WO2019141035A1 - 转子轴组件、转子及电机 - Google Patents

转子轴组件、转子及电机 Download PDF

Info

Publication number
WO2019141035A1
WO2019141035A1 PCT/CN2018/121458 CN2018121458W WO2019141035A1 WO 2019141035 A1 WO2019141035 A1 WO 2019141035A1 CN 2018121458 W CN2018121458 W CN 2018121458W WO 2019141035 A1 WO2019141035 A1 WO 2019141035A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
shaft
rotor
receiving groove
magnetic core
Prior art date
Application number
PCT/CN2018/121458
Other languages
English (en)
French (fr)
Inventor
彭利明
贾金信
张小波
刘健宁
张芳
李广海
郭长光
魏琼
李忠雨
闫瑾
梁建东
熊博文
王泽业
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP18901557.1A priority Critical patent/EP3745565A4/en
Priority to US16/963,660 priority patent/US11735976B2/en
Publication of WO2019141035A1 publication Critical patent/WO2019141035A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2726Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of a single magnet or two or more axially juxtaposed single magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/023Shafts; Axles made of several parts, e.g. by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/12Force connections, e.g. clamping by press-fit, e.g. plug-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • the present invention relates to the field of electric machines, and in particular to a rotor shaft assembly, a rotor and an electric machine.
  • the existing high-speed permanent magnet motor rotor structure please refer to FIG. 1, the rotating shaft is formed by three segments, and the whole cylindrical magnetic steel 3 is used, and the interference between the alloy sheath 4 and the three-stage main shaft is used to transmit the torque.
  • the first shaft end piece 1 and the second shaft end piece 2 are both non-magnetic materials.
  • the main object of the present invention is to provide a rotor shaft assembly, a rotor and a motor to solve the problem that the rotor shaft assembly of the prior art is prone to misalignment of the shaft when assembling the end shaft and the magnetic steel.
  • a rotor shaft assembly includes: a magnetic core; a first end shaft; a second end shaft; a protective sleeve, the first through which is disposed on the protective cover a hole, a second through hole and a third through hole, the first end shaft is disposed in the first through hole, at least a part of the magnetic core is disposed in the second through hole, and the second end shaft is disposed in the first end 3.
  • the minimum distance between the center line of the protective sleeve and the wall of the first through hole is a, and the minimum distance between the center line of the protective sleeve and the wall of the second through hole is b, the center of the protective sleeve
  • the minimum distance of the line from the wall of the third through hole is c, wherein at least one of a and c is not equal to b.
  • the protective sleeve is a cylinder
  • the first through hole, the second through hole and the third through hole are both round holes, wherein the aperture value of the first through hole and the aperture value of the third through hole At least one of the holes is larger than the aperture value of the second through hole.
  • first end shaft is provided with a first receiving groove, and a part of the magnetic core is disposed in the first receiving groove; or, the first end of the magnetic core is provided with a second receiving groove, and a part of the first end axis is disposed at In the second receiving slot.
  • the magnetic core is in clearance with the first receiving groove; or the first end shaft is in clearance with the second receiving groove.
  • the second end shaft is provided with a third receiving groove, and a part of the magnetic core is disposed in the third receiving groove; or, the second end of the magnetic core is provided with a fourth receiving groove, and a part of the second end shaft is disposed at The fourth receiving slot is inside.
  • the magnetic core is in clearance with the third receiving groove; or the second end shaft is in clearance with the fourth receiving groove.
  • the first end shaft includes: a first shaft segment, at least part of the first shaft segment is disposed in the first through hole; the second shaft segment, the second shaft segment is connected to the first shaft segment, and the second shaft The segment is located outside the first through hole; wherein the first shaft segment is provided with a first receiving groove, and a part of the magnetic core is disposed in the first receiving groove.
  • the second end shaft includes: a third shaft section, at least part of the third shaft section is disposed in the third through hole; the fourth shaft section, the fourth shaft section is connected with the third shaft section, and the fourth shaft The segment is located outside the third through hole; wherein the third shaft segment is provided with a third receiving groove, and a part of the magnetic core is disposed in the third receiving groove.
  • first through hole is in communication with the second through hole, the aperture value of the first through hole is larger than the aperture value of the second through hole, and the first end shaft and the second through hole are located The planes abut.
  • the third through hole is in communication with the second through hole, the aperture value of the third through hole is larger than the aperture value of the second through hole, and the second end shaft and the second through hole are located The planes abut.
  • a rotor comprising a rotor shaft assembly, the rotor shaft assembly being the rotor shaft assembly described above.
  • an electric machine comprising a rotor, the rotor being the rotor described above.
  • the rotor shaft assembly of the present invention is composed of a magnetic core, a first end shaft, a second end shaft and a protective sleeve, and is used for arranging each of the magnetic core, the first end shaft and the second end shaft through the protective sleeve.
  • the aperture values are set to be unequal in size, which can realize the axial positioning of the protective sleeve, and can also avoid the problem that the rotor shaft assembly is prone to axial misalignment when assembling the end shaft and the magnetic steel.
  • the protective sleeve is sequentially provided with a first through hole, a second through hole and a third through hole, the first end shaft is disposed in the first through hole, and at least part of the magnetic core is disposed in the second through hole The second end shaft is disposed in the third through hole.
  • the minimum distance between the center line of the protective sleeve of the rotor shaft assembly of the present invention and the wall of the first through hole is a
  • the minimum distance of the center line of the protective sleeve from the wall of the second through hole is b
  • the protective sleeve is The minimum distance of the center line from the wall of the third through hole is c.
  • Figure 1 is a schematic view showing the structure of an embodiment of a prior art rotor shaft assembly
  • Figure 2 is a schematic view showing the structure of a first embodiment of a rotor shaft assembly according to the present invention
  • Fig. 3 shows a schematic structural view of a second embodiment of a rotor shaft assembly according to the present invention.
  • the present invention provides a rotor shaft assembly.
  • the rotor shaft assembly includes: a magnetic core 10; a first end shaft 20; a second end shaft 30; and a protective sleeve 40. a first through hole 41, a second through hole 42 and a third through hole 43.
  • the first end shaft 20 is bored in the first through hole 41, and at least a part of the magnetic core 10 is disposed in the second through hole.
  • the second end shaft 30 is disposed in the third through hole 43; the minimum distance between the center line of the protective cover 40 and the hole wall of the first through hole 41 is a, and the center line distance of the protective cover 40 is second.
  • the minimum distance of the wall of the hole through which the hole 42 is bored is b, and the minimum distance of the center line of the protective cover 40 from the wall of the hole of the third through hole 43 is c, wherein at least one of a and c is not equal to b.
  • the rotor shaft assembly of the present invention is composed of a magnetic core 10, a first end shaft 20, a second end shaft 30 and a protective sleeve 40, and the inside of the protective sleeve 40 is used for arranging the magnetic core 10, the first end shaft 20 and the second end.
  • the aperture values of the respective through holes of the shaft 30 are set to be unequal in size, so that the axial positioning of the protective sleeve 40 can be achieved, and the problem that the rotor shaft assembly is liable to be misaligned when assembling the end shaft and the magnetic steel can be avoided.
  • the protective sleeve 40 is provided with a first through hole 41, a second through hole 42 and a third through hole 43.
  • the first end shaft 20 is disposed in the first through hole 41, and at least partially magnetically
  • the core 10 is disposed in the second through hole 42
  • the second end shaft 30 is disposed in the third through hole 43 .
  • the minimum distance between the center line of the protective sleeve 40 of the rotor shaft assembly of the present invention and the wall of the first through hole 41 is a, and the minimum distance of the center line of the protective cover 40 from the wall of the second through hole 42 is b.
  • the minimum distance of the center line of the protective cover 40 from the wall of the third through hole 43 is c.
  • the sheath 40 is variable in thickness by providing at least one of a and c to be unequal to b to form a stepped shape for axially positioning the magnetic core 10, the first end shaft 20, and the second end shaft 30.
  • the protective sleeve 40 is a cylindrical body, and the first through hole 41, the second through hole 42 and the third through hole 43 are all round holes, wherein the aperture of the first through hole 41 At least one of the value and the aperture value of the third through hole 43 is larger than the aperture value of the second through hole 42.
  • the protective sleeve 40 is a cylindrical body, and the first through hole 41, the second through hole 42 and the third through hole 43 are all round holes, and correspondingly, the magnetic core 10 and the first end shaft 20 And the second end shaft 30 is a cylinder.
  • At least one of the aperture value of the first through hole 41 and the aperture value of the third through hole 43 is larger than the aperture value of the second through hole 42 so that the first insertion can be performed.
  • a stepped portion is formed between the hole 41 and the second through hole 42 for stopping the first end shaft 20.
  • a step portion is formed between the third through hole 43 and the second through hole 42 for stopping the second end shaft 30.
  • At least one of the aperture value having the first through hole 41 and the aperture value of the third through hole 43 is larger than the aperture value of the second through hole 42 so that the first end shaft is
  • the thickness of the boot 40 that contacts 20 and/or the second end shaft 30 is less than the thickness of the boot 40 that is in contact with the magnetic core 10.
  • the structure of the protective cover 40 does not lose the protection of the magnetic core 10 at high speed rotation, and where it does not need to provide strength protection, for example, it is in radial contact with the first end shaft 20 and the second end shaft 30.
  • the place, because of its thickness reduction, can also reduce rotor eddy current loss, thereby improving motor efficiency.
  • the first end shaft 20 is provided with a first receiving groove, and a part of the magnetic core 10 is disposed in the first receiving groove;
  • the first end of the magnetic core 10 is provided with a second receiving groove, and a portion of the first end shaft 20 is disposed in the second receiving groove.
  • the first end shaft 20 is provided with a first receiving groove, and a part of the magnetic core 10 is disposed in the first receiving groove, thereby ensuring that the first end shaft 20 and the magnetic core 10 are installed.
  • the centerline is on the same line.
  • the first end of the magnetic core 10 is provided with a second receiving groove, and a part of the first end shaft 20 is disposed in the second receiving groove.
  • the magnetic core 10 is clearance-fitted with the first receiving groove; or the first end shaft 20 is clearance-fitted with the second receiving groove.
  • the small gap of the magnetic core 10 and the first receiving groove can facilitate the installation of the magnetic core 10.
  • the small clearance of the first end shaft 20 with the second receiving groove can facilitate the installation of the first end shaft 20.
  • the magnetic core 10 is in an interference fit with the first receiving groove; or the first end shaft 20 is in an interference fit with the second receiving groove.
  • the use of an interference fit can ensure that the magnetic core 10 and the first end shaft 20 remain more stably connected.
  • the second end shaft 30 is provided with a third receiving groove, and a part of the magnetic core 10 is disposed in the third receiving groove;
  • the second end of the magnetic core 10 is provided with a fourth receiving groove, and a part of the second end shaft 30 is disposed in the fourth receiving groove.
  • the magnetic core 10 is clearance-fitted with the third receiving groove; or the second end shaft 30 is clearance-fitted with the fourth receiving groove.
  • the small gap of the magnetic core 10 and the third receiving groove can facilitate the installation of the magnetic core 10.
  • the small clearance of the second end shaft 30 with the fourth receiving groove can facilitate the installation of the second end shaft 30.
  • the magnetic core 10 is in an interference fit with the third receiving groove; or the second end shaft 30 is in an interference fit with the fourth receiving groove.
  • the use of an interference fit can ensure that the magnetic core 10 and the second end shaft 30 remain more stably connected.
  • the first end shaft 20 includes: a first shaft section 21, at least part of the first shaft section 21 is disposed in the first through hole 41; a second shaft section 22, the second shaft section 22 is connected to the first shaft section 21, and the second shaft section 22 is located outside the first through hole 41; wherein the first shaft section 21 is provided with a first receiving groove, A portion of the magnetic core 10 is disposed in the first receiving groove.
  • the second end shaft 30 includes: a third shaft segment 31, at least a portion of which is disposed in the third through hole 43; the fourth shaft The third shaft section 32 is connected to the third shaft section 31, and the fourth shaft section 32 is located outside the third through hole 43; wherein the third shaft section 31 is provided with a third receiving groove, a part of the magnetic field The core 10 is disposed in the third receiving groove.
  • the first through hole 41 is in communication with the second through hole 42.
  • the aperture value of the first through hole 41 is larger than the aperture value of the second through hole 42.
  • the first end shaft 20 and the second through hole are The plane of the orifice of 42 abuts.
  • the third through hole 43 communicates with the second through hole 42.
  • the aperture value of the third through hole 43 is larger than the aperture value of the second through hole 42, and the second end shaft 30 and the second through hole are The plane of the orifice of 42 abuts.
  • the first end shaft 20 and the second end shaft 30 are made of a non-magnetic material. When rotating at a high speed, the permanent magnet rotor can be safely operated due to the protection of the protective sleeve 40.
  • the cylindrical magnetic steel (magnetic core 10) is made of neodymium iron boron material and has a regular cylindrical solid structure.
  • variable thickness alloy sheath 40 is made of a nickel-based alloy, a titanium alloy or the like, and has an interference fit with the core 10, the first end shaft 20, and the second end shaft 30.
  • the cylindrical magnetic steel When assembling, the cylindrical magnetic steel is first mounted on the right end surface of the first end shaft 20, and the outer circular surface of the cylindrical magnetic steel and the first end shaft 20 are 20 due to the centering action of the groove structure of the first end shaft 20.
  • the circular surface of the groove is highly coincident to ensure the coaxiality between the cylindrical magnetic steel and the first end shaft 20, and then the variable thickness alloy sheath heated to a certain temperature is once assembled on the first end shaft 20,
  • the outer surface of the cylindrical magnetic steel is such that the left end step position is in contact with the outer end surface of the first end shaft 20, and the second end shaft 30 is quickly placed into the alloy sheath, and after being cooled for a period of time, it can be completed.
  • the assembly work of the shaft The assembly work of the shaft.
  • the entire cooling process requires an axial preload force on the first end shaft 20 and the second end shaft 30 until the shaft is cooled to normal temperature before the preload force is removed.
  • the first end shaft 20 is composed of a first shaft section 21 and a second shaft section 22, and the second end shaft 30 is composed of a third shaft section 31 and a fourth shaft section 32, wherein the first shaft section At least part of 21 is disposed in the first through hole 41, the second shaft section 22 is connected to the first shaft section 21, the second shaft section 22 is located outside the first through hole 41, and at least the third shaft section 31 is at least Partially disposed in the third through hole 43, the fourth shaft portion 32 is connected to the third shaft portion 31, and the fourth shaft portion 32 is located outside the third through hole 43.
  • the first shaft segment 21 is provided with a first receiving groove, a part of the magnetic core 10 is disposed in the first receiving groove, and the third shaft segment 31 is provided with a third receiving groove, and a part of the magnetic core 10 It is disposed in the third receiving slot.
  • the first shaft segment 21 is provided with a first receiving groove, and a part of the magnetic core 10 is disposed in the first receiving groove, which reduces the complexity of the assembly tool and improves the assembly success rate, and also greatly reduces the permanent magnet material. Processing costs.
  • the first end shaft 20 is composed of a first shaft section 21 and a second shaft section 22, and the second end shaft 30 is composed of a third shaft section 31 and a fourth shaft section 32, wherein the first shaft section At least part of 21 is disposed in the first through hole 41, the second shaft section 22 is connected to the first shaft section 21, the second shaft section 22 is located outside the first through hole 41, and at least the third shaft section 31 is at least Partially disposed in the third through hole 43, the fourth shaft portion 32 is connected to the third shaft portion 31, and the fourth shaft portion 32 is located outside the third through hole 43.
  • the first shaft segment 21 is provided with a first receiving groove, and a part of the magnetic core 10 is disposed in the first receiving groove, and the third shaft segment 31 abuts against the magnetic core 10.
  • the present invention also provides a rotor comprising a rotor shaft assembly, the rotor shaft assembly being the rotor shaft assembly described above.
  • the invention also provides an electric machine comprising a rotor, the rotor being the rotor described above.
  • the rotor shaft assembly of the present invention is composed of a magnetic core 10, a first end shaft 20, a second end shaft 30 and a protective sleeve 40, and the inside of the protective sleeve 40 is used for arranging the magnetic core 10, the first end shaft 20 and the second end.
  • the aperture values of the respective through holes of the shaft 30 are set to be unequal in size, so that the axial positioning of the protective sleeve 40 can be achieved, and the problem that the rotor shaft assembly is liable to be misaligned when assembling the end shaft and the magnetic steel can be avoided.
  • the protective sleeve 40 is provided with a first through hole 41, a second through hole 42 and a third through hole 43.
  • the first end shaft 20 is disposed in the first through hole 41, and at least partially magnetically
  • the core 10 is disposed in the second through hole 42
  • the second end shaft 30 is disposed in the third through hole 43 .
  • the minimum distance between the center line of the protective sleeve 40 of the rotor shaft assembly of the present invention and the wall of the first through hole 41 is a, and the minimum distance of the center line of the protective cover 40 from the wall of the second through hole 42 is b.
  • the minimum distance of the center line of the protective cover 40 from the wall of the third through hole 43 is c.
  • the sheath 40 is variable in thickness by providing at least one of a and c to be unequal to b to form a stepped shape for axially positioning the magnetic core 10, the first end shaft 20, and the second end shaft 30.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations) and the corresponding description of the space used herein is interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种转子轴组件、转子及电机,转子轴组件包括:磁芯(10);第一端轴(20);第二端轴(30);防护套(40),防护套(40)上依次设置有第一穿设孔(41)、第二穿设孔(42)和第三穿设孔(43),第一端轴(20)穿设在第一穿设孔(41)内,至少部分的磁芯(10)设置在第二穿设孔(42)内,第二端轴(30)穿设在第三穿设孔(43)内;防护套(40)的中心线距第一穿设孔(41)的孔壁的最小距离为a,防护套(40)的中心线距第二穿设孔(42)的孔壁的最小距离为b,防护套(40)的中心线距第三穿设孔(43)的孔壁的最小距离为c,其中,a和c中的至少一个与b不相等。该转子轴组件解决了现有技术中的转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。

Description

转子轴组件、转子及电机 技术领域
本发明涉及电机领域,具体而言,涉及一种转子轴组件、转子及电机。
背景技术
现有的一种高速永磁电机转子结构,请参考图1,转轴由三段拼接而成,采用整圆柱形磁钢3,利用合金护套4与三段主轴间的过盈配合来传递扭矩,其中,第一转轴端件1和第二转轴端件2均为非导磁材料。该结构转子在装配第一转轴端件1及柱形磁钢3时,由于没有相关结构定位,极容易出现轴线不对中的情况。
发明内容
本发明的主要目的在于提供一种转子轴组件、转子及电机,以解决现有技术中的转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。
为了实现上述目的,根据本发明的第一个方面,提供了一种转子轴组件,包括:磁芯;第一端轴;第二端轴;防护套,防护套上依次设置有第一穿设孔、第二穿设孔和第三穿设孔,第一端轴穿设在第一穿设孔内,至少部分的磁芯设置在第二穿设孔内,第二端轴穿设在第三穿设孔内;防护套的中心线距第一穿设孔的孔壁的最小距离为a,防护套的中心线距第二穿设孔的孔壁的最小距离为b,防护套的中心线距第三穿设孔的孔壁的最小距离为c,其中,a和c中的至少一个与b不相等。
进一步地,防护套为圆柱体,第一穿设孔、第二穿设孔和第三穿设孔均为圆孔,其中,第一穿设孔的孔径值和第三穿设孔的孔径值中的至少一个大于第二穿设孔的孔径值。
进一步地,第一端轴上设置有第一容纳槽,部分的磁芯设置在第一容纳槽内;或,磁芯的第一端设置有第二容纳槽,部分的第一端轴设置在第二容纳槽内。
进一步地,磁芯与第一容纳槽间隙配合;或,第一端轴与第二容纳槽间隙配合。
进一步地,第二端轴上设置有第三容纳槽,部分的磁芯设置在第三容纳槽内;或,磁芯的第二端设置有第四容纳槽,部分的第二端轴设置在第四容纳槽内。
进一步地,磁芯与第三容纳槽间隙配合;或,第二端轴与第四容纳槽间隙配合。
进一步地,第一端轴包括:第一轴段,第一轴段的至少部分设置在第一穿设孔内;第二轴段,第二轴段与第一轴段相连接,第二轴段位于第一穿设孔的外部;其中,第一轴段上设置有第一容纳槽,部分的磁芯设置在第一容纳槽内。
进一步地,第二端轴包括:第三轴段,第三轴段的至少部分设置在第三穿设孔内;第四轴段,第四轴段与第三轴段相连接,第四轴段位于第三穿设孔的外部;其中,第三轴段上设置有第三容纳槽,部分的磁芯设置在第三容纳槽内。
进一步地,第一穿设孔与第二穿设孔相连通,第一穿设孔的孔径值大于第二穿设孔的孔径值,第一端轴与第二穿设孔的孔口所在的平面相抵接。
进一步地,第三穿设孔与第二穿设孔相连通,第三穿设孔的孔径值大于第二穿设孔的孔径值,第二端轴与第二穿设孔的孔口所在的平面相抵接。
根据本发明的第二个方面,提供了一种转子,包括转子轴组件,转子轴组件为上述的转子轴组件。
根据本发明的第三个方面,提供了一种电机,包括转子,转子为上述的转子。
本发明的转子轴组件由磁芯、第一端轴、第二端轴以及防护套组成,通过将防护套内用于设置磁芯、第一端轴以及第二端轴的各个穿设孔的孔径值设置为大小不相等,可以实现对防护套的轴向定位,也可以避免转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。其中,防护套上依次设置有第一穿设孔、第二穿设孔和第三穿设孔,第一端轴穿设在第一穿设孔内,至少部分的磁芯设置在第二穿设孔内,第二端轴穿设在第三穿设孔内。
本发明的转子轴组件的防护套的中心线距第一穿设孔的孔壁的最小距离为a,防护套的中心线距第二穿设孔的孔壁的最小距离为b,防护套的中心线距第三穿设孔的孔壁的最小距离为c。通过设置有a和c中的至少一个与b不相等,使得防护套厚度可变,以形成用于对磁芯、第一端轴以及第二端轴进行轴向定位的阶梯状,解决了现有技术中的转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了现有技术中的转子轴组件的实施例的结构示意图;
图2示出了根据本发明的转子轴组件的第一个实施例的结构示意图;
图3示出了根据本发明的转子轴组件的第二个实施例的结构示意图。
其中,上述附图包括以下附图标记:
1、第一转轴端件;2、第二转轴端件;3、柱形磁钢;4、合金护套;10、磁芯;20、第一端轴;21、第一轴段;22、第二轴段;30、第二端轴;31、第三轴段;32、第四轴段;40、防护套;41、第一穿设孔;42、第二穿设孔;43、第三穿设孔。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本发明提供了一种转子轴组件,请参考图2和图3,转子轴组件包括:磁芯10;第一端轴20;第二端轴30;防护套40,防护套40上依次设置有第一穿设孔41、第二穿设孔42和第三穿设孔43,第一端轴20穿设在第一穿设孔41内,至少部分的磁芯10设置在第二穿设孔42内,第二端轴30穿设在第三穿设孔43内;防护套40的中心线距第一穿设孔41的孔壁的最小距离为a,防护套40的中心线距第二穿设孔42的孔壁的最小距离为b,防护套40的中心线距第三穿设孔43的孔壁的最小距离为c,其中,a和c中的至少一个与b不相等。
本发明的转子轴组件由磁芯10、第一端轴20、第二端轴30以及防护套40组成,通过将防护套40内用于设置磁芯10、第一端轴20以及第二端轴30的各个穿设孔的孔径值设置为大小不相等,可以实现对防护套40的轴向定位,也可以避免转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。其中,防护套40上依次设置有第一穿设孔41、第二穿设孔42和第三穿设孔43,第一端轴20穿设在第一穿设孔41内,至少部分的磁芯10设置在第二穿设孔42内,第二端轴30穿设在第三穿设孔43内。
本发明的转子轴组件的防护套40的中心线距第一穿设孔41的孔壁的最小距离为a,防护套40的中心线距第二穿设孔42的孔壁的最小距离为b,防护套40的中心线距第三穿设孔43的孔壁的最小距离为c。通过设置有a和c中的至少一个与b不相等,使得防护套40厚度可变,以形成用于对磁芯10、第一端轴20以及第二端轴30进行轴向定位的阶梯状,解决了现有技术中的转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。
针对防护套40的具体结构,防护套40为圆柱体,第一穿设孔41、第二穿设孔42和第三穿设孔43均为圆孔,其中,第一穿设孔41的孔径值和第三穿设孔43的孔径值中的至少一个大于第二穿设孔42的孔径值。
在本实施例中,防护套40为圆柱体,第一穿设孔41、第二穿设孔42和第三穿设孔43均为圆孔,相应地,磁芯10、第一端轴20以及第二端轴30均为圆柱体。
在本实施例中,通过设置有第一穿设孔41的孔径值和第三穿设孔43的孔径值中的至少一个大于第二穿设孔42的孔径值,从而可以在第一穿设孔41和第二穿设孔42之间形成阶梯 部,用于止挡第一端轴20。可选地,第三穿设孔43和第二穿设孔42之间形成阶梯部,用于止挡第二端轴30。
在本实施例中,由于具有第一穿设孔41的孔径值和第三穿设孔43的孔径值中的至少一个大于第二穿设孔42的孔径值,从而使得,与第一端轴20和/或第二端轴30接触的防护套40的厚度要小于与磁芯10接触的防护套40的厚度。防护套40以上结构并不会丢失对磁芯10在高速旋转时的保护作用,且在不需要其提供强度保护的地方,譬如其与第一端轴20和第二端轴30径向相接触的地方,因其厚度的降低,还能减小转子涡流损耗,进而提高电机效率。
为了保证第一端轴20和磁芯10在安装完成后,中心线在同一条直线上,第一端轴20上设置有第一容纳槽,部分的磁芯10设置在第一容纳槽内;或,磁芯10的第一端设置有第二容纳槽,部分的第一端轴20设置在第二容纳槽内。
在本实施例中,可选地,第一端轴20上设置有第一容纳槽,部分的磁芯10设置在第一容纳槽内,从而保证了第一端轴20和磁芯10在安装完成后,中心线在同一条直线上。
可选地,磁芯10的第一端设置有第二容纳槽,部分的第一端轴20设置在第二容纳槽内。
优选地,磁芯10与第一容纳槽间隙配合;或,第一端轴20与第二容纳槽间隙配合。
在本实施例中,磁芯10与第一容纳槽的小间隙配合可以更方便磁芯10的安装。
相应地,第一端轴20与第二容纳槽的小间隙配合可以更方便第一端轴20的安装。
可选地,磁芯10与第一容纳槽过盈配合;或,第一端轴20与第二容纳槽过盈配合。过盈配合的使用能够保证磁芯10与第一端轴20更加稳定地保持连接。
为了保证第二端轴30和磁芯10在安装完成后,中心线在同一条直线上,第二端轴30上设置有第三容纳槽,部分的磁芯10设置在第三容纳槽内;或,磁芯10的第二端设置有第四容纳槽,部分的第二端轴30设置在第四容纳槽内。
优选地,磁芯10与第三容纳槽间隙配合;或,第二端轴30与第四容纳槽间隙配合。
在本实施例中,磁芯10与第三容纳槽的小间隙配合可以更方便磁芯10的安装。
相应地,第二端轴30与第四容纳槽的小间隙配合可以更方便第二端轴30的安装。
可选地,磁芯10与第三容纳槽过盈配合;或,第二端轴30与第四容纳槽过盈配合。过盈配合的使用能够保证磁芯10与第二端轴30更加稳定地保持连接。
针对第一端轴20的具体结构,如图2和图3所示,第一端轴20包括:第一轴段21,第一轴段21的至少部分设置在第一穿设孔41内;第二轴段22,第二轴段22与第一轴段21相连接,第二轴段22位于第一穿设孔41的外部;其中,第一轴段21上设置有第一容纳槽,部分的磁芯10设置在第一容纳槽内。
针对第二端轴30的具体结构,如图2所示,第二端轴30包括:第三轴段31,第三轴段 31的至少部分设置在第三穿设孔43内;第四轴段32,第四轴段32与第三轴段31相连接,第四轴段32位于第三穿设孔43的外部;其中,第三轴段31上设置有第三容纳槽,部分的磁芯10设置在第三容纳槽内。
优选地,第一穿设孔41与第二穿设孔42相连通,第一穿设孔41的孔径值大于第二穿设孔42的孔径值,第一端轴20与第二穿设孔42的孔口所在的平面相抵接。
优选地,第三穿设孔43与第二穿设孔42相连通,第三穿设孔43的孔径值大于第二穿设孔42的孔径值,第二端轴30与第二穿设孔42的孔口所在的平面相抵接。
第一端轴20以及第二端轴30采用非导磁材料,高速旋转时,由于防护套40的保护作用,使得永磁转子可以安全运行。
柱形磁钢(磁芯10)采用钕铁硼材料,为规则整圆柱形实心结构。
变厚度合金防护套40采用镍基合金、钛合金等材料,与磁芯10、第一端轴20以及第二端轴30均为过盈配合。
装配时,先把柱形磁钢装到第一端轴20的右端面上,由于第一端轴20的凹槽结构的定心作用,柱形磁钢的外圆面与第一端轴20凹槽的圆面高度重合,保证了柱形磁钢与第一端轴20之间的同轴度,之后将加热至一定温度的变厚度合金护套一次性热装在第一端轴20、柱形磁钢的外表面,使其左端阶梯位置与第一端轴20的外端面贴合,并迅速将第二端轴30放进合金护套内,待自然冷却一段时间后,即可完成转轴的装配工作。
需要注意的是,整个冷却过程要求对第一端轴20及第二端轴30施加轴向预紧力,直至转轴冷却至常温后,方可去掉预紧力。
针对本发明的转子轴组件的第一个实施例:
如图2所示,第一端轴20由第一轴段21和第二轴段22组成,第二端轴30由第三轴段31和第四轴段32组成,其中,第一轴段21的至少部分设置在第一穿设孔41内,第二轴段22与第一轴段21相连接,第二轴段22位于第一穿设孔41的外部,第三轴段31的至少部分设置在第三穿设孔43内,第四轴段32与第三轴段31相连接,第四轴段32位于第三穿设孔43的外部。
在本实施例中,第一轴段21上设置有第一容纳槽,部分的磁芯10设置在第一容纳槽内,第三轴段31上设置有第三容纳槽,部分的磁芯10设置在第三容纳槽内。
第一轴段21上设置有第一容纳槽,部分的磁芯10设置在第一容纳槽内,在降低装配工装的复杂性、提高装配成功率的同时,也大大减小了永磁材料的加工成本。
针对本发明的转子轴组件的第二个实施例:
如图3所示,第一端轴20由第一轴段21和第二轴段22组成,第二端轴30由第三轴段31和第四轴段32组成,其中,第一轴段21的至少部分设置在第一穿设孔41内,第二轴段 22与第一轴段21相连接,第二轴段22位于第一穿设孔41的外部,第三轴段31的至少部分设置在第三穿设孔43内,第四轴段32与第三轴段31相连接,第四轴段32位于第三穿设孔43的外部。
在本实施例中,第一轴段21上设置有第一容纳槽,部分的磁芯10设置在第一容纳槽内,第三轴段31与磁芯10相抵接。
本发明还提供了一种转子,包括转子轴组件,转子轴组件为上述的转子轴组件。
本发明还提供了一种电机,包括转子,转子为上述的转子。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本发明的转子轴组件由磁芯10、第一端轴20、第二端轴30以及防护套40组成,通过将防护套40内用于设置磁芯10、第一端轴20以及第二端轴30的各个穿设孔的孔径值设置为大小不相等,可以实现对防护套40的轴向定位,也可以避免转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。其中,防护套40上依次设置有第一穿设孔41、第二穿设孔42和第三穿设孔43,第一端轴20穿设在第一穿设孔41内,至少部分的磁芯10设置在第二穿设孔42内,第二端轴30穿设在第三穿设孔43内。
本发明的转子轴组件的防护套40的中心线距第一穿设孔41的孔壁的最小距离为a,防护套40的中心线距第二穿设孔42的孔壁的最小距离为b,防护套40的中心线距第三穿设孔43的孔壁的最小距离为c。通过设置有a和c中的至少一个与b不相等,使得防护套40厚度可变,以形成用于对磁芯10、第一端轴20以及第二端轴30进行轴向定位的阶梯状,解决了现有技术中的转子轴组件在装配端轴及磁钢时容易出现轴线不对中的问题。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种转子轴组件,其特征在于,包括:
    磁芯(10);
    第一端轴(20);
    第二端轴(30);
    防护套(40),所述防护套(40)上依次设置有第一穿设孔(41)、第二穿设孔(42)和第三穿设孔(43),所述第一端轴(20)穿设在所述第一穿设孔(41)内,至少部分的所述磁芯(10)设置在所述第二穿设孔(42)内,所述第二端轴(30)穿设在所述第三穿设孔(43)内;
    所述防护套(40)的中心线距所述第一穿设孔(41)的孔壁的最小距离为a,所述防护套(40)的中心线距所述第二穿设孔(42)的孔壁的最小距离为b,所述防护套(40)的中心线距所述第三穿设孔(43)的孔壁的最小距离为c,其中,a和c中的至少一个与b不相等。
  2. 根据权利要求1所述的转子轴组件,其特征在于,所述防护套(40)为圆柱体,所述第一穿设孔(41)、所述第二穿设孔(42)和所述第三穿设孔(43)均为圆孔,其中,所述第一穿设孔(41)的孔径值和所述第三穿设孔(43)的孔径值中的至少一个大于所述第二穿设孔(42)的孔径值。
  3. 根据权利要求1所述的转子轴组件,其特征在于,所述第一端轴(20)上设置有第一容纳槽,部分的所述磁芯(10)设置在所述第一容纳槽内;或,所述磁芯(10)的第一端设置有第二容纳槽,部分的所述第一端轴(20)设置在所述第二容纳槽内。
  4. 根据权利要求3所述的转子轴组件,其特征在于,所述磁芯(10)与所述第一容纳槽间隙配合;或,所述第一端轴(20)与所述第二容纳槽间隙配合。
  5. 根据权利要求1或3所述的转子轴组件,其特征在于,所述第二端轴(30)上设置有第三容纳槽,部分的所述磁芯(10)设置在所述第三容纳槽内;或,所述磁芯(10)的第二端设置有第四容纳槽,部分的所述第二端轴(30)设置在所述第四容纳槽内。
  6. 根据权利要求5所述的转子轴组件,其特征在于,所述磁芯(10)与所述第三容纳槽间隙配合;或,所述第二端轴(30)与所述第四容纳槽间隙配合。
  7. 根据权利要求1所述的转子轴组件,其特征在于,所述第一端轴(20)包括:
    第一轴段(21),所述第一轴段(21)的至少部分设置在所述第一穿设孔(41)内;
    第二轴段(22),所述第二轴段(22)与所述第一轴段(21)相连接,所述第二轴段(22)位于所述第一穿设孔(41)的外部;
    其中,所述第一轴段(21)上设置有第一容纳槽,部分的所述磁芯(10)设置在所 述第一容纳槽内。
  8. 根据权利要求1或7所述的转子轴组件,其特征在于,所述第二端轴(30)包括:
    第三轴段(31),所述第三轴段(31)的至少部分设置在所述第三穿设孔(43)内;
    第四轴段(32),所述第四轴段(32)与所述第三轴段(31)相连接,所述第四轴段(32)位于所述第三穿设孔(43)的外部;
    其中,所述第三轴段(31)上设置有第三容纳槽,部分的所述磁芯(10)设置在所述第三容纳槽内。
  9. 根据权利要求1所述的转子轴组件,其特征在于,所述第一穿设孔(41)与所述第二穿设孔(42)相连通,所述第一穿设孔(41)的孔径值大于所述第二穿设孔(42)的孔径值,所述第一端轴(20)与所述第二穿设孔(42)的孔口所在的平面相抵接。
  10. 根据权利要求1或9所述的转子轴组件,其特征在于,所述第三穿设孔(43)与所述第二穿设孔(42)相连通,所述第三穿设孔(43)的孔径值大于所述第二穿设孔(42)的孔径值,所述第二端轴(30)与所述第二穿设孔(42)的孔口所在的平面相抵接。
  11. 一种转子,包括转子轴组件,其特征在于,所述转子轴组件为权利要求1至10中任一项所述的转子轴组件。
  12. 一种电机,包括转子,其特征在于,所述转子为权利要求11所述的转子。
PCT/CN2018/121458 2018-01-22 2018-12-17 转子轴组件、转子及电机 WO2019141035A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18901557.1A EP3745565A4 (en) 2018-01-22 2018-12-17 ROTOR SHAFT ARRANGEMENT, ROTOR AND MOTOR
US16/963,660 US11735976B2 (en) 2018-01-22 2018-12-17 Rotor shaft assembly, rotor and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810060223.5A CN108054867B (zh) 2018-01-22 2018-01-22 转子轴组件、转子及电机
CN201810060223.5 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019141035A1 true WO2019141035A1 (zh) 2019-07-25

Family

ID=62127134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121458 WO2019141035A1 (zh) 2018-01-22 2018-12-17 转子轴组件、转子及电机

Country Status (4)

Country Link
US (1) US11735976B2 (zh)
EP (1) EP3745565A4 (zh)
CN (1) CN108054867B (zh)
WO (1) WO2019141035A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010482A1 (en) * 2020-07-09 2022-01-13 Aerojet Rocketdyne, Inc. Machine with paramagnetic shell and magnet
RU2817342C1 (ru) * 2020-07-09 2024-04-15 Аэроджет Рокетдайн, Инк. Машина с парамагнитной оболочкой и магнитом

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054867B (zh) * 2018-01-22 2019-07-09 珠海格力电器股份有限公司 转子轴组件、转子及电机
CN109026975A (zh) * 2018-07-03 2018-12-18 珠海格力电器股份有限公司 一种电机转轴、电机转轴的装配方法及电机
DE102018221138A1 (de) 2018-12-06 2020-06-10 Robert Bosch Gmbh Rotor für eine elektrische Antriebsmaschine zum Antrieb eines Verdichters, einer Turbine oder einer Laderwelle eines Abgasturboladers und Abgasturbolader mit einer elektrischen Antriebsmaschine und einem solchen Rotor
DE102022201849A1 (de) * 2022-02-22 2023-08-24 Abiomed Europe Gmbh Bürstenloser Motor sowie Verfahren zur Montage eines bürstenlosen Motors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298773Y (zh) * 2008-11-19 2009-08-26 无锡哈电电机有限公司 滑动轴承电机的定位轴承结构
CN103511444A (zh) * 2012-06-29 2014-01-15 三星电机株式会社 流体动压轴承组件、主轴电机及装配轴和止动件的方法
US20150084464A1 (en) * 2013-09-26 2015-03-26 Skf Magnetic Mechatronics Permanent magnet rotor shaft assembly and method
CN105449920A (zh) * 2015-12-07 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 一种永磁电机转轴及其安装方法
CN106100182A (zh) * 2016-08-04 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 转轴、转轴的装配方法、电机
CN108054867A (zh) * 2018-01-22 2018-05-18 珠海格力电器股份有限公司 转子轴组件、转子及电机
CN207819654U (zh) * 2018-01-22 2018-09-04 珠海格力电器股份有限公司 转子轴组件、转子及电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400425B2 (ja) 2004-11-15 2010-01-20 トヨタ自動車株式会社 表面磁石型電動機、表面磁石型電動機の製造方法、および表面磁石型電動機を備えた内燃機関
JP2014033549A (ja) * 2012-08-03 2014-02-20 Yaskawa Electric Corp ロータ、回転電機及びロータの製造方法
DE102016211251A1 (de) 2016-06-23 2017-12-28 Robert Bosch Gmbh Rotor für eine elektrische Maschine, elektrische Maschine mit dem Rotor und Herstellungsverfahren für den Rotor
CN107394951A (zh) * 2017-07-31 2017-11-24 杭州跟策科技有限公司 轮式移动的电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298773Y (zh) * 2008-11-19 2009-08-26 无锡哈电电机有限公司 滑动轴承电机的定位轴承结构
CN103511444A (zh) * 2012-06-29 2014-01-15 三星电机株式会社 流体动压轴承组件、主轴电机及装配轴和止动件的方法
US20150084464A1 (en) * 2013-09-26 2015-03-26 Skf Magnetic Mechatronics Permanent magnet rotor shaft assembly and method
CN105449920A (zh) * 2015-12-07 2016-03-30 珠海格力节能环保制冷技术研究中心有限公司 一种永磁电机转轴及其安装方法
CN106100182A (zh) * 2016-08-04 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 转轴、转轴的装配方法、电机
CN108054867A (zh) * 2018-01-22 2018-05-18 珠海格力电器股份有限公司 转子轴组件、转子及电机
CN207819654U (zh) * 2018-01-22 2018-09-04 珠海格力电器股份有限公司 转子轴组件、转子及电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010482A1 (en) * 2020-07-09 2022-01-13 Aerojet Rocketdyne, Inc. Machine with paramagnetic shell and magnet
RU2817342C1 (ru) * 2020-07-09 2024-04-15 Аэроджет Рокетдайн, Инк. Машина с парамагнитной оболочкой и магнитом

Also Published As

Publication number Publication date
US11735976B2 (en) 2023-08-22
CN108054867A (zh) 2018-05-18
CN108054867B (zh) 2019-07-09
EP3745565A4 (en) 2021-03-17
US20210075293A1 (en) 2021-03-11
EP3745565A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
WO2019141035A1 (zh) 转子轴组件、转子及电机
WO2018068545A1 (zh) 转轴、电机和空调器
JP5207190B2 (ja) 永久磁石形回転電機の回転子の組立方法
KR20180118178A (ko) 회전 액추에이터 및 로봇
US20210341016A1 (en) Magnetic levitation bearing structure and magnetic levitation compressor structure
US20180316233A1 (en) Rotor of electrical rotating machine
CN111478472A (zh) 一种转子结构及采用该转子结构的电机、空压机
JP7019420B2 (ja) ブラシレスdc電気モータ
CN103490571B (zh) 一种电机转子组件制作定位装置
US11114907B2 (en) Motor rotor assembly and method of aligning pole center of permanent magnet thereof
CN106100182B (zh) 转轴、转轴的装配方法、电机
CN205289792U (zh) 轨交永磁牵引电动机嵌线定子外圆加工定位夹紧装置
CN108614211B (zh) 防止分装式永磁力矩电机定转子碰撞的通用型测试装置
CN107612165B (zh) 锥形气隙轴向双回路磁场永磁同步电机
CN207819654U (zh) 转子轴组件、转子及电机
CN205945286U (zh) 转轴及具有其的电机
CN106130222B (zh) 转轴、转轴的装配方法、电机
CN212660019U (zh) 一种无刷电机及其外转子结构
CN207819581U (zh) 一种转子轴及电机
CN203554227U (zh) 一种电机转子组件制作定位装置
US10630154B2 (en) Method for winding a plurality of coil bodies and segmented spindle
CN106130223B (zh) 转轴、转轴的装配方法、电机
JP2006136068A (ja) 永久磁石形同期モータ
WO2019011235A1 (zh) 高速异步电机转子结构和包含该转子结构的电机
CN213317772U (zh) 外转子电机定子外圆加工固定组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901557

Country of ref document: EP

Effective date: 20200824