合金からなる。
 第1固定用反強磁性層33はシード層32の上に積層される。第1固定用反強磁性層33を形成するために、シード層32に近位な側から、厚さ300ÅのPt50原子%Cr50原子%からなる層、厚さ14ÅのPt50原子%Mn50原子%からなる層および厚さ8ÅのIr20原子%Mn80原子%からなる層が積層される。第1固定用反強磁性層33をアニール処理することにより、第1固定用反強磁性層33は規則化して第1固定磁性層34と交換結合して第1固定用交換結合膜532を形成し、第1固定用反強磁性層33と第1固定磁性層34との間(界面)に交換結合磁界Hexが生じる。第1固定用反強磁性層33のブロッキング温度Tbf1は500℃程度である。したがって、第1固定用交換結合膜532が400℃程度に加熱されても、その交換結合磁界Hexは維持される。第1固定用反強磁性層33を形成するために積層される各層は、例えばスパッタ工程やCVD工程で成膜される。なお、PtCr層など合金層を成膜する際には、合金を形成する複数種類の金属(PtCr層の場合にはPtおよびCr)を同時に供給してもよいし、合金を形成する複数種類の金属を交互に供給してもよい。前者の具体例として合金を形成する複数種類の金属の同時スパッタが挙げられ、後者の具体例として異なる種類の金属膜の交互積層が挙げられる。合金を形成する複数種類の金属の同時供給が交互供給よりも交換結合磁界Hexを高めることにとって好ましい場合がある。
 第1固定磁性層34は、表5に示すように、第1固定用反強磁性層33に近位な側から、強磁性層(90CoFe)、非磁性中間層(Ru)、強磁性層(50FeCo)の順に積層された積層フェリ構造を有する。さらに、バリア層(Ta)および強磁性層((50CoFe)B30、50FeCo)が設けられている。第1固定磁性層34は、上記のとおり第1固定用反強磁性層33との間で生じる交換結合磁界Hexや非磁性中間層を挟む2つの強磁性層(90CoFe、60FeCo)間で生じるRKKY相互作用により、磁化が一方向(図11(a)ではY1-Y2方向Y1向き)に固定される。
 絶縁障壁層35は第1固定磁性層34の上に形成される。表5の例では、絶縁障壁層35は厚さ20ÅのMgOで形成される。Mgの組成比は40原子%以上60原子%以下の範囲内であることが好ましい。Mg50原子%50原子%であることがより好ましい。
 第1フリー磁性層36は絶縁障壁層35の上に積層される。第1フリー磁性層36は、例えば、Co-Fe層とCo-Fe-B層との積層構造で構成される。表5に示される例では、2層構成(50FeCo、(50CoFe)B30)である。第1フリー磁性層36の磁化方向は外部磁場Hの印加される方向に応じてX-Y面内で磁化変動可能である。外部磁場Hが印加されていない状態での第1フリー磁性層36の磁化方向を揃える観点から、第1フリー磁性層36に対して、第1磁界印加バイアス膜MR11の第1バイアス用交換結合膜531のバイアス用交換結合磁界Hex11および第1磁界印加バイアス膜MR12の第1バイアス用交換結合膜531のバイアス用交換結合磁界Hex12に基づくバイアス磁界がX2-Y1方向(バイアス印加方向F)に印加されている。
 上部電極38は第1フリー磁性層36の上に積層される。表5に示す例では、上部電極38は、第1フリー磁性層36に近位な側から、厚さ50ÅのRu層、厚さ100ÅのTa層および厚さ70ÅのRu層が積層されてなる。
 第1磁界印加バイアス膜MR11、MB12の具体例は、本発明の第1の実施形態に係る磁気センサ100が備える第1磁界印加バイアス膜MR11、MB12の具体例(表2)と構成が共通するため、詳細な説明を省略する。第1バイアス用反強磁性層84は第1強磁性層83の上に積層される。表2にも示したように、第1バイアス用反強磁性層84は厚さ300ÅのPt50原子%Mn50原子%からなる。第1バイアス用反強磁性層84をアニール処理することにより、第1バイアス用反強磁性層84は規則化して第1強磁性層83と交換結合して第1バイアス用交換結合膜531を形成し、第1バイアス用反強磁性層84と第1強磁性層83との間(界面)にバイアス用交換結合磁界Hex11、Hex12が生じる。第1バイアス用反強磁性層84のブロッキング温度Tb1は400℃程度である。したがって、第1バイアス用交換結合膜531が300℃程度に加熱されても、そのバイアス用交換結合磁界Hex11、Hex12は維持される。それゆえ、バイアス用交換結合磁界Hex11、Hex12に基づいて第1磁気抵抗効果膜MR1の第1フリー磁性層36に印加されるバイアス磁界は、第1磁気検出素子M1が300℃程度に加熱されても維持される。
 表6に第2磁気抵抗効果膜MR2の具体例を示す。表6の左端列は第2磁気抵抗効果膜MR2の各層を示し、それぞれを構成する材料の例が右から2列目に示されている。右端列の数値は各層の厚さ(単位:オングストローム(Å))を示している。
Figure JPOXMLDOC01-appb-T000006
 下部電極41、シード層42、第2固定磁性層44、絶縁障壁層45、第2フリー磁性層46、および上部電極48の構成は、それぞれ、下部電極31、シード層32、第1固定磁性層34、絶縁障壁層35、第1フリー磁性層36、および上部電極38の構成と等しいので説明を省略する。
 第2固定用反強磁性層43を形成するために、シード層42に近位な側から、厚さ300ÅのPt50原子%Cr50原子%からなる層、厚さ14ÅのPt50原子%Mn50原子%からなる層および厚さ8ÅのIr20原子%Mn80原子%からなる層が積層される。第2固定用反強磁性層43をアニール処理することにより、第2固定用反強磁性層43は規則化して第2固定磁性層44と交換結合して第2固定用交換結合膜542を形成し、第2固定用反強磁性層43と第2固定磁性層44との間(界面)に交換結合磁界Hexが生じる。第2固定用反強磁性層43のブロッキング温度Tbf2は500℃程度である。したがって、第2固定用交換結合膜542が400℃程度に加熱されても、その交換結合磁界Hexは維持される。第2固定用反強磁性層43を形成するために積層される各層は、例えばスパッタ工程やCVD工程で成膜される。
 第2磁界印加バイアス膜MR21、MB22の具体例は、本発明の第1の実施形態に係る磁気センサ100が備える第2磁界印加バイアス膜MR21、MB22の具体例(表4)と構成が共通するため、詳細な説明を省略する。第2バイアス用反強磁性層94は第2強磁性層93の上に積層される。表4にも示したように、第2バイアス用反強磁性層94は厚さ80ÅのIr20原子%Mn80原子%からなる。第2バイアス用反強磁性層94は第2強磁性層93と第2バイアス用交換結合膜541を形成し、第2バイアス用反強磁性層94と第2強磁性層93との間(界面)にバイアス用交換結合磁界Hex21、Hex22が生じる。第2バイアス用反強磁性層47のブロッキング温度Tb2は300℃程度であり、第1バイアス用反強磁性層37のブロッキング温度Tb1(400℃程度)よりも低い。
 このように、磁気センサ101が互いに異なる3種類のブロッキング温度Tbを有する反強磁性層を含むため、各層を成膜したのち次のように熱処理を行う製造方法を行うことによって、各磁気検出素子(第1磁気検出素子M1、第2磁気検出素子M2)の固定磁化方向Pおよびバイアス印加方向Fが所定の方向に設定された磁気センサ101を製造することができる。
 まず、第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2を構成する各層を積層し、得られた積層体に対して、固定磁化軸設定工程を行う。この工程では、次の第1固定用反強磁性層33および第2固定用反強磁性層43を、熱処理により規則化する。その温度は、規則化が実現される限り特に限定されない。通常、第1固定用反強磁性層33のブロッキング温度Tbf1および第2固定用反強磁性層43のブロッキング温度Tbf2よりもやや低い温度、例えば300℃から400℃程度とされる。熱処理の時間も規則化が実現される限り任意である。限定されない例示として、1位時間以上、具体的には5時間程度が挙げられる。
 こうして第1固定用反強磁性層33および第2固定用反強磁性層43が規則化して、第1固定用交換結合膜532および第2固定用交換結合膜542に交換結合磁界Hexが生じる。この規則化の際に、第1固定用反強磁性層33の磁化方向は第1固定磁性層34の磁化方向に揃う。このため、第1固定磁性層34の磁化方向に揃うように第1固定用交換結合膜532の交換結合磁界Hexが生じる。また、第2固定用反強磁性層43の磁化方向の規則化の際に第2固定磁性層44の磁化方向に揃う。このため、第2固定磁性層44の磁化方向に揃うように第2固定用交換結合膜542の交換結合磁界Hexが生じる。
 そこで、第1固定磁性層34および第2固定磁性層44を成膜する際にその磁化方向をY1-Y2方向Y1向きに設定しておくことにより、固定磁化軸設定工程において、第1固定磁性層15の固定磁化方向Pと第2固定磁性層25の固定磁化方向Pとを共軸に(具体的には平行に)設定することができる。前述の第1の実施形態に係る磁気センサ100の場合には、第1固定磁性層15および第2固定磁性層25では磁化方向が反平行であるため、異なる成膜プロセスとなるが、第2の実施形態に係る磁気センサ101の場合には、第1固定磁性層34および第2固定磁性層44を同一の成膜プロセスにより製造することができる。
 上記のように第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2について固定磁化軸の設定が終了したら、第1磁気抵抗効果膜MR1に並置されるように2つの第1磁界印加バイアス膜MB11、MB12を構成する各層を積層し、第2磁気抵抗効果膜MR2に並置されるように2つの第2磁界印加バイアス膜MB21、MB22を構成する各層を積層する。
 次に、第1固定用反強磁性層33のブロッキング温度Tbf1よりも低く、第2固定用反強磁性層43のブロッキング温度Tbf2よりも低い温度(例えば350℃)で熱処理を行う第1バイアス磁界設定工程を行う。この熱処理において、Y1-Y2方向Y1向きに外部磁場を印加することにより、印加された外部磁場の方向に沿って、第1磁界印加バイアス膜MB11、MB12の第1バイアス用反強磁性層84と第1強磁性層83との間にバイアス用交換結合磁界Hex11、Hex12が生じる。これらのバイアス用交換結合磁界Hex11、Hex12に基づき、第1フリー磁性層36には、X2-Y1方向(バイアス印加方向F)のバイアス磁界が印加される。こうして設定された第1フリー磁性層36のバイアス印加方向Fは、第1固定磁性層34の固定磁化方向Pとは非平行であり、具体的にはZ1-Z2方向からみてX1-X2方向X2向きに45度傾いている。
 第1バイアス磁界設定工程の熱処理温度は、第1固定用反強磁性層33のブロッキング温度Tbf1および第2固定用反強磁性層43のブロッキング温度Tbf2よりも低いため、第1固定磁性層34において設定された固定磁化方向Pおよび第2固定磁性層44において設定された固定磁化方向Pは印加された外部磁場の方向に沿うことはなく、それぞれの方向を維持することができる。なお、第1バイアス磁界設定工程によって第2バイアス用反強磁性層47と第2フリー磁性層46との間に交換結合磁界Hexが生じるが、次に説明する第2バイアス磁界設定工程によって第2バイアス用反強磁性層47と第2フリー磁性層46との間の交換結合磁界Hexの向きを任意に設定することができる。
 最後に、第1バイアス用反強磁性層37のブロッキング温度Tb1よりも低い温度(例えば300℃)で熱処理を行う第2バイアス磁界設定工程を行う。この熱処理において、Y1-Y2方向Y1向きに外部磁場を印加すると、印加された磁場の方向に沿って、第2磁界印加バイアス膜MB21、MB22の第2バイアス用反強磁性層94と第2強磁性層93との間にバイアス用交換結合磁界Hex21、Hex22が生じる。これらのバイアス用交換結合磁界Hex21、Hex22に基づき、第2フリー磁性層46には、X1-Y1方向(バイアス印加方向F)のバイアス磁界が印加される。こうして設定された第2フリー磁性層46のバイアス印加方向Fは、第2固定磁性層44の固定磁化方向Pとは非平行であり、具体的にはZ1-Z2方向からみてX1-X2方向X1向きに45度傾いている。
 第2バイアス磁界設定工程の熱処理温度は、第1固定用反強磁性層33のブロッキング温度Tbf1および第2固定用反強磁性層43のブロッキング温度Tbf2ならび第1バイアス用反強磁性層37のブロッキング温度Tb1によりも低いため、第1固定磁性層34において設定された固定磁化方向Pおよび第2固定磁性層44において設定された固定磁化方向Pならびに第1フリー磁性層36に印加されるバイアス磁界の方向(バイアス印加方向F)は印加された磁場の方向に沿うことはなく、それぞれの方向を維持することができる。
 このように、磁気センサ101が互いに異なる3種類のブロッキング温度Tbを有する反強磁性層を含む場合には、上記のような工程を実施することにより、それぞれの反強磁性層と交換結合する強磁性層(第1固定磁性層34および第2固定磁性層44、第1フリー磁性層36ならびに第2フリー磁性層46)に任意の方向の交換結合磁界Hexを生じさせることができる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、第1の実施形態に係る磁気センサ100では、第1磁気検出素子M1および第2磁気検出素子M2のそれぞれについて、固定磁化方向Pとバイアス印加方向Fとは直交し、第1磁気検出素子M1と第2磁気検出素子M2とは、固定磁化方向Pは反平行であり、バイアス印加方向Fは平行となっているが、第2の実施形態に係る磁気センサ101と同様に、第1磁気検出素子M1および第2磁気検出素子M2の固定磁化方向Pは平行であり、第1磁気検出素子M1のバイアス印加方向Fと第2磁気検出素子M2のバイアス印加方向Fとが、固定磁化方向Pを挟んで反対向きに傾き、互いに直交していてもよい。第2の実施形態に係る磁気センサ101の固定磁化方向Pとバイアス印加方向Fとの関係が第1の実施形態に係る磁気センサ100のように設定されていてもよい。
 第1の実施形態に係る磁気センサ100が備える第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2は巨大磁気抵抗効果膜であったが、第2の実施形態と同様にトンネル磁気抵抗効果膜であってもよい。第2の実施形態に係る磁気センサ101が備える第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2はトンネル磁気抵抗効果膜であったが、第1の実施形態と同様に巨大磁気抵抗効果膜であってもよい。
 第1の実施形態に係る磁気センサ100が備える第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2は、基板SBに近位な側にフリー磁性層が位置するいわゆるトップピン構造であるが、第2の実施形態と同様に基板SBに近位な側に固定磁性層が位置するいわゆるボトムピン構造であってもよい。第2の実施形態に係る磁気センサ101が備える第1磁気抵抗効果膜MR1および第2磁気抵抗効果膜MR2は、基板SBに近位な側に固定磁性層が位置するいわゆるボトムピン構造であるが、第2の実施形態と同様に基板SBに近位な側にフリー磁性層が位置するいわゆるトップピン構造であってもよい。
 第1の実施形態に係る磁気センサ100および第2の実施形態に係る磁気センサ101のいずれについても、フリー磁性層および固定磁性層は多層構造であるが、いずれか一方または双方が単層構造であってもよい。
 第2の実施形態に係る磁気センサ101において、第1磁界印加バイアス膜MB11および第1磁界印加バイアス膜MB12の配置をY1-Y2方向からX1-X2方向の互いに異なる向きにずらすことにより、バイアス印加方向FをX2-Y1方向に設定したが、図12に示すように、上記の方法以外の方法によってバイアス印加方向FをX2-Y1方向に設定してもよい。図12(a)は、本発明の第2の実施形態に係る磁気検出素子の変形例の一つの構成を示す説明図である。図12(b)は、本発明の第2の実施形態に係る磁気検出素子の変形例の他の一つの構成を示す説明図である。
 図12(a)では、第1磁界印加バイアス膜MB11、第1磁気抵抗効果膜MR1および第1磁界印加バイアス膜MB12を、この順番で、Y1-Y2方向Y2側からY1-Y2方向Y1側へと並置させ、第1磁界印加バイアス膜MB11に生じるバイアス用交換結合磁界Hex11および第1磁界印加バイアス膜MB12に生じるバイアス用交換結合磁界Hex12のそれぞれをX2-Y1方向に設定することにより、バイアス印加方向FをX2-Y1方向に設定している。この構成の場合には、第1磁気抵抗効果膜MR1に印加されるバイアス磁界の方向を揃えやすくする観点から、第1磁界印加バイアス膜MB11および第1磁界印加バイアス膜MB12のX1-X2方向の長さを、これらの間に位置する第1磁気抵抗効果膜MR1のX1-X2方向の長さよりも長くすることが好ましい。
 図12(b)では、第1磁界印加バイアス膜MB11に生じるバイアス用交換結合磁界Hex11および第1磁界印加バイアス膜MB12に生じるバイアス用交換結合磁界Hex12はいずれもY1-Y2方向Y1向きであるが、第1磁気抵抗効果膜MR1に対してY1-Y2方向に並置される第1磁界印加バイアス膜MB11および第1磁界印加バイアス膜MB12の第1磁気抵抗効果膜MR1との距離をX1-X2方向に異ならせることにより、バイアス印加方向FをX2-Y1方向に設定している。具体的には、図12(a)の構成との対比で、第1磁界印加バイアス膜MB11および第1磁界印加バイアス膜MB12はいずれも、反時計回りに傾いた状態で配置される。このため、第1磁界印加バイアス膜MB11と第1磁気抵抗効果膜MR1との距離はX1-X2方向X2側ほど短い。それゆえ、バイアス磁界は、X1-X2方向X2側に寄るほど強く第1フリー磁性層36に印加される。また、第1磁界印加バイアス膜MB12と第1磁気抵抗効果膜MR1との距離はX1-X2方向X1側ほど短いため、バイアス磁界は、X1-X2方向X1側に寄るほど強く第1フリー磁性層36に印加される。その結果、第1磁気抵抗効果膜MR1へのバイアス印加方向Fは図12(b)に示されるようにY1-Y2方向Y1向きから反時計回り(X1-X2方向X2側)に傾く。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
 交換結合磁界Hexの強度と環境温度との関係を確認するために、次の構成の積層膜を作製した。()内は各層の厚さ(単位:Å)である。
 基板/下地層:NiFeCr(42)/反強磁性層/固定磁性層:90CoFe(100)/保護層:Ta(90)
 本例では、反強磁性層の積層構成を、下地層に近位な側から、54PtCr(280)/50PtMn(20)として、得られた積層膜を1kOeの磁場中において400℃で5時間アニール処理し、固定磁性層と反強磁性層の磁化を固定して交換結合膜を得た。
(実施例2)
 実施例1の反強磁性層の積層構成を、下地層に近位な側から、50PtMn(300)として積層膜を形成し、得られた積層膜を1kOeの磁場中において300℃で4時間アニール処理し、固定磁性層と反強磁性層の磁化を固定して交換結合膜を得た。
(実施例3)
 実施例1の反強磁性層の積層構成を、下地層に近位な側から、20IrMn(80)として積層膜を形成し、得られた積層膜を1kOeの磁場中において300℃で1時間アニール処理し、固定磁性層と反強磁性層の磁化を固定して交換結合膜を得た。
 VSM(振動試料型磁力計)を用いて、実施例1から実施例3に係る交換結合膜の磁化曲線を、環境温度(単位:℃)を変化させながら測定し、得られたヒステリシスループから、各温度の交換結合磁界Hex(単位:Oe)を求めた。各温度の交換結合磁界Hex、および各温度の交換結合磁界Hexを室温での交換結合磁界Hexで規格化した値(室温規格化の交換結合磁界)を表7から表9に示すとともに、室温規格化の交換結合磁界と測定温度との関係を示すグラフを図13に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表7から表9および図13に示されるように、実施例1から実施例3に係る交換結合膜は環境温度に対する交換結合磁界Hexの維持の程度が異なる。特に、実施例1に係る積層型の反強磁性層を備える交換結合膜は実施例2および実施例3に係る交換結合膜の交換結合磁界Hexが実質的に消滅する350℃から400℃の温度においても、交換結合磁界Hexを維持することができる。
Hex  :交換結合磁界
Hex11、Hex12、Hex21、Hex22:バイアス用交換磁界結合
Hc   :保磁力
100、101 :磁気センサ(磁気検出装置)
FB   :フルブリッジ回路
HB1  :第1ハーフブリッジ回路
HB2  :第2ハーフブリッジ回路
GND  :グランド端子
Vdd  :電源端子
M1   :第1磁気検出素子
M2   :第2磁気検出素子
MB11、MB12 :第1磁界印加バイアス膜
MB21、MB22 :第2磁界印加バイアス膜
MR1  :第1磁気抵抗効果膜
MR2  :第2磁気抵抗効果膜
H    :外部磁場
P    :固定磁化方向
F    :バイアス印加方向
SB   :基板
1、11、21、61、71、81、91 :下地層
13、36 :第1フリー磁性層
14、24、82、92 :非磁性材料層
15、34 :第1固定磁性層(固定用強磁性層)
16、33 :第1固定用反強磁性層
17、27、65、75、85、95 :保護層
23、46 :第2フリー磁性層
25、44 :第2固定磁性層(固定用強磁性層)
26、43 :第2固定用反強磁性層
83    :第1強磁性層
93    :第2強磁性層
84    :第1バイアス用反強磁性層
94    :第2バイアス用反強磁性層
511、532 :第1固定用交換結合膜
512、531 :第1バイアス用交換結合膜
521、542 :第2固定用交換結合膜
522、541 :第2バイアス用交換結合膜
31、41 :下部電極
32、42 :シード層
35、45 :絶縁障壁層
38、48 :上部電極
55、56、57 :交換結合膜
60、70、70A :膜
62、72 :非磁性材料層
63、73 :強磁性層
64、74、741 :反強磁性層
641   :IrMn層
642   :PtMn層
643   :PtCr層
R1    :第1領域
R2    :第2領域
74A、74A1、74An :XCr層
74B、74B1、74Bn :XMn層
4U1、4Un :ユニット積層部
D1、D2、D3 :膜厚

Claims (21)

  1.  第1固定磁性層と第1フリー磁性層とが積層された第1磁気抵抗効果膜および前記第1フリー磁性層にバイアス磁界を印加する第1磁界印加バイアス膜を備える第1磁気検出素子、ならびに第2固定磁性層と第2フリー磁性層とが積層された第2磁気抵抗効果膜および前記第2フリー磁性層にバイアス磁界を印加する第2磁界印加バイアス膜を備える第2磁気検出素子を有するフルブリッジ回路を備える磁気検出装置であって、
     前記フルブリッジ回路は、前記第1磁気検出素子と前記第2磁気検出素子とが直列に接続されてなる第1ハーフブリッジ回路と、前記第2磁気検出素子と前記第1磁気検出素子とが直列に接続されてなる第2ハーフブリッジ回路と、が、電源端子とグランド端子との間で並列接続されてなり、
     前記第1磁気検出素子と前記第2磁気検出素子とは同一の基板上に設けられ、
     前記第1磁気抵抗効果膜は、前記第1固定磁性層と第1固定用反強磁性層とが積層された第1固定用交換結合膜を有し、
     前記第1磁界印加バイアス膜は、第1強磁性層と第1バイアス用反強磁性層とが積層された第1バイアス用交換結合膜を有し、
     前記第2磁気抵抗効果膜は、前記第2固定磁性層と第2固定用反強磁性層とが積層された第2固定用交換結合膜を有し、
     前記第2磁界印加バイアス膜は、第2強磁性層と第2バイアス用反強磁性層とが積層された第2バイアス用交換結合膜を有し、
     前記第1固定磁性層の固定磁化軸と前記第2固定磁性層の固定磁化軸とは共軸に設定され、
     前記第1バイアス用交換結合膜の交換結合磁界の方向と前記第1固定磁性層の固定磁化軸の方向とは非平行に設定され、前記第2バイアス用交換結合膜の交換結合磁界の方向と前記第2固定磁性層の固定磁化軸の方向とは非平行に設定され、
     前記第1固定用反強磁性層のブロッキング温度Tbf1および前記第2固定用反強磁性層のブロッキング温度Tbf2は、それぞれ、前記第1バイアス用反強磁性層のブロッキング温度Tb1および前記第2バイアス用反強磁性層のブロッキング温度Tb2のいずれよりも高く、
     前記第1バイアス用反強磁性層のブロッキング温度Tb1は前記第2バイアス用反強磁性層のブロッキング温度Tb2よりも高いこと
    を特徴とする磁気検出装置。
  2.  前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とは反平行に設定され、
     前記第1バイアス用反強磁性層の交換結合磁界の方向と前記第2バイアス用反強磁性層の交換結合磁界の方向とは平行に設定され、
     前記第1固定磁性層の固定磁化軸の方向と前記第1バイアス用反強磁性層の交換結合磁界の方向とは非平行に設定された、請求項1に記載の磁気検出装置。
  3.  前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とは平行に設定され、
     前記第1バイアス用交換結合膜のバイアス磁界の方向と前記第2バイアス用交換結合膜のバイアス磁界の方向とは非平行に設定された、請求項1に記載の磁気検出装置。
  4.  前記第1固定磁性層の固定磁化軸の方向に対する前記第1バイアス用交換結合膜のバイアス磁界の方向の積層方向視での傾き角度は、前記第2固定磁性層の固定磁化軸の方向に対する前記第2バイアス用交換結合膜のバイアス磁界の方向の積層方向視での傾き角度と反対向きで絶対値が等しい、請求項3に記載の磁気検出装置。
  5.  前記第1固定用反強磁性層および前記第2固定用反強磁性層の少なくとも一方である固定用反強磁性層は、白金族元素およびNiからなる群から選ばれる一種または二種以上の元素XならびにMnおよびCrを含有するX(Cr-Mn)層を備え、
     前記X(Cr-Mn)層は、前記固定用反強磁性層と交換結合する固定用強磁性層に相対的に近位な第1領域と、前記固定用強磁性層から相対的に遠位な第2領域とを有し、
     前記第1領域におけるMnの含有量は、前記第2領域におけるMnの含有量よりも高い、請求項1から4のいずれか1項に記載の磁気検出装置。
  6.  前記第1領域が前記固定用強磁性層に接している、請求項5に記載の磁気検出装置。
  7.  前記第1領域は、Mnの含有量のCrの含有量に対する比であるMn/Cr比が0.3以上の部分を有する、請求項5または6に記載の磁気検出装置。
  8.  前記第1領域は、前記Mn/Cr比が1以上である部分を有する、請求項7に記載の磁気検出装置。
  9.  前記固定用反強磁性層は、PtCr層と、前記PtCr層よりも前記固定用強磁性層に近位なXMn層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素)とが積層されてなる、請求項5から請求項8のいずれか1項に記載の磁気検出装置。
  10.  前記固定用反強磁性層は、PtCr層とPtMn層とがこの順番で前記PtMn層が前記固定用強磁性層に近位になるように積層されてなる、請求項5から8のいずれか1項に記載の磁気検出装置。
  11.  前記PtMn層よりも前記固定用強磁性層に近位にさらにIrMn層が積層された、請求項10に記載の磁気検出装置。
  12.  前記第1固定用反強磁性層および前記第2固定用反強磁性層の少なくとも一方である固定用反強磁性層は、XCr層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素)とXMn層(ただし、Xは白金族元素およびNiからなる群から選ばれる一種または二種以上の元素であって、Xと同じでも異なっていてもよい)とが交互に積層された三層以上の交互積層構造を有する、請求項1から4のいずれか1項に記載の磁気検出装置。
  13.  前記XがPtであり、前記XがPtまたはIrである、請求項12に記載の磁気検出装置。
  14.  前記固定用反強磁性層は、XCr層とXMn層とからなるユニットが複数積層されたユニット積層部を有する、請求項12または13に記載の磁気検出装置。
  15.  前記ユニット積層部における、前記XCr層および前記XMn層は、それぞれ同じ膜厚であり、前記XCr層の膜厚が、前記XMn層の膜厚よりも大きい、請求項14に記載の磁気検出装置。
  16.  前記XCr層の膜厚と前記XMn層の膜厚との比が、5:1~100:1である、請求項15に記載の磁気検出装置。
  17.  前記第1バイアス用反強磁性層はPtMn層からなり、前記第2バイアス用反強磁性層はIrMn層からなる、請求項4から16のいずれか1項に記載の磁気検出装置。
  18.  第1固定磁性層と第1フリー磁性層とが積層された第1磁気抵抗効果膜および前記第1フリー磁性層にバイアス磁界を印加する第1磁界印加バイアス膜を備える第1磁気検出素子、ならびに第2固定磁性層と2フリー磁性層とが積層された第2磁気抵抗効果膜および前記第2フリー磁性層にバイアス磁界を印加する第2磁界印加バイアス膜を備える第2磁気検出素子を有するフルブリッジ回路を備える磁気検出装置の製造方法であって、
     前記フルブリッジ回路は、前記第1磁気検出素子と前記第2磁気検出素子とが直列に接続されてなる第1ハーフブリッジ回路と、前記第2磁気検出素子と前記第1磁気検出素子とが直列に接続されてなる第2ハーフブリッジ回路と、が、電源端子とグランド端子との間で並列接続されてなり、
     前記第1磁気検出素子と前記第2磁気検出素子とは同一の基板上に設けられ、
     前記第1磁気抵抗効果膜は、前記第1固定磁性層と第1固定用反強磁性層とが積層された第1固定用交換結合膜を有し、
     前記第1磁界印加バイアス膜は、第1強磁性層と第1バイアス用反強磁性層とが積層された第1バイアス用交換結合膜を有し、
     前記第2磁気抵抗効果膜は、前記第2固定磁性層と第2固定用反強磁性層とが積層された第2固定用交換結合膜を有し、
     前記第2磁界印加バイアス膜は、第2強磁性層と第2バイアス用反強磁性層とが積層された第2バイアス用交換結合膜を有し、
     前記第1固定用反強磁性層のブロッキング温度Tbf1および前記第2固定用反強磁性層のブロッキング温度Tbf2は、それぞれ、前記第1バイアス用反強磁性層のブロッキング温度Tb1および前記第2バイアス用反強磁性層のブロッキング温度Tb2のいずれよりも高く、
     前記第1バイアス用反強磁性層のブロッキング温度Tb1は前記第2バイアス用反強磁性層のブロッキング温度Tb2よりも高く、
     前記第1固定用反強磁性層および前記第2固定用反強磁性層を熱処理により規則化して、前記第1バイアス用交換結合膜および前記第2バイアス用交換結合膜に交換結合磁界を生じさせることにより、前記第1固定磁性層の固定磁化軸と前記第2固定磁性層の固定磁化軸とを共軸に設定する固定磁化軸設定工程と、
     前記第1固定用反強磁性層のブロッキング温度Tbf1および前記第2固定用反強磁性層のブロッキング温度Tbf2より低い温度で外部磁場を印加しながら熱処理することにより、前記第1バイアス用交換結合膜によるバイアス磁界の方向を前記第1固定磁性層の固定磁化軸の方向とは非平行に設定する第1バイアス磁界設定工程と、
     前記第1バイアス磁界設定工程の後に、前記第1バイアス用反強磁性層のブロッキング温度Tb1より低い温度で外部磁場を印加しながら熱処理することにより、前記第2バイアス用交換結合膜によるバイアス磁界の方向を前記第2固定磁性層の固定磁化軸の方向とは非平行に設定する第2バイアス磁界設定工程と、
    を備えることを特徴とする磁気検出装置の製造方法。
  19.  前記固定磁化軸設定工程では、前記第1固定用交換結合膜の交換結合磁界の方向を第1固定磁性層の磁化方向に揃え、前記第2固定用交換結合膜の交換結合磁界の方向を第2固定磁性層の磁化方向に揃える、請求項18に記載の磁気検出装置の製造方法。
  20.  前記固定磁化軸設定工程では、前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とを反平行に設定し、
     第1バイアス磁界設定工程では、前記第1バイアス用反強磁性層の交換結合磁界の方向を、前記第1固定磁性層の固定磁化軸の方向とは非平行に設定し、
     第2バイアス磁界設定工程では、前記第2バイアス用反強磁性層の交換結合磁界の方向を、前記第1バイアス用反強磁性層の交換結合磁界の方向と平行に設定する、
    請求項18または19に記載の磁気検出装置の製造方法。
  21.  前記固定磁化軸設定工程では、前記第1固定磁性層の固定磁化軸の方向と前記第2固定磁性層の固定磁化軸の方向とを平行に設定し、
     前記第1バイアス磁界設定工程では、前記第1バイアス用交換結合膜のバイアス磁界の方向を、前記第1固定磁性層の固定磁化軸の方向とは非平行に設定し、
     前記第2バイアス磁界設定工程では、前記第2バイアス用交換結合膜のバイアス磁界の方向を前記第1固定磁性層の固定磁化軸の方向および前記第1バイアス用交換結合膜のバイアス磁界の方向のいずれとも非平行に設定する、請求項18または19に記載の磁気検出装置の製造方法。
PCT/JP2018/047858 2018-01-17 2018-12-26 磁気検出装置およびその製造方法 WO2019142635A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019566392A JP6978518B2 (ja) 2018-01-17 2018-12-26 磁気検出装置およびその製造方法
CN201880086933.3A CN111630402B (zh) 2018-01-17 2018-12-26 磁检测装置及其制造方法
US16/929,812 US11249151B2 (en) 2018-01-17 2020-07-15 Magnetic detector and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-005459 2018-01-17
JP2018005459 2018-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/929,812 Continuation US11249151B2 (en) 2018-01-17 2020-07-15 Magnetic detector and method for producing the same

Publications (1)

Publication Number Publication Date
WO2019142635A1 true WO2019142635A1 (ja) 2019-07-25

Family

ID=67301418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047858 WO2019142635A1 (ja) 2018-01-17 2018-12-26 磁気検出装置およびその製造方法

Country Status (4)

Country Link
US (1) US11249151B2 (ja)
JP (1) JP6978518B2 (ja)
CN (1) CN111630402B (ja)
WO (1) WO2019142635A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142634A1 (ja) * 2018-01-17 2020-11-19 アルプスアルパイン株式会社 磁気検出装置およびその製造方法
CN113196078A (zh) * 2019-08-28 2021-07-30 西部数据技术公司 双自由层tmr磁场传感器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870097B2 (ja) * 2017-08-14 2021-05-12 アルプスアルパイン株式会社 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
CN111512455B (zh) * 2017-12-26 2024-04-02 阿尔卑斯阿尔派株式会社 隧道磁阻效应膜以及使用其的磁装置
JP7104068B2 (ja) * 2017-12-26 2022-07-20 アルプスアルパイン株式会社 位置検出素子およびにこれを用いた位置検出装置
JP6870639B2 (ja) * 2018-03-19 2021-05-12 Tdk株式会社 磁気検出装置
JP6900936B2 (ja) * 2018-06-08 2021-07-14 Tdk株式会社 磁気検出装置
US20240125872A1 (en) * 2022-10-03 2024-04-18 Analog Devices International Unlimited Company Magnetoresistive sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147326A (ja) * 1995-09-11 1997-06-06 Internatl Business Mach Corp <Ibm> 磁気ディスク記録装置およびデュアル磁気抵抗センサ
JP2002353417A (ja) * 2001-05-30 2002-12-06 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
JP2003069109A (ja) * 2001-08-30 2003-03-07 Sony Corp 磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、磁気再生装置と、磁気抵抗効果型磁気センサおよび磁気抵抗効果型磁気ヘッドの製造方法
JP2003067904A (ja) * 2001-08-28 2003-03-07 Hitachi Ltd 磁気抵抗効果型磁気ヘッドおよびその製造方法
JP2006527497A (ja) * 2003-06-11 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気層構造体を備えるデバイスを製造する方法
JP2008286739A (ja) * 2007-05-21 2008-11-27 Mitsubishi Electric Corp 磁界検出器及び回転角度検出装置
US20090059444A1 (en) * 2007-08-30 2009-03-05 Freescale Semiconductor, Inc. Methods and structures for an integrated two-axis magnetic field sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904447B2 (ja) * 2000-12-22 2007-04-11 アルプス電気株式会社 磁気検出素子の製造方法
JP2004186658A (ja) * 2002-10-07 2004-07-02 Alps Electric Co Ltd 磁気検出素子及びその製造方法
CN102226836A (zh) 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片桥式磁场传感器及其制备方法
CN103913709B (zh) * 2014-03-28 2017-05-17 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
DE102014116953B4 (de) * 2014-11-19 2022-06-30 Sensitec Gmbh Verfahren und Vorrichtung zur Herstellung einer Magnetfeldsensorvorrichtung, sowie diesbezüglicheMagnetfeldsensorvorrichtung
JP6202282B2 (ja) * 2015-02-17 2017-09-27 Tdk株式会社 磁気センサ
JP6697144B2 (ja) * 2016-01-27 2020-05-20 アルプスアルパイン株式会社 磁気センサ
DE102017112546B4 (de) * 2017-06-07 2021-07-08 Infineon Technologies Ag Magnetoresistive Sensoren mit Magnetisierungsmustern mit geschlossenem Fluss
CN111615636B (zh) * 2018-01-17 2022-07-08 阿尔卑斯阿尔派株式会社 磁检测装置及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147326A (ja) * 1995-09-11 1997-06-06 Internatl Business Mach Corp <Ibm> 磁気ディスク記録装置およびデュアル磁気抵抗センサ
JP2002353417A (ja) * 2001-05-30 2002-12-06 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
JP2003067904A (ja) * 2001-08-28 2003-03-07 Hitachi Ltd 磁気抵抗効果型磁気ヘッドおよびその製造方法
JP2003069109A (ja) * 2001-08-30 2003-03-07 Sony Corp 磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、磁気再生装置と、磁気抵抗効果型磁気センサおよび磁気抵抗効果型磁気ヘッドの製造方法
JP2006527497A (ja) * 2003-06-11 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気層構造体を備えるデバイスを製造する方法
JP2008286739A (ja) * 2007-05-21 2008-11-27 Mitsubishi Electric Corp 磁界検出器及び回転角度検出装置
US20090059444A1 (en) * 2007-08-30 2009-03-05 Freescale Semiconductor, Inc. Methods and structures for an integrated two-axis magnetic field sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019142634A1 (ja) * 2018-01-17 2020-11-19 アルプスアルパイン株式会社 磁気検出装置およびその製造方法
CN113196078A (zh) * 2019-08-28 2021-07-30 西部数据技术公司 双自由层tmr磁场传感器
EP4022333A4 (en) * 2019-08-28 2022-10-19 Western Digital Technologies Inc. TMR MAGNETIC SENSOR WITH TWO FREE LAYERS

Also Published As

Publication number Publication date
US20200348375A1 (en) 2020-11-05
JP6978518B2 (ja) 2021-12-08
CN111630402A (zh) 2020-09-04
US11249151B2 (en) 2022-02-15
JPWO2019142635A1 (ja) 2020-11-19
CN111630402B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2019142635A1 (ja) 磁気検出装置およびその製造方法
WO2019142634A1 (ja) 磁気検出装置およびその製造方法
JP6686147B2 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
US11320498B2 (en) Magnetic-field-applying bias film, and magnetic detection element and magnetic detector including the same
JP7022765B2 (ja) 磁界印加バイアス膜ならびにこれを用いた磁気検出素子および磁気検出装置
JP6870097B2 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
JP7160945B2 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
JP7022766B2 (ja) トンネル磁気抵抗効果膜ならびにこれを用いた磁気デバイス
JP2012119613A (ja) 磁気検出素子及びそれを用いた磁気センサ
WO2019064994A1 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
JP6820432B2 (ja) 交換結合膜ならびにこれを用いた磁気抵抗効果素子および磁気検出装置
WO2019131393A1 (ja) 位置検出素子およびにこれを用いた位置検出装置
JP6713867B2 (ja) デュアルスピンバルブ磁気検出素子の製造方法およびデュアルスピンバルブ磁気検出素子を使用した磁気検出装置の製造方法
JP2020136306A (ja) 交換結合膜、磁気抵抗効果素子および磁気検出装置
JP2004319925A (ja) 磁気センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18901047

Country of ref document: EP

Kind code of ref document: A1