WO2019141131A1 - 溴结构域抑制剂化合物及其用途 - Google Patents

溴结构域抑制剂化合物及其用途 Download PDF

Info

Publication number
WO2019141131A1
WO2019141131A1 PCT/CN2019/071258 CN2019071258W WO2019141131A1 WO 2019141131 A1 WO2019141131 A1 WO 2019141131A1 CN 2019071258 W CN2019071258 W CN 2019071258W WO 2019141131 A1 WO2019141131 A1 WO 2019141131A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
alkylene
cancer
synthesis
Prior art date
Application number
PCT/CN2019/071258
Other languages
English (en)
French (fr)
Inventor
周兵
罗成
李子洲
杨亚玺
陈示洁
丁宏
蒋华良
乔刚
王新俊
肖森豪
Original Assignee
中国科学院上海药物研究所
苏州苏领生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所, 苏州苏领生物医药有限公司 filed Critical 中国科学院上海药物研究所
Priority to EP19740997.2A priority Critical patent/EP3741758A4/en
Priority to US16/962,347 priority patent/US11427593B2/en
Publication of WO2019141131A1 publication Critical patent/WO2019141131A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/53Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/18Feminine contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a bromodomain inhibitor compound, a process for the preparation thereof, a pharmaceutical composition comprising the same, and uses thereof.
  • the invention relates to a bromodomain inhibitor compound, pharmaceutically acceptable salts, enantiomers, diastereomers, atropisomers, racemates, polymorphs thereof , solvate or isotopically-labeled compound (including hydrazine substitution), a process for the preparation of the compound, a pharmaceutical composition comprising the compound and its use in pharmacy.
  • a bromodomain refers to a conserved protein structure fold linked to an N-acetylated lysine residue found in certain proteins.
  • BET family includes BRD2, BRD3, BRD4 and BRDT. These proteins have two highly conserved bromodomains (BD1 and BD2) at the N-terminus, which recognize and bind acetylated histones. At the same time, the C-terminus is highly conserved.
  • the terminal domain is involved in protein interactions regulated by non-BRD proteins.
  • other BET family proteins are widely expressed in humans and have a variety of cellular functions.
  • BET family of proteins One of the most important functions of the BET family of proteins is to bind to acetylated histones, thereby recruiting regulatory proteins to chromosomal regions, such as the catalytic subunit of the NuRD recombinant complex, the histone demethylase JMJD6 and the SWI/SNF nucleus.
  • Body remodeling complex or methyltransferase NSD3 (Rahman, et al. Molecular and Cellular Biology 2011, 31 (13), 2641-52), etc., combines histone acetylation with chromatin function to identify The role of genes.
  • BET family proteins can also interact with acetylated transcription factors such as NF-KB to promote nuclear chromatin binding to other proteins (Shi, et al. Molecular cell 2014, 54(5), 728-36).
  • BRD2 deficiency Mice can survive but have significant obesity (Wang et al. Vitamins and hormones 2013; 91:49-75); the absence of the first Brahman region of BRDT can lead to misclassification of chromatin and abnormal transcriptional regulation. Sperm defects (Berkovits et al. Current topics in developmental biology 2013; 102: 293-326).
  • the invention provides a compound of formula (I), a pharmaceutically acceptable salt, enantiomer, diastereomer, atropisomer, racemate, polymorph, a solvate or an isotope-labeled compound (including hydrazine),
  • R x is hydrogen, C 1 -C 3 alkyl, or C 1 -C 3 haloalkyl
  • R y is hydrogen, C 1 -C 3 alkyl, or C 1 -C 3 haloalkyl
  • X 1 is N or CR x1 , wherein R x1 is hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, halogen or CN;
  • Y 1 is N, CR y1 or CR y1 R y2 , wherein R y1 and R y2 are each independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, halogen, CN;
  • Y 2 is N, CR y3 or CR y3 R y4 , wherein R y3 and R y4 are each independently hydrogen, CN, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, -(C 1 -C 6 alkylene)-OR 2a , -C(O)-R ax1 , -(C 1 -C 6 alkylene)-C(O)-R ax1 , -C(O)OR ax1 , -(C 1 -C 6 alkylene)-C(O)NHR ax1 , -(C 1 -C 6 alkylene)-N(R ax1 )R ax2 , -C(O)N(R ax1 )R ax2 ,G a Or or (C 1 -C 6 alkylene)-G a ;
  • R ax1 and R ax2 are each independently hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, G a , or -(C 1 -C 6 alkylene)-G a ;
  • Y 1 and Y 2 cannot be N at the same time; and when Y 1 or Y 2 is N, For double bonds;
  • a 1 is N or CR 1
  • a 2 is N or CR 2
  • a 3 is N or CR 3
  • a 4 is N or CR 4 , provided that 0 , 1 of A 1 , A 2 , A 3 , and A 4 , 2 or 3 are N;
  • R 1 is hydrogen, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, halogen, C 1 -C 6 haloalkyl, CN, or NO 2 ;
  • R 2 , R 3 and R 4 are each independently hydrogen, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, halogen, C 1 -C 6 haloalkyl, CN, NO 2 , G 2a , -OR 2a , -OC(O)R 2d , -OC(O)NR 2b R 2c , -SR 2a , -S(O) 2 R 2d , -S(O) 2 NR 2b R 2c , -C(O R 2d , -C(O)OR 2a , -C(O)NR 2b R 2c , -NR 2b R 2c , -NR 2b R 2c , -N(R 2e )C(O)R 2d , -N(R 2e )S(O 2 R 2d , -N(R 2e )C(O)OR 2d , -
  • R 2a , R 2b , R 2c , and R 2e are each independently hydrogen, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 haloalkyl, G 2b , a C 1 -C 6 alkyl group or a C 1 -C 6 alkyl group substituted by a substituent selected from -OR z1 , -NR z1 R z2 , -C(O)OR z1 , -C( O) NR z1 R z2 , -S(O) 2 R z1 , -S(O) 2 NR z1 R z2 , and G 2b ;
  • R 2d is each independently C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 haloalkyl, G 2b , C 1 -C 6 alkyl, or substituted by one at a time.
  • a substituted C 1 -C 6 alkyl group selected from -OR z1 , -NR z1 R z2 , -C(O)OR z1 , -C(O)NR z1 R z2 , -S(O) 2 R z1 , -S(O) 2 NR z1 R z2 , and G 2b ;
  • R z1 and R z2 are each independently hydrogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl at each occurrence;
  • G a , G 2a , and G 2b is independently an aryl group, a heteroaryl group, a heterocyclic ring, a cycloalkyl group, or a cycloalkenyl group, and each of them is independently unsubstituted or is 1, 2, 3, 4, or 5 R v substitutions;
  • L 1 is absent, -CH 2 -, -C(O)-, -C(H)(OH)-, -(CH 2 ) m O-, -(CH 2 ) m S(O) n -, -NHC(O)-, -C(O)NH-, -NHC(O)NH-, -NHS(O) 2 -, -S(O) 2 NH- or -(CH 2 ) m N(R z -, wherein n is 0, 1, or 2; m is 0 or 1; R z is hydrogen, C 1 -C 3 alkyl, C 1 -C 3 haloalkyl; (C 2 -C 3 alkylene) -OH, or an unsubstituted cyclopropyl group;
  • G 1 is C 1 -C 6 alkyl, alkoxyalkyl, G 1a or -(C 1 -C 6 alkylene)-G 1a ; wherein each G 1a is independently aryl, heteroaryl, Heterocyclic, cycloalkyl, or cycloalkenyl, and each G 1a is independently unsubstituted or substituted by 1, 2, 3, 4, or 5 R w ;
  • R h , R j , R k are each independently hydrogen, C 1 -C 6 alkyl, or C 1 -C 6 haloalkyl at each occurrence;
  • R i is independently C 1 -C 6 alkyl or C 1 -C 6 haloalkyl at each occurrence.
  • the compound of formula I is a compound of formula Ia, Ib, Ic, or Ie:
  • R x , R y , R x1 , R y1 , R y2 , R y3 , R y4 , Y 1 , Y 2 , A 1 , A 2 , A 3 , A 4 , L 1 , and G 1 are present and above
  • the definitions in Formula I are the same as described herein;
  • the compound of formula I is a compound of formula Id or If:
  • a 1 , A 2 , A 3 , A 4 , L 1 , and G 1 are the same as defined in the above formula I;
  • Y 2 is N or CH
  • R y is C 1 -C 3 alkyl
  • R x1 is H, CH 3 or halogen.
  • the compound of formula I is a compound of formula Ig or Ih:
  • a 2 is the same as defined in the above formula I;
  • L 1 is O or NH
  • Y 2 is CH or N
  • R x1 is H, CH 3 or halogen
  • a 4 is CH or N
  • G 1 is G 1a or -(CH 2 )-G 1a ; wherein each G 1a is independently aryl, heteroaryl, heterocyclic, cycloalkyl, or cycloalkenyl, and each G 1a is independently Unsubstituted or substituted by 1 or 2 R w ;
  • R w is the same as defined in the above formula I.
  • the compound of formula I is a compound of formula Ii or Ij:
  • Y 2 is N or CH
  • L 1 is O or NH
  • a 4 is CH or N
  • G 1 is pyridyl, Or a phenyl group substituted by 1 or 2 halogens;
  • R 2 is -S(O) 2 R 2d , -NHS(O) 2 R 2d , -S(O) 2 NR 2b R 2c , or -(CH 2 )-S(O) 2 R 2d ; wherein R 2d Is an unsubstituted C 1 -C 3 alkyl group, and R 2b and R 2c are each independently hydrogen or an unsubstituted C 1 -C 3 alkyl group.
  • the compound of formula I is selected from the group consisting of:
  • the isotopically labeled compound is, for example, a hydrazine substituted compound.
  • Isotopically labeled compounds can be used in applications such as metabolic testing.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I), a pharmaceutically acceptable salt thereof, an enantiomer, a diastereomer thereof, according to the above A construct, atropisomer, racemate, polymorph, solvate or isotopically labeled compound and a pharmaceutically acceptable carrier.
  • the invention provides a method of treating or preventing a disease or condition or disease state that is ameliorated by inhibition of BET.
  • Such methods comprise administering to the subject a therapeutically effective amount of a compound of formula (I), a pharmaceutically acceptable salt thereof, an enantiomer, a diastereomer, an atropisomer, a racemate, a polymorph
  • a compound of formula (I) a pharmaceutically acceptable salt thereof, an enantiomer, a diastereomer, an atropisomer, a racemate, a polymorph
  • the solvate or isotopically labeled compound alone or in combination with a pharmaceutically acceptable carrier.
  • the invention provides the compound, pharmaceutically acceptable salts, enantiomers, diastereomers, atropisomers, racemates, polymorphs, solvents thereof Use of a compound or an isotopically labeled compound or a pharmaceutical composition thereof for the manufacture of a medicament for treating a disease or condition or disease state in a subject.
  • Certain methods or uses involve treating or preventing an inflammatory disease or cancer or acquired immunodeficiency syndrome (AIDS).
  • AIDS acquired immunodeficiency syndrome
  • the method or use relates to cancer, the cancer selected from the group consisting of: acoustic neuroma, acute leukemia, acute lymphocytic leukemia, acute myeloid leukemia (monocytic, myeloblastic, adenocarcinoma, Angiosarcoma, astrocytoma, myelomonocytic and promyelocytic), acute t-cell leukemia, basal cell carcinoma, cholangiocarcinoma, bladder cancer, brain cancer, breast cancer, bronchial carcinoma, cervical cancer, Chondrosarcoma, chordoma, choriocarcinoma, chronic leukemia, chronic lymphocytic leukemia, chronic myeloid (granulocytic) leukemia, chronic myelogenous leukemia, colon cancer, colorectal cancer, craniopharyngioma, cystadenocarcinoma Diffuse large B-cell lymphoma, poor proliferative changes (d
  • the method or use further comprises administering or adding a therapeutically effective amount of at least one additional therapeutic agent.
  • the additional therapeutic agent is an anticancer agent.
  • the additional therapeutic agent is selected from the group consisting of cytarabine, bortezomib, and 5-azacitidine.
  • the disease or condition or condition is selected from the group consisting of: Addison's disease, acute gout, ankylosing spondylitis, asthma, atherosclerosis, Behcet's disease, bullous skin disease, chronic obstructive pulmonary disease , Crohn's disease, dermatitis, eczema, giant cell arteritis, glomerulonephritis, hepatitis, hypopituitaritis, inflammatory bowel disease, Kawasaki disease, lupus nephritis, multiple sclerosis, myocarditis, myositis, organs Transplant rejection, osteoarthritis, pancreatitis, pericarditis, nodular polyarteritis, localized pneumonia, primary biliary cirrhosis, psoriasis, psoriatic arthritis, rheumatoid arthritis, sclera Inflammation, sclerosing cholangitis, sepsis
  • the disease or condition or disease state is selected from the group consisting of: diabetic nephropathy, hypertensive nephropathy, HIV-related nephropathy, glomerulonephritis, lupus nephritis, IgA nephropathy, focal stage renal Spherical sclerosis, membranous glomerulonephritis, microscopic disease, polycystic kidney disease, and tubulointerstitial nephritis.
  • the method or use further comprises administering or adding a therapeutically effective amount of at least one additional therapeutic agent.
  • the disease or condition or disease state is an acute kidney injury or a related disease state thereof, wherein the acute kidney injury or a related disease state thereof is selected from the group consisting of ischemia-reperfusion-induced, cardiotonic, and major surgical induction.
  • the method further comprises administering or adding a therapeutically effective amount of at least one additional therapeutic agent.
  • the disease or condition or disease state is AIDS.
  • the method or use further comprises administering or adding a therapeutically effective amount of at least one additional therapeutic agent.
  • the disease or condition or condition is obesity, dyslipidemia, hypercholesterolemia, Alzheimer's disease, metabolic syndrome, fatty liver, type II diabetes, insulin resistance, diabetic retinopathy or diabetes sexual neuropathy.
  • the method or use further comprises administering or adding a therapeutically effective amount of at least one additional therapeutic agent.
  • the invention provides a method of preventing pregnancy comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I), a pharmaceutically acceptable salt thereof, an enantiomer, a non- Enantiomer, racemate or isotopically labeled compound.
  • the present invention provides a compound of the formula (I), a pharmaceutically acceptable salt, an enantiomer, a diastereomer, an atropisomer, a racemate, a polymorph, a solvate or a
  • the method or use further comprises administering or adding a therapeutically effective amount of at least one additional therapeutic agent.
  • a compound of the formula (I) according to the invention a pharmaceutically acceptable salt, enantiomer, diastereomer, atropisomer, racemate, polymorph, solvate or Isotopically labeled compounds achieve the goal of preventing pregnancy by inhibiting sperm production in an individual.
  • the compound of formula (I) can be prepared using the general procedure described in Scheme 1 by treating the aryl halide, aryl methyl sulfonate under Suzuki coupling conditions with an aryl boronic acid or a derivative thereof (eg, a boronic ester).
  • the coupling reaction is effected in the presence of a palladium catalyst and a base, and optionally in the presence of a ligand, and in an elevated solvent at elevated temperatures (e.g., at about 80 to 150 degrees).
  • the reaction can be promoted by microwave radiation.
  • palladium catalysts include, but are not limited to, tetrakistriphenylphosphine palladium (0), tris(dibenzylideneacetone) dipalladium (0), allyl palladium (II) chloride dimer, [1, 1' - bis(diphenylphosphino)ferrocene]palladium dichloride ((dppf)PdCl 2 ), palladium (II) acetate.
  • suitable bases include, but are not limited to, carbonates or phosphates of sodium, potassium and rubidium and cesium fluoride.
  • suitable ligands include, but are not limited to, 2-dicyclohexylphosphino-2,4,6-triisopropylbiphenyl (X-phos), 1,3,5,7-tetramethyl-6-benzene -2,4,8-trioxa-6-phosphoryladamantane, 2'-dicyclohexylphosphino-2,6-dimethoxy-1,1'-biphenyl-3-sulfonic acid Sodium hydrate and 1,1'-bis(diphenylphosphinoalkyl)ferrocene.
  • Non-limiting examples of suitable solvents include methanol, acetonitrile, dimethoxyethane, N,N-dimethylformamide, dimethyl sulfoxide, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, toluene And water or a mixture thereof.
  • a fluorine atom in the group provides a compound of the formula (I).
  • the replacement of fluorine with an alcohol, an amine or a thiol can be achieved in a solvent in the presence of a base and at a temperature of from about 30 to 140 degrees, such as, but not limited to, dimethyl sulfoxide, dimethylformamide, Oxycyclohexane or tetrahydrofuran.
  • the base is for example but not limited to cesium carbonate, potassium carbonate, or sodium hydride.
  • N-substituted compound of formula (2) such as, but not limited to, N-methylpyrrolidone, DMF, acetonitrile
  • the base used is, for example but not limited to, sodium hydride, sodium hydroxide, potassium t-butoxide.
  • the ester group is then hydrolyzed under basic conditions to give the carboxylic acid compound of formula (3), such as, but not limited to, lithium hydroxide, potassium hydroxide, sodium hydroxide.
  • an amide compound (4) selected from, for example, but not limited to, carbonyl diimidazole, dicyclohexylcarbodiimide, diisopropyl carbon Diimine, 1-(-3-dimethylaminopropyl)-3-ethylcarbodiimide, 1-hydroxybenzotriazole, 2-(7-azobenzotriazole)-N, N,N',N'-tetramethylurea hexafluorophosphate, benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate, 6-chlorobenzotriazole -1,1,3,3-tetramethylurea hexafluorophosphate, O-benzotriazole-N,N,N',N'-tetramethyluronium tetrafluoroborate, 6-chlorobenzen
  • the reaction temperature is about 100 to 130 degrees, and a cyclization reaction occurs to obtain a compound of the formula (5), and the acid to be used is, for example but not limited to, glacial acetic acid or hydrochloric acid.
  • a halogenation reaction is carried out to obtain a halogenated compound (6A), and the halogenating agent used is, for example but not limited to, N-bromosuccinimide (NBS), N-iodosuccinyl Amine (NIS), bromine, iodine.
  • NBS N-bromosuccinimide
  • NPS N-iodosuccinyl Amine
  • bromine iodine.
  • the halogenated product (6A) can be further coupled with p-boronic acid pinacol ester under palladium catalysis to obtain a borate ester (6B).
  • the carboxylic acid compound is condensed with an amine compound of the formula (8) (wherein X is a halogen or OMs in the formula (8)) under the action of a condensing agent to obtain an amide compound (9) selected from, for example, but not Limited to carbonyl diimidazole, dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-(-3-dimethylaminopropyl)-3-ethylcarbodiimide, 1-hydroxybenzotriene Oxazole, 2-(7-azobenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate, benzotriazole-N,N,N',N' -tetra
  • a compound of formula (10) such as but not limited to triethylamine, diisopropylethylamine.
  • a halogenation reaction is carried out to obtain the formula (11A), and the halogenating agent used is, for example but not limited to, N-bromosuccinimide (NBS), N-iodosuccinimide. (NIS), bromine, iodine.
  • NBS N-bromosuccinimide
  • NMS N-iodosuccinimide.
  • bromine iodine.
  • the halogenated product (11A) can be further subjected to a coupling reaction with p-boronic acid pinacol ester under palladium catalysis to obtain a boric acid ester (11B).
  • a compound of formula (12) such as but not limited to bistrimethylsilylamine Lithium (LHMDS), sodium bis(trimethylsilyl)amide (NaHMDS), lithium diisopropylamide (LDA), reaction temperature of about -78 to 10 degrees, followed by reaction with formamide at high temperature, reaction temperature About 100 to 200 degrees, to obtain a cyclized product (13), and finally subjected to a halogenation reaction, a halogenation reaction is carried out to obtain a compound (14A), and a halogenated reagent such as, but not limited to, N-bromosuccinamide is used.
  • LHMDS bistrimethylsilylamine Lithium
  • NaHMDS sodium bis(trimethylsilyl)amide
  • LDA lithium diisopropylamide
  • the halogenated product (14A) can be further subjected to a coupling reaction with p-boronic acid pinacol ester under palladium catalysis to obtain a borate ester (14B).
  • the hydrazide compound of the formula (15) (which can be prepared by reacting the compound of the formula (1) with hydrazine hydrate) directly undergoes a cyclization reaction with the formula (16) at a high temperature to form a product (17), or (15) and (16)
  • the reaction is first reacted to obtain a cyclized precursor, which is then cyclized under basic conditions to obtain a cyclized product (17) at a reaction temperature of about 50 to 150 degrees.
  • Subsequent treatment with a halogenating reagent produces a halogenation reaction to give compound (18A), such as, but not limited to, N-bromosuccinimide (NBS), N-iodosuccinimide. (NIS), bromine, iodine.
  • the halogenated product (18A) can be further coupled with p-boronic acid pinacol ester under palladium catalysis to obtain a borate ester (18B).
  • Alkylation of the compound of formula (19) with a halide or mesylate under the action of a base gives the product of formula (20), such as, but not limited to, sodium hydride, cesium carbonate or potassium carbonate;
  • the basement reaction can be carried out in an organic solvent such as, but not limited to, dimethylformamide or dimethyl sulfoxide; the compound (20) is then subjected to a halogenation reaction to produce a halogenated reaction to obtain a compound (21A).
  • the halogenating agent used is, for example but not limited to, N-bromosuccinimide (NBS), N-iodosuccinimide (NIS), bromine, iodine.
  • NBS N-bromosuccinimide
  • NPS N-iodosuccinimide
  • bromine iodine.
  • the halogenated product (21A) can be further subjected to a coupling reaction with p-boronic acid pinacol ester under
  • R 102 group in the compound of the formula (B) is a boric acid ester, it can be synthesized by the general synthesis method shown in Scheme 7.
  • the halogenated compound (22A) can be coupled with p-boronic acid pinacol ester under palladium catalysis to give a borate ester (22B).
  • the halogenated product (22A) is commercially available or can be prepared according to conventional methods known in the art (for example, J. Med. Chem., 2017, 60, 8369; WO 2015058160; US 2014275026) ).
  • the coupling reaction is effected in the presence of a palladium catalyst and a base, and optionally in the presence of a ligand, and in an elevated solvent at elevated temperatures (e.g., at about 80 to 150 degrees).
  • palladium catalysts include, but are not limited to, tetrakistriphenylphosphine palladium (0), tris(dibenzylideneacetone) dipalladium (0), allyl palladium (II) chloride dimer, [1, 1' - bis(diphenylphosphino)ferrocene]palladium dichloride ((dppf)PdCl 2 ), palladium (II) acetate.
  • suitable bases include, but are not limited to, carbonates, phosphates or acetates of sodium, potassium and rubidium, or cesium fluoride.
  • Suitable ligands include, but are not limited to, 2-dicyclohexylphosphino-2,4,6-triisopropylbiphenyl (X-phos), 1,3,5,7-tetramethyl-6-benzene -2,4,8-trioxa-6-phosphoryladamantane, 2'-dicyclohexylphosphino-2,6-dimethoxy-1,1'-biphenyl-3-sulfonic acid Sodium hydrate and 1,1'-bis(diphenylphosphinoalkyl)ferrocene.
  • X-phos 2-dicyclohexylphosphino-2,4,6-triisopropylbiphenyl
  • X-phos 1,3,5,7-tetramethyl-6-benzene -2,4,8-trioxa-6-phosphoryladamantane
  • Non-limiting examples of suitable solvents include methanol, acetonitrile, dimethoxyethane, N,N-dimethylformamide, dimethyl sulfoxide, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, toluene And water or a mixture thereof.
  • reaction conditions and reaction times for each individual step can vary depending on the particular reactants employed and the substituents present in all of the reactants. Solvents, temperatures and other reaction conditions can be readily selected by one skilled in the art, unless otherwise specified. Specific steps are provided in the Synthesis Examples section.
  • the reaction can be further processed in a conventional manner, for example by removing the solvent from the residue and further purifying according to methods generally known in the art such as, but not limited to, crystallization, distillation, extraction, milling and chromatography. Unless otherwise stated, the starting materials and reactants are commercially available or can be prepared by those skilled in the art from commercially available materials using methods described in the chemical literature.
  • Routine tests including appropriate adjustment of reaction conditions, reagents and sequences of the synthetic route, protection of any chemical functional groups, which may not be compatible with the reaction conditions, and deprotection at appropriate points in the reaction sequence of the process, are included in Within the scope of the invention.
  • Suitable protecting groups and methods for protecting and deprotecting different substituents using such suitable protecting groups are well known to those skilled in the art; examples thereof are found in T. Greene and P. Wuts, Protecting Groups in Chemical Synthesis (third edition). , John Wiley & Sons, NY (1999), which is incorporated herein by reference in its entirety.
  • the synthesis of the compounds of the invention can be accomplished by methods analogous to those described in the synthetic schemes described above and in the specific examples.
  • the starting materials can be prepared by a process selected from the group consisting of standard organic chemistry techniques, techniques similar to the synthesis of known structural analogs, or techniques similar to those described in the Schemes above or in the Synthesis Examples section. .
  • an optically active form of a compound of the invention it can be obtained by performing one of the procedures described herein using an optically active starting material (for example, prepared by asymmetric induction of a suitable reaction step), or by using standard procedures (eg, chromatographic separation). , recrystallization or enzymatic resolution) is obtained by resolution of a mixture of stereoisomers of the compound or intermediate.
  • a pure geometric isomer of a compound of the invention when desired, it can be obtained by performing one of the above steps using a pure geometric isomer as the starting material, or by using standard procedures such as chromatographic separation of the compound or intermediate A mixture of geometric isomers of the body is obtained.
  • step 1
  • E7-1 (26.4 g) was dissolved in 200 mL of ethanol and 200 mL of tetrahydrofuran, and 100 mL of water was added. Iron powder (27 g) and ammonium chloride (15 g) were added in portions at room temperature, and after the addition, the temperature was slowly raised to 95 ° C, and the reaction was stirred for 2 hours. The reaction mixture was filtered over EtOAc (EtOAc)EtOAc.
  • E7-2 (13.2 g, 50.0 mmol) was dissolved in 50 mL of pyridine, cooled to zero, and methylsulfonyl chloride (5.7 g, 50 mmol) was slowly added dropwise. After the addition was completed, the mixture was allowed to react to room temperature for 2 hours, and ice was added. The organic layer was separated, washed with 2M diluted hydrochloric acid and brine, dried over anhydrous sodium sulfate and evaporated. g).
  • the boronic acid ester B-2 was obtained by the same procedure as in the synthesis method of Example 7 except that ethylsulfonyl chloride (CAS: 594-44-5) was used instead of methanesulfonyl chloride in the step 3.
  • the boric acid ester B-3 was obtained by the same procedure as in the synthesis method of Example 8 except that 2,4-difluorophenol (CAS: 367-27-1) was used instead of phenol in the step 1.
  • the boronic acid ester B-4 was obtained by the same procedure as in the synthesis method of Example 7, except that 2,4-difluorophenol (CAS: 367-27-1) was used instead of phenol in the step 1.
  • the boronic acid ester B-5 was obtained by the same procedure as in the synthesis method of Example 7, except that 4-chlorophenol (CAS: 106-48-9) was used instead of phenol in the step 1.
  • the boronic acid ester B-6 was obtained by the same procedure as in the synthesis method of Example 7, except that 3-hydroxypyridine (CAS: 109-00-2) was used instead of phenol in the step 1.
  • the boronic acid ester B-7 was obtained by the same procedure as in the synthesis method of Example 7, except that cyclohexanol (CAS: 108-93-0) was used instead of phenol in the step 1.
  • the boronic acid ester B-8 was obtained by the same procedure as in the synthesis method of Example 7, except that aniline was used instead of phenol in the step 1.
  • the boronic acid ester B-9 was obtained by the same procedure as in the synthesis method of Example 7, except that thiophenol was used instead of phenol in the step 1.
  • the boronic acid ester B-10 was obtained by the same procedure as in the synthesis method of Example 7, except that tetrahydro-2H-pyran-4-ol (CAS: 2081-44-9) was used instead of phenol in the step 1.
  • the boronic acid ester B-11 was obtained by the same procedure as in the synthesis method of Example 7, except that cyclopropylmethanol (CAS: 2516-33-8) was used instead of phenol in the step 1.
  • the boric acid ester B-12 was obtained by the same procedure as in the synthesis method of Example 7, except that neopentyl alcohol (CAS: 75-84-3) was used instead of phenol in the step 1.
  • step 1
  • the p-fluoroanisone (1.0 g, 5.74 mmol, CAS: 455-15-2) was dissolved in 6 mL of concentrated sulfuric acid (conc. H 2 SO 4 ), and NBS (1.13 g, 6.35 mmol) was added portionwise in an ice water bath. After the addition, the reaction was allowed to rise to room temperature for 16 hours. The reaction solution was slowly poured into 50 mL of ice water, stirred for 5 min, filtered, and the filter cake was beaten with 20 mL of petroleum ether, filtered, and dried to give compound E19-1 (1.25 g). ).
  • E19-1 (3.0 g, 11.85 mmol), 2,4-difluorophenol (1.85 g, 14.22 mmol), cesium carbonate (5.0 g, 15.34 mmol) were sequentially added to 50 mL of dimethyl sulfoxide under argon The temperature was raised to 110 ° C for 2 hours. 500 mL of water was added to the reaction mixture, and the mixture was extracted with ethyl acetate (150 mL ⁇ 3). 4.0g).
  • E19-2 (3.73g, 10.27mmol), potassium acetate (2.05g, 20.89mmol), boranoic acid pinacol ester (5.2g, 20.52mmol) was dissolved in 150mL dioxane, under argon protection, Add [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride (447 mg, 0.61 mmol), heat to 100 ° C, react for 14 hours, cool to room temperature, and react the solution through diatomaceous earth. Filtration, water and ethyl acetate were added to the filtrate, and the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate and evaporated. (1.18g).
  • the boronic acid ester B-14 was obtained by the same procedure as in the synthesis method of Example 19 except that phenol was used instead of 2,4-difluorophenol in the step 2.
  • the boronic acid ester B-15 was obtained by the same procedure as in the synthesis method of Example 19 except that aniline was used instead of 2,4-difluorophenol in the step 2.
  • the boronic ester B-16 was obtained by the same procedure as the synthesis in Example 19 except that the cyclohexylamine (CAS: 108-91-8) was used instead of 2,4-difluorophenol in the step 2.
  • step 1
  • the intermediate E23-4 (400 mg, 1.53 mmol) was dissolved in 8 mL of pyridine, argon-protected, cooled in an ice water bath, and methanesulfonyl chloride (526 mg, 4.59 mmol) was slowly added dropwise to the reaction mixture. Stir to room temperature and stir for 2 hours. The mixture was cooled with ice water, quenched with 2 mL of water, and then added with 50 mL of ethyl acetate. The mixture was washed with EtOAc EtOAc. Body E23-5 (245 mg).
  • Compound ZB-BD-77 was obtained in the same manner as in Example 24 except that Compound B-2 was used instead of Compound B-1.
  • Compound ZB-BD-78 was obtained in the same manner as in Example 24 except that Compound B-3 was used instead of Compound B-1.
  • Compound ZB-BD-80 was obtained in the same manner as in Example 24 except that Compound B-4 was used instead of Compound B-1.
  • Compound ZB-BD-82 was obtained in the same manner as in Example 24 except that Compound B-5 was used instead of Compound B-1.
  • Compound ZB-BD-83 was obtained in the same manner as in Example 24 except that Compound B-11 was used instead of Compound B-1.
  • Compound ZB-BD-91 was obtained in the same manner as in Example 24 except that Compound B-12 was used instead of Compound B-1.
  • Compound ZB-BD-92 was obtained in the same manner as in Example 24 except that Compound B-7 was used instead of Compound B-1.
  • Compound ZB-BD-93 was obtained in the same manner as in Example 24 except that Compound B-17 was used instead of Compound B-1.
  • Compound ZB-BD-95 was obtained in the same manner as in Example 24 except that Compound B-9 was used instead of Compound B-1.
  • Compound ZB-BD-96 was obtained in the same manner as in Example 24 except that Compound B-10 was used instead of Compound B-1.
  • Compound ZB-BD-100 was obtained in the same manner as in Example 37 except that Compound B-13 was used instead of Compound B-16.
  • Compound ZB-BD-74 was obtained in the same manner as in Example 24 except that Compound II-5 was used instead of Compounds.
  • Compound ZB-BD-69 was obtained in the same manner as in Example 24 except that Compound III-4 was used instead of Compound I-6.
  • Compound ZB-BD-76 was obtained in the same manner as in Example 24 except that Compound IV-4 was used instead of Compound I-6.
  • Compound ZB-BD-86 was obtained in the same manner as in Example 24 except that Compound V-5 was used instead of Compounds.
  • Compound ZB-BD-102 was obtained in the same manner as in Example 24 except that Compound VI-5 was used instead of Compounds.
  • the compound ZB-BD-103 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-4 was used instead of the compound B-1.
  • step 1
  • E48-4 (440 mg, 1.29 mmol), potassium acetate (380 mg, 3.87 mmol), boranoic acid pinacol ester (665 mg, 258 mmol) was dissolved in 15 mL of dioxane, and under argon, [1, 1'-bis(diphenylphosphino)ferrocene]palladium dichloride (47 mg, 0.065 mmol), heated to 100 ° C, reacted for 2 hours, cooled to room temperature, filtered through celite, and filtered. Water and ethyl acetate were added to the mixture, and the organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated.
  • the boronic acid ester B-19 was obtained in the same manner as in Example 48 except that p-fluoroiodobenzene (CAS: 352-34-1) was used instead of iodobenzene in step 4.
  • HPLC-MS: [M+H ] + 406.2.
  • Example 56 The synthesis method of Example 56 can be found in J. Med. Chem., 2017, 60, 8369; WO 2015058160; US 2014275026.
  • step 1
  • the boronic acid ester B-27 was obtained in the same manner as in Example 48 except that the step 4 was omitted and the compound E48-3 was directly subjected to the step 5.
  • step 1
  • the compound ZB-BD-119 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-10 was used instead of the compound B-1.
  • 1 H NMR (400MHz, DMSO- d 6) ⁇ 11.55 (s, 1H), 9.60 (s, 1H), 7.89 (s, 1H), 7.33-7.19 (m, 3H), 6.59 (s, 1H), 4.65–4.51 (m, 1H), 3.58–3.48 (m, 2H), 3.40 (m, 2H), 2.98 (s, 3H), 2.50 (s, 3H), 1.95–1.76 (m, 2H), 1.42 ( m, 2H).
  • HPLC-MS: [M+H] + 419.1.
  • the compound ZB-BD-120 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-6 was used instead of the compound B-1.
  • 1 H NMR (400MHz, MeOD) ⁇ 8.21 (m, 1H), 8.13 (s, 1H), 8.09 (s, 1H), 7.48 (m, 2H), 7.33 (m, 2H), 7.28-7.24 (m , 1H), 6.59 (s, 1H), 3.07 (s, 3H), 2.47 (s, 3H).
  • HPLC-MS: [M+H] + 412.1.
  • the compound ZB-BD-121 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-11 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 389.1.
  • the compound ZB-BD-122 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-3 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 461.1.
  • Borate B-28 was prepared in the same manner as in Step 2-6 of Example 56 except that E72-1 was used instead of E56-1.
  • Borate B-29 was prepared in the same manner as in Step 2-6 of Example 56 except that E73-1 was used instead of E56-1.
  • the borate B-30 was prepared in the same manner as in the step 2-6 of Example 56 except that E72-1 was used instead of E56-1 and sodium thioacetate was used instead of sodium thiomethoxide.
  • the compound ZB-BD-124 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-26 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 460.1.
  • the compound ZB-BD-125 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-28 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 418.1.
  • the compound ZB-BD-126 was obtained in the same manner as in Example 24 except that the compound VI-5 was used instead of the compound I-6 and the compound B-29 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 388.1.
  • the compound ZB- was obtained in the same manner as in Example 24 except that the compound III-4 was used instead of the compound I-6, and the commercially available boric acid B-31 (CAS: 108238-09-1) was used instead of the compound B-1. BD-68.
  • the compound ZB-BD-73 was obtained in the same manner as in Example 24 except that the commercially available boric acid B-31 (CAS: 108238-09-1) was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 317.1.
  • the compound ZB-BD-133 was obtained in the same manner as in Example 24 except that the compound II-5 was used instead of the compound I-6 and the compound B-11 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 390.2.
  • the compound ZB-BD-135 was obtained in the same manner as in Example 24 except that the compound II-5 was used instead of the compound I-6 and the compound B-6 was used instead of the compound B-1.
  • HPLC-MS: [M+H] + 413.2.
  • step 1
  • Compound B-32 was prepared by the synthetic procedure described in WO 2015058160.
  • step 1
  • the borate B-35 was prepared in the same manner as in Example 92 except that the tetrahydropyran-4-ol was used instead of the 2,4-difluorophenol in the step 1.
  • HPLC-MS: [M+H] + 399.1.
  • the borate B-36 was prepared in the same manner as in Example 92 except that the 3-hydroxypyridine was used instead of the 2,4-difluorophenol in the step 1.
  • HPLC-MS: [M+H] + 392.1.
  • Borate B-39 was prepared by the synthetic method described in WO 2013097601.
  • step 1
  • E99-1 (2 g) was dissolved in 40 mL of tetrahydrofuran, borane tetrahydrofuran complex (12 mL, CAS: 14044-65-6) was added, and the mixture was warmed to 50 ° C, and the reaction was stirred for 2 hours. After adding 20 mL of methanol to maintain the temperature, the reaction was continued for 1 hour, and the filtrate was poured into water, and the mixture was extracted with ethyl acetate. The organic phase was combined, washed with brine, dried over anhydrous sodium sulfate E99-2 (0.68g).
  • E99-2 (0.7 g) was dissolved in 10 mL of dichloromethane, and phosphorus tribromide (0.2 mL, CAS: 7789-60-8) was added dropwise, and the reaction was stirred at room temperature for 1 hour.
  • the reaction solution was poured into ice water, and the pH was adjusted to 9 with sodium hydrogencarbonate, and extracted with dichloromethane. The organic phase was combined, washed with saturated brine, dried over anhydrous sodium sulfate 0.65g).
  • the borate ester B-40 was prepared in the same manner as in Example 99 except that in the step 1, the 3-hydroxypyridine was used instead of the 2,4-difluorophenol.
  • the borate B-41 was prepared in the same manner as in Example 99 except that p-chlorophenol was used instead of 2,4-difluorophenol in the step 1.
  • Borate B-42 was prepared in the same manner as in Example 99 except that in the step 1, substituting isobutanol for 2,4-difluorophenol.
  • the borate B-43 was prepared by the synthesis method described in WO 2013097601.
  • step 1
  • Borate B-44 was prepared by the synthesis method described in WO 2013097601 and the method of borate B-43.
  • step 1
  • the borate B-45 was prepared in the same manner as in Example 104 except that the hydroxymethylcyclopropane was replaced with tetrahydropyran-4-ol in the step 1.
  • the borate B-46 was prepared by the synthesis method described in WO 2013097601 and the method of borate B-13.
  • step 1
  • the borate B-47 was prepared in the same manner as in Example 106 except that the hydroxymethylcyclopropane was replaced with tetrahydropyran-4-ol in the step 1.
  • step 1
  • the boronic acid ester M-2 was obtained by the same procedure as in the synthesis method of Example 7, except that p-fluorophenol was used instead of phenol in the step 1.
  • step 1
  • M-3-1 (7.2 g, 21.8 mmol) was dissolved in 50 mL of ethanol and 30 mL of water, and iron powder (5.0 g) and ammonium chloride (9.6 g) were added in portions at room temperature. After the addition, the temperature was slowly increased to 80 ° C. The reaction was stirred for 2 hours. The reaction mixture was filtered through celite, and the filtrate was poured into water, and the mixture was combined with EtOAc. .
  • step 1
  • step 1
  • step 1
  • M-6-1 (5.4 g, 18.4 mmol) was dissolved in 100 mL of ethanol and 30 mL of water, and iron powder (5.1 g), ammonium chloride (9.8 g) was added in portions at room temperature, and slowly added to 100 ° C after the addition. The reaction was stirred for 2 hours. The reaction mixture was filtered through celite, and the filtrate was poured into water, and the mixture was combined with EtOAc. .
  • M-7-1 (3.5 g, 11.6 mmol) was dissolved in 60 mL of ethanol and 20 mL of water, and iron powder (3.3 g) and ammonium chloride (6.5 g) were added in portions at room temperature. After the addition, the temperature was slowly raised to 100 ° C. The reaction was stirred for 2 hours. The reaction mixture was filtered through Celite, and then filtered and evaporated.
  • M-7-2 (3.0 g, 11.1 mmol) was dissolved in 5 mL of pyridine and 10 mL of dichlorohexane, cooled to zero, and methylsulfonyl chloride (1.5 g, 13.1 mmol) was slowly added dropwise. The mixture was reacted to room temperature for 1 hour, and the mixture was separated with ice water and ethyl acetate. The organic phase was separated, washed with 2M diluted hydrochloric acid and brine, dried over anhydrous sodium sulfate Purification gave intermediate M-7-3 (1.5 g).
  • the boronic acid ester was obtained by the same procedure as the synthesis in Example 19 except that 4,4-difluorocyclohexanol (CAS: 22419-35-8) was used instead of 2,4-difluorophenol in the second step. M-8.
  • the boronic acid ester M was prepared in the same manner as in Example 19 except that 4,4-difluorocyclohexylamine hydrochloride (CAS: 675112-70-6) was used instead of 2,4-difluorophenol in the step 2. -9.
  • the boronic acid ester M-10 was prepared in the same manner as in Example 7 except that the phenol was replaced by 4,4-difluorocyclohexanol (CAS: 22419-35-8) in the step 1.
  • the boronic acid ester M-12 was obtained in the same manner as in Example 56 except that 4,4-difluorocyclohexanol was used instead of 2,4-difluorophenol in the step 1.
  • the boronic acid ester M-13 was prepared in the same manner as in Example 19 except that the 2,4-difluorophenol was replaced by cyclohexanol in the step 2.
  • step 1
  • Dimethylamine hydrochloride (2.1g, 25.8mmol), triethylamine (5.5g, 54.4mmol) was dissolved in 50ml of dichloromethane (DCM), stirred for 15min A 40 mL DCM solution of chloropyridine-5-sulfonyl chloride (5.0 g, 17.2 mmol, CAS: 216394-05-7) was added to the incubation for 0.5 h, and the TLC reaction was completed. After adding 50 mL of water, the mixture was separated, and the aqueous phase was extracted with DCM. The organic phase was combined, washed with brine, dried and evaporated
  • M-16-1 (1.9 g, 6.3 mmol) and 2,4-difluorophenol (1.0 g, 8.5 mmol), cesium carbonate (2.7 g, 8.3 mmol) were suspended in 15 mL of dimethyl sulfoxide and heated to 100 After reacting for 2 hours, the mixture was cooled to room temperature, and then water and ethyl acetate were combined and evaporated. (1.5g).
  • the boronic acid ester M-17 was prepared in the same manner as in Example 141 except that the cyclohexanol was used instead of 2,4-difluorophenol in the step 2.
  • the boronic ester M-18 was prepared in the same manner as in Example 141 except that in the step 2, substituting tetrahydropyran-4-ol for 2,4-difluorophenol.
  • step 1
  • Methyl 5-bromo-6-chloronicotinate (30.0 g, 0.12 mol, CAS: 78686-77-8) was dissolved in 300 mL of ethanol, sodium borohydride (5.4 g, 0.14 mol) was added at room temperature, and heated to reflux for 2 h. The TLC reaction was completed, and the mixture was concentrated with water and then concentrated.
  • M-19-1 (10.0 g, 44.9 mmol) was dissolved in 50 mL DCM, and bromophosphonium bromide (12.2 g, 45.1 mmol) was added in an ice bath, stirred at 0 ° C for 1 h, complete TLC reaction, water, EA extraction, brine It was dried and concentrated to give M-19-2 directly to the next step.
  • M-19-2 (calculated according to the theoretical yield of the previous step) was dissolved in 50 mL of DMF, sodium methanethiolate (3.8 g, 54.2 mmol) was added, and stirred at room temperature for 2 h. TLC showed that M-19-2 was completely reacted and water was added. Dilute, EA extraction, brine wash, dry and concentrated to give M-19-3 directly for the next step
  • the boronic acid ester M-20 was prepared in the same manner as in Example 144 except that the hydroxymethylcyclopropane was replaced by tetrahydropyran-4-ol in the step 5.
  • the boronic acid ester M-21 was prepared in the same manner as in Example 144 except that the hydroxymethylcyclopropane was replaced by cyclohexanol in the step 5.
  • step 1
  • M-19-2 (8.0 g, 28.0 mmol) was dissolved in 30 mL of DMF, sodium sulphate (3.4 g, 40.4 mmol) was added, and stirred at room temperature for 1 h, TLC showed complete reaction, diluted with water, extracted with EA, brine It was concentrated to dryness to give M-23-3 (4.0 g).
  • M-23-3 (4.0 g, 15.0 mmol) was dissolved in 50 mL of methanol and 20 mL of water, and potassium peroxymonosulfonate (Oxone, 12.0 g, 71.4 mmol) was added in an ice bath and stirred at room temperature for 2 h. It was diluted with water, extracted with EA, washed with a saturated aqueous solution of sodium thiosulfate, washed with saturated brine, dried and concentrated.
  • potassium peroxymonosulfonate (Oxone, 12.0 g, 71.4 mmol) was added in an ice bath and stirred at room temperature for 2 h. It was diluted with water, extracted with EA, washed with a saturated aqueous solution of sodium thiosulfate, washed with saturated brine, dried and concentrated.
  • the boronic acid ester M-25 was prepared in the same manner as in Example 144 except that 4,4-difluorocyclohexanol was used instead of hydroxymethylcyclopropane in the step 5.
  • step 1
  • tert-Butylamine (0.8 g, 10.9 mmol), triethylamine (2.1 g, 20.8 mmol) was dissolved in 50 ml of dichloromethane (DCM), stirred for 15 min. - 20 mL of DCM solution of sulfonyl chloride (3.0 g, 10.3 mmol, CAS: 216394-05-7), stirring was continued for 0.5 h, and the TLC reaction was complete. After adding 50 mL of water, the mixture was separated, and the aqueous phase was extracted with DCM. The organic phase was combined, washed with saturated brine, dried and evaporated.
  • DCM dichloromethane
  • step 1
  • step 1
  • M-28-1 (3.5 g, 8.7 mmol) was dissolved in 60 mL of ethanol and 20 mL of water, and iron powder (3.3 g) and ammonium chloride (6.5 g) were added in portions at room temperature. After the addition, the temperature was slowly raised to 80 °C. , reaction 1h. The reaction mixture was filtered through Celite, and then filtered, evaporated, evaporated, evaporated, evaporated
  • M-28-2 (3.5 g, 11.4 mmol) was dissolved in 15 mL of pyridine, cooled to zero, and methylsulfonyl chloride (1.5 g, 13.1 mmol) was slowly added dropwise. After the addition was completed, the mixture was allowed to react to room temperature for 1 hour. The organic layer was separated by the addition of ice water and ethyl acetate. g).
  • step 1
  • step 1
  • step 1
  • the boronic acid ester M-87 was prepared in the same manner as in Example 186 except that the o-methylphenol was replaced by 2,6-dimethylphenol in the step 1.
  • step 1
  • step 1

Abstract

本发明涉及溴结构域抑制剂,提供了一种由通式I表示的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物(包括氘取代),其制备方法,包含其的药物组合物及它们在制药中的用途。

Description

溴结构域抑制剂化合物及其用途 技术领域
本发明涉及一种溴结构域抑制剂化合物、其制备方法、包含其的药物组合物及其用途。具体而言,本发明涉及一种溴结构域抑制剂化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物(包括氘取代),所述化合物的制备方法,包含该化合物的药物组合物及其在制药中的用途。
背景技术
溴结构域(bromodomain)是指与在某些蛋白中发现的N-乙酰化赖氨酸残基连接的保守的蛋白质结构折叠。目前已有46种人源溴结构域包含蛋白,根据其序列和结构的相似性分为八个家族。其中BET家族包括BRD2,BRD3,BRD4以及BRDT,这类蛋白在N端有两个高度保守的溴结构域(BD1和BD2),可识别并结合乙酰化的组蛋白;同时C端还存在高度保守的末端结构域,参与非BRD蛋白调控的蛋白相互作用。除了BRDT外,其他BET家族蛋白在人体内广泛表达并且具有多种细胞功能。BET家族蛋白最重要的功能之一就是与乙酰化的组蛋白结合,从而招募调节蛋白到染色体区域,如NuRD重组复合物的催化亚单位、组蛋白去甲基化酶JMJD6和SWI/SNF核小体重构复合物或甲基转移酶NSD3(Rahman,等.Molecular and cellular biology 2011,31(13),2641-52)等,将组蛋白乙酰化与和染色质的功能相结合,起到识别基因的作用。BET家族蛋白也能与乙酰化的转录因子如NF-KB等相互作用从而促进了核染色质与其他蛋白的结合(Shi,等.Molecular cell 2014,54(5),728-36)。
基因组的数据分析表明染色质与BRD4、BRD3和BRD2的结合位点存在重叠部分,但因其本身的不同功能上也有显著的差异(Anders等.Nat Biotech 2014;32:92-6)。例如缺失BRD4会使得小鼠胚胎致死,这表明BRD4蛋白在小鼠生长发育的重要生理过程中起着至关重要的作用(Houzelstein等.Molecular and Cellular Biology 2002;22:3794-802);而BRD3蛋白缺失的生理功能缺陷目前没有报道但其在红细胞成熟过程中扮演着重要的角色(Lamonica,等.Proceedings of the National Academy of Sciences of the United States of America 2011;108:E159-E68);BRD2缺失的小鼠可存活但有明显的肥胖症(Wang等.Vitamins and hormones 2013;91:49-75);BRDT的第一个布罗曼区域的缺失会使染色质的错误重组和转录调控的失常导致精子缺陷(Berkovits等.Current topics in developmental biology 2013;102:293-326)。
因此,目前医学上需要开发可以抑制BET家族溴结构域与它们的同源乙酰化赖氨酸蛋白的结合的化合物用于治疗癌症、炎症疾病、肾脏疾病、涉及代谢或脂肪累积的疾病、和一些病毒感染,以及用于提供用于雄性避孕的方法。同时,大量实验也显示,尽 管BET家族的结构具有相似性,但是其生理功能确是大相径庭的。因此,需要开发针对BET家族中的特定蛋白的选择性小分子抑制剂,来避免通过抑制其他BET家族蛋白而导致的生理功能障碍,减少小分子化合物的不良反应。综上所述,涉及溴结构域抑制剂的开发目前在业界具有很高的热度,有利于用于与之相关的新药研发。
发明内容
在一个方面,本发明提供通式(I)化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记的化合物(包括氘取代),
Figure PCTCN2019071258-appb-000001
Figure PCTCN2019071258-appb-000002
为单键或双键;
R x为氢、C 1-C 3烷基、或C 1-C 3卤代烷基;
R y为氢、C 1-C 3烷基、或C 1-C 3卤代烷基;
X 1为N或CR x1,其中,R x1为氢、C 1-C 6烷基、C 1-C 6卤代烷基、卤素或者CN;
Y 1为N、CR y1或CR y1R y2,其中,R y1和R y2各自独立地为氢、C 1-C 6烷基、C 1-C 6卤代烷基、卤素、CN;
Y 2为N、CR y3或CR y3R y4,其中,R y3和R y4各自独立地为氢、CN、C 1-C 6烷基、C 1-C 6卤代烷基、-(C 1-C 6亚烷基)-OR 2a、-C(O)-R ax1、-(C 1-C 6亚烷基)-C(O)-R ax1、-C(O)OR ax1、-(C 1-C 6亚烷基)-C(O)NHR ax1、-(C 1-C 6亚烷基)-N(R ax1)R ax2、-C(O)N(R ax1)R ax2、G a、或-(C 1-C 6亚烷基)-G a
R ax1和R ax2在每次出现时各自独立地为氢、C 1-C 6烷基、C 1-C 6卤代烷基、G a、或-(C 1-C 6亚烷基)-G a
特别地,Y 1和Y 2不能同时为N;且当Y 1或Y 2为N时,
Figure PCTCN2019071258-appb-000003
为双键;
A 1为N或CR 1,A 2为N或CR 2,A 3为N或CR 3,A 4为N或CR 4,条件是A 1、A 2、A 3、和A 4的0、1、2或3个为N;
R 1为氢、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、卤素、C 1-C 6卤代烷基、CN、或NO 2
R 2、R 3和R 4各自独立地为氢、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、卤素、C 1-C 6卤代烷基、CN、NO 2、G 2a
Figure PCTCN2019071258-appb-000004
-OR 2a、-OC(O)R 2d、-OC(O)NR 2bR 2c、-SR 2a、-S(O) 2R 2d、-S(O) 2NR 2bR 2c、-C(O)R 2d、-C(O)OR 2a、-C(O)NR 2bR 2c、-NR 2bR 2c、-N(R 2e)C(O)R 2d、-N(R 2e)S(O) 2R 2d、-N(R 2e)C(O)OR 2d、-N(R 2e)C(O)NR 2bR 2c、-N(R 2e)S(O) 2NR 2bR 2c、-(C 1-C 6亚烷基)-G 2a、-(C 1-C 6亚烷基)-OR 2a、-(C 1-C 6亚烷基)-OC(O)R 2d、-(C 1-C 6亚烷基)-OC(O)NR 2bR 2c、-(C 1-C 6亚烷基)-S(O) 2R 2d、-(C 1-C 6亚烷基)-S(O) 2NR 2bR 2c、-(C 1-C 6亚 烷基)-C(O)R 2d、-(C 1-C 6亚烷基)-C(O)OR 2a、-(C 1-C 6亚烷基)-C(O)NR 2bR 2c、-(C 1-C 6亚烷基)-NR 2bR 2c、-(C 1-C 6亚烷基)-N(R 2e)C(O)R 2d、-(C 1-C 6亚烷基)-N(R 2e)S(O) 2R 2d、-(C 1-C 6亚烷基)-N(R 2e)C(O)OR 2a、-(C 1-C 6亚烷基)-N(R 2e)C(O)NR 2bR 2c、-(C 1-C 6亚烷基)-N(R 2e)S(O) 2NR 2bR 2c、-(C 1-C 6亚烷基)-CN、-S(=O)(=NH)R 2d、-(C 1-C 6亚烷基)-S(=O)(=NH)R 2d;其中C 1-C 6亚烷基为未取代的或被1至6个选自CN、OH和C 1-C 3烷基的取代基取代;
R 2a、R 2b、R 2c、和R 2e在每次出现时各自独立地为氢、C 2-C 6烯基、C 2-C 6炔基、C 1-C 6卤代烷基、G 2b、C 1-C 6烷基、或者被一个取代基取代的C 1-C 6烷基,所述取代基选自-OR z1、-NR z1R z2、-C(O)OR z1、-C(O)NR z1R z2、-S(O) 2R z1、-S(O) 2NR z1R z2、和G 2b
R 2d在每次出现时各自独立地为C 2-C 6烯基、C 2-C 6炔基、C 1-C 6卤代烷基、G 2b、C 1-C 6烷基、或者被一个取代基取代的C 1-C 6烷基,所述取代基选自-OR z1、-NR z1R z2、-C(O)OR z1、-C(O)NR z1R z2、-S(O) 2R z1、-S(O) 2NR z1R z2、和G 2b
R z1和R z2在在每次出现时各自独立地为氢、C 1-C 6烷基、或C 1-C 6卤代烷基;
G a、G 2a、和G 2b在每次出现时各自独立地为芳基、杂芳基、杂环、环烷基、或环烯基,并且其各自独立地为未取代的或被1、2、3、4、或5个R v取代;
L 1为不存在、-CH 2-、-C(O)-、-C(H)(OH)-、-(CH 2) mO-、-(CH 2) mS(O) n-、-NHC(O)-、-C(O)NH-、-NHC(O)NH-、-NHS(O) 2-、-S(O) 2NH-或-(CH 2) mN(R z)-,其中n为0、1、或2;m为0或1;R z为氢、C 1-C 3烷基、C 1-C 3卤代烷基;(C 2-C 3亚烷基)-OH、或未取代的环丙基;
G 1为C 1-C 6烷基、烷氧基烷基、G 1a或-(C 1-C 6亚烷基)-G 1a;其中每一G 1a独立地为芳基、杂芳基、杂环、环烷基、或环烯基,并且每一G 1a独立地为未取代的或被1、2、3、4、或5个R w取代;
R v和R w在每次出现时各自独立地为C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、卤素、C 1-C 6卤代烷基、-CN、氧代(=O)、-OR h、-OC(O)R i、-OC(O)NR jR k、-SR h、-S(O) 2R h、-S(O) 2NR jR k、-C(O)R h、-C(O)-单环杂环、-C(O)-单环杂芳基、-C(O)OR h、-C(O)NR jR k、-NR jR k、-N(R h)C(O)R i、-N(R h)S(O) 2R i、-N(R h)C(O)OR i、-N(R h)C(O)NR jR k、-(C 1-C 6亚烷基)-OR h、-(C 1-C 6亚烷基)-OC(O)R i、-(C 1-C 6亚烷基)-OC(O)NR jR k、-(C 1-C 6亚烷基)-S(O) 2R h、-(C 1-C 6亚烷基)-S(O) 2NR jR k、-(C 1-C 6亚烷基)-C(O)R h、-(C 1-C 6亚烷基)-C(O)OR h、-(C 1-C 6亚烷基)-C(O)NR jR k、-(C 1-C 6亚烷基)-NR jR k、-(C 1-C 6亚烷基)-N(R h)C(O)R i、-(C 1-C 6亚烷基)-N(R h)S(O) 2R i、-(C 1-C 6亚烷基)-N(R h)C(O)OR i、-(C 1-C 6亚烷基)-N(R h)C(O)NR jR k、或-(C 1-C 6亚烷基)-CN;
R h、R j、R k在每次出现时各自独立地为氢、C 1-C 6烷基、或C 1-C 6卤代烷基;和
R i在每次出现时独立地为C 1-C 6烷基、或C 1-C 6卤代烷基。
优选地,所述通式I所述的化合物为式Ia、Ib、Ic、或Ie所示的化合物:
Figure PCTCN2019071258-appb-000005
Figure PCTCN2019071258-appb-000006
为单键或双键;
R x、R y、R x1、R y1、R y2、R y3、R y4、Y 1、Y 2、A 1、A 2、A 3、A 4、L 1、和G 1在出现时与上文中所述通式I中的定义相同;
优选地,所述通式I所述的化合物为式Id或If所示的化合物:
Figure PCTCN2019071258-appb-000007
其中,A 1、A 2、A 3、A 4、L 1、和G 1在出现时与上文中所述通式I中的定义相同;
Y 2为N或者CH;
R y为C 1-C 3烷基;
R x1为H、CH 3或者卤素。
优选地,所述通式I所述的化合物为式Ig或Ih所示的化合物:
Figure PCTCN2019071258-appb-000008
其中,A 2与上文中所述通式I中的定义相同;
L 1为O或者NH;
Y 2为CH或者N;
R x1为H、CH 3或者卤素;
A 4为CH或者N;
G 1为G 1a或-(CH 2)-G 1a;其中每一G 1a独立地为芳基、杂芳基、杂环、环烷基、或环烯基,并且每一G 1a独立地为未取代的或被1或者2个R w取代;
R w与上文中所述通式I中的定义相同。
优选地,所述通式I所述的化合物为式Ii或Ij所示的化合物:
Figure PCTCN2019071258-appb-000009
其中,Y 2为N或者CH;
L 1为O或者NH;
A 4为CH或者N;
G 1是吡啶基、
Figure PCTCN2019071258-appb-000010
Figure PCTCN2019071258-appb-000011
或者是被1或2个卤素取代的苯基;
R 2是-S(O) 2R 2d、-NHS(O) 2R 2d、-S(O) 2NR 2bR 2c、或者-(CH 2)-S(O) 2R 2d;其中R 2d是未取代的C 1-C 3烷基,R 2b和R 2c各自独立地为氢或者未取代的C 1-C 3烷基。
优选地,所述通式I所述的化合物选自如下化合物:
Figure PCTCN2019071258-appb-000012
Figure PCTCN2019071258-appb-000013
Figure PCTCN2019071258-appb-000014
Figure PCTCN2019071258-appb-000015
Figure PCTCN2019071258-appb-000016
优选地,所述经同位素标记的化合物例如为氘取代的化合物。经同位素标记的化合物可以用于例如代谢检测等方面的应用。
在另一方面,本发明提供了一种药物组合物,其包含治疗有效量的根据上文所述的通式(I)化合物、其可药用盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记的化合物和可药用载体。
在另一方面,本发明提供了治疗或预防由抑制BET改善的疾病或病症或疾病状态的方法。这样的方法包括给予个体治疗有效量的通式(I)化合物、其可药用盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记的化合物,单独地或与药学上可接受的载体组合。
在另一方面,本发明提供了所述化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记的化合物或所述的药物组合物在制备治疗对象的疾病或病症或疾病状态的药物中的用途。
某些方法或用途涉及治疗或预防炎性疾病或癌症或获得性免疫缺陷综合征(AIDS)。
在另一方面,所述方法或用途涉及癌症,所述癌症选自:听神经瘤、急性白血病、急性淋巴细胞性白血病、急性髓细胞系白血病(单核细胞性、成髓细胞性、腺癌、血管肉瘤、星形细胞瘤、髓单核细胞性和早幼粒细胞性)、急性t-细胞性白血病、基底细胞癌、胆管癌、膀胱癌、脑癌、乳腺癌、支气管癌、宫颈癌、软骨肉瘤、脊索瘤、绒毛膜癌、慢性白血病、慢性淋巴细胞性白血病、慢性髓细胞性(粒细胞性)白血病、慢性骨髓性白血病、结肠癌、结肠直肠癌、颅咽管瘤、囊腺癌、弥漫型大B-细胞淋巴瘤、不良增生性变化(发育不良和化生)、胚胎癌、子宫内膜癌、内皮肉瘤、室管膜瘤、上皮癌、红白血病、食管癌、雌激素受体阳性乳腺癌、原发性血小板增多症、尤因氏肉瘤、纤维肉瘤、滤泡性淋巴癌、生殖细胞睾丸癌、神经胶质瘤、成胶质细胞瘤、神经胶质肉瘤、重链病、血管母细胞瘤、肝癌、肝细胞癌、激素不敏感性前列腺癌、平滑肌肉瘤、白血病、脂肪肉瘤、肺癌、淋巴管内皮肉瘤、淋巴管肉瘤、淋巴母细胞白血病、淋巴瘤(霍奇金和非霍奇金)膀胱、乳腺、结肠、肺、卵巢、胰腺、前列腺、皮肤和子宫的恶性肿瘤和过度增生障碍、T-细胞或B-细胞源淋巴恶性肿瘤、白血病、淋巴瘤、髓样癌、髓母细胞瘤、黑色素瘤、脑膜瘤、间皮瘤、多发性骨髓瘤、骨髓性白血病、骨髓瘤、粘液肉瘤、神经母细胞瘤、NUT中线癌(NMC)、非小细胞肺癌、少突神经胶质瘤、口腔癌、骨原性肉瘤、卵巢癌、胰腺癌、乳头状腺癌、乳头状癌、松果体瘤、真性红细胞增多症、前列腺癌、直肠癌、肾细胞癌、成视网膜细胞瘤、横纹肌肉瘤、肉瘤、皮脂腺癌、精原细胞瘤、皮肤癌、小细胞肺癌、实体瘤(癌和肉瘤)、小细胞肺癌、胃癌、鳞状细胞癌、滑膜瘤、汗腺瘤、甲状腺癌、原发性巨球蛋白血症、睾丸肿瘤、子宫癌和肾母细胞瘤。在某些实施方案中,该方法或用途进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。在某些实施方案中,另外的治疗剂为抗癌剂。在特定的实施方案中,该另外的治疗剂选自阿糖胞苷、硼替佐米和5-阿扎胞苷。
在另一方面,所述疾病或病症或疾病状态选自:艾迪生病、急性痛风、强直性脊柱炎、哮喘、动脉粥样硬化、白塞病、大疱性皮肤病、慢性阻塞性肺疾病、克罗恩病、皮炎、湿疹、巨细胞性动脉炎、肾小球性肾炎、肝炎、下垂体炎、炎性肠病、川崎病、狼疮性肾炎、多发性硬化、心肌炎、肌炎、器官移植排斥、骨关节炎、胰腺炎、心包炎、结节性多动脉炎、局限性肺炎、原发性胆汁性肝硬化、银屑病、银屑病性关节炎、类风湿性关节炎、巩膜炎、硬化性胆管炎、脓毒症、系统性红斑狼疮、高安氏动脉炎、中毒性休克、甲状腺炎、I型糖尿病、溃疡性结肠炎、葡萄膜炎、白癜风、脉管炎和韦格纳肉芽肿。在某些实施方案中,所述方法或用途进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。
在另一方面,所述疾病或病症或疾病状态选自:糖尿病性肾病、高血压性肾病、HIV-相关的肾病、肾小球性肾炎、狼疮性肾炎、IgA肾病、局灶性阶段性肾小球硬化、膜性肾小球肾炎、微小病变疾病、多囊肾病和肾小管间质性肾炎。在某些实施方案中,所述方法或用途进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。
在另一方面,所述疾病或病症或疾病状态为急性肾损伤或其相关疾病状态,其中所述急性肾损伤或其相关疾病状态选自:缺血再灌注诱导的、强心剂和大外科手术诱导的、经皮冠状动脉介入干预诱导的、放射性造影剂诱导的、脓毒症诱导的、肺炎诱导的、和药物中毒诱导的急性肾损伤或其相关疾病状态。在某些实施方案中,所述方法进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。
在另一方面,所述疾病或病症或疾病状态为AIDS。在某些实施方案中,所述方法或用途进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。
在另一方面,所述疾病或病症或疾病状态为肥胖、血脂异常、高胆固醇血症、阿尔兹海默病、代谢综合征、脂肪肝、II型糖尿病、胰岛素抵抗、糖尿病性视网膜病或糖尿病性神经病。在某些实施方案中,所述方法或用途进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。
在另一方面,本发明提供一种预防怀孕的方法,所述方法包括给予需要其的个体治疗有效量的通式(I)化合物、其药学上可接受的盐、对映异构体、非对映异构体、外消旋体或经同位素标记的化合物。本发明提供通式(I)化合物、其可药用盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记的化合物用于制备预防怀孕的药物的用途。在某些实施方案中,所述方法或用途进一步包括给予或添加治疗有效量的至少一种另外的治疗剂。根据本发明的通式(I)化合物、其可药用盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记的化合物在个体中通过抑制精子生成达到预防怀孕的目的。
根据本发明的另一方面,提供了用于制备本发明化合物的方法,其中,所述方法如下面的方案一所示:
方案一:
Figure PCTCN2019071258-appb-000017
可以使用方案一中所描述的通用程序制备通式(I)化合物:即用芳基硼酸或其衍生物(例如,硼酸酯)在Suzuki偶联条件下处理芳基卤代物、芳基甲磺酸酯或芳基三氟甲磺酸酯,如方案一所示,式(A)化合物,其中R 101为Br、Cl、I、甲磺酸酯或三氟甲磺酸酯,与式(B)化合物,其中R 102为硼酸或其衍生物(例如,硼酸酯),偶联,或式(A)化合物,其中R 101为硼酸或其衍生物(例如,硼酸酯),与式(B)化合物,其中R 102为Br、Cl、I、甲磺酸酯或三氟甲磺酸酯,偶联,提供通式(I)化合物。通常,偶联反应在钯催化剂和碱的存在下,并且任选在配体存在下,和在适当溶剂中在升高温度下(例如在约80度至150度)实现。反应可以通过微波辐射促进。钯催化剂的实例包括但不限于四三苯基膦钯(0)、三(二亚苄基丙酮)二钯(0)、氯化烯丙基钯(II)二聚物、[1,1'-双(二苯基膦基)二茂铁]二氯化钯((dppf)PdCl 2)、醋酸钯(II)。可以使用的适当的碱的实例包括但不限于钠、钾和铯的碳酸盐或磷酸盐和氟化铯。适当的配体的实例包括但不限于2-二环己基磷-2,4,6-三异丙基联苯(X-phos)、1,3,5,7-四甲基-6-苯基-2,4,8-三氧杂-6-磷酰金刚烷、2′-二环己基膦基-2,6-二甲氧基-1,1′-联苯基-3-磺酸钠水合物和1,1’-双(二苯基磷烷基)二茂铁。适当溶剂的非限制性实例包括甲醇、乙腈、二甲氧基乙烷、N,N-二甲基甲酰胺、二甲基亚砜、二氧六环、四氢呋喃、乙二醇二甲醚、甲苯和水或其混合物。
或者,用式(C)化合物,其中R 103为硼酸或其衍生物(例如,硼酸酯),与式(A)化合物,其中R 101为Br、Cl、I、甲磺酸酯或三氟甲磺酸酯的偶联,来制备式(D)化合物,然后用式G 1-L 1-H的适当的醇、胺或者硫醇,其中L 1为O、NH或S替换式(D)中的氟原子,提供通式(I)化合物。用醇、胺或硫醇替换氟可以在溶剂中在碱存在下并且在约30度至140度的温度下实现,所述溶剂例如但不限于二甲基亚砜、二甲基甲酰胺、二氧六环或四氢呋喃。所述碱例如但不限于碳酸铯、碳酸钾、或氢化钠。
式(A)化合物,其中
Figure PCTCN2019071258-appb-000018
为双键,R x为氢,Y 1为CR y1,Y 2为CH,可以由方案二所示的一般合成方法制备。
方案二:
Figure PCTCN2019071258-appb-000019
用(1A)(其中,X为卤素或OMs)处理式(1)化合物,得到N取代化合物式(2),所述溶剂例如但不限于N-甲基吡咯烷酮,DMF,乙腈,反应温度约60至150度,所使用的碱例如但不限于氢化钠、氢氧化钠、叔丁醇钾。然后碱性条件下水解酯基,得到羧酸化合物式(3),所使用的碱例如但不限于氢氧化锂、氢氧化钾、氢氧化钠。在缩合剂的作用下与NH 3或者氯化铵发生缩合反应得到酰胺化合物(4),所述缩合剂选自例如但不限于羰基二咪唑、二环己基碳二亚胺、二异丙基碳二亚胺、1-(-3-二甲氨基丙基)-3-乙基碳二亚胺、1-羟基苯并三唑、2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯、苯并三氮唑-N,N,N',N'-四甲基脲六氟磷酸盐、6-氯苯并三氮唑-1,1,3,3-四甲基脲六氟磷酸盐、O-苯并三氮唑-N,N,N',N'-四甲基脲四氟硼酸酯、6-氯苯并三氮唑-1,1,3,3-四甲基脲四氟硼酸酯、2-琥珀酰亚胺基-1,1,3,3-四甲基脲四氟硼酸酯和2-(5-降冰片烯-2,3-二甲酰亚胺基)-1,1,3,3-四甲基脲四氟硼酸季铵盐,所述缩合反应可以在碱存在下在有机溶剂中进行,所述碱为例如但不限于三乙胺、二异丙基乙基胺、1,5-二氮杂二环[5.4.0]十一-5-烯,所述有机溶剂为例如但不限于二氯甲烷、氯仿、N,N-二甲基甲酰胺、四氢呋喃。而后经酸处理下,反应温度约100至130度,发生环合反应,得到式(5)化合物,所使用的酸例如但不限于冰醋酸、盐酸。最后经过卤代试剂的处理,发生卤代反应得到卤代物(6A),所使用的卤代试剂例如但不限于N-溴代丁二酰亚胺(NBS)、N-碘代丁二酰亚胺(NIS)、溴素、碘。或者该卤代物(6A)可进一步在钯催化下与联硼酸频那醇酯发生偶联反应得到硼酸酯(6B)。
式(A)化合物,其中
Figure PCTCN2019071258-appb-000020
为单键,R x为氢,Y 1为CR y1R y2,Y 2为CR y3R y4。可以由方案三所示的一般合成方法制备。
方案三:
Figure PCTCN2019071258-appb-000021
碱性条件下水解式(1)酯基,得到羧酸化合物式(7),所使用的碱例如但不限于氢氧化锂、氢氧化钾、氢氧化钠。该羧酸化合物在缩合剂的作用下与胺类化合物式(8)(其中式(8)中X为卤素或OMs)发生缩合反应得到酰胺化合物(9),所述缩合剂选自例如但不限于羰基二咪唑、二环己基碳二亚胺、二异丙基碳二亚胺、1-(-3-二甲氨基丙基)-3-乙基碳二亚胺、1-羟基苯并三唑、2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯、苯并三氮唑-N,N,N',N'-四甲基脲六氟磷酸盐、6-氯苯并三氮唑-1,1,3,3-四甲基脲六氟磷酸盐、O-苯并三氮唑-N,N,N',N'-四甲基脲四氟硼酸酯、6-氯苯并三氮唑-1,1,3,3-四甲基脲四氟硼酸酯、2-琥珀酰亚胺基-1,1,3,3-四甲基脲四氟硼酸酯和2-(5-降冰片烯-2,3-二甲酰亚胺基)-1,1,3,3-四甲基脲四氟硼酸季铵盐,所述缩合反应可以在碱存在下在有机溶剂中进行,所述碱包括但不限于三乙胺、二异丙基乙基胺、1,5-二氮杂二环[5.4.0]十一-5-烯,所述有机溶剂为例如但不限于二氯甲烷、氯仿、N,N-二甲基甲酰胺、四氢呋喃。随后在碱性条件下发生环合得到式(10)化合物,所使用的碱例如但不限于三乙胺、二异丙基乙胺。最后经过卤代试剂的处理,发生卤代反应得到式(11A),所使用的卤代试剂例如但不限于N-溴代丁二酰亚胺(NBS)、N-碘代丁二酰亚胺(NIS)、溴素、碘。或者该卤代物(11A)可进一步在钯催化下与联硼酸频那醇酯发生偶联反应得到硼酸酯(11B)。
式(A)化合物,其中
Figure PCTCN2019071258-appb-000022
为双键,R x为氢、Y 2为CH,Y 1为N,可以由方案四所示的一般合成方法制备。
方案四:
Figure PCTCN2019071258-appb-000023
用碱处理式(1)化合物,与二苯基膦酰羟胺(CAS:72804-96-7)发生反应得到式(12)化合物,所使用的碱例如但不限于双三甲基硅基胺基锂(LHMDS)、双(三甲基硅基)氨基钠(NaHMDS)、二异丙基氨基锂(LDA),反应温度约-78至10度,随后与甲酰胺在高温下发生反应,反应温度约100至200度,得到环合产物(13),最后经过卤代试剂的处理,发生卤代反应得到化合物(14A),所使用的卤代试剂例如但不限于N-溴代丁二酰亚胺(NBS)、N-碘代丁二酰亚胺(NIS)、溴素、碘。或者该卤代物(14A)可进一步在钯催化下与联硼酸频那醇酯发生偶联反应得到硼酸酯(14B)。
式(A)化合物,其中
Figure PCTCN2019071258-appb-000024
为双键,R x为氢、Y 2为N,Y 1为CR y1,可以由方案五所示的一般合成方法制备。
方案五:
Figure PCTCN2019071258-appb-000025
将酰肼化合物式(15)(可由化合物式(1)与水合肼反应制备),在高温下与式(16)直接发生环合反应生成产物(17),或者(15)与式(16)先反应得到环合前体,再在碱性条件下进行环合得到环合产物(17),反应温度约50至150度。随后经过卤代试剂的处理,发生卤代反应得到化合物(18A),所使用的卤代试剂例如但不限于N-溴代丁二酰亚胺(NBS)、N-碘代丁二酰亚胺(NIS)、溴素、碘。或者该卤代物(18A)可进一步在钯催化下与联硼酸频那醇酯发生偶联反应得到硼酸酯(18B)。
式(A)化合物,其中R x为C 1-C 3烷基、或C 1-C 3卤代烷基,可以由方案六所示的一般合成方法制备。
方案六:
Figure PCTCN2019071258-appb-000026
在碱的作用下,化合物式(19)与卤化物或甲磺酸酯发生烷基化反应得到产物式(20), 所述碱例如但不限于氢化钠、碳酸铯或碳酸钾;所述烷基化反应可以在在有机溶剂中进行,所述溶剂例如但不限于二甲基甲酰胺或二甲基亚砜;化合物(20)而后经过卤代试剂的处理,发生卤代反应得到化合物(21A),所使用的卤代试剂例如但不限于N-溴代丁二酰亚胺(NBS)、N-碘代丁二酰亚胺(NIS)、溴素、碘。或者该卤代物(21A)可进一步在钯催化下与联硼酸频那醇酯发生偶联反应得到硼酸酯(21B)。
式(B)化合物中R 102基团为硼酸酯时可以由方案七所示的一般合成方法合成。
方案七:
Figure PCTCN2019071258-appb-000027
卤代物(22A)可在钯催化下与联硼酸频那醇酯发生偶联反应得到硼酸酯(22B)。其中卤代物(22A)可通过商业途径购买获得,或根据本领域已知的常规方法制备而得(例如,可参考文献:J.Med.Chem.,2017,60,8369;WO 2015058160;US 2014275026)。所述偶联反应在钯催化剂和碱的存在下,并且任选在配体存在下,和在适当溶剂中在升高温度下(例如在约80度至150度)实现。钯催化剂的实例包括但不限于四三苯基膦钯(0)、三(二亚苄基丙酮)二钯(0)、氯化烯丙基钯(II)二聚物、[1,1'-双(二苯基膦基)二茂铁]二氯化钯((dppf)PdCl 2)、醋酸钯(II)。可以使用的适当的碱的实例包括但不限于钠、钾和铯的碳酸盐、磷酸盐或者醋酸盐,或者氟化铯。适当的配体的实例包括但不限于2-二环己基磷-2,4,6-三异丙基联苯(X-phos)、1,3,5,7-四甲基-6-苯基-2,4,8-三氧杂-6-磷酰金刚烷、2′-二环己基膦基-2,6-二甲氧基-1,1′-联苯基-3-磺酸钠水合物和1,1’-双(二苯基磷烷基)二茂铁。适当溶剂的非限制性实例包括甲醇、乙腈、二甲氧基乙烷、N,N-二甲基甲酰胺、二甲基亚砜、二氧六环、四氢呋喃、乙二醇二甲醚、甲苯和水或其混合物。
每一独立步骤的最佳反应条件和反应时间可以根据所用特定反应物和所有反应物中存在的取代基改变。除非另外规定,溶剂、温度和其他反应条件可以由本领域技术人员容易选择。具体步骤提供在合成实施例部分。反应可以常规方式进一步处理,例如通过从残留物除去溶剂并根据本领域通常已知的方法例如但不限于结晶、蒸馏、萃取、研磨和色谱进一步纯化。除非另外说明起始原料和反应剂是可商业购买的或者可以由本领域技术人员从可购买的材料使用化学文献描述的方法制备。
常规试验,包括适当调节反应条件、合成路线的反应剂和顺序、任意化学官能团的保护、其可以不与反应条件相适应,和在该方法的反应顺序的适当点进行脱保护,均包括在本发明范围内。适当保护基和使用这样的适当保护基进行保护和脱保护不同取代基的方法是本领域技术人员熟知的;其实例发现在T.Greene and P.Wuts,Protecting Groups in Chemical Synthesis(第三版),John Wiley & Sons,NY(1999),其以整体并入本文作为参考。本发明化合物的合成可以由类似于上文和具体实施例中描述的合成方案中描述的那些方法来实现。
起始材料如果不可从商业渠道购买,可以由选自下列的步骤制备:标准有机化学技 术、类似于合成已知结构类似物的技术、或类似于上述方案或合成实施例部分描述的步骤的技术。当需要本发明化合物的光学活性形式时,其可以由进行本文所述步骤之一使用光学活性起始材料(例如通过适当反应步骤的不对称诱导制备)获得,或者通过使用标准步骤(例如色谱分离、重结晶或酶拆分)拆分化合物或中间体的立体异构体混合物获得。
类似地,当需要本发明化合物的纯几何异构体时,其可以由使用纯几何异构体作为起始材料进行上述步骤之一获得,或者通过使用标准步骤,例如色谱分离拆分化合物或中间体的几何异构体混合物获得。
具体实施方式
为了示例性目的,可以使用下列实施例,以下实施例仅用于解释说明本发明的技术方案,并不意图将本发明限制为这些实施例。
实施例1:中间体I-6的制备
Figure PCTCN2019071258-appb-000028
化合物I-2的合成:
将3-甲基-1H-吡咯-2-甲酸乙酯(I-1)(2.298g,15mmol)溶于8mL N-甲基吡咯烷酮和2-溴-1,1-二乙氧基乙烷(3.843g,19.5mmol)的混合物中,室温下分批加入60%氢化钠(720mg,18mmol)。将溶液在氩气保护下加热到130℃反应5个小时后冷却至室温。向溶液中加入水稀释,萃取,干燥,浓缩,硅胶层析柱纯化,得到化合物I-2为白色固体(2.7g)。HPLC-MS:[M+H] +=270.1。
化合物I-3的合成:
将化合物I-2(2.7g,10mmol)溶于60mL乙醇/水1:1的混合溶液中,加入一水合氢氧化锂(2.402g,57mmol),加热至75℃反应过夜后冷却至室温。真空旋转蒸发除去乙醇,加水稀释后加入2M的盐酸溶液,并用乙酸乙酯萃取,合并有机层,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯,得到化合物I-3为白色固体(2.156g)。HPLC-MS:[M-H] +=240.2。
化合物I-4的合成:
将化合物I-3(1.674g,6.94mmol),氯化铵(928mg,17.36mmol)和2-(7-氧化苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU)(3.950g,10.41mmol)混合,溶于20mL无 水二甲基甲酰胺(DMF)中,加入N,N-二异丙基乙基胺(DIPEA)(4.6mL,27.77mmol),搅拌过夜。加水稀释后,用乙酸乙酯萃取,有机层用水洗三次后,无水硫酸钠干燥,硅胶层析柱纯化,得到化合物I-4为白色固体(1.467g)。HPLC-MS:[M+H] +=241.1。
化合物I-5的合成:
化合物I-4(1.678g,6.98mmol)溶解于30mL冰醋酸中,加热至105℃反应4个小时。真空旋转蒸发除去绝大部分冰醋酸后,加入30mL正己烷稀释,真空旋转蒸发除去溶剂,得到化合物I-5(1.023g)为浅棕色固体。HPLC-MS:[M+H] +=149.1。
化合物I-6的合成:
化合物I-5(1.226g,8.27mmol)和N-溴代丁二酰亚胺(NBS)(1.325g,7.45mmol)溶于24mL二氯甲烷(DCM)中,0℃下加入15mL三氟乙酸(TFA),搅拌1h后真空旋转蒸发除去二氯甲烷和大部分三氟乙酸。0℃下一边搅拌一边加入饱和碳酸氢钠溶液,搅拌20分钟后,析出固体,过滤得到化合物I-6为浅灰色固体(1.01g)。HPLC-MS:[M+H] +=227.1/229.1。 1H NMR(400MHz,DMSO-d 6)δ10.43(s,1H),7.01(d,J=5.9Hz,1H),6.60(d,J=5.9Hz,1H),6.52(s,1H),2.43(s,3H).
实施例2:中间体II-5的制备
Figure PCTCN2019071258-appb-000029
化合物II-2的合成:
将化合物I-1(1.6g,10mmol)溶于60mL乙醇/水1:1的混合溶液中,加入一水合氢氧化锂(2.402g,57mmol),加热至75℃反应过夜后冷却至室温。真空旋转蒸发除去乙醇,加水稀释后加入2M的盐酸溶液,并用乙酸乙酯萃取,合并有机层,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯,得到化合物II-2,为无色油状物(1.562g)。HPLC-MS:[M-H] +=124.1。
化合物II-3的合成:
将化合物II-2(1.562g,12.5mmol)、2-氯乙胺盐酸盐(1.882g,16.2mmol)和HATU(6.170g,16.2mmol)溶于50mL二氯甲烷中,加入5.2mL DIPEA,室温下反应2个小时后,加入100mL饱和碳酸氢钠水溶液,二氯甲烷萃取,硅胶柱层析纯化得到化合物II-3(1.852g)为浅黄色油状物。HPLC-MS:[M+H] +=187.2。
化合物II-4的合成:
将化合物II-3(1.852g,9.9mmol)溶于30mL二氯甲烷中,加入4.2mL三乙胺搅拌过夜,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到化合物II-4(758mg)白色固体。HPLC-MS:[M+H] +=151.1。
化合物II-5的合成:
化合物II-4(1.24g,8.27mmol)和NBS(1.325g,7.45mmol)溶于24mL二氯甲烷中,0℃下加入15mL三氟乙酸,搅拌1h后真空旋转蒸发除去二氯甲烷和大部分三氟乙酸。0℃下一边搅拌一边加入饱和碳酸氢钠溶液,搅拌20分钟后,析出固体,过滤得到化合物II-5(0.22g)。HPLC-MS:[M+H] +=229.1/231.1。
实施例3:中间体III-4的制备
Figure PCTCN2019071258-appb-000030
化合物III-2的合成:
LiHMDS(2.5mL,1M在THF中)在-10℃下缓缓滴入化合物I-1(309mg,2mmol)的无水DMF溶液(30mL)中。搅拌10分钟后,溶液被移到0℃下,并加入二苯基膦酰羟胺(0.56g,2.4mmol),搅拌5个小时。反应结束后加入水淬灭,直至形成澄清的溶液。真空旋转蒸发除去溶剂,硅胶柱层析纯化得到化合物III-2(220mg)为白色固体。HPLC-MS:[M+H] +=169.2。
化合物III-3的合成:
将化合物III-2(295mg,1.7mmol)溶于3mL甲酰胺,置于封管中加热至180℃,反应过夜,析出灰白色固体,冷却至室温,过滤,乙酸乙酯洗涤滤饼,得到化合物III-3(120mg)为灰白色固体。HPLC-MS:[M+H] +=150.1。
化合物III-4的合成:
将化合物III-3(150mg,1mmol)溶于6mL无水DMF中,0℃下加入Br 2(60μL,1.2mmol),反应通过TLC监测,结束后加入饱和碳酸氢钠水溶液淬灭反应,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到化合物III-4(68mg)为灰白色固体。HPLC-MS:[M+H] +=228.1/230.1。 1H NMR(400MHz,DMSO-d 6)δ11.61(s,1H),7.83(s,1H),6.54(s,1H),2.40(s,3H).
实施例4:中间体IV-4的制备
Figure PCTCN2019071258-appb-000031
化合物IV-2的合成:
LiHMDS(5.5mL,1M在THF中)在-10℃下缓缓滴入化合物IV-1(771mg,5mmol)的无水DMF溶液(50mL)中。搅拌10分钟后,溶液被移到0℃下,并加入二苯基膦酰羟胺(1.411g,6mmol),搅拌5个小时。反应结束后加入水淬灭,直至形成澄清的溶液。真空旋转蒸发除去溶剂,硅胶柱层析纯化得到化合物IV-2(595mg)为白色固体。HPLC-MS:[M+H] +=170.2。
化合物IV-3的合成:
将化合物IV-2(595mg,3.52mmol)溶于5mL甲酰胺,置于封管中加热至180℃,反应过夜,析出灰白色固体,冷却至室温,过滤,乙酸乙酯洗涤滤饼,得到化合物IV-3 (331mg)为灰白色固体。HPLC-MS:[M+H] +=151.1。 1H NMR(400MHz,DMSO-d 6)δ11.85(s,1H),7.91(s,1H),2.46(s,3H).
化合物IV-4的合成:
将化合物IV-3(75mg,0.5mmol)溶于6mL无水DMF中,0℃下加入Br 2(50μL,1mmol),反应通过TLC监测,结束后加入饱和碳酸氢钠水溶液淬灭反应,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到化合物IV-4(44mg)为灰白色固体。 1H NMR(400MHz,DMSO-d 6)δ11.85(s,1H),7.91(s,1H),2.46(s,3H)。HPLC-MS:[M+H] +=229.1/231.1。
实施例5:中间体V-5的制备
Figure PCTCN2019071258-appb-000032
化合物V-2的合成:
将化合物IV-1(6.167g,40mmol)溶于120mL乙醇/水1:1的混合溶液中,加入一水合氢氧化锂(3.2g,80mmol),加热至75℃反应过夜后冷却至室温。真空旋转蒸发除去乙醇,加水稀释后加入2M的盐酸溶液,并用乙酸乙酯萃取,合并有机层,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯,得到化合物V-2,为无色油状物(3.86g)。HPLC-MS:[M-H] +=125.1。
化合物V-3的合成:
将化合物V-2(1.262g,10mmol)、2-氯乙胺盐酸盐(1.74g,15mmol)和HATU(5.70g,15mmol)溶于75mL二氯甲烷中,加入8.2mL DIPEA,室温下反应2个小时后,加入100mL饱和碳酸氢钠水溶液,二氯甲烷萃取,硅胶柱层析纯化得到化合物V-3(0.752g)为浅黄色油状物。HPLC-MS:[M+H] +=188.1。
化合物V-4的合成:
将化合物V-3(0.65g)溶于20mL二氯甲烷中,加入三乙胺(2.3g),室温下反应过夜。硅胶柱层析纯化,硅胶柱层析纯化得到化合物V-4(380mg)白色固体。HPLC-MS:[M+H] +=152.1。
化合物V-5的合成:
化合物V-4(380mg)和NBS(710mg)溶于10mL二氯甲烷中,0℃下加入5mL三氟乙酸(TFA),室温搅拌1h后真空旋转蒸发除去二氯甲烷,硅胶柱层析纯化得到化合物V-5(180mg)。HPLC-MS:[M+H] +=230.1/232.1。
实施例6:中间体VI-5的合成:
Figure PCTCN2019071258-appb-000033
化合物VI-2的合成:
将化合物I-1(1.532g,10mmol)溶于5mL乙醇中,加入20mL 98%水合肼,加热至回流,搅拌2个小时后,冷却至室温,析出固体,过滤得到化合物VI-2(1.204g)。HPLC-MS:[M+H] +=140.1。
化合物VI-3的合成:
将化合物VI-2(1.204g,8.65mmol)溶于10mL原甲酸三乙酯中,加热至回流,搅拌1个小时后,冷却至室温,析出固体,过滤得到化合物VI-3(1.213g)。HPLC-MS:[M+H] +=196.1。
化合物VI-4的合成:
将化合物VI-3(1.613g,6.21mmol)溶于20mL无水乙醇中,加入氢氧化钾(1.390g,24.38mmol),加热至回流,搅拌1个小时后,硅胶柱层析纯化得到化合物VI-4(530mg)。HPLC-MS:[M+H] +=150.1。
化合物VI-5的合成:
化合物VI-4(987mg,6.62mmol)和NBS(1.060g,5.86mmol)溶于24mL二氯甲烷中,0℃下加入15mL三氟乙酸,搅拌1个小时后真空旋转蒸发除去二氯甲烷和大部分三氟乙酸。硅胶柱层析得到化合物VI-5(247mg)。 1H NMR(400MHz,DMSO-d 6)δ11.70(s,1H),8.28(s,1H),6.74(s,1H),2.42(s,3H)。HPLC-MS:[M+H] +=228.1/230.1。
实施例7:硼酸酯B-1的合成
Figure PCTCN2019071258-appb-000034
步骤1:
将3-溴-4-氟硝基苯(22.0g,0.1mol,CAS:701-45-1),苯酚(11.3g,0.12mol),碳酸铯(39.1g,0.12mol)悬浮在100mL二甲亚砜中,加热至110℃反应1个小时,冷却 至室温后,过滤除去固体,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发得中间体E7-1(26.4g)。
步骤2:
将E7-1(26.4g)溶于200mL乙醇和200mL四氢呋喃,加入100mL水。室温下分批加入铁粉(27g),氯化铵(15g),加入完毕后,缓慢升至95℃,搅拌反应2个小时。硅藻土过滤反应液,将滤液倒入水中,加入乙酸乙酯萃取两次,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得中间体E7-2(22.0g)。
步骤3:
将E7-2(13.2g,50.0mmol)溶于50mL吡啶中,冷却至零度,缓慢滴加甲基磺酰氯(5.7g,50mmol),滴加完毕后,升至室温反应2个小时,加入冰水和乙酸乙酯分层,取有机相,依次用2M稀盐酸、饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯后,加入石油醚打浆得中间体E7-3(12.8g)。
步骤4:
将E7-3(12.8g,36.0mmol),乙酸钾(7.1g,72.0mmol),联硼酸频那醇酯(18.3g,72mmol,CAS:73183-34-3)溶于150mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(1.3g,1.8mmol,CAS:72287-26-4),加热至100℃,反应14个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析后,乙醚打浆得硼酸酯B-1(5.6g)。 1H NMR(400MHz,DMSO-d 6)δ9.63(s,1H),7.51(d,J=2.8Hz,1H),7.39(dd,J=8.7,2.8Hz,1H),7.33–7.24(m,2H),7.00(dd,J=8.0,6.2Hz,2H),6.84–6.72(m,2H),2.97(s,3H),1.09(s,12H).HPLC-MS:[M-H] +=388.1。
实施例8:硼酸酯B-2的合成:
Figure PCTCN2019071258-appb-000035
除了在步骤3中采用乙基磺酰氯(CAS:594-44-5)代替甲基磺酰氯以外,采用与实施例7中合成方法相同的步骤反应,得到硼酸酯B-2。
1H NMR(400MHz,CDCl 3)δ7.48(d,J=2.9Hz,1H),7.41(dd,J=8.7,2.9Hz,1H),7.28–7.24(m,2H),7.02–6.97(m,2H),6.87–6.85(m,2H),6.74(brs,1H),3.14(q,J=7.4Hz,2H),1.40(t,J=7.4Hz,3H),1.16(s,12H)。HPLC-MS:[M-H] +=402.2
实施例9:硼酸酯B-3的合成:
Figure PCTCN2019071258-appb-000036
除了在步骤1中采用2,4-二氟苯酚(CAS:367-27-1)代替苯酚以外,采用与实施例8中合成方法相同的步骤反应得到硼酸酯B-3。
1H NMR(400MHz,CDCl 3)δ7.50(d,J=2.9Hz,1H),7.43(dd,J=8.7,2.9Hz,1H),6.97–6.89(m,2H),6.76–6.73(m,2H),6.39(s,1H),3.14(q,J=7.4Hz,2H),1.39(t,J=7.4Hz,3H),1.22(s,12H)。HPLC-MS:[M-H] +=438.1
实施例10:硼酸酯B-4的合成:
Figure PCTCN2019071258-appb-000037
除了在步骤1中采用2,4-二氟苯酚(CAS:367-27-1)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-4。
1H NMR(400MHz,CDCl 3)δ7.52(d,J=2.9Hz,1H),7.41(dd,J=8.7,2.9Hz,1H),6.95–6.87(m,2H),6.80–6.71(m,2H),6.53(s,1H),3.00(s,3H),1.23(s,12H)。HPLC-MS:[M-H] +=424.1
实施例11:硼酸酯B-5的合成:
Figure PCTCN2019071258-appb-000038
除了在步骤1中采用4-氯苯酚(CAS:106-48-9)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-5。
1H NMR(400MHz,CDCl 3)δ7.50(d,J=2.8Hz,1H),7.45(dd,J=8.7,2.9Hz,1H),7.24–7.19(m,2H),7.00(d,J=8.7Hz,1H),6.82–6.75(m,2H),6.42(s,1H),3.03(s,3H),1.17(s,12H)。HPLC-MS:[M-H] +=422.1
实施例12:硼酸酯B-6的合成:
Figure PCTCN2019071258-appb-000039
除了在步骤1中采用3-羟基吡啶(CAS:109-00-2)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-6。
1H NMR(400MHz,CDCl 3)δ8.30(d,J=2.6Hz,1H),8.27(d,J=4.3Hz,1H),7.55(d,J=2.7Hz,1H),7.49(dd,J=8.7,2.9Hz,1H),7.19(dd,J=8.4,4.7Hz,1H),7.12–7.07(m,1H),7.06(d,J=8.7Hz,1H),6.69(s,1H),3.03(s,3H),1.15(s,12H)。HPLC-MS:[M+H] +=391.2
实施例13:硼酸酯B-7的合成:
Figure PCTCN2019071258-appb-000040
除了在步骤1中采用环己醇(CAS:108-93-0)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-7。
1H NMR(400MHz,CDCl 3)δ7.39–7.35(m,2H),6.90(d,J=8.6Hz,1H),6.33(s,1H),4.28(t,J=7.6Hz,1H),2.95(s,3H),1.86(m,4H),1.68(m,2H),1.48(m,2H),1.38(m,2H),1.36(s,12H)。HPLC-MS:[M-H] +=394.1
实施例14:硼酸酯B-8的合成:
Figure PCTCN2019071258-appb-000041
除了在步骤1中采用苯胺代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-8。
1H NMR(400MHz,CDCl 3)δ7.49(d,J=2.5Hz,1H),7.33(t,J=7.9Hz,2H),7.28(dd,J=9.5,3.2Hz,1H),7.20(dd,J=9.6,8.5Hz,3H),7.04(t,J=7.4Hz,1H),6.08(s,1H),2.97(s,3H),1.36(s,12H)。HPLC-MS:[M+H] +=389.2
实施例15:硼酸酯B-9的合成:
Figure PCTCN2019071258-appb-000042
除了在步骤1中采用苯硫酚代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-9。
1H NMR(400MHz,CDCl 3)δ7.41(d,J=2.6Hz,1H),7.38–7.34(m,2H),7.34–7.29(m,2H),7.28(m,1H),7.24(m,1H),7.07(d,J=8.5Hz,1H),6.40(s,1H),2.99(s,3H),1.31(s,12H)。HPLC-MS:[M-H] +=404.2
实施例16:硼酸酯B-10的合成:
Figure PCTCN2019071258-appb-000043
除了在步骤1中采用四氢-2H-吡喃-4-醇(CAS:2081-44-9)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-10。
1H NMR(400MHz,CDCl 3)δ7.44(d,J=2.8Hz,1H),7.40(dd,J=8.7,2.9Hz,1H),6.90(d,J=8.7Hz,1H),6.33(s,1H),4.59–4.52(m,1H),4.10–4.02(m,2H),3.66–3.58(m,2H),2.97(s,3H),2.04–1.95(m,2H),1.89–1.79(m,2H),1.37(s,12H)。HPLC-MS:[M-H] +=396.2
实施例17:硼酸酯B-11的合成:
Figure PCTCN2019071258-appb-000044
除了在步骤1中采用环丙基甲醇(CAS:2516-33-8)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-11。
1H NMR(400MHz,CDCl 3)δ7.41–7.36(m,2H),6.85(d,J=8.6Hz,1H),6.14(s,1H),3.89(d,J=6.1Hz,2H),2.95(s,3H),1.38(s,12H),1.30–1.22(m,1H),0.62–0.55(m,2H),0.49–0.42(m,2H)。HPLC-MS:[M-H] +=366.2
实施例18:硼酸酯B-12的合成:
Figure PCTCN2019071258-appb-000045
除了在步骤1中采用新戊醇(CAS:75-84-3)代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯B-12。
1H NMR(400MHz,CDCl 3)δ7.40–7.36(m,2H),6.79(d,J=8.8Hz,1H),6.18(s,1H),3.59(s,2H),2.92(s,3H),1.34(s,12H),1.07(s,9H).
实施例19:硼酸酯B-13的合成:
Figure PCTCN2019071258-appb-000046
步骤1:
将对氟苯甲砜(1.0g,5.74mmol,CAS:455-15-2)溶于6mL浓硫酸(conc.H 2SO 4)中,在冰水浴下分批加入NBS(1.13g,6.35mmol),加完后升至室温反应16个小时,将反应液缓缓倒入50mL冰水中,搅拌5min,过滤,滤饼用20mL石油醚打浆,抽滤,烘干得化合物E19-1(1.25g)。
步骤2:
将E19-1(3.0g,11.85mmol),2,4-二氟苯酚(1.85g,14.22mmol),碳酸铯(5.0g,15.34mmol)依次加至50mL二甲亚砜中,氩气保护下升温至110℃反应2个小时。向反应液中加入500mL水,用乙酸乙酯150mL×3萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后,硅胶柱层析纯化得化合物E19-2(4.0g)。
步骤3:
将E19-2(3.73g,10.27mmol),乙酸钾(2.05g,20.89mmol),联硼酸频那醇酯(5.2g,20.52mmol)溶于150mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(447mg,0.61mmol),加热至100℃,反应14个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析后,乙醚打浆得硼酸酯B-13(1.18g)。
1H NMR(400MHz,CDCl 3)δ8.36(d,J=2.5Hz,1H),7.93(dd,J=8.7,2.5Hz,1H),7.10–7.03(m,1H),7.02–6.95(m,1H),6.92–6.87(m,1H),6.85(d,J=8.7Hz,1H),3.08(s,3H),1.33(s,12H).
实施例20:硼酸酯B-14的合成:
Figure PCTCN2019071258-appb-000047
除了在步骤2中采用苯酚代替2,4-二氟苯酚以外,采用与实施例19中合成方法相同的步骤反应得到硼酸酯B-14。
1H NMR(400MHz,CDCl 3)δ8.34(d,J=2.5Hz,1H),7.93(dd,J=8.7,2.5Hz,1H),7.38(t,J=8.0Hz,2H),7.16(t,J=7.4Hz,1H),7.04–6.96(m,3H),3.08(s,3H),1.28(s,12H).
实施例21:硼酸酯B-15的合成:
Figure PCTCN2019071258-appb-000048
除了在步骤2中采用苯胺代替2,4-二氟苯酚以外,采用与实施例19中合成方法相同的步骤反应得到硼酸酯B-15。 1H NMR(400MHz,CDCl 3)δ8.28(d,J=2.4Hz,1H),8.18(s,1H),7.75(dd,J=8.9,2.4Hz,1H),7.41(t,J=7.9Hz,2H),7.26(d,J=7.4Hz,2H),7.20(d,J=8.1Hz,1H),7.15(d,J=8.9Hz,1H),3.04(s,3H),1.39(s,12H).HPLC-MS:[M-H] +=374.2
实施例22:硼酸酯B-16的合成:
Figure PCTCN2019071258-appb-000049
除了在步骤2中采用环己胺(CAS:108-91-8)代替2,4-二氟苯酚以外,采用与实施例19中合成方法相同的步骤反应得到硼酸酯B-16。 1H NMR(400MHz,CDCl 3)δ8.15(d,J=2.4Hz,1H),7.75(dd,J=8.9,2.5Hz,1H),6.59(d,J=9.0Hz,2H),3.41(m,1H),3.01(s,3H),1.96(m,2H),1.74(m,2H),1.60(m,2H),1.46(m,2H),1.36(s,12H),1.29(m,2H).
实施例23:硼酸酯B-17的合成:
Figure PCTCN2019071258-appb-000050
步骤1:
将4-溴苯胺(5.0g,29.1mmol,CAS:106-40-1)溶于80mL二氯甲烷中,加入8.1mL三乙胺。冰水浴冷却,在氩气的保护下慢慢滴加乙酰氯(2.74g,34.9mmol),滴加完毕后,升至室温,搅拌过夜。加入80mL水,DCM萃取三次,合并有机相,饱和食盐水洗涤三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到中间体E23-1(5.8g)。
步骤2:
中间体E23-1(2.2g,10.3mmol)和苄基硼酸酯(3.7g,17.0mmol)溶解在8mL 1,4-二氧六环和2mL水中,加入碳酸钠(2.2g,20.6mmol),在氩气保护下加入四(三苯基膦)钯(0.58g,0.5mmol)。加热至110℃反应24个小时后,降至室温,加60mL水,硅藻 土过滤,乙酸乙酯洗涤滤饼两次,滤液用乙酸乙酯萃取两次,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到中间体E23-2(1.0g)。
步骤3:
将中间体E23-2(1.0g,4.44mmol)和NBS(1.2g,6.66mmol)溶解在30mL DMF中,升温至60℃,搅拌过夜,降至室温,加入水和乙酸乙酯分层,取有机相饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到中间体E23-3(840mg)。
步骤4:
将中间体E23-3(40mg,0.13mmol)和碳酸铯(211mg,0.65mmol)溶解在5mL甲醇中,加入5滴水。加热至回流,反应过夜,降至室温,加入10mL水,乙酸乙酯萃取三次,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂,得到中间体E23-4(18mg)。
步骤5:
将中间体E23-4(400mg,1.53mmol)溶于8mL吡啶中,氩气保护,冰水浴冷却,将甲基磺酰氯(526mg,4.59mmol)缓慢滴加至反应液中,滴加完毕后,升至室温搅拌2个小时。再用冰水浴冷却,加入2mL水淬灭反应,再加入50mL乙酸乙酯,用1.5M盐酸洗三次,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析得到中间体E23-5(245mg)。
步骤6:
将E23-5(440mg,1.29mmol),乙酸钾(380mg,3.87mmol),联硼酸频那醇酯(665mg,258mmol)溶于15mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(47mg,0.065mmol),加热至100℃,反应2个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析得到硼酸酯B-17(139mg)。
1H NMR(400MHz,CDCl 3)δ8.36(s,1H),7.68(s,1H),7.53(d,J=8.4Hz,1H),7.34–7.27(m,3H),7.21(dd,J=11.8,7.3Hz,3H),3.96(s,2H),2.95(s,3H),1.39(s,12H).
实施例24:化合物ZB-BD-70的合成:
Figure PCTCN2019071258-appb-000051
将化合物I-6(46mg,0.2mmol)、硼酸酯B-1(156mg,0.4mmol)溶于6mL 1,4-二氧六环中,加入2mL 2M的碳酸钠溶液,在Ar的环境下加入氯化烯丙基钯(II)二聚物([Pd(ally)Cl] 2,CAS号:12012-95-2)(7mg,0.02mmol)和2'-二环己基膦基-2,6-二甲氧基-1,1'-联苯基-3-磺酸钠水合物(Ssphos,CAS号:1049726-96-6)(21mg,0.04mmol)。110℃搅拌2个小时后,加入水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-70 (9mg)。
1H NMR(400MHz,CDCl 3)δ9.37(d,J=5.0Hz,1H),8.62(s,1H),7.40(d,J=2.7Hz,1H),7.36(dd,J=8.8,2.7Hz,1H),7.29–7.23(m,2H),7.06(d,J=7.4Hz,1H),7.02(d,J=8.7Hz,1H),6.93(d,J=5.8Hz,1H),6.90–6.82(m,2H),6.42(s,1H),6.37(t,J=5.7Hz,1H),3.08(s,3H),2.55(s,3H)。HPLC-MS:[M+H] +=410.3。
实施例25:化合物ZB-BD-77的合成:
Figure PCTCN2019071258-appb-000052
除了采用化合物B-2代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-77。
1H NMR(400MHz,CDCl 3)δ9.55(d,J=4.4Hz,1H),8.98(s,1H),7.40(d,J=2.6Hz,1H),7.35(dd,J=8.8,2.7Hz,1H),7.23(t,J=8.0Hz,2H),7.04–6.96(m,2H),6.91(d,J=5.8Hz,1H),6.84(d,J=7.7Hz,2H),6.40(s,1H),6.36(t,J=5.6Hz,1H),3.18(q,J=7.4Hz,2H),2.53(s,3H),1.40(t,J=7.4Hz,3H).HPLC-MS:[M+H] +=424.3。
实施例26:化合物ZB-BD-78的合成:
Figure PCTCN2019071258-appb-000053
除了采用化合物B-3代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-78。
1H NMR(400MHz,CDCl 3)δ9.12(s,1H),8.28(s,1H),7.35(d,J=2.7Hz,1H),7.29(dd,J=8.8,2.7Hz,1H),6.97–6.87(m,3H),6.83–6.79(m,1H),6.77(d,J=8.6Hz,1H),6.47(s,1H),6.36(t,J=5.7Hz,1H),3.15(q,J=7.6Hz,2H),2.59(s,3H),1.40(t,J=7.4Hz,3H).HPLC-MS:[M+H] +=460.3。
实施例27:化合物ZB-BD-80的合成:
Figure PCTCN2019071258-appb-000054
除了采用化合物B-4代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-80。
1H NMR(400MHz,CDCl 3)δ9.47(d,J=4.3Hz,1H),8.76(s,1H),7.37(d,J=2.5Hz,1H),7.32(dd,J=8.8,2.6Hz,1H),6.98–6.85(m,3H),6.79(t,J=10.0Hz,2H),6.46(s,1H),6.37(t,J=5.6Hz,1H),3.05(s,3H),2.56(s,3H).HPLC-MS:[M+H] +=446.6
实施例28:化合物ZB-BD-82的合成:
Figure PCTCN2019071258-appb-000055
除了采用化合物B-5代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-82。
1H NMR(400MHz,CDCl 3)δ9.31(d,J=4.8Hz,1H),8.60(s,1H),7.41–7.33(m,2H),7.21–7.13(m,2H),7.02(d,J=9.0Hz,1H),6.87(d,J=5.9Hz,1H),6.78–6.72(m,2H),6.41–6.32(m,2H),3.08(s,3H),2.53(s,3H).HPLC-MS:[M+H] +=444.2。
实施例29:化合物ZB-BD-83的合成:
Figure PCTCN2019071258-appb-000056
除了采用化合物B-11代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-83。
1H NMR(400MHz,CDCl 3)δ9.67(s,1H),8.40(s,1H),7.36(d,J=8.7Hz,1H),7.29(s,1H),6.95(d,J=8.8Hz,1H),6.75(d,J=5.7Hz,1H),6.41(s,1H),6.34(t,J=5.3Hz,1H),3.78(d,J=6.7Hz,2H),3.01(s,3H),2.61(s,3H),1.11(m,1H),0.51(d,J=7.5Hz,2H),0.21(d,J=4.6Hz,2H).HPLC-MS:[M+H] +=388.2。
实施例30:化合物ZB-BD-91的合成:
Figure PCTCN2019071258-appb-000057
除了采用化合物B-12代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-91。
1H NMR(400MHz,MeOD)δ7.36(dd,J=8.8,2.8Hz,1H),7.25(d,J=2.7Hz,1H),7.10(d,J=8.9Hz,1H),6.78(d,J=5.9Hz,1H),6.44(s,1H),6.41(d,J=5.9Hz,1H),3.62(s,2H),2.96(s,3H),2.60(s,3H),0.82(s,9H).HPLC-MS:[M+H] +=404.3。
实施例31:化合物ZB-BD-92的合成:
Figure PCTCN2019071258-appb-000058
除了采用化合物B-7代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-92。
1H NMR(400MHz,MeOD)δ7.34–7.29(m,1H),7.23(d,J=2.7Hz,1H),7.10(d,J=8.9Hz,1H),6.80(d,J=5.9Hz,1H),6.41(d,J=5.8Hz,2H),4.31–4.22(m,1H),2.94(s,3H),2.57(s,3H),1.80–1.72(m,2H),1.54–1.23(m,8H).HPLC-MS:[M+H] +=416.3。
实施例32:化合物ZB-BD-93的合成:
Figure PCTCN2019071258-appb-000059
除了采用化合物B-17代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-93。
1H NMR(400MHz,CDCl 3)δ9.29(s,1H),8.42(s,1H),7.51(d,J=8.4Hz,1H),7.32–7.25(m,3H),7.24–7.17(m,3H),7.15(d,J=1.6Hz,1H),6.66(d,J=5.9Hz,1H),6.42(s,1H),6.29(d,J=5.8Hz,1H),3.97(s,2H),3.10(s,3H),2.45(s,3H).HPLC-MS:[M+H] +=408.3。
实施例33:化合物ZB-BD-94的合成:
Figure PCTCN2019071258-appb-000060
除了采用化合物B-6代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-94。 1H NMR(400MHz,MeOD)δ8.14(d,J=4.0Hz,1H),8.05(m,1H),7.46(dd,J=8.8,2.7Hz,1H),7.40(d,J=2.7Hz,1H),7.30–7.21(m,2H),7.21(m,1H),6.98(d,J=5.9Hz,1H),6.51(d,J=5.9Hz,1H),6.39(s,1H),3.06(s,3H),2.46(s,3H).HPLC-MS:[M+H] +=411.3。
实施例34:化合物ZB-BD-95的合成:
Figure PCTCN2019071258-appb-000061
除了采用化合物B-9代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-95。
1H NMR(400MHz,MeOD)δ7.35(d,J=8.6Hz,1H),7.29(dd,J=8.6,2.5Hz,1H),7.23–7.17(m,4H),7.12–7.07(m,2H),6.67(d,J=5.9Hz,1H),6.38(d,J=5.9Hz,1H),6.29(s,1H),3.02(s,3H),2.50(s,3H).HPLC-MS:[M+H] +=426.4.
实施例35:化合物ZB-BD-96的合成:
Figure PCTCN2019071258-appb-000062
除了采用化合物B-10代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-96。
1H NMR(400MHz,MeOD)δ7.32(dd,J=8.8,2.8Hz,1H),7.25(d,J=2.7Hz,1H),7.13(d,J=8.9Hz,1H),6.80(d,J=5.9Hz,1H),6.42(s,1H),6.39(d,J=5.9Hz,1H),4.51–4.44(m,1H),3.61–3.53(m,2H),3.50–3.40(m,2H),2.95(s,3H),2.58(s,3H),1.90–1.82(m,2H),1.62–1.52(m,2H).HPLC-MS:[M+H] +=418.4。
实施例36:化合物ZB-BD-97的合成:
Figure PCTCN2019071258-appb-000063
除了采用化合物B-8代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-97。HPLC-MS:[M+H] +=409.2
实施例37:化合物ZB-BD-98的合成:
Figure PCTCN2019071258-appb-000064
将化合物I-6(46mg,0.2mmol)、硼酸酯B-16(156mg,0.4mmol)溶于3mL乙二醇二甲醚,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯(Pd(dppf)Cl 2)(29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-98(12mg)。
1H NMR(400MHz,CDCl 3)δ10.24(s,1H),7.79(dd,J=8.8,2.2Hz,1H),7.66(d,J=2.3Hz,1H),6.76(d,J=8.9Hz,1H),6.61(d,J=5.8Hz,1H),6.46–6.39(m,2H),4.28(d,J=7.7Hz,1H),3.40–3.29(m,1H),3.03(s,3H),2.64(s,3H),1.96(d,J=10.2Hz,2H),1.75–1.60(m,2H),1.43–1.05(m,6H).HPLC-MS:[M+H] +=400.3
实施例38:化合物ZB-BD-99的合成:
Figure PCTCN2019071258-appb-000065
除了采用化合物B-14代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-99。HPLC-MS:[M+H] +=395.2。
实施例39:化合物ZB-BD-100的合成:
Figure PCTCN2019071258-appb-000066
除了采用化合物B-13代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-100。
1H NMR(400MHz,MeOD)δ8.04(d,J=2.3Hz,1H),8.00(dd,J=8.7,2.4Hz,1H),7.28(td,J=9.0,5.4Hz,1H),7.20(m,1H),7.07–7.01(m,2H),6.99(d,J=5.9Hz,1H),6.61(s,1H),6.51(d,J=5.9Hz,1H),3.19(s,3H),2.60(s,3H).HPLC-MS:[M+H] +=431.3。
实施例40:化合物ZB-BD-74的合成:
Figure PCTCN2019071258-appb-000067
除了采用化合物II-5代替化合物I-6以外,采用与实施例24中相同的方法,得到化合物ZB-BD-74。
1H NMR(400MHz,CDCl 3)δ8.81(s,1H),7.37–7.22(m,4H),7.06(t,J=7.4Hz,1H),6.97–6.93(m,1H),6.89–6.85(m,2H),6.34(s,1H),6.10(s,1H),4.07–3.99(m,2H),3.60–3.52(m,2H),3.05(s,3H),2.39(s,3H).HPLC-MS:[M+H] +=412.2.
实施例41:化合物ZB-BD-79的合成:
Figure PCTCN2019071258-appb-000068
除了采用化合物II-5代替化合物I-6,并采用化合物B-3代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-79。HPLC-MS:[M+H] +=462.3.
实施例42:化合物ZB-BD-81的合成:
Figure PCTCN2019071258-appb-000069
除了采用化合物II-5代替化合物I-6,并采用化合物B-4代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-81。HPLC-MS:[M+H] +=448.2.
实施例43:化合物ZB-BD-69的合成:
Figure PCTCN2019071258-appb-000070
除了采用化合物III-4代替化合物I-6以外,采用与实施例24中相同的方法,得到化合物ZB-BD-69。
1H NMR(400MHz,CDCl 3)δ10.40(s,1H),7.61(d,J=2.7Hz,1H),7.52(s,1H),7.35(s,1H),7.29–7.24(m,2H),7.20(dd,J=8.8,2.7Hz,1H),7.04(t,J=7.4Hz,1H),6.97–6.88(m,3H),6.54(s,1H),3.02(s,3H),2.46(s,3H).HPLC-MS:[M+H] +=411.2.
实施例44:化合物ZB-BD-76的合成:
Figure PCTCN2019071258-appb-000071
除了采用化合物IV-4代替化合物I-6以外,采用与实施例24中相同的方法,得到化合物ZB-BD-76。
1H NMR(400MHz,CDCl 3)δ10.42(s,1H),7.83(s,1H),7.51(d,J=2.7Hz,1H),7.39–7.32(m,2H),7.30–7.22(m,2H),7.06(t,J=7.4Hz,1H),6.99(s,1H),6.97(s,1H),6.90(d,J=8.9Hz,1H),2.99(s,3H),2.63(s,3H).HPLC-MS:[M+H] +=412.5
实施例45:化合物ZB-BD-86的合成:
Figure PCTCN2019071258-appb-000072
除了采用化合物V-5代替化合物I-6以外,采用与实施例24中相同的方法,得到化合物ZB-BD-86。
1H NMR(400MHz,MeOD)δ7.87(s,1H),7.40–7.33(m,2H),7.29(dd,J=8.9,2.7Hz,1H),7.14(t,J=7.4Hz,1H),7.04(d,J=7.9Hz,2H),6.90(d,J=8.9Hz,1H),4.48(t,J=9.4Hz,2H),3.99(t,J=9.5Hz,2H),3.01(s,3H),2.48(s,3H).HPLC-MS:[M+H] +=413.6
实施例46:化合物ZB-BD-102的合成:
Figure PCTCN2019071258-appb-000073
除了采用化合物VI-5代替化合物I-6以外,采用与实施例24中相同的方法,得到化合物ZB-BD-102。
1H NMR(400MHz,DMSO-d 6)δ11.57(s,1H),9.84(s,1H),8.12(s,1H),7.35–7.28(m,4H),7.11–7.01(m,2H),6.93(m,2H),6.60(s,1H),3.05(s,3H),2.42(s,3H).HPLC-MS:[M+H] +=411.2.
实施例47:化合物ZB-BD-103的合成:
Figure PCTCN2019071258-appb-000074
除了采用化合物VI-5代替化合物I-6,并采用化合物B-4代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-103。
1H NMR(400MHz,DMSO-d 6)δ11.60(s,1H),9.82(s,1H),8.10(s,1H),7.44(ddd,J=11.4,8.7,2.9Hz,1H),7.33(d,J=2.7Hz,1H),7.31–7.22(m,2H),7.11–7.05(m,1H),6.92(d,J=8.9Hz,1H),6.66(s,1H),3.03(s,3H),2.46(s,3H).HPLC-MS:[M+H] +=447.2
实施例48:硼酸酯B-18的合成:
Figure PCTCN2019071258-appb-000075
步骤1:
将10g对硝基溴化苄(CAS:100-11-8)溶于25mL N,N-二甲基甲酰胺中,加入甲烷亚磺酸钠(7.1g,CAS:20277-69-4),加热至70度反应2小时,冷却后,加水稀释,搅拌10分钟,析出固体过滤,得到白色固体E48-1,9.3g。HPLC-MS:[M+H] +=216.2。
步骤2:
将硝基化合物E48-1(9g)溶于500mL乙酸乙酯中,加入1g 10%Pd/C,保持在40度下,持续通入氢气反应过夜,过滤去除催化剂,浓缩得氨基产物E48-2(7.5g)。HPLC-MS:[M+H] +=186.2。
步骤3:
将氨基化合物E48-2(2g)溶于60mL N,N-二甲基甲酰胺中,加入1.9g N-溴代丁二酰亚胺,保持在15度下,反应1小时,加入10%硫代硫酸钠水溶液淬灭反应。乙酸乙酯萃取,有机层饱和食盐水洗,浓缩得粗品,加入200mL水,搅拌30分钟,析出固体,过滤,真空干燥得到溴代产物E48-3(1.8g)。HPLC-MS:[M+H] +=264.2/266.2。
步骤4:
将1g溴代产物E48-3,醋酸钯(42.5mg,CAS:3375-31-3),4,5-双二苯基膦-9,9-二甲基氧杂蒽(xantphos,175mg,CAS:161265-03-8),碳酸铯(2.45g),碘苯(1.8g,CAS:591-50-4)溶于50mL无水二氧六环,加热至110度反应18小时,反应结束后经硅藻土过滤,干燥浓缩,经柱层析分离得到产物E48-4(750mg)。 1H NMR(400MHz,CDCl 3)δ7.56(d,J=1.7Hz,1H),7.35(t,J=7.9Hz,2H),7.22–7.12(m,4H),7.10(t,J=7.4Hz,1H),6.22(s,1H),4.13(s,2H),2.80(s,3H)。HPLC-MS:[M+H] +=340.2/342.2。
步骤5:
将E48-4(440mg,1.29mmol),乙酸钾(380mg,3.87mmol),联硼酸频那醇酯(665mg,258mmol)溶于15mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(47mg,0.065mmol),加热至100℃,反应2个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析得到硼酸酯B-18(120mg)。 1H NMR(400MHz,CDCl 3)δ7.86(s,1H),7.66(d,J=1.9Hz,1H),7.33(t,J=7.8Hz,3H),7.22(t,J=7.3Hz,3H),7.05(t,J=7.4Hz,1H),4.15(s,2H),2.76(s,3H),1.36(s,12H).HPLC-MS:[M+H] +=388.2。
实施例49:硼酸酯B-19的合成:
Figure PCTCN2019071258-appb-000076
除了在步骤4中采用对氟碘苯(CAS:352-34-1)代替碘苯以外,采用与实施例48中相同的方法,得到硼酸酯B-19,HPLC-MS:[M+H] +=406.2。
实施例50:硼酸酯B-20的合成:
Figure PCTCN2019071258-appb-000077
除了在步骤4中采用对氯碘苯(CAS:637-87-6)代替碘苯以外,采用与实施例48中相同的方法,得到硼酸酯B-20,HPLC-MS:[M+H] +=422.1。
实施例51:硼酸酯B-21的合成:
Figure PCTCN2019071258-appb-000078
除了在步骤4中采用2,4-二氟碘苯(CAS:2265-93-2)代替碘苯以外,采用与实施例48中相同的方法,得到硼酸酯B-21,HPLC-MS:[M+H] +=424.1。
实施例52:化合物ZB-BD-87的合成:
Figure PCTCN2019071258-appb-000079
将化合物I-6(46mg,0.2mmol),硼酸酯B-18(155mg,0.4mmol)溶于9mL 1,4-二氧六环中,加入3mL 2M的碳酸钠水溶液,在氩气环境下加入氯化烯丙基钯(II)二聚物(7.3mg,0.02mmol)和2'-二环己基膦基-2,6-二甲氧基-1,1'-联苯基-3-磺酸钠水合物(21mg,0.04mmol)。110℃搅拌2个小时后,加入20mL水稀释,用20mL×3的乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-87(15mg)。 1H NMR(400MHz,DMSO-d 6)δ10.19(d,J=5.3Hz,1H),7.44(s,1H),7.32(d,J=7.0Hz,3H),7.19(t,J=7.8Hz,2H),7.05(d,J=7.8Hz,2H),6.84(t,J=7.3Hz,1H),6.67(d,J=5.7Hz,1H),6.43(s,1H),6.37(t,J=5.7Hz,1H),4.43(s,2H),2.92(s,3H),2.49(s,3H).HPLC-MS:[M+H] +=408.1。
实施例53:化合物ZB-BD-90的合成:
Figure PCTCN2019071258-appb-000080
除了采用化合物B-19代替化合物B-18以外,采用与实施例52中相同的方法,得到化合物ZB-BD-90, 1H NMR(400MHz,MeOD)δ7.37(d,J=7.5Hz,2H),7.21(d,J=9.0Hz,1H),7.04(dd,J=9.0,4.8Hz,2H),6.94(t,J=8.7Hz,2H),6.87(d,J=5.9Hz,1H),6.51(s,1H),6.41(d,J=5.9Hz,1H),4.39(s,2H),2.93(s,3H),2.58(s,3H)。HPLC-MS:[M+H] +=426.1。
实施例54:化合物ZB-BD-105的合成:
Figure PCTCN2019071258-appb-000081
除了采用化合物B-20代替化合物B-18以外,采用与实施例52中相同的方法,得到化合物ZB-BD-105, 1H NMR(400MHz,MeOD)δ10.19(d,J=5.1Hz,1H),7.62(s,1H),7.41–7.28(m,3H),7.19(d,J=8.8Hz,2H),7.01(d,J=8.8Hz,2H),6.63(d,J=5.9Hz,1H),6.40(s,1H),6.35(t,J=5.7Hz,1H),4.44(s,2H),2.91(s,3H),2.48(s,3H)。HPLC-MS:[M+H] +=442.1。
实施例55:化合物ZB-BD-110的合成:
Figure PCTCN2019071258-appb-000082
除了采用化合物B-21代替化合物B-18以外,采用与实施例52中相同的方法,得到化合物ZB-BD-110, 1H NMR(400MHz,DMSO-d 6)δ10.20(d,J=5.6Hz,1H),7.25(m,4H),7.13(dd,J=15.4,9.2Hz,1H),6.97(m,1H),6.75(d,J=6.1Hz,1H),6.67(d,J=5.5Hz,1H),6.45–6.38(m,2H),4.40(s,2H),2.90(s,3H),2.49(s,3H).HPLC-MS:[M+H] +=444.1。
实施例56:硼酸酯B-22的合成:
Figure PCTCN2019071258-appb-000083
实施例56的合成方法可参考文献:J.Med.Chem.,2017,60,8369;WO 2015058160;US 2014275026。
步骤1:
将3-溴-4-氟苯甲醛(2.1g,10mmol,CAS:77771-02-9),2,4-二氟苯酚(1.43g,11mmol),碳酸铯(3.6g,11mmol)依次加至50mL二甲亚砜中,氩气保护下升温至100℃反应2个小时。向反应液中加入500mL水,用乙酸乙酯150mL×3萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后,硅胶柱层析纯化得化合物E56-1(2.9g)。
步骤2:
将化合物E56-1(1.9g,6mmol)溶于5mL乙醇和5mL四氢呋喃,然后加入硼氢化钠(0.07g,1.8mmol),室温反应1小时,除去部分溶剂,残留物用乙酸乙酯溶解,加水,萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后得化合物E56-2(1.8g)。
步骤3:
将化合物E56-2(1.8g,5.6mmol)溶于10mL二氯甲烷,然后滴加三溴化磷(0.55mL,5.6mmol),室温反应3小时后,倒入冰水中,用碳酸氢钠水溶液将pH值调节至碱性,用二氯甲烷萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后得化合物E56-3(1.9g)。
步骤4:
将化合物E56-3(1.5g,4mmol)溶于8mL N,N-二甲基甲酰胺(DMF),而后加入甲硫醇钠(0.28g,4mmol),室温反应6小时后,用乙酸乙酯溶解,加水,萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后得化合物E56-4(1.2g)。
步骤5:
将化合物E56-4(0.7g,2mmol)溶于8mL甲醇,0度下加入过一硫酸氢钾复合盐(oxone,CAS:70693-62-8)(2.6g,4.2mmol,溶解于8mL水中),回到室温反应1小时后,用乙酸乙酯溶解,加水,萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后,经柱层析分离得化合物E56-5(0.6g)。HPLC-MS:[M+H] +=377.1/379.1。
步骤6:
将E56-5(488mg,1.29mmol),乙酸钾(380mg,3.87mmol),联硼酸频那醇酯(665mg,258mmol)溶于15mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(47mg,0.065mmol),加热至100℃,反应2个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析得到硼酸酯B-22(150mg)。
实施例57:硼酸酯B-23的合成:
Figure PCTCN2019071258-appb-000084
除了在步骤1中采用苯酚代替2,4-二氟苯酚以外,采用与实施例56中相同的方法,得到硼酸酯B-23。
实施例58:硼酸酯B-24的合成:
Figure PCTCN2019071258-appb-000085
除了在步骤1中采用对氯苯酚(CAS:106-48-9)代替2,4-二氟苯酚以外,采用与实施例56中相同的方法,得到硼酸酯B-24。
实施例59:硼酸酯B-25的合成:
Figure PCTCN2019071258-appb-000086
除了在步骤1中采用对氟苯酚(CAS:371-41-5)代替2,4-二氟苯酚以外,采用与实施例56中相同的方法,得到硼酸酯B-25。
实施例60:硼酸酯B-26的合成:
Figure PCTCN2019071258-appb-000087
除了在步骤4中采用乙硫醇钠代替甲硫醇钠以外,采用与实施例56中相同的方法,得到硼酸酯B-26。
实施例61:化合物ZB-BD-112的合成:
Figure PCTCN2019071258-appb-000088
除了采用化合物B-22代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-112。HPLC-MS:[M+H] +=445.1。 1H NMR(400MHz,MeOD)δ7.55(d,J=2.2Hz,1H),7.47(dd,J=8.5,2.3Hz,1H),7.12–7.04(m,2H),6.99(d,J=5.9Hz,1H),6.95–6.86(m,2H),6.50(d,J=0.8Hz,1H),6.43(d,J=5.9Hz,1H),4.47(s,2H),2.94(s,3H),2.55(d,J=0.6Hz,3H).
实施例62:化合物ZB-BD-113的合成:
Figure PCTCN2019071258-appb-000089
除了采用化合物B-23代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-113。HPLC-MS:[M+H] +=409.1。 1H NMR(400MHz,DMSO-d 6)δ10.27(d,J=5.6Hz,1H),7.52(s,1H),7.46(d,J=8.5Hz,1H),7.35(t,J=7.8Hz,2H),7.13(t,J=7.4Hz,1H),6.99(dd,J=8.3,4.8Hz,3H),6.90(d,J=5.9Hz,1H),6.48–6.36(m,2H),4.53(s,2H),2.94(s,3H),2.44(s,3H).
实施例63:化合物ZB-BD-114的合成:
Figure PCTCN2019071258-appb-000090
除了采用化合物B-24代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-114。HPLC-MS:[M+H] +=443.1。
实施例64:化合物ZB-BD-115的合成:
Figure PCTCN2019071258-appb-000091
除了采用化合物B-25代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-115。HPLC-MS:[M+H] +=427.1。
实施例65:化合物ZB-BD-116的合成:
Figure PCTCN2019071258-appb-000092
除了采用化合物B-26代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-116。HPLC-MS:[M+H] +=459.1。 1H NMR(400MHz,MeOD)δ7.53(d,J=2.2Hz,1H),7.46(dd,J=8.5,2.3Hz,1H),7.12–7.04(m,2H),6.98(d,J=5.9Hz,1H),6.94–6.86(m,2H),6.50(d,J=0.7Hz,1H),6.43(d,J=5.9Hz,1H),4.43(s,2H),3.08(q,J=7.5Hz,2H),2.54(s,3H),1.35(t,J=7.5Hz,3H).
实施例66:化合物ZB-BD-117的合成:
Figure PCTCN2019071258-appb-000093
原料B-27的合成:
除了省略了步骤4,而以化合物E48-3直接进行步骤5以外,采用与实施例48中相同的方法,得到硼酸酯B-27。
步骤1:
将化合物I-6(46mg,0.2mmol),硼酸酯B-27(155mg,0.4mmol)溶于9mL 1,4-二氧六环中,加入3mL 2M的碳酸钠水溶液,在氩气环境下加入氯化烯丙基钯(II)二聚物(7.3mg,0.02mmol)和2'-二环己基膦基-2,6-二甲氧基-1,1'-联苯基-3-磺酸钠水合物(21mg,0.04mmol)。110℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物E66-1(12mg). 1H NMR(400MHz,DMSO-d 6)δ10.21(d,J=5.1Hz,1H),7.15(dd,J=8.3,2.0Hz,1H),7.08(d,J=1.9Hz,1H),6.79(d,J=8.3Hz,1H),6.61(d,J=5.7Hz,1H),6.43(t,J=5.7Hz,1H),6.39(s,1H),5.13(s,2H),4.29(s,2H),2.85(s,3H).HPLC-MS:[M+H] +=332.1。
步骤2:
化合物E66-1(10mg)溶于1mL二氯乙烷,加入0.5mL醋酸,10mg氰基硼氢化钠,以及环丙基甲醛(5μL,市售商品CAS:1489-69-6),室温下搅拌2小时,除去溶剂,硅胶柱层析纯化,得到化合物ZB-BD-117(5mg)。 1H NMR(400MHz,DMSO-d 6)δ10.24(s,1H),7.27(m,1H),7.10(s,1H),6.80(m,1H),6.56(m,1H),6.41(m,2H),4.87(brs,1H),4.32(s,2H),2.95(m,2H),2.86(s,3H),2.50(s,3H),1.04(m,1H),0.40(m,2H),0.17(m,2H).HPLC-MS:[M+H] +=386.2。
实施例67:化合物ZB-BD-118的合成:
Figure PCTCN2019071258-appb-000094
化合物E66-1(10mg)溶于1mL二氯乙烷,加入0.5mL醋酸,10mg氰基硼氢化钠,以及四氢吡喃-4-甲醛(10μL,市售商品CAS:50675-18-8),室温下搅拌3小时,除去溶剂,硅胶柱层析纯化,得到化合物ZB-BD-118(4mg)。 1H NMR(400MHz,DMSO-d 6)δ10.19(d,J=4.8Hz,1H),7.25(d,J=7.7Hz,1H),7.05(s,1H),6.73(d,J=8.6Hz,1H),6.50(d,J=5.5Hz,1H),6.38(m,2H),4.99(s,1H),4.29(s,2H),3.79(d,J=8.9Hz,2H),3.21(t,J=11.2Hz,2H),2.92(m,2H),2.84(s,3H),2.51(s,3H),1.75(m,1H),1.54(m,2H),1.10(m,2H).HPLC-MS:[M+H] +=430.2。
实施例68:化合物ZB-BD-119的合成:
Figure PCTCN2019071258-appb-000095
除了采用化合物VI-5代替化合物I-6,并采用化合物B-10代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-119。 1H NMR(400MHz,DMSO-d 6)δ11.55(s,1H),9.60(s,1H),7.89(s,1H),7.33–7.19(m,3H),6.59(s,1H),4.65–4.51(m,1H),3.58–3.48(m,2H),3.40(m,2H),2.98(s,3H),2.50(s,3H),1.95–1.76(m,2H),1.42(m,2H).HPLC-MS:[M+H] +=419.1.
实施例69:化合物ZB-BD-120的合成:
Figure PCTCN2019071258-appb-000096
除了采用化合物VI-5代替化合物I-6,并采用化合物B-6代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-120。 1H NMR(400MHz,MeOD)δ8.21(m,1H),8.13(s,1H),8.09(s,1H),7.48(m,2H),7.33(m,2H),7.28–7.24(m,1H),6.59(s,1H),3.07(s,3H),2.47(s,3H).HPLC-MS:[M+H] +=412.1.
实施例70:化合物ZB-BD-121的合成:
Figure PCTCN2019071258-appb-000097
除了采用化合物VI-5代替化合物I-6,并采用化合物B-11代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-121。 1H NMR(400MHz,DMSO-d 6)δ11.54(s,1H),9.56(s,1H),7.90(s,1H),7.29(dd,J=8.8,2.6Hz,1H),7.22(d,J=2.6Hz,1H),7.14(d,J=8.9Hz,1H),6.58(s,1H),3.88(d,J=6.9Hz,2H),2.96(s,3H),2.50(s,3H),1.12–1.01(m,1H),0.51–0.40(m,2H),0.33–0.18(m,2H).HPLC-MS:[M+H] +=389.1.
实施例71:化合物ZB-BD-122的合成:
Figure PCTCN2019071258-appb-000098
除了采用化合物VI-5代替化合物I-6,并采用化合物B-3代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-122。HPLC-MS:[M+H] +=461.1.
实施例72:硼酸酯B-28的合成
Figure PCTCN2019071258-appb-000099
除了以E72-1代替E56-1为原料以外,以与实施例56中步骤2-6中相同的方法制备硼酸酯B-28。
实施例73:硼酸酯B-29的合成
Figure PCTCN2019071258-appb-000100
除了以E73-1代替E56-1为原料以外,以与实施例56中步骤2-6中相同的方法制备硼酸酯B-29。
实施例74:硼酸酯B-30的合成
Figure PCTCN2019071258-appb-000101
除了以E72-1代替E56-1为原料,并以乙硫醇钠代替甲硫醇钠以外,以与实施例56中步骤2-6中相同的方法制备硼酸酯B-30。
实施例75:化合物ZB-BD-123的合成:
Figure PCTCN2019071258-appb-000102
除了采用化合物VI-5代替化合物I-6,并采用化合物B-22代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-123。HPLC-MS:[M+H] +=446.1.
实施例76:化合物ZB-BD-124的合成:
Figure PCTCN2019071258-appb-000103
除了采用化合物VI-5代替化合物I-6,并采用化合物B-26代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-124。HPLC-MS:[M+H] +=460.1.
实施例77:化合物ZB-BD-125的合成:
Figure PCTCN2019071258-appb-000104
除了采用化合物VI-5代替化合物I-6,并采用化合物B-28代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-125。HPLC-MS:[M+H] +=418.1.
实施例78:化合物ZB-BD-126的合成:
Figure PCTCN2019071258-appb-000105
除了采用化合物VI-5代替化合物I-6,并采用化合物B-29代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-126。HPLC-MS:[M+H] +=388.1.
实施例79:化合物ZB-BD-127的合成:
Figure PCTCN2019071258-appb-000106
除了采用化合物VI-5代替化合物I-6,并采用化合物B-30代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-127。HPLC-MS:[M+H] +=432.1.
实施例80:化合物ZB-BD-68的合成:
Figure PCTCN2019071258-appb-000107
除了采用化合物III-4代替化合物I-6,并采用市售硼酸B-31(CAS:108238-09-1)代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-68。 1H NMR(400MHz,CDCl 3)δ10.82(s,1H),7.69(dd,J=7.7,1.7Hz,1H),7.46(d,J=3.3Hz,1H),7.40–7.29(m,3H),7.23(td,J=7.6,1.2Hz,1H),7.09(dd,J=10.6,4.2Hz,1H),7.01(m,3H),6.55(m,1H),2.57(s,3H).HPLC-MS:[M+H] +=318.1.
实施例81:化合物ZB-BD-73的合成:
Figure PCTCN2019071258-appb-000108
除了采用市售硼酸B-31(CAS:108238-09-1)代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-73。 1H NMR(400MHz,CDCl 3)δ9.64(s,1H),7.46(dd,J=7.6,1.7Hz,1H),7.43–7.35(m,1H),7.29–7.18(m,3H),7.09–7.01(m,2H),6.89(m,3H),6.41(s,1H),6.38(m,1H),2.59(s,3H).HPLC-MS:[M+H] +=317.1.
实施例82:化合物ZB-BD-128的合成:
Figure PCTCN2019071258-appb-000109
除了采用化合物B-28代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-128。HPLC-MS:[M+H] +=417.1. 1H NMR(400MHz,乙腈-d 3)δ8.74(s,1H),7.45(dd,J=8.5,2.3Hz,1H),7.39(d,J=2.3Hz,1H),7.19(d,J=8.6Hz,1H),6.71(d,J=5.9Hz,1H),6.41(s,1H),6.39–6.33(m,1H),4.64–4.55(m,1H),4.31(s,2H),3.72– 3.61(m,2H),3.49–3.38(m,2H),2.85(s,3H),2.56(s,3H),1.96–1.87(m,2H),1.61–1.51(m,2H).
实施例83:化合物ZB-BD-129的合成:
Figure PCTCN2019071258-appb-000110
除了采用化合物B-29代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-129。HPLC-MS:[M+H] +=387.1. 1H NMR(400MHz,DMSO-d 6)δ10.22(d,J=5.5Hz,1H),7.43(dd,J=8.5,2.3Hz,1H),7.34(d,J=2.3Hz,1H),7.17(d,J=8.6Hz,1H),6.68(d,J=6.0Hz,1H),6.41(t,J=5.7Hz,1H),6.37(s,1H),4.44(s,2H),3.90(d,J=6.9Hz,2H),2.89(s,3H),2.50(s,3H),1.16–1.06(m,1H),0.50–0.41(m,2H),0.29–0.21(m,2H).
实施例84:化合物ZB-BD-130的合成:
Figure PCTCN2019071258-appb-000111
除了采用化合物B-15代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-130。 1H NMR(400MHz,DMSO-d 6)δ10.23(d,J=5.3Hz,1H),7.94(s,1H),7.74(dd,J=8.8,2.3Hz,1H),7.66(d,J=2.3Hz,1H),7.34–7.23(m,3H),7.19(m,2H),7.04(t,J=7.3Hz,1H),6.68(d,J=5.7Hz,1H),6.52(s,1H),6.40(t,J=5.7Hz,1H),3.18(s,3H),2.50(s,3H).HPLC-MS:[M+H] +=394.1.
实施例85:化合物ZB-BD-131的合成:
Figure PCTCN2019071258-appb-000112
化合物E66-1(15mg)溶于2mL二氯乙烷,加入1mL醋酸,50mg氰基硼氢化钠,以及四氢吡喃酮(50μL,市售商品CAS:29943-42-8),室温下搅拌24小时,除去溶剂,硅胶柱层析纯化,得到化合物ZB-BD-131(2mg)。 1H NMR(400MHz,DMSO-d 6)δ10.23(d,J=5.2Hz,1H),7.27(d,J=8.3Hz,1H),7.11(d,J=2.1Hz,1H),6.86(d,J=8.7Hz,1H),6.56(d,J=5.8Hz,1H),6.47–6.34(m,2H),4.54(d,J=8.1Hz,1H),4.32(s,2H),3.80(m,2H),3.50(m,1H),3.39(m,2H),2.86(s,3H),1.80(m,2H),1.36(m,2H). HPLC-MS:[M+H] +=416.2。
实施例86:化合物ZB-BD-132的合成:
Figure PCTCN2019071258-appb-000113
除了采用化合物II-5代替化合物I-6,并采用化合物B-10代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-132。HPLC-MS:[M+H] +=420.2.
实施例87:化合物ZB-BD-133的合成:
Figure PCTCN2019071258-appb-000114
除了采用化合物II-5代替化合物I-6,并采用化合物B-11代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-133。HPLC-MS:[M+H] +=390.2.
实施例88:化合物ZB-BD-134的合成:
Figure PCTCN2019071258-appb-000115
除了采用化合物II-5代替化合物I-6,并采用化合物B-22代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-134。HPLC-MS:[M+H] +=447.2.
实施例89:化合物ZB-BD-135的合成:
Figure PCTCN2019071258-appb-000116
除了采用化合物II-5代替化合物I-6,并采用化合物B-6代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-135。HPLC-MS:[M+H] +=413.2.
实施例90:化合物ZB-BD-136的合成
Figure PCTCN2019071258-appb-000117
步骤1:
将化合物II-5(46mg),硼酸酯B-27(155mg)溶于9mL 1,4-二氧六环中,加入3mL2M的碳酸钠水溶液,在氩气环境下加入氯化烯丙基钯(II)二聚物(CAS:12012-95-2)(7.3mg,0.02mmol)和2'-二环己基膦基-2,6-二甲氧基-1,1'-联苯基-3-磺酸钠水合物(21mg,0.04mmol)。110℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物E90-1.
步骤2:
化合物E90-1(10mg)溶于1mL二氯乙烷,加入0.5mL醋酸,10mg氰基硼氢化钠,以及环丙基甲醛(5μL,市售商品CAS:1489-69-6),室温下搅拌2小时,除去溶剂,硅胶柱层析纯化,得到化合物ZB-BD-136(4mg)。HPLC-MS:[M+H] +=388.2.
实施例91:化合物ZB-BD-137的合成
Figure PCTCN2019071258-appb-000118
除了采用化合物II-5代替化合物I-6,并采用化合物B-28代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-137。HPLC-MS:[M+H] +=419.2.
实施例92:硼酸酯B-32的合成
Figure PCTCN2019071258-appb-000119
参考WO 2015058160中所述合成方法制备化合物B-32。
步骤1:
将2-氯-3-溴-5-硝基吡啶(5.0g,CAS:5470-17-7),2,4-二氟苯酚(2.3g),碳酸铯(8g)悬浮在100mL二甲亚砜中,加热至100℃反应1个小时,冷却至室温后,过滤除去固体,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得中间体E92-1(7g)。
步骤2:
将E92-1(7g)溶于50mL乙醇和50mL四氢呋喃,加入20mL水,室温下分批加入铁粉(7.1g),氯化铵(4.5g),加入完毕后,缓慢升至95℃,搅拌反应2个小时。硅藻土过滤反应液,将滤液倒入水中,加入乙酸乙酯萃取两次,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得中间体E92-2(6.8g)。HPLC-MS:[M-H] +=301.1/303.1。
步骤3:
将E92-2(6.8g)溶于50mL吡啶中,冷却至零度,缓慢滴加甲基磺酰氯(2.7g),滴加完毕后,升至室温反应6个小时,加入冰水和乙酸乙酯分层,取有机相,依次用2M稀盐酸、饱和食盐水洗涤,无水硫酸钠干燥,浓缩除去乙酸乙酯后,加入石油醚打浆得中间体E92-3(5.3g)。HPLC-MS:[M-H] +=379.1/380.1。
步骤4:
将E92-3(6.4g),乙酸钾(3.6g),联硼酸频那醇酯(9.2g)溶于100mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.7g),加热至100℃,反应12个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析后,乙醚打浆得硼酸酯B-32(3.2g)。HPLC-MS:[M+H] +=427.1.
实施例93:硼酸酯B-33的合成
Figure PCTCN2019071258-appb-000120
除了步骤1中以苯酚代替2,4-二氟苯酚以外,以与实施例92中相同的方法制备硼酸酯B-33。 1H NMR(400MHz,DMSO-d 6)δ9.68(s,1H),8.08(d,J=2.9Hz,1H),7.92(d,J=2.9Hz,1H),7.42–7.32(m,2H),7.16(t,J=7.4Hz,1H),7.04(m,2H),2.99(s,3H),1.27(s,12H).HPLC-MS:[M+H] +=391.1.
实施例94:硼酸酯B-34的合成
Figure PCTCN2019071258-appb-000121
除了步骤1中以羟甲基环丙烷代替2,4-二氟苯酚以外,以与实施例92中相同的方法制备硼酸酯B-34。HPLC-MS:[M+H] +=369.1.
实施例95:硼酸酯B-35的合成
Figure PCTCN2019071258-appb-000122
除了步骤1中以四氢吡喃-4-醇代替2,4-二氟苯酚以外,以与实施例92中相同的方法制备硼酸酯B-35。HPLC-MS:[M+H] +=399.1.
实施例96:硼酸酯B-36的合成
Figure PCTCN2019071258-appb-000123
除了步骤1中以3-羟基吡啶代替2,4-二氟苯酚以外,以与实施例92中相同的方法制备硼酸酯B-36。HPLC-MS:[M+H] +=392.1.
实施例97:硼酸酯B-37的合成
Figure PCTCN2019071258-appb-000124
除了以3-溴-4-氟硝基苯(CAS:701-45-1)为原料,并且在步骤1中以(S)-(+)-3-羟基四氢呋喃(CAS:86087-23-2)代替2,4-二氟苯酚以外,以与实施例92中相同的方法制备硼酸酯B-37。HPLC-MS:[M+H] +=384.1.
实施例98:硼酸酯B-38的合成
Figure PCTCN2019071258-appb-000125
除了以3-溴-4-氟硝基苯为原料,并且在步骤1中以(R)-(+)-3-羟基四氢呋喃(CAS:86087-24-3)代替2,4-二氟苯酚以外,以与实施例92中相同的方法制备硼酸酯B-38。HPLC-MS:[M+H] +=384.1.
实施例99:硼酸酯B-39的合成
Figure PCTCN2019071258-appb-000126
参考WO 2013097601中所述合成方法制备硼酸酯B-39。
步骤1:
将5-溴-6-氯烟酸(3.0g,CAS:29241-62-1),2,4-二氟苯酚(3.3g),碳酸铯(16g)悬浮在30mL二甲亚砜中,加热至100℃反应6个小时,冷却至室温后,加入水,用12M盐酸调节pH值至3,析出固体,过滤,水洗,干燥的产物E99-1(2.8g)。
步骤2:
将E99-1(2g)溶于40mL四氢呋喃,加入硼烷四氢呋喃络合物(12mL,CAS:14044-65-6),升至50℃,搅拌反应2个小时。加入20mL甲醇保持在此温度下,继续反应1小时,冷却将滤液倒入水中,加入乙酸乙酯萃取,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩经柱层析得中间体E99-2(0.68g)。
步骤3:
将E99-2(0.7g)溶于10mL二氯甲烷,滴加三溴化磷(0.2mL,CAS:7789-60-8),室温下搅拌反应1个小时。反应液倒入冰水中,用碳酸氢钠调节pH值至9,加入二氯甲烷萃取,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩经柱层析得中间体E99-3(0.65g)。
步骤4:
将化合物E99-3(0.75g)溶于5mL N,N-二甲基甲酰胺,而后加入甲硫醇钠(0.14g),室温反应4小时后,用乙酸乙酯溶解,加水,萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后得化合物E99-4(0.62g)。
步骤5:
将化合物E99-4(0.7g)溶于7mL甲醇,0度下加入oxone(2.5g,溶解于7mL水中),回到室温反应2小时后,用乙酸乙酯溶解,加水,萃取,合并有机相,饱和食盐水洗三 次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后,经柱层析分离得化合物E99-5(0.45g)。
步骤6:
将E99-5(486mg),乙酸钾(390mg),联硼酸频那醇酯(680mg)溶于15mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(47mg),加热至100℃,反应12个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析得到硼酸酯B-39(110mg)。
实施例100:硼酸酯B-40的合成
Figure PCTCN2019071258-appb-000127
除了在步骤1中以3-羟基吡啶代替2,4-二氟苯酚以外,以与实施例99中相同的方法制备硼酸酯B-40。
实施例101:硼酸酯B-41的合成
Figure PCTCN2019071258-appb-000128
除了在步骤1中以对氯苯酚代替2,4-二氟苯酚以外,以与实施例99中相同的方法制备硼酸酯B-41。
实施例102:硼酸酯B-42的合成
Figure PCTCN2019071258-appb-000129
除了在步骤1中以异丁醇代替2,4-二氟苯酚以外,以与实施例99中相同的方法制备硼酸酯B-42。
实施例103:硼酸酯B-43的合成
Figure PCTCN2019071258-appb-000130
参考WO 2013097601中所述合成方法制备硼酸酯B-43。
步骤1:
将5-甲磺酰基-1H-吡啶-2-酮(3.6g,CAS:18085-51-3),醋酸钠(2g)溶于50mL 醋酸中,缓慢滴加Br 2(1.3mL,事先溶于10mL醋酸),40℃下反应5个小时,冷却至室温后,加入10%硫代硫酸钠猝灭,析出固体,过滤,水洗,真空干燥得产物E103-1(3.8g)。
步骤2:
将E103-1(1.8g)溶于30mL三氯氧磷,110℃下搅拌反应4个小时。反应液倒入冰水中,析出固体,过滤,水洗,真空干燥得产物E103-2(0.66g)。
步骤3:
将E103-2(0.4g),2,4-二氟苯酚(0.1g),碳酸铯(0.325g)悬浮在5mL二甲亚砜中,加热至100℃反应2个小时,冷却至室温后,加入水,乙酸乙酯萃取,水洗,干燥,经柱层析分离得到E103-3(0.5g)。
步骤4:
将E103-3(450mg),乙酸钾(370mg),联硼酸频那醇酯(650mg)溶于15mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(40mg),加热至100℃,反应12个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析得到硼酸酯B-43(80mg)。
实施例104:硼酸酯B-44的合成
Figure PCTCN2019071258-appb-000131
参考WO 2013097601中所述合成方法以及硼酸酯B-43的方法制备硼酸酯B-44。
步骤1:
将E103-2(0.4g),羟甲基环丙烷(0.1g,CAS:2516-33-8)溶于3mL DMF中,0℃下加入60%钠氢(0.5g),回到室温反应过夜,加入水,乙酸乙酯萃取,水洗,干燥,经柱层析分离得到E104-1(0.4g)。
步骤2:
将E104-1(400mg),乙酸钾(350mg),联硼酸频那醇酯(600mg)溶于10mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(30mg),加热至100℃,反应12个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析得到硼酸酯B-44(95mg)。
实施例105:硼酸酯B-45的合成
Figure PCTCN2019071258-appb-000132
除了在步骤1中以四氢吡喃-4-醇代替羟甲基环丙烷以外,以与实施例104中相同的方法制备硼酸酯B-45。
实施例106:硼酸酯B-46的合成:
Figure PCTCN2019071258-appb-000133
参考WO 2013097601中所述合成方法以及硼酸酯B-13的方法制备硼酸酯B-46。
步骤1:
将E19-1(0.35g),羟甲基环丙烷(0.14g,CAS:2516-33-8)溶于3mL DMF中,室温下加入60%钠氢(0.5g),加热至60℃反应过夜,加入水,乙酸乙酯萃取,水洗,干燥,经柱层析分离得到E106-1(0.28g)。
步骤2:
将E106-1(200mg),乙酸钾(170mg),联硼酸频那醇酯(300mg)溶于5mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(15mg),加热至100℃,反应12个小时后,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析得到硼酸酯B-46(60mg)。
实施例107:硼酸酯B-47的合成:
Figure PCTCN2019071258-appb-000134
除了在步骤1中以四氢吡喃-4-醇代替羟甲基环丙烷以外,以与实施例106中相同的方法制备硼酸酯B-47。
实施例108:化合物ZB-BD-140的合成:
Figure PCTCN2019071258-appb-000135
除了采用化合物B-32代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-140。HPLC-MS:[M+H] +=447.1. 1H NMR(400MHz,DMSO-d 6)δ10.38(d,J=5.6Hz,1H),9.91(s,1H),7.99(d,J=2.6Hz,1H),7.74(d,J=2.7Hz,1H),7.44(tt,J=8.7,4.4Hz,2H),7.13(td,J=8.4,2.6Hz,1H),6.98(d,J=5.9Hz,1H),6.62(s,1H),6.52(dt,J=5.7,2.8Hz,1H),3.07(s,3H),2.50(s,3H).
实施例109:化合物ZB-BD-141的合成:
Figure PCTCN2019071258-appb-000136
除了采用化合物B-33代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-141。 1H NMR(400MHz,MeOD)δ8.07(d,J=2.7Hz,1H),7.84(d,J=2.7Hz,1H),7.37(m,2H),7.18(t,J=7.5Hz,1H),7.09(m,3H),6.60(s,1H),6.50(d,J=5.9Hz,1H),3.04(s,3H),2.59(s,3H).HPLC-MS:[M+H] +=411.1.
实施例110:化合物ZB-BD-142的合成:
Figure PCTCN2019071258-appb-000137
除了采用化合物B-34代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-142。HPLC-MS:[M+H] +=389.1. 1H NMR(400MHz,MeOD)δ8.11(d,J=2.7Hz,1H),7.66(d,J=2.8Hz,1H),6.87(d,J=5.9Hz,1H),6.50(s,1H),6.45(d,J=5.9Hz,1H),4.19(d,J=7.1Hz,2H),2.98(s,3H),2.58(s,3H),1.24–1.19(m,1H),0.55–0.49(m,2H),0.32–0.25(m,2H).
实施例111:化合物ZB-BD-143的合成:
Figure PCTCN2019071258-appb-000138
除了采用化合物B-35代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-143。HPLC-MS:[M+H] +=419.1. 1H NMR(400MHz,MeOD-d 4)δ8.13(d, J=2.7Hz,1H),7.68(d,J=2.7Hz,1H),6.87(d,J=5.9Hz,1H),6.50(s,1H),6.47(d,J=5.9Hz,1H),5.37–5.30(m,1H),3.80–3.72(m,2H),3.60–3.52(m,2H),2.99(s,3H),2.58(s,3H),2.07–1.99(m,2H),1.73–1.63(m,2H).
实施例112:化合物ZB-BD-144的合成:
Figure PCTCN2019071258-appb-000139
除了采用化合物B-36代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-144。HPLC-MS:[M+H] +=412.1.
实施例113:化合物ZB-BD-145的合成:
Figure PCTCN2019071258-appb-000140
除了采用化合物B-37代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-145。HPLC-MS:[M+H] +=404.1.
实施例114:化合物ZB-BD-146的合成:
Figure PCTCN2019071258-appb-000141
除了采用化合物B-38代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-146。HPLC-MS:[M+H] +=404.1.
实施例115:化合物ZB-BD-147的合成:
Figure PCTCN2019071258-appb-000142
除了采用化合物B-39代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-147。HPLC-MS:[M+H] +=446.1. 1H NMR(400MHz,DMSO-d 6)δ10.39(d,J=5.3Hz,1H),8.15(d,J=2.3Hz,1H),7.98(d,J=2.3Hz,1H),7.52–7.40(m,2H),7.20–7.10(m,1H),7.00(d,J=5.8Hz,1H),6.62(s,1H),6.53(t,J=5.7Hz,1H),4.58(s,2H),2.99(s,3H),2.51(s,3H).
实施例116:化合物ZB-BD-148的合成:
Figure PCTCN2019071258-appb-000143
除了采用化合物B-40代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-148。HPLC-MS:[M+H] +=411.1.
实施例117:化合物ZB-BD-149的合成:
Figure PCTCN2019071258-appb-000144
除了采用化合物B-41代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-149。HPLC-MS:[M+H] +=444.1.
实施例118:化合物ZB-BD-150的合成:
Figure PCTCN2019071258-appb-000145
除了采用化合物B-42代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-150。HPLC-MS:[M+H] +=390.2.
实施例119:化合物ZB-BD-151的合成:
Figure PCTCN2019071258-appb-000146
除了采用化合物B-43代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-151。HPLC-MS:[M+H] +=432.1. 1H NMR(400MHz,DMSO-d 6)δ10.43(d,J=5.2Hz,1H),8.66(d,J=2.4Hz,1H),8.39(d,J=2.4Hz,1H),7.58–7.44(m,2H),7.18(t,J=8.5Hz,1H),7.06(d,J=5.8Hz,1H),6.73(s,1H),6.55(t,J=5.6Hz,1H),3.36(s,3H),2.52(s,3H).
实施例120:化合物ZB-BD-152的合成:
Figure PCTCN2019071258-appb-000147
除了采用化合物B-44代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-152。HPLC-MS:[M+H] +=374.1. 1H NMR(400MHz,DMSO-d 6)δ10.37(d,J=5.1Hz,1H),8.71(d,J=2.5Hz,1H),8.18(d,J=2.5Hz,1H),6.84(d,J=5.7Hz,1H),6.60(s,1H),6.49(t,J=5.7Hz,1H),4.29(d,J=7.2Hz,2H),3.32(s,3H),2.51(s,3H),1.26–1.22(m,1H),0.54–0.48(m,2H),0.36–0.29(m,2H).
实施例121:化合物ZB-BD-153的合成:
Figure PCTCN2019071258-appb-000148
除了采用化合物B-45代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-153。HPLC-MS:[M+H] +=404.1. 1H NMR(400MHz,DMSO-d 6)δ10.37(d,J=5.2Hz,1H),8.72(d,J=2.5Hz,1H),8.20(d,J=2.5Hz,1H),6.84(d,J=5.7Hz, 1H),6.59(s,1H),6.50(t,J=5.7Hz,1H),5.49–5.35(m,1H),3.77–3.65(m,2H),3.54–3.43(m,2H),3.33(s,3H),2.51(s,3H),2.02(dd,J=9.3,4.0Hz,2H),1.69–1.51(m,2H).
实施例122:化合物ZB-BD-154的合成:
Figure PCTCN2019071258-appb-000149
除了采用化合物B-46代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-154。HPLC-MS:[M+H] +=373.1.
实施例123:化合物ZB-BD-155的合成:
Figure PCTCN2019071258-appb-000150
除了采用化合物B-47代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-155。HPLC-MS:[M+H] +=403.1.
实施例124:化合物VII-1的合成
Figure PCTCN2019071258-appb-000151
将化合物I-6(113mg)和碘甲烷(78mg)溶于5mL无水四氢呋喃中,加入60%氢化钠(60mg),室温下反应两个小时后,真空旋转蒸发除去溶剂,硅胶柱层析纯化得到化合物VII-1(120mg)。HPLC-MS:[M+H] +=241.1/243.1.
实施例125:化合物ZB-BD-156的合成
Figure PCTCN2019071258-appb-000152
除了采用化合物VII-1代替化合物I-6以外,采用与实施例24中相同的方法,得到化合物ZB-BD-156。 1H NMR(400MHz,MeOD)δ7.36(dd,J=6.4,2.3Hz,2H),7.24–7.17(m,3H),7.01–6.94(m,2H),6.80(m,2H),6.52(d,J=6.0Hz,1H),6.40(s,1H),3.36(s,3H),3.01(s,3H),2.48(s,3H).HPLC-MS:[M+H] +=424.1.
实施例126:硼酸酯M-1的合成
Figure PCTCN2019071258-appb-000153
步骤1:
3-溴-4-氟苯磺酰氯(0.96g,3.5mmol,CAS:631912-19-1)溶于8ml二氯甲烷(DCM)中,冰浴下加入三乙胺(0.71g,7.1mmol),叔丁胺(0.28g,3.9mmol),加毕室温搅拌3h。TLC检测原料反应完全。反应液倒入水中,DCM萃取,有机层盐水洗干燥浓缩得到1.01克M-1-1。
步骤2:
M-1-1(1.01g,3.3mmol),2,4-二氟苯酚(0.47g,3.6mmol),碳酸铯(1.38g,4.25mmol)于15ml二甲基亚砜(DMSO)中氮气保护下110℃搅拌2h。TLC检测反应完全。反应液冷却到室温,倒入水中,EA萃取,有机层水洗盐水洗,干燥浓缩后得到M-1-2。
步骤3:
将M-1-2(2.1g,4.9mmol),乙酸钾(1.1g,11.3mmol),联硼酸频那醇酯(bis(pinacolatodiboron,2.5g,9.8mmol,CAS:73183-34-3)溶于30mL二氧六环(1,4-dioxane)中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(Pd(dppf)Cl 2,0.18g,0.25mmol,CAS:72287-26-4),加热至90℃,反应过夜。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,石油醚打浆得硼酸酯M-1。 1H NMR(400MHz,CDCl 3)δ8.28(d,J=2.8Hz,1H),7.86(dd,J=8.4,2.4Hz,1H),7.00-6.92(m,2H),6.86–6.80(m,2H),4.47(s,1H),1.29(s,12H),1.24(s,9H).
实施例127:硼酸酯M-2的合成
Figure PCTCN2019071258-appb-000154
除了在步骤1中采用对氟苯酚代替苯酚以外,采用与实施例7中合成方法相同的步骤反应得到硼酸酯M-2。
1H NMR(400MHz,CDCl 3)δ7.51(d,J=2.4Hz,1H),7.42(dd,J=8.8,2.8Hz,1H),6.98–6.93(m,3H),6.85–6.81(m,2H),6.54(s,1H),3.01(s,3H),1.20(s,12H).
实施例128:硼酸酯M-3的合成
Figure PCTCN2019071258-appb-000155
步骤1:
将3-溴-4-氟硝基苯(5.0g,22.7mmol,CAS:701-45-1),2,4-二氟苯酚(3.0g,23.1mmol),碳酸铯(9.5g,29.2mmol)悬浮在6mL二甲亚砜中,加热至100℃反应过夜,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发得中间体M-3-1。
步骤2:
将M-3-1(7.2g,21.8mmol)溶于50mL乙醇和30mL水中,室温下分批加入铁粉(5.0g),氯化铵(9.6g),加入完毕后,缓慢升至80℃,搅拌反应2个小时。硅藻土过滤反应液,将滤液倒入水中,加入乙酸乙酯萃取两次,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得粗品中间体M-3-2(6.3g)。
步骤3:
M-3-2(8.0g,26.7mmol)和三乙胺(5.4g,53.3mmol)溶于DCM(50mL)中,冰浴下滴加乙酰氯(2.7g,34.7mmol),然后室温下搅拌1h,TLC反应完全,浓缩,加水,EA萃取,有机相用无水硫酸钠干燥,浓缩,PE/EA打浆得6.9g固体M-3-3。
步骤4:
将M-3-3(6.9g,20.2mmol),乙酸钾(5.9g,60.5mmol),联硼酸频那醇酯(10.2g,40.4mmol,CAS:73183-34-3)溶于50mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.8g,1.1mmol,CAS:72287-26-4),加热至100℃,反应3小时。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,乙酸乙酯和石油醚打浆,得硼酸酯M-3(1.7g)。
1H NMR(400MHz,CDCl 3)δ7.85(dd,J=8.8,2.8Hz,1H),7.61(d,J=2.8Hz,1H),7.31(s,1H),6.93-6.81(m,2H),6.70-6.65(m,2H),2.15(s,3H),1.18(s,12H).HPLC-MS:[M+H] +=390.1
实施例129:硼酸酯M-4的合成
Figure PCTCN2019071258-appb-000156
步骤1:
将甲胺盐酸盐(1.1g,16.3mmol和三乙胺(3.3g,32.6mol)于40mL DCM中,冰浴下滴加3-溴-4-氟苯磺酰氯(3.0g,11.0mmol,CAS:631912-19-1),加毕室温搅拌2h。TLC检测原料反应完全。反应液倒入水中,EA萃取,有机层盐水洗干燥浓缩得到2.8克M-4-1。
步骤2:
将M-4-1(2.8g,10.4mmol),对氟苯酚(1.3g,11.5mmol),碳酸铯(4.4g,13.5mmol)于DMSO(35mL)中,氮气保护下加热110℃,搅拌2h。TLC检测反应完全。反应液冷却到室温,倒入水中,EA萃取,有机层水洗盐水洗,干燥浓缩后,柱层析纯化,得到2.7克M-4-2。
步骤3:
将M-4-2(2.6g,7.2mmol),乙酸钾(1.6g,16.7mmol),联硼酸频那醇酯(3.7g,14.4mmol,CAS:73183-34-3)溶于35mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.3g,0.4mmol,CAS:72287-26-4),加热至100℃,反应2小时。冷却至室温,反应液经硅藻土过滤, 向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,石油醚打浆,得硼酸酯M-4(1.4g)。
1H NMR(400MHz,CDCl 3)δ8.23(d,J=2.4Hz,1H),7.84(dd,J=8.4,2.4Hz,1H),7.07-7.02(m,2H),6.97-6.94(m,2H),6.89(d,J=8.8Hz,1H),4.35(q,J=5.6Hz,1H),2.67(d,J=5.2Hz,3H),1.27(s,12H).HPLC-MS:[M+H] +=408.2
实施例130:硼酸酯M-5的合成
Figure PCTCN2019071258-appb-000157
步骤1:
将二甲胺盐酸盐(1.3g,15.4mmol和三乙胺(3.1g,30.0mmol)于30ml DCM中,冰浴下滴加3-溴-4-氟苯磺酰氯(2.8g,10.3mmol,CAS:631912-19-1),加毕室温搅拌2h。TLC检测原料反应完全。反应液倒入水中,EA萃取,有机层盐水洗干燥浓缩得到2.9g淡黄色固体M-5-1。
步骤2:
将M-5-1(2.9g,10.4mmol),2.4-二氟苯酚(1.5g,11.5mmol),碳酸铯(4.4g,13.5mmol)于DMSO(35mL)中,氮气保护下加热110℃,搅拌3h。TLC检测反应完全。反应液冷却到室温,倒入水中,EA萃取,有机层水洗盐水洗,干燥浓缩后,柱层析纯化,得到3.8g白色固体M-5-2。
步骤3:
将M-5-2(3.8g,9.8mmol),乙酸钾(1.8g,18.4mmol),联硼酸频那醇酯(5.0g,19.6mmol,CAS:73183-34-3)溶于50mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.4g,0.6mmol,CAS:72287-26-4),加热至100℃,反应3小时。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,石油醚打浆,得淡白色固体硼酸酯M-5(0.8g)。
1H NMR(400MHz,CDCl 3)δ8.17(d,J=2.4Hz,1H),7.75(dd,J=8.8,2.4Hz,1H),7.05-6.94(m,2H),6.88-6.82(m,2H),2.72(s,6H),1.30(s,12H).
实施例131:硼酸酯M-6的合成
Figure PCTCN2019071258-appb-000158
步骤1:
将2-氯-3-溴-5-硝基吡啶(10.0g,42.1mmol,CAS:5470-17-7),苯胺(4.3g,46.2mmol,CAS:62-53-3),碳酸铯(18.0g,55.2mmol)悬浮在100mL二甲亚砜中,加热至80℃反应2h,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转浓缩,柱层析纯化,得中间体M-6-1(5.4g)。
步骤2:
将M-6-1(5.4g,18.4mmol)溶于100mL乙醇和30mL水中,室温下分批加入铁粉(5.1g),氯化铵(9.8g),加入完毕后,缓慢升至100℃,搅拌反应2个小时。硅藻土过滤反应液,将滤液倒入水中,加入乙酸乙酯萃取两次,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得粗品中间体M-6-2(4.7g)。
步骤3:
将M-6-2(4.7g,17.8mmol)溶于20mL吡啶(Py)中,冷却至零度,缓慢滴加甲基磺酰氯(2.5g,21.8mmol),滴加完毕后,升至室温反应1个小时,加入冰水和乙酸乙酯分层,取有机相,依次用2M稀盐酸、饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯后,柱层析纯化,得中间体M-6-3(4.0g)。
步骤4:
将M-6-3(4.0g,11.7mmol),乙酸钾(2.3g,23.4mmol),联硼酸频那醇酯(6.0g,23.6mmol,CAS:73183-34-3)溶于50mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(240mg,0.3mmol,CAS:72287-26-4),加热至100℃,反应过夜。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,得灰白色固体硼酸酯M-6(0.94g)。
1H NMR(400MHz,DMSO-d 6)δ9.36(s,1H),8.51(s,1H),8.18(d,J=2.8Hz,1H),7.75(d,J=2.8Hz,1H),7.65(d,J=8.4Hz,2H),7.30(t,J=7.8Hz,2H),6.96(t,J=8.0Hz,1H),2.93(s,3H),1.38(s,12H).
实施例132:硼酸酯M-7的合成
Figure PCTCN2019071258-appb-000159
将2-氯-3-溴-5-硝基吡啶(3.0g,12.6mmol,CAS:5470-17-7)和碳酸铯(8.4g,25.8mmol)悬浮在环己醇(10mL,CAS:108-93-0)中,加热至100℃反应4h,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转浓缩,得中间体M-7-1(3.5g)。
步骤2:
将M-7-1(3.5g,11.6mmol)溶于60mL乙醇和20mL水中,室温下分批加入铁粉(3.3g),氯化铵(6.5g),加入完毕后,缓慢升至100℃,搅拌反应2个小时。硅藻土过滤反应液,将滤液倒入水中,加入乙酸乙酯萃取两次,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得中间体M-7-2(3.0g)。
步骤3:
将M-7-2(3.0g,11.1mmol)溶于5mL吡啶和10mL二氯己烷中,冷却至零度,缓慢滴加甲基磺酰氯(1.5g,13.1mmol),滴加完毕后,升至室温反应1个小时,加入冰水和乙酸乙酯分层,取有机相,依次用2M稀盐酸、饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯后,柱层析纯化,得中间体M-7-3(1.5g)。
步骤4:
将M-7-3(1.5g,4.3mmol),乙酸钾(0.8g,8.2mmol),联硼酸频那醇酯(2.1g,8.3mmol,CAS:73183-34-3)溶于30mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(170mg,0.2mmol,CAS:72287-26-4),加热至100℃,反应4h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,得淡黄色油状物硼酸酯M-7(0.67g)。
1H NMR(400MHz,CDCl 3)δ8.12(d,J=2.8Hz,1H),7.80(d,J=2.8Hz,1H),6.39(s,1H),6.12(t,J=7.6Hz,1H),2.97(s,3H),1.84-1.79(m,4H),1.71-1.64(m,2H),1.48-1.38(m,4H),1.34(s,12H).HPLC-MS:[M+H] +=397.2
实施例133:硼酸酯M-8的合成
Figure PCTCN2019071258-appb-000160
除了在步骤2中采用4,4-二氟环己醇(CAS:22419-35-8)代替2,4-二氟苯酚以外,采用与实施例19中合成方法相同的步骤反应得到硼酸酯M-8。
1H NMR(400MHz,CDCl 3)δ8.28(d,J=2.4Hz,1H),7.95(dd,J=8.8Hz,2.4Hz,1H),7.00(d,J=8.8Hz,1H),4.78(m,1H),3.05(s,3H),2.42-2.30(m,2H),2.09(d,J=13.6Hz,2H),1.93-1.82(m,4H),1.33(s,12H).
实施例134:硼酸酯M-9的合成
Figure PCTCN2019071258-appb-000161
除了步骤2中以4,4-二氟环己胺盐酸盐(CAS:675112-70-6)代替2,4-二氟苯酚以外,以与实施例19中相同的方法制备硼酸酯M-9。
1H NMR(400MHz,CDCl 3)δ8.18(d,J=2.4Hz,1H),7.80(dd,J=8.8Hz,2.4Hz,1H),6.65-6.59(m,2H),3.65-3.61(m,1H),3.02(s,3H),2.15-1.95(m,6H),1.78-1.74(m,2H),1.38(s,12H).HPLC-MS:[M+H] +=416.1
实施例135:硼酸酯M-10的合成
Figure PCTCN2019071258-appb-000162
除了步骤1中以4,4-二氟环己醇(CAS:22419-35-8)代替苯酚以外,以与实施例7中相同的方法制备硼酸酯M-10。
1H NMR(400MHz,CDCl 3)δ7.46(d,J=3.2Hz,1H),7.41(dd,J=8.4Hz,2.8Hz,1H),6.90(d,J=8.8Hz,1H),6.34(s,1H),4.64(s,1H),2.97(s,3H),2.45-2.30(m,2H),2.08(d,J=14.0Hz,2H),1.93-1.77(m,4H),1.33(s,12H).
实施例136:硼酸酯M-11的合成
Figure PCTCN2019071258-appb-000163
除了在步骤1中采用环己醇代替2,4-二氟苯酚以外,采用与实施例56中相同的方法,得到硼酸酯M-11。
1H NMR(400MHz,CDCl 3)δ7.57(d,J=2.4Hz,1H),7.43(dd,J=8.8Hz,2.8Hz,1H),6.91(d,J=8.4Hz,1H),4.34(m,1H),4.16(s,2H),2.71(s,3H),1.84-1.76(m,4H),1.70-1.57(m,4H),1.50-1.41(m,2H),1.34(s,12H).
实施例137:硼酸酯M-12的合成
Figure PCTCN2019071258-appb-000164
除了在步骤1中采用4,4-二氟环己醇代替2,4-二氟苯酚以外,采用与实施例56中相同的方法,得到硼酸酯M-12。
1H NMR(400MHz,CDCl 3)δ7.68(d,J=2.4Hz,1H),7.49(dd,J=8.8Hz,2.8Hz,1H),6.93(d,J=8.4Hz,1H),4.69(m,1H),4.18(s,2H),2.76(s,3H),2.43-2.31(m,2H),2.10(d,J=14.0Hz,2H),1.93-1.78(m,4H),1.30(s,12H).
实施例138:硼酸酯M-13的合成
Figure PCTCN2019071258-appb-000165
除了步骤2中以环己醇代替2,4-二氟苯酚以外,以与实施例19中相同的方法制备硼酸酯M-13。
1H NMR(400MHz,CDCl 3)δ8.17(d,J=2.8Hz,1H),7.89(dd,J=8.8Hz,2.4Hz,1H),6.96(d,J=8.8Hz,1H),4.49-4.45(m,1H),3.02(s,3H),1.86-1.81(m,4H),1.74-1.67(m,2H),1.50-1.38(m,4H),1.35(s,12H).
实施例139:硼酸酯M-14的合成
Figure PCTCN2019071258-appb-000166
将环己醇(2.7g,27.0mmol)加至THF(30mL)中,氮气保护,冰浴下加入钠氢(0.5g,12.5mmol,60%含量附着于矿物油上),加完后搅拌30min,加入M-1-1(1.7g,5.5mmol)升温至60℃反应过夜。加入水(50mL),EA萃取,合并有机相,饱和食盐水洗,干燥,旋干后柱层析纯化,得无色油状物M-14-2(2.3g)。
将M-14-2(2.3g,5.9mmol),乙酸钾(1.0g,11.2mmol),联硼酸频那醇酯(2.4g,9.5mmol,CAS:73183-34-3)溶于30mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(220mg,0.3mmol,CAS:72287-26-4),加热至95℃,反应4h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,石油醚打浆得0.7g白色固体硼酸酯M-14。
1H NMR(400MHz,CDCl 3)δ8.11(d,J=2.4Hz,1H),7.84(dd,J=8.8,2.8Hz,1H),6.90(d,J=8.8Hz,1H),4.44–4.41(m,1H),1.86-1.80(m,4H),1.72-1.66(m,2H),1.52-1.40(m,4H),1.34(s,12H),1.22(s,9H).
实施例140:硼酸酯M-15的合成
Figure PCTCN2019071258-appb-000167
将M-1-1(1.4g,4.5mmol)和4,4-二氟环己醇(0.9g,6.6mmol),碳酸铯(2.2g,6.8mmol)悬浮在10mL二甲亚砜中,加热至100℃反应48h,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转浓缩,柱层析纯化,得中间体M-15-2(1.2g)。
将M-15-2(1.2g,2.8mmol),乙酸钾(0.6g,6.1mmol),联硼酸频那醇酯(1.8g,7.1mmol,CAS:73183-34-3)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(118mg,0.2mmol,CAS:72287-26-4),加热至95℃,反应4h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,得1.1g硼酸酯M-15。 1H NMR(400MHz,CDCl 3)δ8.22(d,J=2.4Hz,1H),7.89(dd,J=8.8,2.8Hz,1H),6.92(d,J=8.8Hz,1H),4.75(s,1H),4.42(s,1H),2.46-2.30(m,2H),2.12-2.07(m,2H),1.91-1.80(m,4H),1.33(s,12H),1.23(s,9H).
实施例141:硼酸酯M-16的合成
Figure PCTCN2019071258-appb-000168
步骤1:
将二甲胺盐酸盐(2.1g,25.8mmol),三乙胺(5.5g,54.4mmol)溶于50ml二氯甲烷(DCM)中,冰浴下搅拌15min,滴加3-溴-2-氯吡啶-5-磺酰氯(5.0g,17.2mmol,CAS:216394-05-7)的40mL DCM溶液,加完保温反应0.5h,TLC反应完全。加入50mL水,分液,水相再以DCM萃取,合并有机相,饱和食盐水洗,干燥,旋干得5.0g白色固体M-16-1。
步骤2:
将M-16-1(1.9g,6.3mmol)和2,4-二氟苯酚(1.0g,8.5mmol),碳酸铯(2.7g,8.3mmol)悬浮在15mL二甲亚砜中,加热至100℃反应2h,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转浓缩,柱层析纯化,得中间体M-16-2(1.5g)。
步骤3:
将M-16-2(1.5g,3.8mmol),乙酸钾(0.7g,7.1mmol),联硼酸频那醇酯(1.8g,7.1mmol,CAS:73183-34-3)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(150mg,0.2mmol,CAS:72287-26-4),加热至95℃,反应4h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,得0.9g硼酸酯M-16。 1H NMR(400MHz,CDCl 3)δ8.52(d,J=2.8Hz,1H),8.43(d,J=2.8Hz,1H),7.27-7.21(m,1H),6.98-6.89(m,2H),2.74(s,6H),1.37(s,12H).
实施例142:硼酸酯M-17的合成
Figure PCTCN2019071258-appb-000169
除了步骤2中以环己醇代替2,4-二氟苯酚以外,以与实施例141中相同的方法制备硼酸酯M-17。 1H NMR(400MHz,CDCl 3)δ8.57(d,J=2.8Hz,1H),8.18(d,J=2.8Hz,1H),5.25-5.21(m,1H),2.72(s,6H),1.90-1.77(m,4H),1.78-1.65(m,2H),1.52-1.48(m,4H),1.34(s,12H).
实施例143:硼酸酯M-18的合成
Figure PCTCN2019071258-appb-000170
除了步骤2中以四氢吡喃-4-醇代替2,4-二氟苯酚以外,以与实施例141中相同的方法制备硼酸酯M-18。 1H NMR(400MHz,CDCl 3)δ8.57(d,J=2.8Hz,1H),8.24(d,J=2.4Hz,1H),5.47-5.43(m,1H),4.05-3.99(m,2H),3.72-3.67(m,2H),2.73(s,6H),2.07-2.02(m,2H),1.87-1.81(m,2H),1.35(s,12H).
实施例144:硼酸酯M-19的合成
Figure PCTCN2019071258-appb-000171
步骤1:
将5-溴-6-氯烟酸甲酯(30.0g,0.12mol,CAS:78686-77-8)溶于300mL乙醇中,室温下加入硼氢化钠(5.4g,0.14mol),加热回流2h,TLC反应完全,加水淬灭后浓缩,柱层析得10.0克M-19-1。
步骤2:
将M-19-1(10.0g,44.9mmol)溶于50mL DCM中,冰浴加入三溴化膦(12.2g,45.1mmol),0℃搅拌1h,TLC反应完全,加水,EA萃取,盐水洗,干燥浓缩,得M-19-2直接用于下一步。
步骤3:
将M-19-2(按上步理论收率计算)溶于50mL DMF中,加入甲硫醇钠(3.8g,54.2mmol),室温下搅拌2h,TLC显示M-19-2反应完全,加水稀释,EA萃取,盐水洗,干燥浓缩得M-19-3直接用于下一步
步骤4:
将M-19-3(按上步理论收率计算)溶于100mL甲醇中,冰浴下加入过氧单磺酸钾(Oxone)(15.9g,94.5mmol),室温下搅拌1h,TLC显示M-19-3反应完全,加入水稀释,EA萃取,饱和硫代硫酸钠水溶液洗,饱和食盐水洗,干燥后浓缩,柱层析,得8.2g M-19-4。
步骤5:
M-19-4(4.0g,14.1mmol),碳酸铯(9.2g,28.2mmol)于20mL羟甲基环丙烷中氮气保护下90℃搅拌过夜。TLC检测反应完全。反应液冷却到室温,倒入水中,EA萃取,有机层水洗盐水洗,干燥浓缩后柱层析,得到2.5g M-19-4。
步骤6:
将M-19-4(2.5g),乙酸钾(3.5g,35.7mmol),联硼酸频那醇酯(6.0g,23.6mmol,CAS:73183-34-3)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.4g,CAS:72287-26-4),加热至90℃,反应4h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,得硼酸酯M-19。
1H NMR(400MHz,CDCl 3)δ8.17(d,J=2.4Hz,1H),7.95(d,J=2.4Hz,1H),4.22(d, J=6.4Hz,2H),4.14(s,2H),2.77(s,3H),1.35(s,12H),1.29-1.23(m,1H),0.57-0.52(m,2H),0.43-0.39(m,2H).HPLC-MS:[M+H] +=368.2
实施例145:硼酸酯M-20的合成
Figure PCTCN2019071258-appb-000172
除了步骤5中以四氢吡喃-4-醇代替羟甲基环丙烷以外,以与实施例144中相同的方法制备硼酸酯M-20。 1H NMR(400MHz,CDCl 3)δ8.18(d,J=2.4Hz,1H),7.97(d,J=2.8Hz,1H),5.40-5.35(m,1H),4.14(s,2H),4.04-3.99(m,2H),3.71-3.66(m,2H),2.80(s,3H),2.05-1.98(m,2H),1.85-1.78(m,2H),1.34(s,12H).HPLC-MS:[M+H] +=398.2.
实施例146:硼酸酯M-21的合成
Figure PCTCN2019071258-appb-000173
除了步骤5中以环己醇代替羟甲基环丙烷以外,以与实施例144中相同的方法制备硼酸酯M-21。 1H NMR(400MHz,CDCl 3)δ8.17(d,J=2.8Hz,1H),7.93(d,J=2.8Hz,1H),5.17-5.13(m,1H),4.13(s,2H),2.77(s,3H),1.87-1.78(m,4H),1.71-1.65(m,2H),1.50-1.41(m,4H),1.34(s,12H).
实施例147:硼酸酯M-23的合成
Figure PCTCN2019071258-appb-000174
步骤1:
将M-19-2(8.0g,28.0mmol)溶于30mL DMF中,加入乙硫醇钠(3.4g,40.4mmol),室温下搅拌1h,TLC显示反应完全,加水稀释,EA萃取,盐水洗,干燥浓缩得M-23-3(4.0g)。
步骤2:
将M-23-3(4.0g,15.0mmol)溶于50mL甲醇和20mL水中,冰浴下加入过氧单磺酸钾(Oxone,12.0g,71.4mmol),室温下搅拌2h,TLC显示反应完全,加入水稀释,EA萃取,饱和硫代硫酸钠水溶液洗,饱和食盐水洗,干燥后浓缩,柱层析,得M-23-4(0.9g)。
步骤3:
M-23-4(5.3g,17.8mmol),2,4-二氟苯酚(3.5g,26.9mmol),碳酸铯(11.6g,35.6mmol)于20ml二甲基亚砜(DMSO)中氮气保护下95℃搅拌2h。TLC检测反应完全。反应液冷却到室温,倒入水中,EA萃取,有机层水洗盐水洗,干燥浓缩后柱层析,得到M-23-5。
步骤4:
将M-23-5(4.7g,12.0mmol),乙酸钾(3.5g,35.7mmol),联硼酸频那醇酯(6.0g,23.6mmol,CAS:73183-34-3)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.4g,0.5mmol,CAS:72287-26-4),加热至95℃,反应2h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,得3.2g硼酸酯M-23。
1H NMR(400MHz,CDCl 3)δ8.17(d,J=2.4Hz,1H),8.12(d,J=2.4Hz,1H),7.24-7.19(m,1H),6.95-6.87(m,2H),4.13(s,2H),2.90(q,J=7.6Hz,2H),1.38(t,J=7.6Hz,3H),1.36(s,12H).
实施例148:硼酸酯M-24的合成
Figure PCTCN2019071258-appb-000175
M-23-4(2.4g,8.0mmol),4,4-二氟环己醇(2.2g,16.2mmol),碳酸铯(5.3g,16.3mmol)于20mL二甲基亚砜(DMSO)中氮气保护下95℃搅拌2h。TLC检测反应完全。反应液冷却到室温,倒入水中,EA萃取,有机层水洗盐水洗,干燥浓缩后柱层析,得到中间体M-24-5。
将M-24-5(0.7g,1.8mmol),乙酸钾(0.5g,5.1mmol),联硼酸频那醇酯(0.9g,3.5mmol,CAS:73183-34-3)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(75mg,0.1mmol,CAS:72287-26-4),加热至95℃,反应2h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,乙醚打浆,得0.4g硼酸酯M-24。
1H NMR(400MHz,CDCl 3)δ8.19(d,J=2.4Hz,1H),8.01(d,J=2.4Hz,1H),5.43(m,1H),4.11(s,2H),2.91(q,J=7.6Hz,2H),2.40-2.25(m,2H),2.08-1.80(m,6H),1.40(t,J=7.2Hz,3H),1.32(s,12H).HPLC-MS:[M+H] +=446.2
实施例149:硼酸酯M-25的合成
Figure PCTCN2019071258-appb-000176
除了步骤5中以4,4-二氟环己醇代替羟甲基环丙烷以外,以与实施例144中相同的方法制备硼酸酯M-25。
1H NMR(400MHz,CDCl 3)δ8.20(d,J=2.8Hz,1H),8.01(d,J=2.8Hz,1H),5.44-5.43(m,1H),4.15(s,2H),2.82(s,3H),2.40-2.25(m,2H),2.06(d,J=13.6Hz,2H),1.95-1.81(m,4H),1.33(s,12H).HPLC-MS:[M+H] +=432.2。
实施例150:硼酸酯M-26的合成
Figure PCTCN2019071258-appb-000177
步骤1:
将叔丁胺(0.8g,10.9mmol),三乙胺(2.1g,20.8mmol)溶于50ml二氯甲烷(DCM)中,冰浴下搅拌15分钟,滴加3-溴-2-氯吡啶-5-磺酰氯(3.0g,10.3mmol,CAS:216394-05-7)的20mL DCM溶液,加完继续搅拌0.5h,TLC反应完全。加入50mL水,分液,水相再以DCM萃取,合并有机相,饱和食盐水洗,干燥,旋干得3.0g白色固体M-26-1。
步骤2:
将M-26-1(3.0g,6.3mmol)和2,4-二氟苯酚(1.3g,10.0mmol),碳酸铯(3.9g,12.0mmol)悬浮在20mL二甲亚砜中,加热至80℃反应1h,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转浓缩,柱层析纯化,得中间体M-26-2(3.3g)。
步骤3:
将M-26-2(3.3g,7.8mmol),乙酸钾(1.5g,15.3mmol),联硼酸频那醇酯(4.0g,15.8mmol,CAS:73183-34-3)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(318mg,0.4mmol,CAS:72287-26-4),加热至95℃,反应5h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,石油醚打浆,得1.4g硼酸酯M-26。
1H NMR(400MHz,CDCl 3)δ8.61(d,J=2.4Hz,1H),8.52(d,J=2.4Hz,1H),7.25-7.21(m,1H),6.97-6.89(m,2H),1.37(s,12H),1.26(s,9H).
实施例151:硼酸酯M-27的合成
Figure PCTCN2019071258-appb-000178
步骤1:
将环己醇(0.4g,4.1mmol)溶于DMF(10mL)中,冰浴下加入钠氢(0.18g,60%含量),搅拌0.5小时后,加入E103-2(1.0g,3.7mmol),室温搅拌过夜。加水淬灭,乙酸乙酯萃取,饱和食盐水洗,无水硫酸钠干燥,柱层析纯化,得到1.2g白色固体产物M27-2。
步骤2:
混合物M27-2(1.1g,3.3mmol),双联硼频哪醇酯(1.7g,6.5mmol),Pd(dppf)Cl 2(120mg,0.16mmol),乙酸钾(0.64g,6.5mmol)和1.4-二氧六环(25mL)在氩气保护下在95℃加热4小时。浓缩后柱层析,乙酸乙酯和石油醚混合溶剂打浆,得到0.3g产物M-27。
1H NMR(400MHz,CDCl 3)δ8.71(d,J=2.8Hz,1H),8.34(d,J=2.8Hz,1H),5.28-5.24(m,1H),3.05(s,3H),1.86-1.81(m,4H),1.73-1.66(m,2H),1.50-1.44(m,4H),1.34(s,12H).
实施例152:硼酸酯M-28的合成
Figure PCTCN2019071258-appb-000179
步骤1:
将2-氯-3-溴-5-硝基吡啶(5.8g,24.4mmol,CAS:5470-17-7)和碳酸铯(9.6g,29.5mmol)悬浮在20mL二甲亚枫中,加入4,4-二氟环己醇(4.0g,29.4mmol),加热至80℃反应1h,冷却至室温后,加入水和乙酸乙酯分层,取有机相,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转浓缩,得中间体M-28-1(3.5g)。
步骤2:
将M-28-1(3.5g,8.7mmol)溶于60mL乙醇和20mL水中,室温下分批加入铁粉 (3.3g),氯化铵(6.5g),加入完毕后,缓慢升至80℃,反应1h。硅藻土过滤反应液,将滤液倒入水中,加入乙酸乙酯萃取两次,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,浓缩得中间体M-28-2(3.5g)。
步骤3:
将M-28-2(3.5g,11.4mmol)溶于15mL吡啶中,冷却至零度,缓慢滴加甲基磺酰氯(1.5g,13.1mmol),滴加完毕后,升至室温反应1个小时,加入冰水和乙酸乙酯分层,取有机相,依次用2M稀盐酸、饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去乙酸乙酯,得中间体M-28-3(4.0g)。
步骤4:
将M-28-3(4.0g,10.4mmol),乙酸钾(3.1g,31.6mmol),联硼酸频那醇酯(5.3g,20.9mmol,CAS:73183-34-3)溶于30mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.8g,1.1mmol,CAS:72287-26-4),加热至100℃,反应8h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,乙醚打浆,得硼酸酯M-28(1.1g)。
1H NMR(400MHz,CDCl 3)δ8.16(d,J=2.8Hz,1H),7.88(d,J=2.8Hz,1H),6.33(s,1H),5.40-5.38(m,1H),3.00(s,3H),2.39-2.24(m,2H),2.06(d,J=12.0Hz,2H),1.97-1.80(m,4H),1.33(s,12H).HPLC-MS:[M+H] +=433.2
实施例153:硼酸酯M-29的合成
Figure PCTCN2019071258-appb-000180
步骤1:
将3-溴-4-氟苯甲醛(15.0g,7.4mmol,CAS:77771-02-9)溶于100mL甲醇中,冰浴下向反应液中加入硼氢化钠(3.4g,89.9mmol),搅拌1h后,加水,用乙酸乙酯萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发,得中间体M-29-1(15.1g)。
步骤2:
将化合物M-29-1(15.1g,7.4mmol)溶于50mL二氯甲烷中,冰浴下滴加三溴化磷 (19.9g,7.4mmol),反应1小时,加水,二氯甲烷萃取,合并有机相,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后得化合物M-29-2(19.7g)。
步骤3:
将化合物M-29-2(19.7g,7.4mmol)溶于30mL N,N-二甲基甲酰胺(DMF)中,加入甲硫醇钠(10.3g,0.15mol),室温反应2小时后,加水,乙酸乙酯萃取,饱和食盐水洗三次,无水硫酸钠干燥,真空旋转蒸发除去溶剂后得化合物M-29-3(17.3g)。
步骤4:
将化合物M-29-3(17.3g,7.4mmol)溶于40mL甲醇中,冰浴下加入过单硫酸氢钾复合盐(Oxone,CAS:70693-62-8,26.0g,0.15mol),室温反应1小时,加水,乙酸乙酯萃取,合并有机相,饱和食盐水洗,无水硫酸钠干燥,真空旋转蒸发,柱层析纯化,得化合物M-29-4(10.0g)。
步骤5:
将化合物M-29-4(10.0g,37.4mmol)溶于50mL二甲亚砜,加入3-羟基吡啶(7.1,74.7mmol)和碳酸铯(24.3g,74.6mmol),加热100℃过夜。冷却至室温,加水,乙酸乙酯萃取,合并有机相,饱和食盐水洗,无水硫酸钠干燥,真空旋转蒸发除去溶剂,柱层析纯化,得化合物M-29-5。
步骤6:
将M-29-5(3.0,8.8mmol),乙酸钾(1.7g,17.3mmol),联硼酸频那醇酯(4.4g,17.3mmol)溶于20mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.3g,0.4mmol),加热至100℃,反应5h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶出层析得到硼酸酯M-29。 1H NMR(400MHz,CDCl 3)δ8.33(d,J=2.8Hz,1H),8.29(d,J=4.4Hz,1H),7.80(d,J=2.4Hz,1H),7.57(dd,J=8.4Hz,2.8Hz,1H),7.21-7.18(m,1H),7.12-7.09(m,1H),7.06(d,J=8.4Hz,1H),4.26(s,2H),2.81(s,3H),1.17(s,12H).HPLC-MS:[M+H] +=390.1.
实施例154:化合物ZB-BD-162的合成
Figure PCTCN2019071258-appb-000181
除了采用化合物M-1代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-162。 1H NMR(400MHz,MeOD)δ7.95(d,J=2.4Hz,1H),7.91(dd,J=8.7,2.4Hz,1H),7.27–7.12(m,2H),7.04–6.90(m,3H),6.54(s,1H),6.50(d,J=5.9Hz,1H),2.59(s,3H),1.23(s,9H).HPLC-MS:[M+H] +=488.3
实施例155:化合物ZB-BD-163的合成
除了采用化合物M-2代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-163。 1H NMR(400MHz,MeOD)δ7.38–7.31(m,2H),7.08–7.02(m,1H),6.99–6.89(m,3H),6.84–6.76(m,2H),6.45(d,J=5.9Hz,1H),6.38(s,1H),3.00(s,3H),2.48(s,3H).HPLC-MS:[M+H] +=428.1
实施例156:化合物ZB-BD-164的合成
Figure PCTCN2019071258-appb-000183
除了采用化合物M-3代替化合物B-1以外,采用与实施例24中相同的方法,得到化合物ZB-BD-164。 1H NMR(400MHz,MeOD)δ7.66(d,J=2.6Hz,1H),7.57(dd,J=8.9,2.7Hz,1H),7.04–6.90(m,3H),6.88(d,J=9.0Hz,1H),6.85–6.78(m,1H),6.44–6.38(m,2H),2.52(s,3H),2.13(s,3H).HPLC-MS:[M+H] +=410.3
实施例157:化合物ZB-BD-166的合成
Figure PCTCN2019071258-appb-000184
除了采用化合物M-4代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-166。 1H NMR(400MHz,MeOD)δ7.88(d,J=2.3Hz,1H),7.84(dd,J=8.7,2.4Hz,1H),7.11–6.98(m,5H),6.95(d,J=5.9Hz,1H),6.50–6.45(m,2H),2.57(s,3H),2.53(s,3H).HPLC-MS:[M+H] +=428.2
实施例158:化合物ZB-BD-167的合成
Figure PCTCN2019071258-appb-000185
除了采用化合物M-5代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-167。 1H NMR(400MHz,MeOD)δ7.83–7.80(m,2H),7.29–7.14(m,2H),7.04–7.00(m,2H),6.96(d,J=5.9Hz,1H),6.56(s,1H),6.49(d,J=5.9Hz,1H),2.72(s,6H),2.58(s,3H).HPLC-MS:[M+H] +=460.3
实施例159:化合物ZB-BD-172的合成
Figure PCTCN2019071258-appb-000186
除了采用化合物M-6代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-172。 1H NMR(400MHz,DMSO-d 6)δ10.28(s,1H),9.52(d,J=2.1Hz,1H),8.09(d,J=2.6Hz,1H),7.93(d,J=3.2Hz,1H),7.55–7.47(m,2H),7.41(d,J=2.6Hz,1H),7.20(dd,J=8.6,7.2Hz,2H),6.89(t,J=7.3Hz,1H),6.71–6.64(m,1H),6.53(s,1H),6.43(t,J=5.7Hz,1H),2.99(s,3H),2.52(s,3H).HPLC-MS:[M+H] +=410.3
实施例160:化合物ZB-BD-173的合成
Figure PCTCN2019071258-appb-000187
将中间体E66-1(33mg,0.1mmol)溶于1mL四氢呋喃中,加入0.5mL三乙胺,0℃下加入0.05mL环己基甲酰氯,室温搅拌过夜,真空旋转蒸发除去溶剂后1mL甲醇溶解,加入碳酸钾(69mg,0.5mmol),室温搅拌两个小时后过滤,滤液真空旋转蒸发除去溶剂,HPLC纯化得到化合物ZB-BD-173。 1H NMR(400MHz,CDCl 3)δ8.52(d,J=8.5Hz,1H),7.46(dd,J=8.5,2.2Hz,1H),7.42(d,J=2.2Hz,1H),7.38(s,1H),6.71(d,J=5.9Hz,1H),6.49(s,1H),6.39(t,J=5.6Hz,1H),4.26(s,2H),2.86(s,3H),2.68(s,3H),1.81(t,J=15.4Hz,4H),1.44–1.20(m,7H).HPLC-MS:[M+H] +=442.3
实施例161:化合物ZB-BD-174的合成
Figure PCTCN2019071258-appb-000188
将中间体E66-1(9mg,0.027mmol)和环己基甲醛(CAS:2043-61-0)(15mg,0.136mmol)溶于1mL 1,2-二氯乙烷中,加入0.5mL的冰醋酸,0℃下加入三乙酰氧基硼氢化钠(30mg,0.136mmol),室温反应过夜后加入20mL的水,用20mL×3的乙酸乙酯萃取,合并有机层,无水硫酸钠干燥后,真空旋转蒸发除去乙酸乙酯,HPLC纯化得到ZB-BD-174。 1H NMR(400MHz,DMSO-d 6)δ10.21(d,J=5.5Hz,1H),7.25(d,J=8.9Hz,1H),7.06(d,J=2.2Hz,1H),6.70(d,J=8.6Hz,1H),6.52(d,J=5.9Hz,1H),6.44–6.33(m,2H),4.95–4.86(m,1H),4.30(s,2H),3.34(s,3H),2.86(d,J=9.6Hz,5H),1.99(d,J=8.0Hz,1H),1.65(s,4H),1.20–1.01(m,4H),0.84(d,J=11.6Hz,2H).HPLC-MS:[M+H] +=428.2
实施例162:化合物ZB-BD-175的合成
Figure PCTCN2019071258-appb-000189
将中间体E66-1(9mg,0.027mmol)和环己基异氰酸酯(3.5μL,0.027mmol)溶于1mL四氢呋喃中,加入0.5mL三乙胺,加热至60℃反应2个小时,真空旋转蒸发除掉溶剂后,HPLC纯化得到化合物ZB-BD-175。 1H NMR(400MHz,DMSO-d 6)δ9.85(d,J=7.5Hz,1H),7.39(d,J=6.5Hz,1H),7.18(d,J=8.4Hz,1H),7.09(s,1H),6.79(d,J=7.4Hz,2H),6.51(s,1H),5.25(s,2H),4.29(s,2H),3.69(s,1H),2.85(s,3H),2.53(s,3H),1.94–1.82(m,2H),1.72–1.61(m,2H),1.42–1.30(m,4H),1.26–1.21(m,2H).HPLC-MS:[M+H] +=457.2
实施例163:化合物ZB-BD-179的合成
Figure PCTCN2019071258-appb-000190
除了采用化合物M-7代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-179。 1H NMR(400MHz,MeOD)δ8.11(d,J=2.7Hz,1H),7.65(d,J= 2.8Hz,1H),6.84(d,J=5.9Hz,1H),6.48(s,1H),6.44(d,J=5.9Hz,1H),5.12(tt,J=8.4,3.7Hz,1H),2.99(s,3H),2.57(s,3H),1.97–1.86(m,2H),1.68–1.56(m,2H),1.55–1.31(m,6H).HPLC-MS:[M+H] +=417.4
实施例164:化合物ZB-BD-183的合成
Figure PCTCN2019071258-appb-000191
除了采用化合物M-8代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-183。 1H NMR(400MHz,MeOD)δ8.00(dd,J=8.8,2.4Hz,1H),7.91(d,J=2.4Hz,1H),7.40(d,J=8.9Hz,1H),6.77(d,J=5.9Hz,1H),6.47(s,1H),6.44(d,J=5.9Hz,1H),4.82–4.75(m,1H),3.14(s,3H),2.58(s,3H),1.94–1.57(m,8H).HPLC-MS:[M+H] +=437.3
实施例165:化合物ZB-BD-184的合成
Figure PCTCN2019071258-appb-000192
除了采用化合物M-9代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-184。 1H NMR(400MHz,DMSO-d 6)δ10.25(d,J=4.1Hz,1H),7.72(d,J=7.7Hz,1H),7.50(s,1H),7.00(d,J=8.9Hz,1H),6.59–6.33(m,3H),5.53(d,J=8.1Hz,1H),3.73–3.57(m,1H),3.08(s,3H),2.52(s,3H),2.09–1.79(m,6H),1.63–1.42(m,2H).HPLC-MS:[M+H] +=436.2
实施例166:化合物ZB-BD-185的合成
Figure PCTCN2019071258-appb-000193
除了采用化合物M-10代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-185。 1H NMR(400MHz,DMSO-d 6)δ10.23(d,J=5.2Hz,1H),9.59(s,1H),7.32–7.21(m,2H),7.18(d,J=2.4Hz,1H),6.67(d,J=5.4Hz,1H),6.42(t,J=5.7Hz,1H),6.37(d,J=8.4Hz,1H),4.53(s,1H),2.97(s,3H),2.48(s,3H),1.85–1.52(m,8H).HPLC-MS:[M+H] +=452.3
实施例167:化合物ZB-BD-187的合成
Figure PCTCN2019071258-appb-000194
除了采用化合物M-11代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-187。 1H NMR(400MHz,DMSO-d 6)δ10.22(d,J=5.0Hz,1H),7.43(dd,J=8.5,1.9Hz,1H),7.36(d,J=1.9Hz,1H),7.21(d,J=8.6Hz,1H),6.66(d,J=5.7Hz,1H),6.43(t,J=5.6Hz,1H),6.37(s,1H),4.51–4.32(m,3H),2.91(s,3H),2.50(s,3H),1.88–1.78(m,2H),1.58–1.47(m,2H),1.43–1.20(m,6H).HPLC-MS:[M+H] +=415.2
实施例168:化合物ZB-BD-188的合成
Figure PCTCN2019071258-appb-000195
除了采用化合物M-12代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-188。 1H NMR(400MHz,Acetonitrile-d 3)δ8.74(s,1H),7.44(dd,J=8.5,2.3Hz,1H),7.38(d,J=2.3Hz,1H),7.17(d,J=8.8Hz,1H),6.69(d,J=5.9Hz,1H),6.38(s,1H),6.34(t,J=4.5Hz,1H),4.62–4.54(m,1H),4.28(s,2H),2.83(s,3H),2.53(s,3H),1.84–1.63(m,8H).HPLC-MS:[M+H] +=451.2
实施例169:化合物ZB-BD-189的合成
Figure PCTCN2019071258-appb-000196
除了采用化合物M-13代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-189。 1H NMR(400MHz,DMSO-d 6)δ10.28(d,J=5.0Hz,1H),7.92(dd,J=8.7,2.0Hz,1H),7.81(d,J=2.0Hz,1H),7.43(d,J=8.9Hz,1H),6.66(d,J=5.8Hz,1H),6.54–6.39(m,2H),4.59(s,1H),3.23(s,3H),2.50(s,3H),1.96–1.79(m,2H),1.58–1.12(m,8H).HPLC-MS:[M+H] +=401.3
实施例170:化合物ZB-BD-190的合成
Figure PCTCN2019071258-appb-000197
除了采用化合物M-14代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-190。 1H NMR(400MHz,DMSO-d 6)δ10.27(d,J=5.3Hz,1H),7.83(dd,J=8.8,2.4Hz,1H),7.72(d,J=2.4Hz,1H),7.42(s,1H),7.35(d,J=9.0Hz,1H),6.59(d,J=5.8Hz,1H),6.46(t,J=5.7Hz,1H),6.39(s,1H),4.60–4.46(m,1H),2.50(s,3H),1.91–1.82(m,2H),1.57–1.48(m,J=6.0Hz,2H),1.44–1.19(m,J=19.6,10.7Hz,6H),1.10(s,9H).HPLC-MS:[M+H] +=458.4
实施例171:化合物ZB-BD-191的合成
Figure PCTCN2019071258-appb-000198
除了采用化合物M-15代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-191。 1H NMR(400MHz,DMSO-d 6)δ10.29(d,J=5.2Hz,1H),7.86(dd,J=8.8,2.3Hz,1H),7.76(d,J=2.3Hz,1H),7.52–7.34(m,2H),6.64(d,J=5.8Hz,1H),6.45(t,J=5.7Hz,1H),6.41(s,1H),4.84–4.70(m,1H),2.50(s,3H),1.93–1.61(m,8H),1.11(s,9H).HPLC-MS:[M+H] +=494.4
实施例172:化合物ZB-BD-194的合成
Figure PCTCN2019071258-appb-000199
除了采用化合物M-16代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-194。 1H NMR(400MHz,DMSO-d 6)δ10.42(d,J=5.2Hz,1H),8.56(d,J=2.4Hz,1H),8.17(d,J=2.4Hz,1H),7.59–7.44(m,2H),7.23–7.13(m,1H),7.05(d,J=5.8Hz,1H),6.72(s,1H),6.55(t,J=5.6Hz,1H),2.70(s,6H),2.51(s,3H).HPLC-MS:[M+H] +=461.3
实施例173:化合物ZB-BD-195的合成
Figure PCTCN2019071258-appb-000200
除了采用化合物M-17代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-195。 1H NMR(400MHz,DMSO-d 6)δ10.34(d,J=5.2Hz,1H),8.58(d,J=2.5Hz,1H),7.93(d,J=2.5Hz,1H),6.79(d,J=5.6Hz,1H),6.54(s,1H),6.48(t,J=5.7Hz,1H),5.26–5.17(m,1H),2.67(s,6H),2.49(s,3H),1.99–1.88(m,2H),1.65–1.53(m,2H),1.47–1.19(m,6H).HPLC-MS:[M+H] +=431.2
实施例174:化合物ZB-BD-196的合成
Figure PCTCN2019071258-appb-000201
除了采用化合物M-18代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-196。 1H NMR(400MHz,DMSO-d 6)δ10.37(s,1H),8.60(s,1H),7.97(s,1H),6.84(d,J=4.5Hz,1H),6.57(s,1H),6.50(s,1H),5.40(s,1H),3.80–3.64(m,2H),3.55–3.40(m,2H),2.68(s,6H),2.50(s,3H),2.11–1.91(m,2H),1.67–1.50(m,2H).HPLC-MS:[M+H] +=433.3
实施例175:化合物ZB-BD-197的合成
Figure PCTCN2019071258-appb-000202
除了采用化合物M-19代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-197。 1H NMR(400MHz,DMSO-d 6)δ10.32(d,J=5.0Hz,1H),8.23(d,J=2.2Hz,1H),7.79(d,J=2.2Hz,1H),6.79(d,J=5.7Hz,1H),6.49–6.45(m,2H),4.52(s,2H),4.19(d,J=7.1Hz,2H),2.97(s,3H),2.50(s,3H),1.28–1.20(m,1H),0.49(q,J=4.7Hz,2H),0.30(q,J=4.7Hz,2H).HPLC-MS:[M+H] +=388.4
实施例176:化合物ZB-BD-198的合成
Figure PCTCN2019071258-appb-000203
除了采用化合物M-20代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-198。 1H NMR(400MHz,DMSO-d 6)δ10.32(d,J=5.1Hz,1H),8.23(d,J=2.1Hz,1H),7.80(d,J=2.1Hz,1H),6.79(d,J=5.8Hz,1H),6.53–6.41(m,2H),5.36–5.26(m,1H),4.53(s,2H),3.78–3.64(m,2H),3.53–3.39(m,2H),2.98(s,3H),2.50(s,3H),2.05–1.93(m,2H),1.64–1.50(m,2H).HPLC-MS:[M+H] +=418.2
实施例177:化合物ZB-BD-202的合成
Figure PCTCN2019071258-appb-000204
除了采用化合物M-21代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-202。 1H NMR(400MHz,DMSO-d 6)δ10.29(d,J=5.3Hz,1H),8.21(d,J=2.3Hz,1H),7.77(d,J=2.3Hz,1H),6.76(d,J=5.8Hz,1H),6.50–6.42(m,2H),5.20–5.04(m,1H),4.51(s,2H),2.97(s,3H),2.49(s,3H),1.97–1.86(m,2H),1.66–1.53(m,2H),1.45–1.30(m,4H),1.26–1.13(m,2H).HPLC-MS:[M+H] +=416.3
实施例178:化合物ZB-BD-216的合成
Figure PCTCN2019071258-appb-000205
将化合物I-6(46mg,0.2mmol)、硼酸酯M-23(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-216。 1H NMR(400MHz,DMSO-d 6)δ10.38(d,J=5.6Hz,1H),8.15(d,J=2.0Hz,1H),7.97(d,J=2.1Hz,1H),7.52–7.42(m,2H),7.19–7.12(m,1H),7.00(d,J=5.7Hz,1H),6.62(s,1H),6.53(t,J=5.8Hz,1H),4.56(s,2H),3.12(q,J=7.5Hz,2H),2.52(s,3H),1.25(t,J=7.4Hz,3H).HPLC-MS:[M+H] +=460.3
实施例179:化合物ZB-BD-217的合成
Figure PCTCN2019071258-appb-000206
将化合物I-6(46mg,0.2mmol)、硼酸酯M-24(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-217。 1H NMR(400MHz,DMSO-d 6)δ10.30(d,J=5.3Hz,1H),8.24(d,J=2.1Hz,1H),7.81(d,J=2.2Hz,1H),6.83(d,J=5.8Hz,1H),6.50–6.39(m,2H),5.36–5.27(m,1H),4.52(s,2H),3.10(q,J=7.4Hz,2H),2.50(s,3H),2.05–1.71(m,J=20.5Hz,8H),1.25(t,J=7.4Hz,3H).HPLC-MS:[M+H] +=466.3
实施例180:化合物ZB-BD-220的合成
Figure PCTCN2019071258-appb-000207
将化合物I-6(46mg,0.2mmol)、硼酸酯M-25(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-220。 1H NMR(400MHz,DMSO-d 6)δ10.30(d,J=5.2Hz,1H),8.25(d,J=1.7Hz,1H),7.82(d,J=1.8Hz,1H),6.83(d,J=5.9Hz,1H),6.53–6.37(m,2H),5.32(s,1H),4.53(s,2H),2.98(s,3H),2.50(s,3H),1.99–1.78(m,8H).HPLC-MS:[M+H] +=452.2
实施例181:化合物ZB-BD-199的合成
Figure PCTCN2019071258-appb-000208
除了采用化合物M-26代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-199。 1H NMR(400MHz,DMSO-d 6)δ10.44(d,J=5.3Hz,1H),8.55(d,J=2.2Hz,1H),8.28(d,J=2.2Hz,1H),7.75(s,1H),7.61–7.43(m,2H),7.26–7.12(m,1H),6.99(d,J=5.7Hz,1H),6.68(s,1H),6.56(t,J=5.7Hz,1H),2.52(s,3H),1.15(s,9H).HPLC-MS:[M+H] +=489.3
实施例182:化合物ZB-BD-203的合成
Figure PCTCN2019071258-appb-000209
除了采用化合物M-27代替化合物B-16以外,采用与实施例37中相同的方法,得到化合物ZB-BD-203。 1H NMR(400MHz,DMSO-d 6)δ10.36(d,J=5.2Hz,1H),8.70(d,J=2.4Hz,1H),8.17(d,J=2.4Hz,1H),6.80(d,J=5.8Hz,1H),6.57(s,1H),6.49(t,J=5.7Hz,1H),5.28–5.19(m,1H),3.32(s,3H),2.50(s,3H),1.99–1.89(m,2H),1.65–1.53(m,2H),1.47–1.22(m,6H).HPLC-MS:[M+H] +=402.4
实施例183:化合物ZB-BD-218的合成
Figure PCTCN2019071258-appb-000210
将化合物I-6(46mg,0.2mmol)、硼酸酯M-28(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-218。 1H NMR(400MHz,DMSO-d 6)δ10.30(d,J=5.1Hz,1H),9.71(s,1H),8.11(d,J=2.3Hz,1H),7.62(d,J=2.2Hz,1H),6.81(d,J=5.7Hz,1H),6.54–6.38(m,2H),5.32–5.15(m,1H),3.03(s,3H),2.50(s,3H),2.02–1.76(m,J=19.6,8.3Hz,8H).HPLC-MS:[M+H] +=453.3
实施例184:化合物ZB-BD-214的合成
Figure PCTCN2019071258-appb-000211
将化合物I-6(46mg,0.2mmol)、硼酸酯M-29(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-214。 1H NMR(400MHz,DMSO)δ10.28(d,J=5.2Hz,1H),8.35(s,2H),7.56(d,J=2.0Hz,1H),7.51(dd,J=8.5,2.1Hz,1H),7.46–7.37(m,2H),7.10(d,J=8.4Hz,1H),6.91(d,J=5.8Hz,1H),6.46(t,J=5.7Hz,1H),6.42(s,1H), 4.56(s,2H),2.96(s,3H),2.43(s,3H).HPLC-MS:[M+H] +=410.2
实施例185:硼酸酯M-88的合成
Figure PCTCN2019071258-appb-000212
步骤1:
3-溴-4-氟苯甲酸(11.0g,50.2mmol)溶于DCM(100mL)中,冷却至零度,缓慢滴加草酰氯(5.1mL,60.3mmol),滴加完毕室温搅拌反应3h,旋干溶剂,加入甲醇(40mL),室温搅拌反应3h,旋干得88-1(10.8g)为棕色液体。
步骤2:
88-1(10.8g,46.3mmol),2,6-二甲基苯酚(6.8g,55.7mmol),碳酸铯(18.1g,55.6mmol)在DMSO(40mL)中加热90℃,反应4h,TLC显示反应完全,冷却,加入水、乙酸乙酯分层,有机相饱和食盐水洗多次,无水硫酸钠干燥,旋干得88-2(13.0g)为棕色液体。
步骤3:
88-2(10.5g,31.3mmol),溶于THF(100mL),冷却至0℃,缓慢滴加MeMgBr(3.0M,52.2mL),饱和氯化铵水溶液淬灭,乙酸乙酯萃取,无水硫酸钠干燥,柱层析(PE/EA=20/1)纯化得88-3(7.0g)。
步骤4:
88-3(6.7g,20.0mml),醋酸钯(0.45g,2.0mmol),三苯基膦(1.05g,4.0mmol),乙酸钾(5.88g,60.0mmol),双联频哪醇硼酸酯(15.2g,60.0mmol)于二氧六环(100mL)中,氩气保护下,加热85℃过夜。硅藻土过滤,旋干后柱层析(PE/EA=40/1~10/1),得到M-88(2.9g)。 1H NMR(400MHz,CDCl3)δ7.80(d,J=2.4Hz,1H),7.33(dd,J=8.4,2.4Hz,1H),7.14-7.02(m,3H),6.16(d,J=8.8Hz,1H),4.93(s,1H),2.04(s,6H),1.38(s,6H),1.31(s,12H).
实施例186:硼酸酯M-86的合成
Figure PCTCN2019071258-appb-000213
步骤1:
3-溴-4-氟硝基苯(5.0g,22.7mmol),邻甲基苯酚(2.7g,25.0mmol),碳酸铯(8.9g,27.3mmol)加入DMSO(30mL)中,85℃下搅拌过夜。TLC检测显示原料反应完全。反应液倒入水(100mL)中,EA萃取,有机层分别用水,食盐水水洗涤,无水硫酸钠干燥,浓缩旋干得黄色油状物86-1(6.5g)。
步骤2:
将86-1(6.5g,21.1mmol)溶于乙醇(100mL)和水(30mL)中,加入铁粉(5.9g,0.1mol),氯化铵(11.3g,0.2mol),80℃,搅拌3h后。TLC显示原料反应结束。反应降温加入硅藻土,搅拌5min后,抽滤,滤饼EtOH洗涤,减压蒸馏除去乙醇,加水(50mL),EA萃取,有机层分别用水,饱和食盐水洗涤,无水硫酸钠干燥,旋干得褐色油状物86-2(5.6g)。
步骤3:
将86-2(5.6g,20.1mmol)溶于吡啶中,冰浴下滴加甲磺酰氯(2.8g,24.5mmol),室温搅拌1h后,TLC显示反应结束。将反应液倒入冰水(100mL)中,EA萃取,有机层分别用水,饱和食盐水洗涤,无水硫酸钠干燥,柱层析得白色固体86-3(6.1g)。
步骤4:
将86-3(6.1g,17.1mmol),乙酸钾(3.4g,34.6mmol),联硼酸频那醇酯(8.7g,34.6mmol)溶于100mL二氧六环中,在氮气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.7g,0.9mmol),加热至100℃,反应过夜。LCMS检测反应结束,冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析后,石油醚打浆得白色固体M-86(2.1g)。LCMS:[M-H] -=402.1; 1H NMR(400MHz,CDCl 3)δ7.52(d,J=2.8Hz,1H),7.39(dd,J=8.8,2.8Hz,1H),7.21(d,J=7.6Hz,1H),7.06(t,J=6.4Hz,1H),6.95(t,J=7.4Hz,1H),6.87(d,J=8.8Hz,1H),6.60(d,J=7.6Hz,1H),6.59(s,1H),3.01(s,3H),2.33(s,3H),1.20(s,12H).
实施例187:硼酸酯M-87的合成
Figure PCTCN2019071258-appb-000214
除了步骤1中以2,6-二甲基苯酚代替邻甲基苯酚以外,以与实施例186中相同的方法制备硼酸酯M-87。LCMS:硼酸盐,[M-H] -=416.2; 1H NMR(400MHz,CDCl 3)δ7.50(d,J=2.8Hz,1H),7.21(dd,J=8.8,2.8Hz,1H),7.19-7.05(m,3H),6.31(d,J=8.8Hz,1H),6.23(s,1H),2.96(s,3H),2.13(s,6H),1.36(s,12H).
实施例188:硼酸酯M-85的合成
Figure PCTCN2019071258-appb-000215
步骤1:
将3-溴-4-氟苯甲醛(5.0g,24.6mmol)溶于DMSO(50mL)中,加入2,6-二甲基苯酚(3.6g,29.5mmol)和碳酸铯(12.02g,36.9mmol),氩气保护下90℃搅拌过夜,TLC显示反应完全,加水,EA萃取,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得油状物85-1(7.0g)。
步骤2:
将85-1(7.0g,22.9mmol)溶于甲醇(100mL),室温下分批加入硼氢化钠(1.3g,34.4mmol),搅拌30min后,TLC显示反应完全,加水淬灭,EA萃取,饱和食盐水洗 涤,无水硫酸钠干燥,减压浓缩后柱层析纯化,得油状物85-2(5.8g)。
步骤3:
将85-2(5.8g,18.9mmol)溶于DCM(100mL)中,室温滴加三溴化磷(2.6mL,27.5mmol),搅拌半小时,TLC显示反应完全,加水淬灭,EA萃取,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩得油状物85-3(6.5g)。
步骤4:
将85-3(6.5g,17.6mmol)溶于DMF(50mL)中,加入乙硫醇钠(2.3g,27.5mmol),室温搅拌过夜。TLC显示反应完全,加水稀释,EA萃取,饱和食盐水洗,无水硫酸钠干燥,减压浓缩得油状物85-4(5.8g)。
步骤5:
将85-4(5.8g,16.5mmol)溶于甲醇:水=1:1的混合溶剂(50mL)中,室温加入过一硫酸氢钾复合盐,(Oxone,20.3g,33.02mmol),室温搅拌2h,LCMS检测反应完全。加入水(100mL),搅拌半小时后过滤,滤饼用水洗3次,乙醇带干后得白色固体85-5(7.0g)。
步骤6:
将85-5(6.0g,15.7mmol,)、联硼酸频那醇酯(8.0g,31.3mmol)、Pd(dppf)Cl 2(0.57g,0.78mmol)、醋酸钾(3.0g,31.3mmol)加入1,4-二氧六环(60mL)中,氩气保护下100℃搅拌过夜。LCMS检测有产品。将反应体系旋干,柱层析纯化,石油醚打浆,得白色固体M-85(1.0g)。
实施例189:硼酸酯M-83的合成
Figure PCTCN2019071258-appb-000216
步骤1:
将对氟苯硫酚(d=1.203g/mL,40.0mL,0.38mol)和碘乙烷(d=1.95g/mL,36.0mL,0.45mol)溶于THF(150mL),室温下滴加TEA(52.2mL,0.38mol),室温下搅拌2h,加入EA(200mL),水洗,无水硫酸钠干燥,减压浓缩得到83-1(51.0g)。
步骤2:
将83-1(25.1g,0.16mol)溶于甲醇(300mL)和水(100mL)中,冰浴下加入过 一硫酸氢钾复合盐(Oxone,56.7g,0.34mol),室温下搅拌1h,加入200mL水稀释,EA萃取,无水硫酸钠干燥,减压浓缩得到无色油状物83-2(29.0g)。
步骤3:
冰浴下将83-2(29.0g,154mmol)溶于浓硫酸(50mL),分批加入NBS(30.2g,170mml),室温下搅拌过夜,然后50℃加热6h。倒入冰水中,EA萃取,饱和食盐水洗涤,无水硫酸钠干燥,柱层析纯化,得到83-3(14.0g)。
步骤4:
将83-3(5.0g,18.8mmol),2,6-二甲基苯酚(2.5g,20.5mmol),碳酸铯(9.2g,28.2mmol)加入DMSO(50mL)中,80℃下搅拌2h。TLC检测显示原料反应完全。反应液倒入水(50mL)中,EA(50mL)萃取,水相用EA(10mL)萃取,合并有机相,分别用食盐水(20mL),水(20mL)洗涤,无水硫酸钠干燥,浓缩,柱层析得淡黄色油状物83-4(6.0g)。
步骤2:
将83-4(6.0g,16.3mmol),乙酸钾(4.8g,49.0mmol),联硼酸频那醇酯(8.3g,32.7mmol,)溶于50mL二氧六环中,在氩气保护下,加入[1,1’-双(二苯基膦)二茂铁]二氯化钯(0.66g,0.81mmol),加热至100℃,反应3h。冷却至室温,反应液经硅藻土过滤,向滤液中加入水和乙酸乙酯分层,取有机层,饱和食盐水洗涤,无水硫酸钠干燥,真空旋转蒸发除去溶剂,硅胶柱层析,PE/EA=5:1打浆得白色固体硼酸酯M-83(2.1g)。 1H NMR(400MHz,CDCl 3)δ8.27(d,J=2.4Hz,1H),7.73(dd,J=8.4,2.4Hz,1H),7.13-7.06(m,3H),6.44(d,J=8.8Hz,1H),3.11(q,J=7.6,2H),2.12(s,6H),1.37(s,12H),1.28(t,J=7.6Hz,3H).
实施例190:硼酸酯M-82的合成
Figure PCTCN2019071258-appb-000217
除了步骤4中以邻甲基苯酚代替2,6-二甲基苯酚以外,以与实施例189中相同的方法制备硼酸酯M-82。 1H NMR(400MHz,CDCl 3)δ8.27(d,J=2.4Hz,1H),7.82(dd,J=8.4,2.4Hz,1H),7.27(d,J=5.6Hz,1H),7.18(t,J=7.0Hz,1H),7.10(t,J=6.8Hz,1H),6.88(d,J=7.2Hz,1H),6.78(d,J=8.8Hz,1H),3.12(q,J=7.2,2H),2.22(s,3H),1.31-1.26(m,15H).
实施例191:硼酸酯M-84的合成
Figure PCTCN2019071258-appb-000218
除了步骤1中以邻甲基苯酚代替2,6-二甲基苯酚以外,以与实施例188中相同的方法制备硼酸酯M-84。 1H NMR(400MHz,CDCl 3)δ7.70(d,J=2.4Hz,1H),7.49(dd,J=8.4Hz,2.0Hz,1H),7.26(d,J=6.4Hz,1H),7.11(t,J=6.4Hz,1H),7.99(t,J=6.4Hz,1H),6.86(d,J=8.4Hz,1H),6.56(d,J=7.6Hz,1H),4.48(s,2H),3.04(q,J=7.6Hz,2H),2.23(s,3H),1.23(t,J=7.6Hz,3H),1.16(s,12H).
实施例192:硼酸酯M-91的合成
Figure PCTCN2019071258-appb-000219
步骤1:
将5-溴-6-氯烟酸甲酯(10.0g,40.0mmol)和2,4-二氟苯酚(7.8g,60.0mmol)溶于100mL二甲基亚砜(DMSO)中,加入碳酸铯(26.0g,80.0mmol),氮气保护下 95℃搅拌3h。TLC检测原料反应完全。冷却后倒入水中,EA萃取,饱和食盐水洗,无水硫酸钠干燥,浓缩后柱层析纯化,得到白色固体91-1(4.9g)。
步骤2:
将91-1(7.3g,21.3mmol)溶于80mL乙醇中,加入硼氢化钠(1.6g,42.6mmol),加毕回流搅拌1h。TLC检测原料反应完全。冷却后加水淬灭,EA萃取,饱和食盐水洗,无水硫酸钠干燥,浓缩后柱层析纯化,得到无色油状物91-2(3.46g)。
步骤3:
将91-2(3.46g,11.0mmol)溶于30mL DMF中,冰浴下加入三溴化磷(2.0mL,21.3mmol),加毕搅拌0.5h。TLC检测原料反应完全。反应液倒入水中,EA萃取,饱和食盐水洗,无水硫酸钠干燥,浓缩得到黄色油状物粗品91-3(5.32g),直接用于下一步。
步骤4:
将91-3(5.32g,14.1mmol)溶于30mL DMF中,冰浴下加入乙硫醇钠(1.35g,21.2mmol),加毕回至室温搅拌1h。TLC检测原料反应完全。加入水,EA萃取,饱和食盐水洗,无水硫酸钠干燥,浓缩后柱层析纯化,得到黄色棕色油状物91-4(2.75g)。
步骤5:
将91-4(2.75g,7.7mmol),碘苯二乙酸(7.4g,23.0mmol),乙酸铵(2.4g,31.1mmol)加于40mL乙醇中,室温搅拌1h。TLC监测原料消失。反应液减压浓缩,柱层析纯化,得到白色固体91-5(1.75g)。
步骤6:
将91-5(1.72g,4.4mmol),双联硼频哪醇酯(3.35g,13.2mmol),乙酸钾(1.29g,13.2mmol),PdCl 2(dppf)(539mg,0.66mmol)加于30mL二氧六环(dioxane)中,氮气保护下100℃搅拌2h。LCMS检测原料反应完全。反应液冷却后硅藻土过滤,滤液浓缩后柱层析纯化,得到黄色泡沫状固体M-91(1.2g)。 1H NMR(400MHz,CDCl 3)δ8.16(d,J=2.4Hz,1H),8.13(d,J=2.8Hz,1H),7.24-7.20(m,1H),6.95–6.87(m,2H),4.24(d,J=13.6Hz,1H),4.08(d,J=13.2Hz,1H),3.03(q,J=7.6Hz,2H),1.44(t,J=7.2Hz,3H),1.36(s,12H).
实施例193:硼酸酯M-90的合成
Figure PCTCN2019071258-appb-000220
除了步骤4中以甲硫醇钠代替乙硫醇钠以外,以与实施例192中相同的方法制备硼酸酯M-90。
实施例194:化合物ZB-BD-230的合成
Figure PCTCN2019071258-appb-000221
将化合物I-6(46mg,0.2mmol)、硼酸酯M-88(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-230。 1H NMR(400MHz,DMSO-d 6)δ10.26(d,J=5.5Hz,1H),7.49(d,J=2.3Hz,1H),7.38(dd,J=8.6,2.3Hz,1H),7.16–7.11(m,2H),7.07(dd,J=8.6,6.2Hz,1H),6.79(d,J=5.8Hz,1H),6.53–6.47(m,2H),6.31(d,J=8.6Hz,1H),5.04(s,1H),2.52(s,3H),1.99(s,6H),1.42(s,6H).HPLC-MS:[M+H] +=403.2
实施例195:化合物ZB-BD-232的合成
Figure PCTCN2019071258-appb-000222
将化合物I-6(46mg,0.2mmol)、硼酸酯M-86(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-232。 1H NMR(400MHz,DMSO-d 6)δ10.26(d,J=5.5Hz,1H),9.77(s,1H),7.30–7.25(m,2H),7.23(d,J=7.4Hz,1H),7.12(t,J=7.7Hz,1H),7.01(t,J=7.4Hz,1H),6.89(d,J=5.8Hz,1H),6.86(d,J=9.5Hz,1H),6.75(d,J=8.0Hz,1H),6.47(t,J=5.7Hz,1H),6.44(s,1H),3.03(s,3H),2.45(s,3H),2.10(s,3H).HPLC-MS:[M+H] +=424.2
实施例196:化合物ZB-BD-236的合成
Figure PCTCN2019071258-appb-000223
将化合物I-6(46mg,0.2mmol)、硼酸酯M-87(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-236。 1H NMR(400MHz,DMSO-d 6)δ10.28(d,J=5.4Hz,1H),9.63(s,1H),7.27(d,J=2.7Hz,1H),7.20–7.03(m,4H),6.85(d,J=5.8Hz,1H),6.52(d,J=2.9Hz,2H),6.38(d,J=8.9Hz,1H),2.98(s,3H),2.52(s,3H),1.99(s,6H).HPLC-MS:[M+H] +=438.3
实施例197:化合物ZB-BD-237的合成
Figure PCTCN2019071258-appb-000224
将化合物I-6(46mg,0.2mmol)、硼酸酯M-85(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-237。 1H NMR(400MHz,DMSO-d 6)δ10.29(d,J=5.4Hz,1H),7.51(d,J=2.2Hz,1H),7.36(dd,J=8.5,2.2Hz,1H),7.16–7.05(m,3H),6.87(d,J=5.8Hz,1H),6.57–6.51(m,2H),6.44(d,J=8.5Hz,1H),4.47(s,2H),3.06(q,J=7.4Hz,2H),2.54(s,3H),2.01(s,6H),1.22(t,J=7.4Hz,3H).HPLC-MS:[M+H] += 451.2.
实施例198:化合物ZB-BD-239的合成
Figure PCTCN2019071258-appb-000225
将化合物I-6(46mg,0.2mmol)、硼酸酯M-83(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-239。 1H NMR(400MHz,DMSO-d 6)δ10.33(d,J=5.5Hz,1H),7.89(d,J=2.3Hz,1H),7.85(dd,J=8.7,2.4Hz,1H),7.20–7.12(m,3H),
6.85(d,J=5.8Hz,1H),6.66–6.59(m,2H),6.54(t,J=5.7Hz,1H),3.32(q,J=7.3Hz,2H),2.52(s,3H),2.01(s,6H),1.13(t,J=7.3Hz,3H).HPLC-MS:[M+H] +=437.2
实施例199:化合物ZB-BD-240的合成
Figure PCTCN2019071258-appb-000226
将化合物I-6(46mg,0.2mmol)、硼酸酯M-82(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-240。HPLC-MS:[M+H] +=423.4
实施例200:化合物ZB-BD-249的合成
Figure PCTCN2019071258-appb-000227
将化合物I-6(46mg,0.2mmol)、硼酸酯M-84(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-249。 1H NMR(400MHz,DMSO-d 6)δ10.25(d,J=5.4Hz,1H),7.51(d,J=2.2Hz,1H),7.42(dd,J=8.5,2.2Hz,1H),7.26(d,J=7.4Hz,1H),7.17(t,J=7.4Hz,1H),7.06(t,J=7.4Hz,1H),6.91(d,J=5.8Hz,1H),6.87(d,J=7.9Hz,1H),6.77(d,J=8.5Hz,1H),6.51–6.43(m,2H),4.49(s,2H),3.06(q,J=7.4Hz,2H),2.48(s,3H),2.09(s,3H),1.23(t,J=7.4Hz,3H).HPLC-MS:[M+H] +=437.2
实施例201:化合物ZB-BD-241的合成
Figure PCTCN2019071258-appb-000228
将化合物VI-5(46mg,0.2mmol)、硼酸酯M-23(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-241。 1H NMR(400MHz,DMSO-d 6)δ11.68(s,1H),8.29(s,1H),8.18(d,J=2.2Hz,1H),8.05(d,J=2.2Hz,1H),7.55–7.42(m,2H),7.17(t,J=8.7Hz,1H),6.82(s,1H),4.56(s,2H),3.12(q,J=7.5Hz,2H),2.51(s,3H),1.24(t,J=7.4Hz,3H).HPLC-MS:[M+H] +=461.1
实施例202:化合物ZB-BD-242的合成
Figure PCTCN2019071258-appb-000229
将化合物VI-5(46mg,0.2mmol)、硼酸酯B-22(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-242。 1H NMR(400MHz,DMSO-d 6)δ11.62(s,1H),8.13(s,1H),7.59(d,J=2.2Hz,1H),7.53–7.45(m,2H),7.40(td,J=9.2,5.6Hz,1H),7.14(t,J=8.5Hz,1H),6.89(d,J=8.5Hz,1H),6.69(s,1H),4.53(s,2H),2.94(s,3H),2.48(s,3H).HPLC-MS:[M+H] +=446.3
实施例203:化合物ZB-BD-247的合成
Figure PCTCN2019071258-appb-000230
将化合物VI-5(46mg,0.2mmol)、硼酸酯M-21(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-247。 1H NMR(400MHz,DMSO-d 6)δ11.58(s,1H),8.25(d,J=2.3Hz,1H),8.07(s,1H),7.85(d,J=2.3Hz,1H),6.64(s,1H),5.22–5.07(m,1H),4.51(s,2H),2.96(s,3H),2.49(s,3H),1.96–1.85(m,2H),1.63–1.50(m,2H),1.45–1.30(m,4H),1.27–1.15(m,2H).HPLC-MS:[M+H] +=417.2
实施例204:化合物ZB-BD-248的合成
Figure PCTCN2019071258-appb-000231
将化合物VI-5(46mg,0.2mmol)、硼酸酯M-25(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-248。 1H NMR(400MHz,DMSO-d 6)δ11.60(s,1H),8.27(d,J=2.3Hz,1H),8.15(s,1H),7.89(d,J=2.3Hz,1H),6.65(s,1H),5.39–5.25(m,1H),4.53(s,2H),2.97(s,3H),2.49(s,3H),2.07–1.87(m,4H),1.87–1.68(m,4H).HPLC-MS:[M+H] +=453.1
实施例205:化合物ZB-BD-252的合成
Figure PCTCN2019071258-appb-000232
将化合物VI-5(46mg,0.2mmol)、硼酸酯B-39(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取, 硅胶柱层析纯化,得到化合物ZB-BD-252。 1H NMR(400MHz,DMSO-d 6)δ11.68(s,1H),8.29(s,1H),8.18(d,J=2.2Hz,1H),8.06(d,J=2.2Hz,1H),7.54–7.42(m,2H),7.17(t,J=8.2Hz,1H),6.83(s,1H),4.58(s,2H),2.99(s,3H),2.51(s,3H).HPLC-MS:[M+H] +=447.1
实施例206:化合物ZB-BD-253的合成
Figure PCTCN2019071258-appb-000233
将化合物VI-5(46mg,0.2mmol)、硼酸酯M-7(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-253。 1H NMR(400MHz,DMSO-d 6)δ11.58(s,1H),9.68(s,1H),8.11(d,J=2.6Hz,1H),8.03(s,1H),7.64(d,J=2.6Hz,1H),6.66(s,1H),5.14–5.02(m,1H),3.02(s,3H),2.49(s,3H),1.94–1.85(m,2H),1.59–1.50(m,2H),1.40–1.15(m,6H).HPLC-MS:[M+H] +=418.3
实施例207:化合物ZB-BD-254的合成
Figure PCTCN2019071258-appb-000234
将化合物VI-5(46mg,0.2mmol)、硼酸酯B-32(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-254。 1H NMR(400MHz,DMSO-d 6)δ11.67(s,1H),9.85(s,1H),8.26(s,1H),8.02(d,J=2.6Hz,1H),7.81(d,J=2.6Hz,1H),7.50–7.41(m,2H),7.15(t,J=8.3Hz,1H),6.83(s,1H),3.08(s,3H),2.50(s,3H).HPLC-MS:[M+H] +=448.0
实施例208:化合物ZB-BD-255的合成
Figure PCTCN2019071258-appb-000235
将化合物I-6(46mg,0.2mmol)、硼酸酯M-91(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-255。 1H NMR(400MHz,DMSO-d 6)δ10.39(d,J=5.4Hz,1H),8.15(d,J=2.2Hz,1H),8.01(d,J=2.2Hz,1H),7.50–7.39(m,2H),7.15(t,J=8.3Hz,1H),7.03(d,J=5.8Hz,1H),6.63(s,1H),6.53(t,J=5.7Hz,1H),4.48–4.34(m,2H),3.18(s,1H),2.96(d,J=7.3Hz,2H),2.52(s,3H),1.24(t,J=7.3Hz,3H).HPLC-MS:[M+H] +=459.1
实施例209:化合物ZB-BD-256的合成
Figure PCTCN2019071258-appb-000236
将化合物I-6(46mg,0.2mmol)、硼酸酯M-90(156mg)溶于3mL 1,4-二氧六环中,加入1mL 2M的碳酸钠溶液,在Ar的环境下加入[1,1'-双(二苯基膦基)二茂铁]二氯化钯 (Pd(dppf)Cl 2) (29mg,0.04mmol)。90℃搅拌2个小时后,加水稀释,用乙酸乙酯萃取,硅胶柱层析纯化,得到化合物ZB-BD-256。 1H NMR(400MHz,DMSO-d 6)δ10.38(d,J=5.5Hz,1H),8.17(s,1H),8.02(s,1H),7.51–7.39(m,2H),7.15(t,J=8.3Hz,1H),7.02(d,J=5.9Hz,1H),6.63(s,1H),6.53(t,J=5.7Hz,1H),4.55–4.37(m,2H),3.88(s,1H),2.85(s,3H),2.52(s,3H).HPLC-MS:[M+H] +=445.1.
实施例210:BRD4小分子化合物抑制活性检测实验:
使用AlphaScreen试剂盒(Perkin Elmer)检测化合物对BRD4布罗莫结构域(即溴结构域)与乙酰化的组蛋白H4多肽结合的影响。通过重组构建的布罗莫结构域BRD4_BD1(49-170)蛋白(Org.Biomol.Chem.,2017,15,9352-9361),纯度大于95%,其氨基酸序列中N端含有6个组蛋白标签,即(His) 6tag(以下均简称为(His) 6tag),含有(His) 6tag的融合蛋白均可Ni 2+识别并结合。乙酰化组蛋白H4多肽由苏州强耀生物科技有限公司提供,序列为N-C:SGRG-K(Ac)-GG-K(Ac)-GLG-K(Ac)-GGA-K(Ac)-RHRKVGG-K(生物素(biotin)),其中第5、8、12、16位的赖氨酸被乙酰化,并在多肽C端标记生物素5-(2-氧代六氢-1H-噻吩并[3,4-d]咪唑-4-基)戊酸(5-(2-oxohexahydro-1H-thieno[3,4-d]imidazole-4-yl)pentanoic acid),纯度大于95%。供体微珠和受体微珠购买自Perkin Elmer公司 (AlphaScreen Histidine Detection Kit(Nickle Chelate)6760619M Lot:2236078)。供体微珠上包被了链霉亲和素,可以结合标记了生物素的乙酰化的H4多肽。受体微珠上包被了Ni 2+离子,可以结合带(His) 6tag的BD1蛋白。当BD1蛋白识别乙酰化的H4多肽后,能够将供体微珠和受体微珠拉近到一定距离的范围内,在此范围内,供体微珠经680nm的激发光照射后能产生单线氧并传递到受体微珠,经过一系列级联化学反应,受体微珠将产生520-620nm的发射波,进而能够检测到信号。在本实验中,测试体系为20μL,需要将化合物稀释在缓冲液1(20mM HEPES pH7.4,150Mm NaCl,1mM二硫苏糖醇)中。20mM的化合物首先连续两次稀释10倍,共稀释100倍至浓度为200μM,再将200μM化合物连续三倍稀释在含有1/100DMSO的缓冲液1中,得到化合物浓度为200μM至10nM的8X化合物稀释系列的工作溶液(终浓度为25.0μM,8.33μM,2.77μM,0.926μM,0.309μM,0.103μM,0.0343μM,0.0114μM,0.00381μM,0.00127μM),测试时所用阳性化合物为JQ1(Nature 2010,468,1067–1073),购买于sigma公司。添加2.5μL化合物溶液入白色384孔板中(OptiPlate-384,PerkinElmer 6007299)。将重组BD1蛋白溶液和乙酰化组蛋白H4多肽分别稀释于缓冲液2(20mM HEPES pH7.4,150mM NaCl,0.01%Triton X-100,0.1%牛血清蛋白(w/v,Sigma)1mM二硫苏糖醇)中至100nM和100nM,得到8X的BD1蛋白工作溶液和4X的乙酰化组蛋白H4多肽工作溶液,供体微珠和受体微珠均以1比100的比例一起稀释于缓冲液2中,得到2X微珠混合工作溶液。将2.5μL BD1蛋白工作溶液添加入板中,与化合物室温孵育20min,再加入5μL乙酰化组蛋白H4多肽工作溶液,室温孵育5min后,最后加入10μL微珠混合工作溶液,室温孵育60min后,在EnVision酶标仪(Perkin Elmer)读取数值(激发波长为680nM,检测波长为520-620nM)。经GraphPad Prism 5.0软件拟合计算不同浓度化合物对BD1蛋白与乙酰化H4多肽结合抑制强弱的IC 50
Figure PCTCN2019071258-appb-000237
Figure PCTCN2019071258-appb-000238
实施例211:细胞生长抑制实验:
急性单核白血病细胞MV4-11细胞(ATCC,CRL-9591)用含10%胎牛血清(Gibco,Life Technologies,10099-141)及1%抗生素(盘尼西林和链霉素,Life Technologies,10378016)的1640培养基(Gibco,Life Technologies,22400-089)于CO 2培养箱(37℃,5%CO 2)中培养。在化合物增殖抑制测试中,将MV4-11细胞以10000个/孔的密度种于96孔透明底板中(Corning,3599),种板体积为100μL,(第A、H行及第1、12列种新鲜培养基,其余60孔种MV4-11细胞)。细胞种板后置于CO 2培养箱(37℃,5%CO 2)中静置培养1小时。在96孔板(Corning,3357)中通过三倍连续稀释20mM的化合物(第一个孔使用培养基稀释,后面的孔使用含1/400DMSO的培养基稀释以使各孔中DMSO浓度一致)制备从50μM至7.62nM的化合物稀释系列,并将25μL稀释后的化合物溶液添加到细胞板的适当孔中,使最终化合物浓度为10.0μM,3.33μM,1.11μM,0.370μM,0.123μM,0.0412μM,0.0137μM,0.00457μM和0.00152μM。添加化合物后,再将细胞置于CO 2培养箱(37℃,5%CO 2)中培养72小时。使用CellTiter-Glo试剂(Promega,G7572)测定细胞存活率:先将CellTiter-Glo试剂(Promega,G7572)按20μL/孔加入白色不透明384孔板(OptiPlate-384,PerkinElmer 6007299)适当孔中,再分别将96孔板(Corning,3599)中化合物处理后的细胞混匀,吸取40μL至384孔板(PerkinElmer,6007299)对应孔中,室温孵育10min后用多标签阅读器(EnVision,PerkinElmer)在400~700nm波长下进行检测。检测结果通过GraphPad Prism 5.0软件分析,拟合得到IC 50值。
Figure PCTCN2019071258-appb-000239
Figure PCTCN2019071258-appb-000240
实施例212:MM.1S细胞生长抑制实验:
多发性骨髓瘤细胞MM.1S用含有10%胎牛血清(Gibco,Life Technologies,10099-141)和1%青霉素-链霉素溶液(Penicillin-Streptomycin solution)(Hyclone,Cat.No.SV30010,Lot.No.J180005)的RPMI1640培养基(Invitrogen,Cat.No.11875-093,Lot.No.1960297),置于CO 2培养箱(37℃,5%CO 2)中培养。吸取细胞悬液并移入15mL离心管中,800rpm的转速离心3分钟,弃上清。向离心管中加入2mL的培养基,轻柔 吹打使细胞重悬均匀。使用血球计数板测量细胞密度,再将细胞悬液稀释至50000个/mL,将稀释后的细胞悬液加入96孔细胞培养板(Corning,3599)中,100μl/孔(第1列为含0.5%DMSO的培养基,其余88孔种MM.1S细胞,置于CO 2培养箱中过夜。
将待测化合物以DMSO配置成10mM的溶液,再将化合物在DMSO中配制成2mM溶液加到化合物板中,并以DMSO进行4倍梯度稀释7个点,吸取0.5μL的待测化合物板中的化合物加入细胞培养板中(化合物加入第A-G行,0.5μL DMSO作为对照加入第H行),化合物最终浓度分别为10000nM,2500nM,625nM,156.25nM,39.06nM,9.77nM,2.44nM。放回CO 2培养箱中培养96小时。之后采用CellTiter Glo试剂(Promega,Cat.No.G7573,Lot.No.0000310975)检测细胞存活率。将细胞培养板取出平衡至室温,每孔中加入CellTiter Glo试剂100μL,避光振荡10min,孵育10min.再将培养板放入多功能酶标仪EnSpire(PerkinElmer)读板,在400~700nm波长下进行检测,记录读值数据;按下列公式计算抑制率:抑制率(%)=(1-(RLU compound-RLU blank)/(RLU DMSO–RLU blank))×100%。利用XLFit绘制药效抑制率曲线(四参数模型[fit=(A+((B-A)/(1+((C/x)^D))))])并计算IC 50值。
Figure PCTCN2019071258-appb-000241

Claims (10)

  1. 一种由通式I表示的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物:
    Figure PCTCN2019071258-appb-100001
    Figure PCTCN2019071258-appb-100002
    为单键或双键;
    R x为氢、C 1-C 3烷基、或C 1-C 3卤代烷基;
    R y为氢、C 1-C 3烷基、或C 1-C 3卤代烷基;
    X 1为N或CR x1,其中,R x1为氢、C 1-C 6烷基、、C 1-C 6卤代烷基、卤素或者CN;
    Y 1为N、CR y1或CR y1R y2,其中,R y1和R y2各自独立地为氢、C 1-C 6烷基、C 1-C 6卤代烷基、卤素、CN;
    Y 2为N、CR y3或CR y3R y4,其中,R y3和R y4各自独立地为氢、CN、C 1-C 6烷基、C 1-C 6卤代烷基;-(C 1-C 6亚烷基)-OR 2a、-C(O)-R ax1、-(C 1-C 6亚烷基)-C(O)-R ax1、-C(O)OR ax1、-(C 1-C 6亚烷基)-C(O)NHR ax1、-(C 1-C 6亚烷基)-N(R ax1)R ax2、-C(O)N(R ax1)R ax2、G a、或-(C 1-C 6亚烷基)-G a
    R ax1和R ax2在每次出现时各自独立地为氢、C 1-C 6烷基、C 1-C 6卤代烷基、G a、或-(C 1-C 6亚烷基)-G a
    特别地,Y 1和Y 2不能同时为N;且当Y 1或Y 2为N时,
    Figure PCTCN2019071258-appb-100003
    为双键;
    A 1为N或CR 1,A 2为N或CR 2,A 3为N或CR 3,A 4为N或CR 4,条件是A 1、A 2、A 3、和A 4的0、1、2或3个为N;
    R 1为氢、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、卤素、C 1-C 6卤代烷基、CN、或NO 2
    Figure PCTCN2019071258-appb-100004
    -S(O) 2R 2d、-S(O) 2NR 2bR 2c、-C(O)R 2d、-C(O)OR 2a、-C(O)NR 2bR 2c、-NR 2bR 2c、-N(R 2e)C(O)R 2d、-N(R 2e)S(O) 2R 2d、-N(R 2e)C(O)OR 2d、-N(R 2e)C(O)NR 2bR 2c、-N(R 2e)S(O) 2NR 2bR 2c、-(C 1-C 6亚烷基)-G 2a、-(C 1-C 6亚烷基)-OR 2a、-(C 1-C 6亚烷基)-OC(O)R 2d、-(C 1-C 6亚烷基)-OC(O)NR 2bR 2c、-(C 1-C 6亚烷基)-S(O) 2R 2d、-(C 1-C 6亚烷基)-S(O) 2NR 2bR 2c、-(C 1-C 6亚烷基)-C(O)R 2d、-(C 1-C 6亚烷基)-C(O)OR 2a、-(C 1-C 6亚烷基)-C(O)NR 2bR 2c、-(C 1-C 6亚烷基)-NR 2bR 2c、-(C 1-C 6亚烷基)-N(R 2e)C(O)R 2d、-(C 1-C 6亚烷基)-N(R 2e)S(O) 2R 2d、-(C 1-C 6亚烷基)-N(R 2e)C(O)OR 2a、-(C 1-C 6亚烷基)-N(R 2e)C(O)NR 2bR 2c、-(C 1-C 6亚烷基)-N(R 2e)S(O) 2NR 2bR 2c、-(C 1-C 6亚烷基)-CN、-S(=O)(=NH)R 2d、-(C 1-C 6亚烷基)-S(=O)(=NH)R 2d;其中C 1-C 6亚烷基为未取代的或被1至6个选自CN、OH和C 1-C 3 烷基的取代基取代;
    R 2a、R 2b、R 2c、和R 2e在每次出现时各自独立地为氢、C 2-C 6烯基、C 2-C 6炔基、C 1-C 6卤代烷基、G 2b、C 1-C 6烷基、或者被一个取代基取代的C 1-C 6烷基,所述取代基选自-OR z1、-NR z1R z2、-C(O)OR z1、-C(O)NR z1R z2、-S(O) 2R z1、-S(O) 2NR z1R z2、和G 2b
    R 2d在每次出现时各自独立地为C 2-C 6烯基、C 2-C 6炔基、C 1-C 6卤代烷基、G 2b、C 1-C 6烷基、或者被一个取代基取代的C 1-C 6烷基,所述取代基选自-OR z1、-NR z1R z2、-C(O)OR z1、-C(O)NR z1R z2、-S(O) 2R z1、-S(O) 2NR z1R z2、和G 2b
    R z1和R z2在在每次出现时各自独立地为氢、C 1-C 6烷基、或C 1-C 6卤代烷基;
    G a、G 2a、和G 2b在每次出现时各自独立地为芳基、杂芳基、杂环、环烷基、或环烯基,并且其各自独立地为未取代的或被1、2、3、4、或5个R v取代;
    L 1为不存在、-CH 2-、-C(O)-、-C(H)(OH)-、-(CH 2) mO-、-(CH 2) mS(O) n-、-NHC(O)-、-C(O)NH-、-NHC(O)NH-、-NHS(O) 2-、-S(O) 2NH-或-(CH 2) mN(R z)-,其中n为0、1、或2;m为0或1;R z为氢、C 1-C 3烷基、C 1-C 3卤代烷基;(C 2-C 3亚烷基)-OH、或未取代的环丙基;
    G 1为C 1-C 6烷基、烷氧基烷基、G 1a或-(C 1-C 6亚烷基)-G 1a;其中每一G 1a独立地为芳基、杂芳基、杂环、环烷基、或环烯基,并且每一G 1a独立地为未取代的或被1、2、3、4、或5个R w取代;
    R v和R w在每次出现时各自独立地为C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、卤素、C 1-C 6卤代烷基、-CN、氧代、-OR h、-OC(O)R i、-OC(O)NR jR k、-SR h、-S(O) 2R h、-S(O) 2NR jR k、-C(O)R h、-C(O)-单环杂环、-C(O)-单环杂芳基、-C(O)OR h、-C(O)NR jR k、-NR jR k、-N(R h)C(O)R i、-N(R h)S(O) 2R i、-N(R h)C(O)OR i、-N(R h)C(O)NR jR k、-(C 1-C 6亚烷基)-OR h、-(C 1-C 6亚烷基)-OC(O)R i、-(C 1-C 6亚烷基)-OC(O)NR jR k、-(C 1-C 6亚烷基)-S(O) 2R h、-(C 1-C 6亚烷基)-S(O) 2NR jR k、-(C 1-C 6亚烷基)-C(O)R h、-(C 1-C 6亚烷基)-C(O)OR h、-(C 1-C 6亚烷基)-C(O)NR jR k、-(C 1-C 6亚烷基)-NR jR k、-(C 1-C 6亚烷基)-N(R h)C(O)R i、-(C 1-C 6亚烷基)-N(R h)S(O) 2R i、-(C 1-C 6亚烷基)-N(R h)C(O)OR i、-(C 1-C 6亚烷基)-N(R h)C(O)NR jR k、或-(C 1-C 6亚烷基)-CN;
    R h、R j、R k在每次出现时各自独立地为氢、C 1-C 6烷基、或C 1-C 6卤代烷基;和R i在每次出现时独立地为C 1-C 6烷基、或C 1-C 6卤代烷基。
  2. 根据权利要求1所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物,其中,所述通式I所述的化合物选自式Ia、Ib、Ic、或Ie所示的化合物:
    Figure PCTCN2019071258-appb-100005
    Figure PCTCN2019071258-appb-100006
    为单键或双键;
    R x、R y、R x1、R y1、R y2、R y3、R y4、Y 1、Y 2、A 1、A 2、A 3、A 4、L 1、和G 1与权利要求1中所述通式I中的定义相同。
  3. 根据权利要求1所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物,其中,所述通式I所述的化合物选自式Id或If所示的化合物:
    Figure PCTCN2019071258-appb-100007
    其中,A 1、A 2、A 3、A 4、L 1、和G 1与权利要求1中所述通式I中的定义相同;Y 2为N或者CH;R y为C 1-C 3烷基;R x1为H、CH 3或者卤素。
  4. 根据权利要求1所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物,其中,所述通 式I所述的化合物选自式Ig和Ih所示的化合物:
    Figure PCTCN2019071258-appb-100008
    其中A 2与权利要求1中所述通式I中的定义相同;L 1为O或者NH;Y 2为CH或者N;R x1为H、CH 3或者卤素;A 4为CH或者N;G 1为G 1a或-(CH 2)-G 1a;其中每一G 1a独立地为芳基、杂芳基、杂环、环烷基、或环烯基,并且每一G 1a独立地为未取代的或被1或者2个R w取代,R w与上文中所述通式I中的定义相同。
  5. 根据权利要求1所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物,其中,所述通式I所述的化合物选自式Ii和Ij所示的化合物:
    Figure PCTCN2019071258-appb-100009
    其中,Y 2为N或者CH;L 1为O或者NH;A 4为CH或者N;
    G 1是吡啶基、
    Figure PCTCN2019071258-appb-100010
    Figure PCTCN2019071258-appb-100011
    或者是被1或2个卤素取代的苯基;
    R 2是-S(O) 2R 2d、-NHS(O) 2R 2d、-S(O) 2NR 2bR 2c、或者-(CH 2)-S(O) 2R 2d;其中R 2d是未取代的C 1-C 3烷基,R 2b和R 2c各自独立地为氢或者未取代的C 1-C 3烷基。
  6. 根据权利要求1所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物,其中
    所述通式I所述的化合物选自如下化合物:
    Figure PCTCN2019071258-appb-100012
    Figure PCTCN2019071258-appb-100013
    Figure PCTCN2019071258-appb-100014
    Figure PCTCN2019071258-appb-100015
    Figure PCTCN2019071258-appb-100016
  7. 一种药物组合物,其包含治疗有效量的根据权利要求1-6中任一项所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物,和可药用载体。
  8. 根据权利要求1-6中任一项所述的化合物、其可药用的盐、对映异构体、非对 映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物或根据权利要求7所述的药物组合物在制备治疗对象的疾病或病症或疾病状态的药物中的用途。
  9. 根据权利要求8所述的用途,其中所述疾病或病症或疾病状态选自:听神经瘤、急性白血病、急性淋巴细胞性白血病、急性髓细胞系白血病(单核细胞性、成髓细胞性、腺癌、血管肉瘤、星形细胞瘤、髓单核细胞性和早幼粒细胞性)、急性t-细胞性白血病、基底细胞癌、胆管癌、膀胱癌、脑癌、乳腺癌、支气管癌、宫颈癌、软骨肉瘤、脊索瘤、绒毛膜癌、慢性白血病、慢性淋巴细胞性白血病、慢性髓细胞性(粒细胞性)白血病、慢性骨髓性白血病、结肠癌、结肠直肠癌、颅咽管瘤、囊腺癌、弥漫型大B-细胞淋巴瘤、不良增生性变化(发育不良和化生)、胚胎癌、子宫内膜癌、内皮肉瘤、室管膜瘤、上皮癌、红白血病、食管癌、雌激素受体阳性乳腺癌、原发性血小板增多症、尤因氏肉瘤、纤维肉瘤、滤泡性淋巴癌、生殖细胞睾丸癌、神经胶质瘤、成胶质细胞瘤、神经胶质肉瘤、重链病、血管母细胞瘤、肝癌、肝细胞癌、激素不敏感性前列腺癌、平滑肌肉瘤、白血病、脂肪肉瘤、肺癌、淋巴管内皮肉瘤、淋巴管肉瘤、淋巴母细胞白血病、淋巴瘤(霍奇金和非霍奇金)膀胱、乳腺、结肠、肺、卵巢、胰腺、前列腺、皮肤和子宫的恶性肿瘤和过度增生障碍、T-细胞或B-细胞源淋巴恶性肿瘤、白血病、淋巴瘤、髓样癌、髓母细胞瘤、黑色素瘤、脑膜瘤、间皮瘤、多发性骨髓瘤、骨髓性白血病、骨髓瘤、粘液肉瘤、神经母细胞瘤、NUT中线癌(NMC)、非小细胞肺癌、少突神经胶质瘤、口腔癌、骨原性肉瘤、卵巢癌、胰腺癌、乳头状腺癌、乳头状癌、松果体瘤、真性红细胞增多症、前列腺癌、直肠癌、肾细胞癌、成视网膜细胞瘤、横纹肌肉瘤、肉瘤、皮脂腺癌、精原细胞瘤、皮肤癌、小细胞肺癌、实体瘤(癌和肉瘤)、小细胞肺癌、胃癌、鳞状细胞癌、滑膜瘤、汗腺瘤、甲状腺癌、原发性巨球蛋白血症、睾丸肿瘤、子宫癌和肾母细胞瘤,
    或者,所述疾病或病症或疾病状态选自:艾迪生病、急性痛风、强直性脊柱炎、哮喘、动脉粥样硬化、白塞病、大疱性皮肤病、慢性阻塞性肺疾病、克罗恩病、皮炎、湿疹、巨细胞性动脉炎、肾小球性肾炎、肝炎、下垂体炎、炎性肠病、川崎病、狼疮性肾炎、多发性硬化、心肌炎、肌炎、器官移植排斥、骨关节炎、胰腺炎、心包炎、结节性多动脉炎、局限性肺炎、原发性胆汁性肝硬化、银屑病、银屑病性关节炎、类风湿性关节炎、巩膜炎、硬化性胆管炎、脓毒症、系统性红斑狼疮、高安氏动脉炎、中毒性休克、甲状腺炎、I型糖尿病、溃疡性结肠炎、葡萄膜炎、白癜风、脉管炎和韦格纳肉芽肿,
    或者,所述疾病或病症或疾病状态选自:糖尿病性肾病、高血压性肾病、HIV-相关的肾病、肾小球性肾炎、狼疮性肾炎、IgA肾病、局灶性阶段性肾小球硬化、膜性肾小球肾炎、微小病变疾病、多囊肾病和肾小管间质性肾炎,
    或者,所述疾病或病症或疾病状态选自:缺血再灌注诱导的、强心剂和大外科手术诱导的、经皮冠状动脉介入干预诱导的、放射性造影剂诱导的、脓毒症诱导的、肺炎诱导的、和药物中毒诱导的急性肾损伤或疾病,
    或者,所述疾病或病症或疾病状态为获得性免疫缺陷综合征(AIDS),
    或者,所述疾病或病症或疾病状态选自:个体肥胖、血脂异常、高胆固醇血症、阿尔兹海默病、代谢综合征、脂肪肝、II型糖尿病、胰岛素抵抗、糖尿病性视网膜病或糖 尿病性神经病。
  10. 根据权利要求1-6中任一项所述的化合物、其可药用的盐、对映异构体、非对映异构体、阻转异构体、外消旋体、多晶型物、溶剂合物或经同位素标记之化合物或根据权利要求7所述的药物组合物在制备预防怀孕的药物中的用途。
PCT/CN2019/071258 2018-01-16 2019-01-11 溴结构域抑制剂化合物及其用途 WO2019141131A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19740997.2A EP3741758A4 (en) 2018-01-16 2019-01-11 BROMODOMAIN INHIBITOR COMPOUND AND ITS USE
US16/962,347 US11427593B2 (en) 2018-01-16 2019-01-11 Bromodomain inhibitor compound and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810040756.7 2018-01-16
CN201810040756 2018-01-16
CN201811081153 2018-09-17
CN201811081153.8 2018-09-17

Publications (1)

Publication Number Publication Date
WO2019141131A1 true WO2019141131A1 (zh) 2019-07-25

Family

ID=67274112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071258 WO2019141131A1 (zh) 2018-01-16 2019-01-11 溴结构域抑制剂化合物及其用途

Country Status (4)

Country Link
US (1) US11427593B2 (zh)
EP (1) EP3741758A4 (zh)
CN (1) CN110041333B (zh)
WO (1) WO2019141131A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793561B2 (en) 2017-07-18 2020-10-06 Nuvation Bio Inc. 1,8-naphthyridinone compounds and uses thereof
US11028058B2 (en) 2017-07-18 2021-06-08 Nuvation Bio Inc. Heterocyclic compounds as adenosine antagonists
US11192900B2 (en) 2018-10-30 2021-12-07 Nuvation Bio Inc. Substituted 1,6-dihydropyridinones and 1,2-dihydroisoquinolinones as bet inhibitors
US11254670B2 (en) 2019-01-18 2022-02-22 Nuvation Bio Inc. 1,8-naphthyridinone compounds and uses thereof
US11306071B2 (en) 2019-01-18 2022-04-19 Nuvation Bio Inc. Heterocyclic compounds as adenosine antagonists
US11584756B2 (en) 2019-07-02 2023-02-21 Nuvation Bio Inc. Heterocyclic compounds as BET inhibitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805357B (zh) * 2021-01-21 2023-12-19 四川大学 一种靶向setdb1-ttd的小分子抑制剂及其制药用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097601A1 (en) 2011-12-30 2013-07-04 Abbvie Inc. Bromodomain inhibitors
WO2013142269A1 (en) * 2012-03-19 2013-09-26 Envivo Pharmaceuticals, Inc. Imidazotriazinone compounds
US20140275026A1 (en) 2013-03-12 2014-09-18 Abbvie Inc. Dihydro-pyrrolopyridinone inhibitors
WO2015058160A1 (en) 2013-10-18 2015-04-23 Quanticel Pharmaceuticals, Inc. Bromodomain inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016512524A (ja) * 2013-03-11 2016-04-28 アッヴィ・インコーポレイテッド ブロモドメイン阻害剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013097601A1 (en) 2011-12-30 2013-07-04 Abbvie Inc. Bromodomain inhibitors
WO2013142269A1 (en) * 2012-03-19 2013-09-26 Envivo Pharmaceuticals, Inc. Imidazotriazinone compounds
US20140275026A1 (en) 2013-03-12 2014-09-18 Abbvie Inc. Dihydro-pyrrolopyridinone inhibitors
WO2015058160A1 (en) 2013-10-18 2015-04-23 Quanticel Pharmaceuticals, Inc. Bromodomain inhibitors

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
ANDERS ET AL., NAT. BIOTECH., vol. 32, 2014, pages 92 - 6
BERKOVITS ET AL., CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY, vol. 102, 2013, pages 293 - 326
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 1049726-96-6
HOUZELSTEIN ET AL., MOLECULAR AND CELLULAR BIOLOGY, vol. 22, 2002, pages 3794 - 802
J. MED. CHEM., vol. 60, 2017, pages 8369
LAMONICA ET AL., PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 108, 2011, pages E159 - E68
NATURE, vol. 468, 2010, pages 1067 - 1073
ORG. BIOMOL. CHEM., vol. 15, 2017, pages 9352 - 9361
RAHMAN ET AL., MOLECULAR AND CELLULAR BIOLOGY, vol. 31, no. 13, 2011, pages 2641 - 52
See also references of EP3741758A4
SHI ET AL., MOLECULAR CELL, vol. 54, no. 5, 2014, pages 728 - 36
T. GREENEP. WUTS: "Protecting Groups in Chemical Synthesis", 1999, JOHN WILEY & SONS
WANG ET AL., VITAMINS AND HORMONES, vol. 91, 2013, pages 49 - 75

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793561B2 (en) 2017-07-18 2020-10-06 Nuvation Bio Inc. 1,8-naphthyridinone compounds and uses thereof
US11028058B2 (en) 2017-07-18 2021-06-08 Nuvation Bio Inc. Heterocyclic compounds as adenosine antagonists
US11192900B2 (en) 2018-10-30 2021-12-07 Nuvation Bio Inc. Substituted 1,6-dihydropyridinones and 1,2-dihydroisoquinolinones as bet inhibitors
US11254670B2 (en) 2019-01-18 2022-02-22 Nuvation Bio Inc. 1,8-naphthyridinone compounds and uses thereof
US11306071B2 (en) 2019-01-18 2022-04-19 Nuvation Bio Inc. Heterocyclic compounds as adenosine antagonists
US11584756B2 (en) 2019-07-02 2023-02-21 Nuvation Bio Inc. Heterocyclic compounds as BET inhibitors

Also Published As

Publication number Publication date
CN110041333B (zh) 2022-03-01
US20200354371A1 (en) 2020-11-12
US11427593B2 (en) 2022-08-30
CN110041333A (zh) 2019-07-23
EP3741758A1 (en) 2020-11-25
EP3741758A4 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2019141131A1 (zh) 溴结构域抑制剂化合物及其用途
JP7293560B2 (ja) 芳香族ビニルまたは芳香族エチル系誘導体、その製造方法、中間体、薬物組成物および使用
JP6675431B2 (ja) ヒドラジド含有核輸送調節因子およびその使用
CN111138301B (zh) 联苯类化合物、其中间体、制备方法、药物组合物及应用
JP5702396B2 (ja) ベンゾジアゼピンブロモドメイン阻害剤
JP5524343B2 (ja) ベンゾジアゼピンブロモドメイン阻害剤
JP5819840B2 (ja) ブロモドメイン阻害剤としてのテトラヒドロキノリン誘導体
CN110092745B (zh) 一种含芳环的化合物及其应用
EA029224B1 (ru) Бициклические гетероциклические производные в качестве ингибиторов бромодомена
WO2020253711A1 (zh) 一种吡咯并吡啶酮类化合物、其制备方法、其组合物和用途
KR20220004036A (ko) 소분자 pd-1/pd-l1 억제제, 이와 pd-l1 항체의 약학 조성물 및 이의 용도
WO2019091277A1 (zh) 2-(1h-吡唑-3-基)苯酚类化合物及其应用
JP2018522871A (ja) ブロモドメイン阻害剤としての二環式複素環誘導体
CN107879975B (zh) 组蛋白去乙酰化酶抑制剂及其应用
CN110818609A (zh) 3-乙酰基吲哚类brpf1抑制剂的制备方法及其用途
US20170305915A1 (en) Indazole and indole derivatives as inhibitors of retinoic acid relates orphan receptor gamma (ror gamma) for the treatment of immune-related diseases
CN110869371A (zh) 7-位取代吡咯并三嗪类化合物或其药学上可用的盐,及其制备方法和用途
JP2024507747A (ja) Rip2キナーゼ阻害剤としてのヘテロアリール化合物、その組成物及び用途
JP2007277241A (ja) (2R,Z)−2−アミノ−2−シクロヘキシル−N−(5−(1−メチル−1H−ピラゾール−4−イル)−1−オキソ−2,6−ジヒドロ−1H−[1,2]ジアゼピノ[4,5,6−cd]インドール−8−イル)アセトアミドの多形体
WO2020248908A1 (zh) 一种双功能免疫调节剂及其在药学上可接受的盐、药物组合物
CN109705057B (zh) 组蛋白去乙酰化酶抑制剂及其制备方法与用途
CN111808080B (zh) 取代的吡啶或嘧啶化合物、其制备方法及其在医药上的应用
KR20230175249A (ko) Gpr35 효능제 화합물
CN118005637A (zh) 一种稠合三环类parp1抑制剂、其制备方法及用途
TW202039430A (zh) 製備磺胺類藥物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19740997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019740997

Country of ref document: EP

Effective date: 20200817