WO2019011235A1 - 高速异步电机转子结构和包含该转子结构的电机 - Google Patents

高速异步电机转子结构和包含该转子结构的电机 Download PDF

Info

Publication number
WO2019011235A1
WO2019011235A1 PCT/CN2018/095146 CN2018095146W WO2019011235A1 WO 2019011235 A1 WO2019011235 A1 WO 2019011235A1 CN 2018095146 W CN2018095146 W CN 2018095146W WO 2019011235 A1 WO2019011235 A1 WO 2019011235A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
end ring
silicon steel
motor
steel sheet
Prior art date
Application number
PCT/CN2018/095146
Other languages
English (en)
French (fr)
Inventor
张胜川
张诗香
李鹏
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2019011235A1 publication Critical patent/WO2019011235A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors

Definitions

  • the present invention relates to the field of motor technology, and in particular to a high speed asynchronous motor rotor structure and a motor including the same.
  • Asynchronous motor is an AC motor that converts electromechanical energy into mechanical energy by the electromagnetic field of the air gap rotating magnetic field interacting with the induced current of the rotor winding to generate electromagnetic torque.
  • the demand for asynchronous motors is large.
  • the application of asynchronous motors tends to be high speed and miniaturization.
  • the bars and rotor end rings of asynchronous motors are subjected to centrifugal force, and the bars or end rings are prone to fracture failure.
  • the broken guide bar will fly out, scratching the stator, damaging the stator insulation, causing the stator to be short-circuited, causing the motor to burn and be damaged.
  • a retaining ring structure is added at the rotor end ring.
  • this solution requires additional processing and manufacturing, increases production costs, and increases the assembly time of the motor.
  • a high-strength steel rotor end ring is disposed between the rotor core and the rotor end ring.
  • the high-strength steel rotor end ring is usually thicker than 3 mm, and the stamping manufacturing process is difficult and accurate. It is difficult to guarantee, the life of the grinding tool is short, and in addition, because of its high yield strength (usually greater than 600 MPa), the stamping of the steel rotor end ring is difficult to manufacture, high cost, and high precision requirements.
  • the technical problem to be solved by the present invention is to provide a high-speed asynchronous motor rotor structure and a motor including the same, which can improve the mechanical strength and safety reliability of the motor under high-speed operation while ensuring the electromagnetic performance of the asynchronous motor, thereby making the motor More suitable for running at high speeds.
  • Another object of the present invention is to provide electromagnetic properties and mechanical properties of the motor at the same time by two different properties of the silicon steel sheet material.
  • the silicon steel sheet has high stamping precision and long mold life, and it is easier to realize large-scale production.
  • the present invention provides a high speed asynchronous motor rotor structure, which includes:
  • a rotor core the center of which is provided with an axial through hole
  • a first rotor end ring made of a high yield strength silicon steel sheet, which is placed close to the rotor core and disposed at both ends of the rotor core;
  • a second rotor end ring disposed adjacent to the end of the first rotor end ring
  • a rotor bar disposed at an outer circumference of the rotor core, the first rotor end ring, and the second rotor end ring;
  • the rotating shaft is combined with the rotor core in an interference fit manner.
  • the rotating shaft is axially provided with a convex shoulder, and the shoulder is in contact with the first rotor end ring.
  • the outer circumferences of the rotor core, the first rotor end ring and the second rotor end ring are circumferentially provided with a guide hole for mounting the rotor bar, and the rotor bar is inserted into the bar hole.
  • guide bar holes are evenly distributed along the circumferential direction of the rotor core, the first rotor end ring and the second rotor end ring.
  • the rotor core is formed by laminating a plurality of high-conductivity magnetic silicon steel sheets.
  • the first rotor end ring is formed by laminating a plurality of high yield strength silicon steel sheets.
  • the high permeability magnetic silicon steel sheet has a yield strength ranging from 330 MP to 400 MP, and the high yield strength silicon steel sheet has a yield strength higher than 600 MP.
  • the high magnetic permeability silicon steel sheet has a thickness of 0.2 mm to 0.5 mm
  • the high yield strength silicon steel sheet has a thickness of 0.5 mm to 1 mm.
  • the rotor bar and the second rotor end ring are made of a high conductivity oxygen-free copper or copper alloy.
  • the rotor bar and the second rotor end ring are fixed together by welding.
  • an asynchronous machine comprising the rotor structure.
  • the present invention has significant advantages and advantageous effects over the prior art. According to the above technical solution, the rotor structure of the high-speed asynchronous motor and the motor including the rotor structure of the invention can achieve considerable technical progress and practicability, and have extensive industrial use value, and at least have the following advantages:
  • the rotor core is made of high magnetic permeability silicon steel sheet to ensure the high electromagnetic performance of the motor.
  • the first rotor end ring at both ends of the rotor core is made of high-yield silicon steel sheet, which improves the mechanical strength of the rotor structure and makes the rotor structure resistant to centrifugal force, thereby increasing the running speed of the motor.
  • the rotor core is made of high magnetic permeability silicon steel sheet, and the first rotor end ring at both ends of the rotor core is made of high-yield silicon steel sheet, and the combination of two kinds of silicon steel sheet materials realizes electromagnetic and mechanical properties of the motor together.
  • the mutual compatibility makes the motor increase the maximum speed of the motor under the premise of ensuring electromagnetic performance and mechanical performance.
  • the silicon steel sheet has high stamping precision and long mold life, and it is easier to realize large-scale production.
  • the invention makes the asynchronous motor greatly improve the mechanical strength of the rotor under the premise of ensuring electromagnetic performance, thereby improving the maximum rotational speed of the motor, and is more advantageous for realizing high speed and miniaturization of the motor design.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a rotor of a high speed asynchronous motor according to an embodiment of the present invention.
  • Figure 2 is a schematic cross-sectional view of Figure 1A-A of the present invention.
  • the rotor bar and the rotor end ring are subjected to centrifugal force, and are easily broken at high rotation speed, and the invention
  • a high speed asynchronous motor rotor structure is proposed.
  • the rotor structure comprises: a rotor core 1, a rotor bar 2, a first rotor end ring 3, a second rotor end ring 4 and a rotating shaft.
  • the rotor core 1 is centrally provided with an axial through hole, the rotating shaft 5 is disposed in the axial through hole; the first rotor end ring 3 made of a high yield strength silicon steel sheet is closely attached
  • the rotor core 1 is disposed at both ends of the rotor core 1.
  • the first end ring 3 is riveted to the rotor core 1; the second rotor end ring 4 is in close contact with the first rotor end ring 3, and is disposed on the first rotor An end of the end ring 3; the rotor bar 2 is disposed on an outer circumference of the rotor core 1, the first rotor end ring 3, and the second rotor end ring 4.
  • the setting of the first rotor end ring 3 made of high yield strength silicon steel sheet greatly improves the anti-centrifugal capability of the asynchronous motor rotor, improves the rotational speed of the asynchronous motor, and ensures the mechanical strength and safety reliability of the asynchronous motor under high speed operation. .
  • a plurality of bar holes are exemplarily provided in this example and correspondingly have a plurality of rotor bars 2.
  • the guide bar holes penetrate the rotor core 1, the first rotor end ring 3 and the second rotor end ring 4, and are disposed at the rotor core 1, the first rotor end ring 3 and the second rotor end ring
  • the outer circumference of 4 as such, after the rotor bars 2 are inserted into the guide bars, the rotor bars 2 are correspondingly located on the outer circumferences of the rotor core 1, the first rotor end ring 3 and the second rotor end ring 4.
  • a guide hole is provided along the circumferential direction, not to say that the guide hole is provided in the three
  • the bar hole is passed through the rotor core 1
  • the rotor end ring 3 and the second rotor end ring 4 are in the interior of the three and close to the outside of the three (the outer side is relative to the side of the rotor core 1 located in the axial through hole), The bar holes are located on the outside of them.
  • the guide bar holes are evenly distributed on the outer circumferences of the rotor core 1, the first rotor end ring 3 and the second rotor end ring 4, and accordingly, the plurality of rotor bars 2 are along the rotor core 1, the first rotor end ring 3 and the The outer circumference of the two rotor end rings 4 is evenly distributed.
  • the rotating shaft 5 is combined with the rotor core 1 in an interference fit manner, and is disposed in the axial through hole.
  • the interference is determined by specific fitting and stress calculation, and different specifications of products have different products. Value.
  • the shaft 4 is provided with a convex shoulder 6 on one side in the axial direction, and the shoulder 6 is in contact with the first rotor left end ring 31 on the side corresponding to the shoulder 6.
  • the rotor core 1 is formed by laminating a plurality of high-conductivity magnetic silicon steel sheets, and the high-magnetic magnetic silicon steel sheets are conventional silicon steel sheets, such as silicon steel sheets of M235-35, and the yield strength range of conventional silicon steel sheets is 330MP-400MP, and the rotor The core 1 uses a plurality of high-conductivity magnetic silicon steel sheets to ensure the electromagnetic performance of the motor.
  • the manufacturing process of the rotor core 1 is not limited thereto, and other methods of forming the silicon steel sheet into the desired rotor core 1 are suitable for this.
  • the thickness of the high magnetic permeability silicon steel sheet is preferably 0.2 mm to 0.5 mm, and the number of sheets of the high magnetic permeability silicon steel sheet required is determined according to the length of the rotor core along the axial direction of the rotor core and the thickness of the high magnetic permeability silicon steel sheet.
  • the first rotor end ring 3 includes a first rotor left end ring 31 and a first rotor right end ring 32.
  • the first rotor left end ring 31 is disposed close to the rotor core 1 at the left end of the rotor core 1, and the first rotor right end ring 32 is closely attached.
  • the rotor core 1 is disposed at the right end of the rotor core 1.
  • the first rotor end ring 3 is formed by laminating a plurality of high yield strength silicon steel sheets, which improves the mechanical strength of the rotor structure and makes the rotor structure resistant to centrifugal force, thereby improving the running speed of the motor.
  • the manufacturing process of the first rotor end ring 3 is not limited thereto, and other methods of forming the silicon steel sheet into the desired first rotor end ring 3 are suitable for this.
  • the thickness of the high yield strength silicon steel sheet is preferably 0.5 mm to 1 mm, and the number of required high yield strength silicon steel sheets is determined according to the length of the first rotor end ring along the axial direction of the rotor core and the thickness of the high yield strength silicon steel sheet.
  • the length of the first rotor end ring 3 is preferably from 3 mm to 6 mm.
  • a high yield strength silicon steel sheet is more easily obtained than a high yield strength stainless steel sheet having a thickness greater than 3 mm, and since the thickness of the first rotor end ring 3 is usually 3 mm or more, if it is made of a high yield strength stainless steel sheet material, stamping is performed. Difficult, the accuracy is difficult to guarantee, the die life is very short; and the high yield strength of the silicon steel sheet is thinner, usually between 0.5 and 1 mm, very easy to stamping through the mold, manufacturing is simple and convenient, greatly saving production costs.
  • the second rotor end ring 4 includes a second rotor left end ring 41 and a second rotor right end ring 42, the second rotor left end ring 41 abutting the first rotor left end ring 31 disposed at the left end of the first rotor left end ring 31 ( 1 is a reference), the second rotor right end ring 41 abuts the first rotor right end ring 31 at the right end of the first rotor right end ring 31 (referenced in FIG. 1).
  • the rotor bar 2 and the second rotor end ring 4 are made of a high conductivity oxygen-free copper or copper alloy, and the rotor bar 2 and the second rotor end ring 4 are fixed together.
  • the rotor bar 2 and the second rotor end ring 4 may be fixed together by welding, and the materials used for the rotor bar 2 and the second rotor end ring 4 are not limited thereto, for example
  • the second rotor end ring 4 can be made of an aluminum material.
  • the invention also provides an asynchronous motor comprising the rotor structure, the rotor core 1 being made of a high permeability silicon steel sheet, which ensures the electromagnetic performance of the motor.
  • the first rotor end ring 3 at both ends of the rotor core 1 is made of a high-yield silicon steel sheet, which improves the mechanical strength of the rotor structure and makes the rotor structure resistant to centrifugal force, thereby increasing the running speed of the motor.
  • the rotor core 1 is made of a high magnetic permeability silicon steel sheet, and the first rotor end ring 3 at both ends of the rotor core 1 is made of a high-yield silicon steel sheet, and the combination of two different properties of the silicon steel sheet material realizes the electromagnetic of the motor together.
  • the compatibility of performance and mechanical performance enables the motor to increase the maximum speed of the motor under the premise of ensuring electromagnetic performance and mechanical performance.
  • the silicon steel sheet is easy to obtain, and the stamping manufacturing is easy to be realized by the grinding tool, and the method is simple and the cost is low.
  • the invention makes the asynchronous motor greatly improve the mechanical strength of the rotor under the premise of ensuring the electromagnetic performance, thereby improving the maximum rotational speed of the motor, and is more advantageous for realizing the high speed and miniaturization of the motor design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)

Abstract

一种高速异步电机转子结构和包含该转子结构的电机,所述转子结构包括转子铁心(1),其中心设置有轴向通孔;由高屈服强度硅钢片制成的第一转子端环(3),其紧贴所述转子铁心(1),设置在转子铁心(1)两端;第二转子端环(4),其紧贴第一转子端环(3)端部设置;转子导条(2),其设置在所述转子铁心(1)、第一转子端环(3)、第二转子端环(4)的外周;以及转轴(5),其设置在所述轴向通孔中。该结构使异步电机在保证电磁性能前提下,大幅提高转子的机械强度,进而提高电机的最高转速,更有利于电机设计的高速化和小型化。

Description

高速异步电机转子结构和包含该转子结构的电机 技术领域
本发明涉及电机技术领域,尤其涉及一种高速异步电机转子结构和包含该转子结构的电机。
背景技术
异步电动机是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。在现有的各类电机应用中,异步电机需求量较大。目前,异步电机的应用趋向于高速化和小型化,然而,在高速运转时,异步电机的导条和转子端环受到离心力的作用,导条或端环容易出现断裂失效的现象,严重时,断裂的导条会飞出,刮伤定子、伤害定子绝缘,造成定子短路,从而使得电机烧毁损坏。
出于安全的考虑,现有技术中,在转子端环处增加护环结构,但是,此方案需要额外加工制造,增加了生产成本,且增加了电机的装配时间。现有技术中,还包括在转子铁心和转子端环之间设置一高强度钢制转子端环,但是,这种高强度钢制转子端环,通常厚度大于3mm,冲压制造难度大,且精度难以保障,磨具寿命短,此外,由于其屈服强度很高(通常大于600MPa),因此,冲压的钢制转子端环的模具制造难度大,成本高,精度要求也非常高,对于生产厂商来说是很大的挑战,很难实现高强度钢制转子端环的批量生产。由此可知,在转子铁心和转子端环之间设置一高强度钢制转子端环的技术方案,成本高,实用性差。
发明内容
本发明所要解决的技术问题在于,提供一种高速异步电机转子结构和包含该转子结构的电机,在保证异步电机电磁性能的同时提高了电机高速运行下的机械强度和安全可靠性,从而使得电机更适合于运行在高转速下。
本发明的另一目的在于,由两种不同性能的硅钢片材料,使电机的电磁性能和机械性能可以同时兼得。同时硅钢片冲压精度高、模具寿命长,更易实现规模化生产。
为了解决上述技术问题,本发明提供了一种高速异步电机转子结构,其包括:
转子铁心,其中心设置有轴向通孔;
由高屈服强度硅钢片制成的第一转子端环,其紧贴所述转子铁心,设 置在转子铁心两端;
第二转子端环,其紧贴第一转子端环端部设置;
转子导条,其设置在所述转子铁心、第一转子端环、第二转子端环的外周;
以及转轴,其设置在所述轴向通孔中。
进一步的,所述转轴与所述转子铁心以过盈配合的方式相结合。
进一步的,所述转轴沿轴向设置有凸起的轴肩,所述轴肩与第一转子端环相接触。
进一步的,所述转子铁心、第一转子端环和第二转子端环的外周沿周向设置有用于安装转子导条的导条孔,所述转子导条插入所述导条孔。
进一步的,所述导条孔沿所述转子铁心、第一转子端环和第二转子端环的周向均匀分布。
进一步的,所述转子铁心由多片高导磁性硅钢片冲压后叠压而成。
进一步的,所述第一转子端环由多片高屈服强度硅钢片冲压后叠压而成。
进一步的,所述高导磁性硅钢片的屈服强度范围为330MP-400MP,所述高屈服强度硅钢片的屈服强度高于600MP。
进一步的,所述高导磁性硅钢片的厚度为0.2mm~0.5mm,所述高屈服强度硅钢片厚度为0.5mm~1mm。
进一步的,所述转子导条和所述第二转子端环由高导电率的无氧铜或铜合金制成。
进一步的,所述转子导条和所述第二转子端环固接在一起。
进一步的,所述转子导条和所述第二转子端环采用焊接的方式固接在一起。
根据本发明的另一方面,提供了一种异步电机,包括所述转子结构。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种高速异步电机转子结构和包含该转子结构的电机可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:
1、转子铁心由高磁导性硅钢片制成,保证了电机的高电磁性能。
2、转子铁心两端的第一转子端环由高屈服度的硅钢片制成,提高了转子结构的机械强度,使转子结构耐离心力变大,从而提高电机运行转速。
3、转子铁心由高磁导性硅钢片制成,转子铁心两端的第一转子端环由高屈服度的硅钢片制成,两种硅钢片材料的结合,共同实现电机的电磁性能和机械性能的相互兼容,使电机在保证电磁性能和机械性能的前提下, 提高电机的最高转速。
4、同时硅钢片冲压精度高、模具寿命长,更易实现规模化生产。
5、本发明使异步电机在保证电磁性能前提下,大幅提高转子的机械强度,进而提高电机的最高转速,更有利于实现电机设计的高速化和小型化。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明一实施例提供的高速异步电机转子结构截面示意图。
图2为本发明图1A-A截面示意图。
附图标记说明:
1-转子铁心                    2-转子导条
3-第一转子端环                4-第二转子端环
31-第一转子左端环             32-第一转子右端环
41-第二转子左端环             42-第二转子右端环
5-转轴                        6-轴肩
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种高速异步电机转子结构和包含该转子结构的电机的具体实施方式及其功效,详细说明如后。
现有的异步电机转子在工作过程中,转子导条和转子端环(此处转子端环对应本发明中的第二转子端环4)受到离心力的作用,在高转速下容易断裂,本发明提出一种高速异步电机转子结构,如附图1和附图2所示,所述转子结构包括:转子铁心1,转子导条2,第一转子端环3、第二转子端环4和转轴5,其中,所述转子铁心1中心设置有轴向通孔,所述转轴5设置在所述轴向通孔中;由高屈服强度硅钢片制成的第一转子端环3,其紧贴转子铁心1,设置在转子铁心1两端,作为示例,所述第一端环3与转子铁心1铆接;所述第二转子端环4紧贴第一转子端环3,设置在第一转子端环3的端部;所述转子导条2设置在所述转子铁心1、第一转子端环3和第二转子端环4的外周。高屈服强度硅钢片制成的第一转子端环3的设置,大幅提高了异步电机转子的抗离心能力,提高了异步电机的转速,且保证了异步电机高速运行下的机械强度和安全可靠性。
在所述转子铁心1、第一转子端环3和第二转子端环4三者的外周,沿 周向设置有用于安装转子导条2的导条孔。如本发明图2所示,在本例中示例性地设置有多个导条孔且相应地具有多个转子导条2。在本文的阐述中,导条孔贯穿转子铁心1、第一转子端环3和第二转子端环4,且是设置在所述转子铁心1、第一转子端环3和第二转子端环4的外周,如此,在转子导条2插入导条孔之后,转子导条2相应地位于所述转子铁心1、第一转子端环3和第二转子端环4的外周。特别说明的是,在所述转子铁心1、第一转子端环3和第二转子端环4三者的外周,沿周向设置导条孔,并不是说导条孔设置在该三者的外侧从而使得转子导条2插入导条孔时,转子铁心1、第一转子端环3和第二转子端环4被包裹在其中,而是:导条孔是穿过转子铁心1、第一转子端环3和第二转子端环4且是在它们三者的内部且靠近它们三者的外侧(该外侧是相对于转子铁心1位于轴向通孔的那一侧而言),而非导条孔位于它们的外侧。优选的,导条孔在转子铁心1、第一转子端环3和第二转子端环4的外周均匀分布,相应地,若干转子导条2沿转子铁心1、第一转子端环3和第二转子端环4的外周均匀分布。
在本发明的示例中,转轴5以过盈配合方式与转子铁心1相结合,设置在所述轴向通孔中,过盈量通过具体的配合和应力计算确定,不同规格的产品有不同的数值。所述转轴4沿轴向的一侧设置有凸起的轴肩6,所述轴肩6与设置轴肩6对应一侧的第一转子左端环31相接触。
转子铁心1由多片高导磁性硅钢片冲压后叠压而成,高导磁性硅钢片为常规的硅钢片,例如M235-35的硅钢片,常规硅钢片的屈服强度范围为330MP-400MP,转子铁心1采用多片高导磁性硅钢片保证了电机的电磁性能。转子铁心1的制作工艺并不限于此,其他可以将硅钢片制成符合要求的转子铁心1的方法适于此。所述高导磁性硅钢片的厚度优选为0.2mm~0.5mm,所需高导磁性硅钢片的片数根据转子铁心沿转子铁心轴向的长度以及高导磁性硅钢片的厚度来确定。
所述第一转子端环3包括第一转子左端环31和第一转子右端环32,第一转子左端环31紧贴转子铁心1设置在转子铁心1的左端,第一转子右端环32紧贴转子铁心1设置在转子铁心1的右端。所述第一转子端环3由多片高屈服强度硅钢片冲压后叠压而成,提高了转子结构的机械强度,使转子结构耐离心力变大,从而提高电机运行转速。第一转子端环3的制作工艺并不限于此,其他可以将硅钢片制成符合要求的第一转子端环3的方法适于此。所述高屈服强度硅钢片的厚度优选为0.5mm~1mm,所需高屈服强度硅钢片的片数根据第一转子端环沿转子铁心轴向的长度以及高屈服强度硅钢片的厚度来确定,第一转子端环3的长度优选为3mm~6mm。高屈服强度的硅钢片,相较于厚度大于3mm的高屈服强度不锈钢板更易获得,而且,由于第一转子端环3的厚度通常在3mm以上,若由高屈服强度不锈钢板材 料制作,冲压制造困难,精度难以保证的,模具寿命非常短;而高屈服强度的硅钢片厚度较薄,通常在0.5~1mm之间,非常容易通过模具实现冲压制成,制造简单方便,大大节约了生产成本。
所述第二转子端环4包括第二转子左端环41和第二转子右端环42,所述第二转子左端环41紧贴第一转子左端环31设置在第一转子左端环31左端(以附图1为参考),所述第二转子右端环41紧贴第一转子右端环31设置在第一转子右端环31的右端(以附图1为参考)。
优选的,所述转子导条2和所述第二转子端环4由高导电率的无氧铜或铜合金制成,所述转子导条2和所述第二转子端环4固接在一起。优选的,转子导条2和所述第二转子端环4可以采用焊接的方式固接在一起,所述转子导条2和所述第二转子端环4所用的材料并不限于此,例如,第二转子端环4可用铝材料制成。
本发明还提供了一种异步电机,包括所述转子结构,转子铁心1由高磁导性硅钢片制成,保证了电机的电磁性能。转子铁心1两端的第一转子端环3由高屈服度的硅钢片制成,提高了转子结构的机械强度,使转子结构耐离心力变大,从而提高电机运行转速。转子铁心1由高磁导性硅钢片制成,转子铁心1两端的第一转子端环3由高屈服度的硅钢片制成,两种不同性能的硅钢片材料的结合,共同实现电机的电磁性能和机械性能的相互兼容,使电机在保证电磁性能和机械性能的前提下,提高电机的最高转速。其中,硅钢片易获取,且易通过磨具实现冲压制造,方法简单,成本低。本发明使异步电机在保证电磁性能前提下,大幅提高转子的机械强度,进而提高电机的最高转速,更有利于实现电机设计的高速化和小型化。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种高速异步电机转子结构,其包括:
    转子铁心(1),其中心设置有轴向通孔;
    由高屈服强度硅钢片制成的第一转子端环(3),其紧贴所述转子铁心(1),设置在转子铁心(1)两端;
    第二转子端环(4),其紧贴第一转子端环(3)端部设置;
    转子导条(2),其设置在所述转子铁心(1)、第一转子端环(3)、第二转子端环(4)的外周;
    以及转轴(5),其设置在所述轴向通孔中。
  2. 根据权利要求1所述的高速异步电机转子结构,其特征在于:所述转轴(5)与所述转子铁心(1)以过盈配合的方式相结合。
  3. 根据权利要求1所述的高速异步电机转子结构,其特征在于:所述转子铁心(1)、第一转子端环(3)和第二转子端环(4)的外周沿周向设置有用于安装转子导条(2)的导条孔,所述转子导条(2)插入所述导条孔。
  4. 根据权利要求3所述的高速异步电机转子结构,其特征在于:所述导条孔沿所述转子铁心(1)、第一转子端环(3)和第二转子端环(4)的周向均匀分布。
  5. 根据权利要求1-4中任意一项所述的高速异步电机转子结构,其特征在于:所述转子铁心(1)由多片高导磁性硅钢片冲压后叠压而成;所述第一转子端环(3)由多片高屈服强度硅钢片冲压后叠压而成。
  6. 根据权利要求5所述的高速异步电机转子结构,其特征在于:所述高导磁性硅钢片的屈服强度范围为330MP-400MP,所述高屈服强度硅钢片的屈服强度高于600MP。
  7. 根据权利要求5所述的高速异步电机转子结构,其特征在于:所述高导磁性硅钢片的厚度为0.2mm~0.5mm,所述高屈服强度硅钢片厚度为0.5mm~1mm。
  8. 根据权利要求1-4中任意一项所述的高速异步电机转子结构,其特征在于:所述转子导条(2)和所述第二转子端环(4)由无氧铜或铜合金制成。
  9. 根据权利要求8所述的高速异步电机转子结构,其特征在于:所述转子导条(2)和所述第二转子端环(4)固接在一起。
  10. 一种异步电机,其特征在于:包括如权利要求1-9所述转子结构。
PCT/CN2018/095146 2017-07-10 2018-07-10 高速异步电机转子结构和包含该转子结构的电机 WO2019011235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710557888.2A CN109245348A (zh) 2017-07-10 2017-07-10 高速异步电机转子结构和包含该转子结构的电机
CN201710557888.2 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019011235A1 true WO2019011235A1 (zh) 2019-01-17

Family

ID=65001845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095146 WO2019011235A1 (zh) 2017-07-10 2018-07-10 高速异步电机转子结构和包含该转子结构的电机

Country Status (3)

Country Link
CN (1) CN109245348A (zh)
TW (1) TW201909523A (zh)
WO (1) WO2019011235A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309543B (zh) * 2021-12-07 2023-12-05 卧龙电气驱动集团股份有限公司 一种感应电机铸铝转子的生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622515A (ja) * 1992-07-02 1994-01-28 Fanuc Ltd 籠形誘導電動機の回転子
DE19542962C1 (de) * 1995-11-17 1996-11-28 Siemens Ag Kurzschlußläufer für eine Asynchronmaschine und ein Verfahren zur Herstellung desselben
CN201821179U (zh) * 2010-10-26 2011-05-04 宁波中大力德传动设备有限公司 一种增强力矩的力矩电机
CN102651596A (zh) * 2011-02-24 2012-08-29 发那科株式会社 感应电动机的笼型转子
CN106532997A (zh) * 2016-12-21 2017-03-22 上海电气集团上海电机厂有限公司 一种超高速异步电动机
CN206259769U (zh) * 2016-10-27 2017-06-16 蔚来汽车有限公司 具有铜导条的电机转子结构
CN206992821U (zh) * 2017-07-10 2018-02-09 上海蔚来汽车有限公司 高速异步电机转子结构和包含该转子结构的电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622515A (ja) * 1992-07-02 1994-01-28 Fanuc Ltd 籠形誘導電動機の回転子
DE19542962C1 (de) * 1995-11-17 1996-11-28 Siemens Ag Kurzschlußläufer für eine Asynchronmaschine und ein Verfahren zur Herstellung desselben
CN201821179U (zh) * 2010-10-26 2011-05-04 宁波中大力德传动设备有限公司 一种增强力矩的力矩电机
CN102651596A (zh) * 2011-02-24 2012-08-29 发那科株式会社 感应电动机的笼型转子
CN206259769U (zh) * 2016-10-27 2017-06-16 蔚来汽车有限公司 具有铜导条的电机转子结构
CN106532997A (zh) * 2016-12-21 2017-03-22 上海电气集团上海电机厂有限公司 一种超高速异步电动机
CN206992821U (zh) * 2017-07-10 2018-02-09 上海蔚来汽车有限公司 高速异步电机转子结构和包含该转子结构的电机

Also Published As

Publication number Publication date
CN109245348A (zh) 2019-01-18
TW201909523A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
US9729035B2 (en) Electric motor rotor
EP2860848B1 (en) Rotary electric machine
Chen et al. Rotor strength analysis for high speed permanent magnet machines
CN101557149B (zh) 一种高速感应电动机的转子
JP2008295178A (ja) 永久磁石式回転機の回転子構造
US20130113331A1 (en) Rotor of an asynchronous machine with retaining element
CN104795909A (zh) 一种空压机用高速电机电磁结构
WO2019011235A1 (zh) 高速异步电机转子结构和包含该转子结构的电机
CN203071782U (zh) 一种永磁发电机
CN202949340U (zh) 斜磁式无刷直流电动机
CN107612165B (zh) 锥形气隙轴向双回路磁场永磁同步电机
JPWO2014002181A1 (ja) 永久磁石式回転電機、及びその製造方法
JP2016220404A (ja) かご型誘導電動機およびかご型誘導電動機用回転子ならびに回転子製造方法
CN213547212U (zh) 一种实心轴转子及潜水电机
CN206992821U (zh) 高速异步电机转子结构和包含该转子结构的电机
CN106121731B (zh) 一种双转子结构及涡轮发动机
TWM571084U (zh) High speed non-synchronous motor rotor structure and motor including the same
CN207442552U (zh) 一种带有叠片式金属护套的电机转子
CN108900057B (zh) 一种定子齿外侧连线正多边形的轴向磁通永磁电机
CN206302312U (zh) 一种无齿槽磁阻内转子电动机
CN201398131Y (zh) 一种转子压铸件
CN106130223B (zh) 转轴、转轴的装配方法、电机
CN205414429U (zh) 楔形气隙的永磁同步电主轴结构
CN103904799A (zh) 一种电机鼠笼式转子及其加工工艺
JP2019176665A (ja) 分割型固定子および回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832189

Country of ref document: EP

Kind code of ref document: A1