WO2019137330A1 - 一种低温干体温度校验仪 - Google Patents

一种低温干体温度校验仪 Download PDF

Info

Publication number
WO2019137330A1
WO2019137330A1 PCT/CN2019/070621 CN2019070621W WO2019137330A1 WO 2019137330 A1 WO2019137330 A1 WO 2019137330A1 CN 2019070621 W CN2019070621 W CN 2019070621W WO 2019137330 A1 WO2019137330 A1 WO 2019137330A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
temperature
plate
dry body
block
Prior art date
Application number
PCT/CN2019/070621
Other languages
English (en)
French (fr)
Inventor
林建军
李学灿
吴成江
Original Assignee
北京康斯特仪表科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810019770.9A external-priority patent/CN110017917A/zh
Priority claimed from CN201810018472.8A external-priority patent/CN110017913A/zh
Priority claimed from CN201810019111.5A external-priority patent/CN110022661A/zh
Priority claimed from CN201820032013.0U external-priority patent/CN207706617U/zh
Priority claimed from CN201820032475.2U external-priority patent/CN207706618U/zh
Priority claimed from CN201810019030.5A external-priority patent/CN110022660A/zh
Priority claimed from CN201820033217.6U external-priority patent/CN207866392U/zh
Priority claimed from CN201820031567.9U external-priority patent/CN207675334U/zh
Priority claimed from CN201820031598.4U external-priority patent/CN207675327U/zh
Priority to US16/961,134 priority Critical patent/US11402278B2/en
Priority to EP19738064.5A priority patent/EP3739313A4/en
Application filed by 北京康斯特仪表科技股份有限公司 filed Critical 北京康斯特仪表科技股份有限公司
Publication of WO2019137330A1 publication Critical patent/WO2019137330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/002Calibrated temperature sources, temperature standards therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/023Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples provided with specially adapted connectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/10Arrangements for compensating for auxiliary variables, e.g. length of lead
    • G01K7/12Arrangements with respect to the cold junction, e.g. preventing influence of temperature of surrounding air

Definitions

  • the invention belongs to the technical field of temperature instrument calibration, and particularly relates to a low temperature dry body temperature calibrator.
  • the dry body temperature calibrator especially the portable dry body temperature calibrator, is widely used in industrial sites, measurement sites and laboratories of various industries, and has broad market prospects.
  • the temperature condition in the vicinity of the furnace body is a relatively harsh environmental condition for other components, so it is necessary to carry out the surrounding environment and other components. isolation.
  • a core component it is often required to be debugged and maintained separately during production and use. Existing products are often locked with other components. Once a problem occurs, the whole machine needs to be disassembled. Increased maintenance costs.
  • the invention provides a modular assembly low temperature dry body temperature calibrator.
  • a low temperature dry body temperature calibrator for temperature verification of a temperature component to be tested including:
  • the furnace body (1) is provided with a furnace mouth inserted into the temperature component to be tested, and the bottom portion is fixed on a base (5);
  • control board assembly (2) the bottom is fixed to the base (5);
  • the base (5) and an upper casing (6) fasten the furnace body (1) and the control panel assembly (2), the upper casing (6) and the furnace body (1)
  • a through hole (63) is defined in the corresponding furnace mouth, and a plurality of heat dissipation holes (62) are disposed on the top surface of the upper casing (6).
  • the low temperature dry body temperature calibrator further includes a system board assembly (3) electrically connected to the control board assembly (2) and mounted on a front side of the upper case (6).
  • control board assembly (2) comprises:
  • the control board bracket (21) is a U-shaped groove structure
  • a switching power supply (22) is fixed in a U-shaped slot of the control board bracket (21);
  • control board (24) fixed to the U-shaped slot opening of the control board bracket (21);
  • a heat dissipating block (23) is mounted on a lower side of the control board (24), and a side of the control board (24) on which the heat dissipating block (23) is mounted faces a switching power supply (22); the diversion fan (26) ) Installed on top of the switching power supply (22).
  • the system board assembly (3) includes a touch screen panel (35), a touch screen foam (34), a touch liquid crystal screen (33), and a touch screen bracket (32) arranged in order from front to back.
  • a system board (31), the touch screen panel (35) is a cover shape, the cover surface is provided with an assembly area matching the shape and size of the touch liquid crystal screen (33), and the system board (31) is provided with one or more sides a connection port (36), a plurality of interface holes (37) are disposed on a side of the touch screen panel (35), the connection port (36) is installed corresponding to the interface hole (37), and the touch screen foam (34),
  • the touch liquid crystal screen (33), the touch liquid crystal screen bracket (32) and the system board (31) are sequentially assembled into the cover body of the touch screen panel (35).
  • the above low temperature dry body temperature calibrator further comprises a measuring plate assembly (4) assembled on the side of the upper casing (6), and the measuring plate assembly (4) is electrically connected to the control board assembly (2) .
  • the measuring board assembly (4) includes a front panel (41) and a measuring board (42), and the measuring board (42) is provided with a plurality of test connection terminals, a front panel ( 41) a jack is disposed corresponding to the test connection terminal of the measuring board (42), and the front panel (41) and the measuring board (42) are aligned with the test connecting terminal by the jack Stacked and fixed around.
  • the measuring board (42) is provided with a TC socket component (43), and the TC socket component (43) is a thermocouple cold junction temperature compensation structure, which is fixed on the measuring board (42).
  • the upper two sockets (041) correspond to the jacks provided on the front panel (41) for plugging in thermocouples from the outside.
  • the upper casing (6) is fixedly coupled to the periphery of the base (5), and a plurality of ventilation slots (51) are respectively formed on the bottom surface and the side surface of the base (5).
  • the upper case (6) is made of plastic.
  • the furnace body (1) comprises:
  • a furnace core (11) comprising a foamed heat insulator (11-2), a thermostatic block (11-3) disposed inside the foamed heat insulator (11-2), and mounted on the thermostat block (11-3) a heat equalizing block (11-7) in the open slot provided in the upper portion and a heat sink mounted on both sides of the foamed heat insulating body (11-2);
  • the cooling fan (13) is placed below the furnace core (11).
  • the furnace core (11) further includes a plurality of cooling sheets (11-4), and the cooling sheets (11-4) are installed in the foam insulation (11-2) In the through groove provided in each side wall, one side of the cooling sheet (11-4) is in contact with the thermostatic block (11-3) placed in the foamed thermal insulation body (11-2), and the other side is The hot end of the heat sink is in contact.
  • the thermostatic block (11-3) is a square body formed by two opposite concave curved faces (11-31) and opposite two horizontal sides, and a cross section thereof
  • the shape is an hourglass shape having a narrow width in the middle of the head, and the two horizontal sides of the thermostat block (11-3) are in contact with the cooling sheet (11-4), respectively.
  • the portion of the constant-temperature block (11-3) that is sandwiched by the two curved faces (11-31) has a wide portion (11-32) at the widest part of the two ends.
  • the narrowest portion in the middle is a narrow portion (11-33) having a width dimension ranging from 30 mm to 80 mm, and the narrow portion (11-33) having a width dimension ranging from 20 mm to 50 mm.
  • the furnace core (11) further comprises a sensor group (11-5), the sensor group (11-5) comprising a plurality of sensing elements, the sensing element comprising a pair of differentials a thermocouple, a thermal resistance temperature sensor and an over temperature alarm sensor, wherein the sensing element is mounted in a plurality of mounting vias provided on the foam insulation (11-2), and the probe portion of the sensing element is embedded in the constant temperature In block (11-3).
  • the furnace core (11) further includes a wind deflecting plate (11-6), and the bottom of the foaming heat insulating body (11-2) has a V-shaped structure and a wind deflecting plate ( 11-6) is a long-plate structure having a V-shaped cross section, which is superposed on the V-shaped bottom of the foamed thermal insulator (11-2), and the two sides of the air deflector (11-6) are respectively fixed at two
  • the bottom of the side heat sink (11-1) is near the edge of the foamed heat insulator (11-2).
  • the furnace body (1) further comprises a furnace body bracket (12), and the furnace body bracket (12) comprises a surrounding frame (12-1) and two side plates (12-2).
  • the cooling fan (13) is installed at the bottom of the enclosure (12-1), and the two side plates (12-2) are respectively mounted on both sides of the enclosure (12-1), and the furnace core (11) is installed.
  • the furnace body bracket (12) In the above low-temperature dry body temperature calibrator, the furnace body (1) further comprises a furnace body bracket (12), and the furnace body bracket (12) comprises a surrounding frame (12-1) and two side plates (12-2).
  • the cooling fan (13) is installed at the bottom of the enclosure (12-1), and the two side plates (12-2) are respectively mounted on both sides of the enclosure (12-1), and the furnace core (11) is installed.
  • the furnace body bracket (12) In the furnace body bracket (12).
  • the furnace body (1) further comprises a furnace block insulation block (14) made of a polytetrafluoroethylene material and a top portion disposed at the top of the furnace block insulation block (14).
  • a decorative panel (11-8), a furnace insulation block (14) is attached to the furnace opening at the upper end of the furnace core (11), and a top decorative panel (11-8) is attached to the heat sink by screws.
  • the heat sink is a first heat sink (11-1), and the first heat sink (11-1) includes a fin group formed by a plurality of fins (11) -11) and a temperature equalizing plate (11-12) vertically connected to the fin group (11-11), the fin is a sheet-like aluminum foil, and the plurality of fins are arranged in parallel and spaced apart from each other;
  • the fin set (11-11) is integrally connected to the temperature equalizing plate (11-12) by welding, crimping or bonding.
  • the first heat sink (11-1) further includes a substrate (11-13) fixedly connected to the temperature equalizing plate (11-12), the temperature equalizing plate (11-12) includes a flat plate portion (11-121), one side of the flat plate portion (11-121) is closely fixed to the fin group (11-11), and the other side has a boss portion extending outward (11-122), the inside of the boss portion (11-122) is provided with a cavity (11-123), and the inner surface of the cavity (11-123) is a porous structure, the cavity (11 -123) is filled with a cooling medium; the substrate (11-13) is provided with one or a shape matching the shape and size of the boss portion (11-122) of the temperature equalizing plate (11-12) a plurality of through grooves (11-131) into which the boss portions (11-122) of the temperature equalizing plates (11-12) are embedded, the substrate (11-13) It is fixedly connected to the temperature equalizing plate (11-12).
  • the substrate (11-13) is provided with one or a shape matching the
  • the heat sink is a second heat sink (19-1), and the second heat sink (19-1) includes a U-shaped heat pipe (19-12) and a heat conducting plate (19-13). And a heat dissipation fin group (19-11) formed by the plurality of heat dissipation fins, wherein the heat dissipation fins are sheet-like aluminum foils, and the plurality of heat dissipation fins are disposed in parallel and spaced to form the heat dissipation fin group (19-11)
  • the heat dissipation fin group (19-11) is integrally connected to the heat conduction plate (19-13) by welding, crimping or bonding;
  • the U-shaped heat pipe includes a first side arm (19-121) arranged in parallel, Two side arms (19-122) and a connecting portion (19-123) connecting the first side arm and the second side arm, the first side arm (19-121) being inserted in the heat sink fin group (19-11) and conducting heat Between the plates (19-13), the second side arms (19-122) are interspersed in
  • the U-shaped heat pipe is internally provided with a cavity, and the cavity is filled with a cooling medium, and the inner surface of the cavity is a porous structure.
  • the second heat sink (19-1) further includes a first side plate (19-14) and a second side plate (19-15), and the first side plate (19-) 14) and the second side plates (19-15) are respectively disposed perpendicularly on both sides of the heat conducting plate (19-13) to form a rectangular groove structure, and the heat conducting plate (19-13) is located at the bottom of the rectangular groove structure,
  • the heat dissipation fin sets (19-11) are disposed inside the rectangular groove structure, and the heat dissipation fins are parallel to the first side plates (19-14) and the second side plates (19-14) on both sides.
  • the first side plate (19-14) includes a rectangular fixing plate (19-141) that is in close contact with the heat dissipation fin group (19-11), and the fixing plate (19) - 141) three sides not adjacent to the heat conducting plate (19-13) extend outwardly perpendicularly to the folded edge; the second side plate (19-15) and the first side plate (19-14) structure The same and symmetrically disposed on both sides of the heat conducting plate (19-13); a plurality of second semicircles provided on a side of the heat conducting plate (19-13) and the heat radiating fin group (19-11) a plurality of first semi-circular concave strips (19-111) provided by the concave strips (19-131) and the heat radiating fin sets (19-11) and a plurality of fixed side plates (19-141)
  • the second semicircular openings (19-142) are combined to form a plurality of first circular holes, and the first side arms (19-121) of the U-shaped heat pipes (19-12) are inserted in the corresponding first circular holes
  • the fixing plate (19-141) is
  • a plurality of U-shaped heat pipes (19-12) are divided into two groups, and the first side arms (19-121) of each set of U-shaped heat pipes (19-12) are closely attached together.
  • the second side arms (19-122) are equally spaced apart, and the corresponding first circular holes are also divided into two groups, which match the shape of the first side arms (19-121) of the U-shaped heat pipes (19-12).
  • the second circular holes (19-112) are equally spaced apart to match the shape of the second side arms (19-122) of the U-shaped heat pipes (19-12).
  • thermocouple cold junction temperature compensation structure comprises a cold junction temperature sensor (01), a second soaking block (03) and a cap (04), and a second soaking block (03)
  • a cold junction temperature sensor 01
  • a second soaking block (03)
  • the cold end temperature sensor (01) is mounted on the upper side of any spring piece (02)
  • thermocouple (05)
  • the cold end is placed between the shrapnel (02) and the second soaking block (03) and is in close contact with the shrapnel (02) and the second soaking block (03), and the heat capacity of the second soaking block (03) is large
  • the elastic piece (02) is an elastic body having a small heat capacity and good thermal conductivity, and has an S-shaped structure, and its tail end is fixed to the tail portion of the second heat equalizing block (03).
  • the head end of the shrapnel (02) is raised, and the portion near the head end is freely placed on the upper surface of the second heat equalizing block (03); the thermal paste is added between the two second heat equalizing blocks (03).
  • thermocouple cold junction temperature compensation structure further includes a lead wire terminal (06), and the lead wire of the cold end temperature sensor (01) is taken out from the tail end of the cap (04) to a lead terminal (06), the lead terminal (06) is inserted on the measuring board (42); the front end of the cap (04) is provided with two sockets, the socket corresponding to the elastic piece (02) and the second soaking The position between the blocks (03) is inserted into the cold end of the thermocouple (05).
  • a cold end temperature sensor (01) mounted on the elastic piece (02) is not provided with a plastic sleeve or a heat insulating glue on a portion in contact with the elastic piece (02); the cold end temperature sensor (01) A rubber plate is bonded to the elastic piece (02), and a guard plate is respectively disposed on both sides of the position where the elastic piece (02) is bonded to the cold end temperature sensor (01).
  • the low temperature dry body temperature calibrator of the invention adopts a modular design, and the furnace body, the control board assembly, the system board assembly and the measuring board assembly are independently assembled with each other, which facilitates assembly and disassembly of individual components, so that in the event of failure of a single component, only a single component Disassembling the faulty components eliminates the need to disassemble the whole machine, which can reduce maintenance costs and improve maintenance efficiency.
  • the low-temperature dry body temperature calibrator of the invention adopts a modular design, and the furnace body and other components and components can be independently disassembled, thereby effectively improving the convenience of production and maintenance, and reducing the production and maintenance costs of the product;
  • the present invention provides two types of heat sinks, one of which is vertically disposed and connected by a fin plate group and a temperature equalizing plate filled with a cooling medium inside the inner cavity, and the one side of the temperature equalizing plate contacts the heat source and the fins
  • the heat dissipation efficiency is improved by the chip group, the heat dissipation efficiency is improved, and the heat dissipation effect is improved by embedding the U-shaped heat pipe into the heat dissipation fin group and the heat conduction plate, thereby saving the heat sink space, the U-shaped heat pipe and the heat dissipation fin
  • the chip group works together to dissipate heat, which improves the heat dissipation effect;
  • the heat dissipating fins of the heat sink of the present invention are all made of sheet aluminum foil, and the pitch is small and the weight is light. Compared with the aluminum extruded radiator, the weight can be reduced by about 23% to 40% under the same heat dissipating area.
  • the cross section of the soaking block in the furnace body of the present invention is set to an hourglass shape with a narrow width at both sides.
  • This structure makes the heat equalizing block light in weight, small in heat capacity, and sensitive to temperature changes, and is helpful in being
  • the measuring device measures the accuracy.
  • the size of the cooling fins disposed on both sides of the soaking block is larger, and the heat dissipating effect is good;
  • the structure of the furnace body of the invention is reasonable in structure, compact in structure, and independent two-channel sealing design, so that the high-temperature air of the furnace body does not adversely affect the working environment of other components, increasing the service life of the electronic components, and also isolating
  • the influence of the heat of other components on the furnace body improves the stability of the furnace work and the temperature measurement accuracy, and is suitable for the temperature measurement of the temperature component to be tested at a low temperature.
  • FIG. 1 is a schematic view showing the overall structure of a low temperature dry body temperature calibrator of the present invention
  • FIG. 2 is a schematic exploded view showing the structure of the low temperature dry body temperature calibrator of the present invention
  • Figure 3 is a schematic view showing the structure of the furnace body
  • 4A is a schematic exploded view showing the structure of a furnace core equipped with a first heat sink
  • 4B is a schematic exploded view showing the structure of a furnace core equipped with a second heat sink
  • Figure 5 is a perspective view of a heat equalizing block
  • Figure 6 is a schematic structural view of a furnace body bracket
  • Figure 7 is a schematic view of the air passage of the furnace body
  • Figure 9 is a transverse cross-sectional view of the first heat sink
  • FIG. 10 is a schematic perspective view of a second heat sink
  • Figure 11 is a schematic exploded view of the second heat sink
  • FIG. 12 is a schematic perspective view of a control board assembly
  • Figure 13 is a schematic exploded view of the control board assembly
  • FIG. 14 is a schematic perspective view of a system board assembly
  • Figure 15 is a schematic exploded view of the system board assembly
  • Figure 16 is a schematic exploded view of the measuring board assembly
  • Figure 17 is a front view of the thermocouple cold junction temperature compensation structure
  • Figure 18 is a structural exploded view of the thermocouple cold junction temperature compensation structure
  • Figure 19 is a cross-sectional view taken along line A-A of Figure 17;
  • thermocouple cold junction temperature compensation structure used in combination with a thermocouple
  • Figure 21 is a working curve of the thermocouple cold junction temperature compensation structure
  • Figure 22 is a schematic structural view of an upper casing assembly
  • Figure 23 is a schematic view showing the structure of the lower casing assembly.
  • furnace body 11: furnace core
  • 12 furnace body bracket
  • 13 cooling fan
  • 14 furnace mouth insulation block
  • control board assembly 21: control board bracket, 22: switching power supply, 23: control board heat sink, 24: control board, 25: deflector, 26: diversion fan, 27: power supply terminal;
  • system board component 31: system board, 32: touch screen bracket, 33: touch LCD screen, 34: touch screen foam, 35: touch screen panel, 36: connection port, 37: interface hole;
  • measuring board assembly 41: front panel, 42: measuring board, 43: TC socket component (thermocouple cold junction temperature compensation module);
  • 01 cold end temperature sensor
  • 02 shrapnel
  • 03 second soaking block
  • 04 cap
  • 041 socket
  • 05 thermocouple
  • 06 lead terminal
  • 07 screw.
  • the low temperature dry body temperature calibrator of the invention adopts a modular design and can be easily disassembled and assembled.
  • the low temperature dry body temperature calibrator of the present invention comprises a furnace body 1 and a control panel assembly 2.
  • the system board assembly 3, the measuring board assembly 4, and the upper casing 6 and the base 5 are assembled on the front side of the upper casing 6, and the furnace body 1 and the control panel assembly 2 are respectively fixed on the base (5), and the upper casing 6
  • the casing 5 is fastened to form a casing, and the furnace body 1 and the control panel assembly 2 are located in the casing.
  • the upper portion of the furnace body 1 is provided with a furnace mouth, and the upper casing 6 and the furnace mouth of the furnace body 1 are respectively provided with a temperature component for wearing the sheath to be tested.
  • the through hole 63 has a plurality of heat dissipation holes 62 on the top surface of the upper case 6.
  • the furnace body 1 is adjacent to and fixed to the control panel assembly 2, the measuring panel assembly 4 can be fixed to the front side of the control panel assembly 2, and the upper portion of the measuring panel assembly 4 and the control panel assembly 2 can be mounted with the system board assembly 3.
  • the measuring board assembly 4 is provided with a front panel 41, the system board assembly 3 is provided with a touch screen panel 35, and the closed space formed by the front panel 41, the touch screen panel 35 and the outer casing connects the furnace body 1, the control board assembly 2 and the system board assembly 3 and The portion of the measuring plate assembly 4 is packaged to form a unitary body, and the furnace body 1 and each component can be separately detached for convenient maintenance and replacement.
  • the control panel assembly 2 corresponds to the brain of the low temperature dry body temperature calibrator, the system board assembly 3, the measuring plate assembly 4, and the cooling fan 13, the cooling sheet 11-4, and the sensor group 11-5 in the furnace body 1 (see the furnace body) Section 1) is electrically connected to the control board assembly 2 and performs data interaction with the control board assembly 2, that is, the control panel assembly 2 reads the temperature data measured by the sensor group 11-5, the electrical signals measured by the measurement board assembly 4, and the system board.
  • the parameters set by the component 3 are then sent to the actuators of the refrigerating sheet 11-4 and the cooling fan 13 according to a predetermined control strategy and execution order, and the processed data is sent to the system board assembly 3 for display.
  • the furnace body 1 is the core component of the low temperature dry body temperature calibrator of the present invention, and is used for inserting the temperature component to be inspected for verification and maintaining the temperature uniform and stable.
  • 11 furnace core
  • 11-1 radiator
  • 11-2 foam insulation
  • 11-3 thermostatic block
  • 11-31 curved surface
  • 11-32 wide part
  • 11-33 narrow part
  • 11-4 Refrigerating sheet
  • 11-5 sensor group
  • 11-6 air deflector
  • 11-7 soaking block
  • 11-8 top decorative plate
  • the furnace body 1 is the core component of the low temperature dry body temperature calibrator of the present invention, as shown in FIG. 3, including the furnace core 11, the furnace body support 12, the cooling fan 13 and the furnace mouth insulation block 14, the furnace core 11 and the cooling fan. 13 are all located in the furnace body support 12, and the cooling fan 13 is disposed below the furnace core 11, and the furnace insulation block 14 is located at the furnace mouth of the upper end of the furnace core 11.
  • FIGS. 4A and 4B show the structure of the furnace core 11, which includes a radiator, a foamed thermal insulator 11-2, a thermostatic block 11-3, a refrigerating piece 11-4, a sensor group 11-5, and a wind deflector.
  • the thermostatic block 11-3 is disposed inside the foamed heat insulating body 11-2; a plurality of through holes are provided on both sides of the foaming heat insulating body 11-2 for mounting
  • the cooling sheet 11-4, a plurality of sensor mounting via holes are reserved on the foaming heat insulating body 11-2 for mounting the sensor of the sensor group 11-5;
  • the heat sink is provided with two, respectively, which are respectively installed in the foam thermal insulation body 11
  • the heat sink can be fixed to the foam thermal insulation body 11-2 by screws, and the pressing force of the heat sink is pre-installed during installation.
  • the design is to ensure that the heat sink is in contact with the cooling fins 11-4, and that the cooling fins 11-4 are not broken.
  • the cooling sheet 11-4 is embedded in the through hole on the two side walls of the foamed thermal insulation body 11-2, and the thermal conductive grease is coated on the side wall forming the through hole or the soft thermal conductive gasket is applied to reinforce the refrigeration sheet 11-4.
  • Thermal conductivity preferably, the cross-sectional dimension of the refrigerating sheet 11-4 is 40 mm ⁇ 40 mm, the cooling area is large, and the cooling effect is good.
  • the thermostat block 11-3 is provided with an open slot at the top end, and the heat equalizer block 11-7 is placed in the open slot of the thermostat block 11-3, and the thermostat block 11-3 serves to provide the heat soaking speed 11-7. Temperature environment; the upper part of the heat equalizing block 11-7 is provided with a plurality of blind holes to accommodate the temperature component to be tested. As shown in FIG. 3, the thermostatic block 11-3 is a square-like body, and the opposite sides are provided with a concave curved surface 11-31, and the cross section of the thermostatic block 11-3 is set to have an hourglass shape with a narrow width at both ends, and the constant temperature is constant. The wider sides of the block 11-3 are in contact with the refrigerating sheet 11-4.
  • the above structure makes the thermostatic block 11-3 light in weight, small in heat capacity, and sensitive to temperature changes.
  • the portion of the curved surface 11-31 on both sides of the thermostatic block 11-3 is the widest portion 11-32 at the widest part of the head, and the narrowest portion is the narrow portion 11-33 and the wide portion 11-32.
  • the width (referring to the length of the line connecting the two curved faces 11-31 relative to each other) ranges from 30 mm to 80 mm, and the width of the narrow portion 11-33 ranges from 20 mm to 50 mm, preferably, the width of the wide portion 11-32 The range is 40 mm to 60 mm, and the narrow portion 11-33 has a width dimension ranging from 30 mm to 40 mm.
  • the width of the wide portion 11-32 is 42 mm
  • the width of the narrow portion is 31 mm
  • the size of the refrigerant sheet contacting the wide portion 11-32 is 40 mm x 40 mm.
  • the size of the thermostat block 11-3 is set within the above range, so that the weight of the thermostat block 11-3 is lighter and more sensitive, and the wide side portion of the wide portion 11-32 is larger, so that a larger size of refrigeration can be placed.
  • the sensor group 11-5 includes a plurality of sensing elements including a pair of differential thermocouples, a thermal resistance temperature sensor and an over-temperature alarm sensor, and the sensing elements are respectively mounted on the foam insulation 11 of the furnace core 11- 2 is installed in the through hole, and the probe portion of the sensing element is embedded in the temperature measuring hole in the thermostat block 11-3.
  • the bottom of the foamed heat insulating body 11-2 has a V-shaped structure (see FIGS. 4A and 4B), and the cross-section of the wind deflecting plate 11-6 is a V-shaped long plate structure, which is V with the foamed heat insulating body 11-2.
  • the bottom of the glyph is superposed, and the two sides of the air deflector 11-6 are fixed at the bottom of the heat sink on both sides near the edge of the foam insulation 11-2, and the V-shaped structure of the wind deflector allows the cold air to flow evenly to the two
  • the air deflector 11-6 also serves as a core 11 cable fixing and clamping component, so that the wiring is more neat and smooth.
  • the core 11 further comprises a top decorative panel 11-8, the top decorative panel 11-8 is placed on top of the furnace insulation block 14, and the top decorative panel 11-8 is screwed. On the radiator.
  • the furnace body support 12 includes a frame 12-1 and a side plate 12-2.
  • the bottom of the frame 12-1 is provided with a cooling fan 13, and the side plate 12-2 is provided with two pieces, and the side plate 12-2 is provided.
  • the two side plates 12-2 are respectively mounted on both sides of the enclosure 12-1, and the furnace core 11 is installed in the furnace bracket 12.
  • the furnace core 11 is first fixed on the frame 12-1, and then the side plates 12-2 are respectively mounted on the heat sink of the furnace core 11 through the mounting buckle 12-3, and passed through the side plate 12 by screws.
  • the locking screw hole 12-4 of -2 completely locks the side plate 12-2.
  • the furnace block heat insulation block 14 is placed at the furnace mouth, and its function is to prevent heat loss inside the furnace core 11, thereby improving the internal temperature field and reducing energy consumption, and improving at the same time.
  • the material of the furnace insulation block 14 can be selected from polytetrafluoroethylene with low thermal conductivity and good temperature resistance.
  • Fig. 7 is a schematic view of the air passage of the furnace body 11.
  • the heat sink includes a plurality of fins disposed in parallel with a gap between the fins, and a gap between the fins may serve as an air flow passage.
  • the airflow generated by the cooling fan 13 at the bottom of the furnace body is guided by the air deflector 11-6 to the heat sinks on both sides, and then passes through the gap between the fins to the furnace mouth, in which the heat sink achieves the heat dissipation effect.
  • a static pressure chamber is formed at the bottom of the furnace core 11 and the bottom of the furnace body support 12, which is advantageous for uniformly distributing the airflow of the radiators on both sides, and the air guiding plate 11-6 of the V-shaped structure functions to divert and reduce the wind resistance.
  • the above components are assembled according to the above connection relationship to the low temperature furnace body 1 and the low temperature dry body temperature calibrator including the low temperature furnace body 1.
  • the constant temperature block 11-3 in the low temperature furnace body 1 is a cuboid type.
  • the cross section is set to an hourglass shape with a narrow width on both sides.
  • This structure makes the thermostat block 11-3 light in weight, small in heat capacity, and sensitive to temperature changes, which contributes to the measurement accuracy of the device under test, and
  • the opposite sides of the thermostat block 11-3 are wider, and the size of the refrigerating sheet 11-4 disposed on both sides of the thermostat block 11-3 is also larger, and the heat dissipation effect is good
  • the low temperature dry body temperature calibrator of the present invention is modularized Design, the furnace body 1 and other components and components can be disassembled independently, thereby effectively improving the convenience of production and maintenance, and reducing the production and maintenance costs of the product;
  • the furnace body 1 of the invention has a reasonable layout, compact structure and independent two-channel seal design. Therefore, the high temperature air of the furnace body 1 does not adversely affect the working environment of other components, increases the service life of the electronic components, and also isolates the influence of the heat of other components on the furnace body 1, and improves the furnace body 1 Work stability and temperature measurement accuracy.
  • the heat sink can use a heat sink commonly used in the prior art (for example, an aluminum extruded radiator). Due to the thick fin of the aluminum extruded radiator, the weight of the aluminum extruded radiator is larger under the same heat dissipation area, and the furnace body The space is limited, resulting in a relatively small heat dissipation area of the heat sink fins; under the same heat dissipation conditions, the heat dissipation efficiency of the aluminum extruded heat sink is low, resulting in poor heat dissipation of the dry body temperature calibrator. Therefore, the present invention provides two heat sinks which are light in weight and highly efficient in heat dissipation, and are used in the low temperature dry body temperature calibrator of the present invention.
  • the heat sink used in the furnace body 1 in the (a) is the first heat sink 11-1, and the furnace body 1 in the figure (b) is used.
  • the heat sink is the second heat sink 19-1, and the two new heat sinks are separately described below.
  • the first heat sink 11-1 can be used in the furnace body 1 of the low temperature dry body temperature calibrator of the present invention for discharging heat in the furnace body 1 in time.
  • 11-1 First radiator, 11-11: fin group,
  • 11-12 average temperature plate, 11-121: flat part, 11-122: boss part, 11-123: cavity, 11-124: first mounting hole;
  • 11-13 substrate, 11-131: through slot, 11-132: step, 11-133: second mounting hole;
  • 11-14 Left side panel
  • 11-15 Right side panel
  • the first heat sink 11-1 (see FIG. 4) of the present invention includes fin sets 11-11 formed by a plurality of fins arranged in parallel and spaced apart, and a temperature equal to the vertical connection with the fin sets.
  • Board 11-12 where:
  • the fins are sheet-like aluminum foils, and the preferred manner is an equidistant arrangement, which is vertically disposed with the temperature equalizing plates 11-12, and can be integrally connected with the temperature equalizing plates 11-12 by welding, crimping or bonding.
  • the fin groups 11-11 formed by the plurality of fins may cover the temperature equalizing plate or partially cover the temperature equalizing plate, or may exceed the boundary of the uniform temperature plate, and are set according to actual application requirements.
  • the temperature equalizing plate 11-12 includes a flat plate portion 11-121, the flat plate portion is a square flat plate, and the flat plate portion 11-121 side is closely fixed to the fin group 11-11.
  • the other side of the flat plate portion 11-121 has a boss portion 11-122 extending outward, and the cross-sectional shape of the boss portion 11-122 is not limited (for example, may be a polygon, a circle or an irregular shape), and the boss portion 11
  • the interior of the -122 is provided with a cavity 11-123 filled with a cooling medium (preferably a cooling liquid such as water), the inner surface of which is a porous structure (for example, a sintered layer of copper powder), which contributes to A cooling cycle is formed.
  • a cooling medium preferably a cooling liquid such as water
  • the first heat sink 11-1 of the present invention comprises at least one temperature equalizing plate 11-12, preferably comprising a plurality of temperature equalizing plates 11-12, and the plurality of temperature equalizing plates 11-12 are suitable for a plurality of distributed heat sources,
  • the average temperature plate can concentrate the heat of the dispersed heat source through the fin groups 11-11 connected thereto, so that the heat dissipation effect is improved.
  • the first heat sink 11-1 includes two temperature equalizing plates 11-12.
  • the first heat sink 11-1 further includes a substrate 11-13.
  • the substrate 11-13 is fixedly connected to the temperature equalizing plate 11-12, and one or more through holes are formed on the substrate 11-13.
  • the slot 11-131 is matched with the shape, size and position of the boss portion 11-122 of the temperature equalizing plate 11-12 such that the boss portion 11-122 is engaged with the through slot 11-131 of the substrate 11-13.
  • the substrate 11-13 is provided with two square through grooves 11-131 extending in a direction perpendicular to the substrate 11-13 toward a side away from the fin group 11-11, and The front end of the aperture is narrower and narrower (i.e., the lower width is narrower in FIG.
  • step 11-132 2) to form the step 11-132; the boss portion 11-122 of the temperature equalizing plate 11-12 is embedded in the narrower portion of the through hole 11-131, and the flat portion 11
  • the -121 is embedded in a wide portion of the through hole 11-131, and the substrate 11-13 is fixedly coupled to the temperature equalizing plate 11-12.
  • the first heat sink 11-1 of the present invention further includes an outer frame composed of the left side plate 11-14 and the right side plate 11-15, the side plates being parallel to the fins of the fin set 11-11 and wrapped in the fin set Both ends of 11-11 are welded together with the fin sets 11-11 to form a wrap, protect the fin sets 11-11, and are connected with other components to package the first heat sink 11-1 components into one overall.
  • the first heat sink 11-1 is installed in the furnace body 1 of the low-temperature dry body temperature calibrator.
  • the first heat sink 11-1 is provided with two, respectively located in the foam insulation body.
  • the two sides of the 11-2 are fixed to the foamed thermal insulation 11-2 by screws;
  • the refrigerating sheet 11-4 is embedded in the through groove provided by the two side walls of the foamed thermal insulation body 11-2, and one side and the thermostatic block 11-3
  • the other side is in contact with the first heat sink 11-1.
  • the outer side of the first heat sink 11-1 is a furnace body bracket 12, and the first heat sink 11-1 is fixed to the furnace body bracket 12 by means of mechanical connection (for example, a combination of screwing and snapping).
  • the first mounting holes 11-124 are disposed at the four corners of the temperature equalizing plate 11-12, and the through holes 11-131 of the substrate 11-13 are disposed.
  • the above components are assembled according to the above relationship to the first heat sink of the invention, and one end of the substrate 11-13 and the temperature equalizing plate 11-12 adjacent to the fin group 11-11 is defined as a cold end, and the substrate 11-13 and the temperature equalizing plate 11- The other end of 12 is defined as a hot end, the hot end is in contact with the cooling fins in the furnace body of the dry body temperature tester, and the cold end is connected to the fin set 11-11.
  • the heat sink adopts a uniform temperature plate to realize a combination of rapid heat conduction and rapid fin heat dissipation, and has high heat dissipation efficiency.
  • the first heat sink of the present invention includes a plurality of temperature equalizing plates 11-12.
  • the embodiment is applicable to a plurality of distributed heat sources. This embodiment can concentrate the heat of the dispersed heat source through the fin sets 11-11, and the heat dissipation effect is obtained.
  • fins have thin fins and small pitches (for example, fins made of aluminum foil up to 0.4 mm thick with a pitch of 2.3 mm), light weight, and the same weight as aluminum extruded radiators, the weight can be reduced 23 % to 40%, and improve the heat dissipation efficiency;
  • the temperature plate 11-12 has good thermal conductivity, compared with the aluminum extruded radiator, under the same conditions, the temperature plate can quickly heat the heat source (the heat of the cooling plate) ) is transmitted to the fin sets 11-11, thereby obtaining a better heat dissipation effect.
  • the first heat sink 11-1 of the present invention is light in weight, the low temperature dry body temperature calibrator using the heat sink is lighter and more portable; the temperature equalizing plate of the first heat sink 11-1 of the present invention and the furnace body 1 are The cooling fins 11-4 are correspondingly positioned and contacted, and the heat of the furnace body 1 can be conducted to the first heat sink 11-1 in time, and the fins of the first heat sink 11-1 of the present invention are thin, have a large pitch, and have a plurality of fins.
  • the ventilation area between the sheets is larger, so the radiator has lower wind resistance and the ventilation is increased.
  • the low-temperature dry type temperature calibrator using the first radiator 11-1 has lower noise and heat dissipation performance during operation. Well, the time for the temperature reduction process of the low temperature dry body temperature calibrator using the first heat sink is significantly shortened.
  • the second heat sink 19-1 can be used in the furnace body 1 of the low temperature dry body temperature calibrator of the present invention, and is also used to timely derive the heat in the furnace body 1.
  • 19-11 heat sink fin group, 19-111: first semicircular concave strip, 19-112: second round hole;
  • 19-12 U-shaped heat pipe, 19-121: first side arm, 19-122: second side arm, 19-123: connecting portion;
  • 19-13 heat conducting plate
  • 19-131 second semicircular concave strip
  • 19-132 third mounting hole
  • 19-14 first side panel, 19-141: fixed plate, 19-142: second semicircular opening, 19-143: circular through hole; 19-15: second side plate.
  • the second heat sink 19-1 (see FIG. 4B) of the present invention includes a plurality of heat dissipating fin sets 19-11 formed by parallelly disposed and spaced fins, and a U-shaped heat pipe 19 -12, the first side panels 19-14, the second side panels 19-15 and the heat conducting panels 19-13, the first side panels 19-14 and the second side panels 19-15 are vertically disposed on the heat conducting panels 19-13, respectively
  • a rectangular groove structure is formed on both sides, the heat conducting plates 19-13 are located at the bottom of the groove structure, the heat dissipation fin sets 19-11 are disposed inside the groove structure, and the heat dissipation fins are parallel to the first side plates on both sides 19-14 and second side panels 19-15, wherein:
  • the first side plate 19-14 includes a rectangular fixing plate 19-141 that abuts the heat dissipation fin group 19-11, and the one end surface of the fixing plate 19-141 adjacent to the heat conduction plate 19-13
  • a plurality of second semicircular openings 19-142 are disposed, and the number of the second semicircular openings 19-142 is consistent with the number of U-shaped heat pipes.
  • the second semicircular opening 19-142 There are eight, each of the four adjacent second semicircular openings 19-142 is a group, and the two sets of second semicircular openings 19-142 are disposed at a certain distance; the fixing plates 19-141 are three more The edges extend outwardly and outwardly to fold the edge, so as to block the airflow, so that the airflow passes through the heat dissipation fin group 19-11 of the heat sink 19-1, preventing airflow from entering the side of the fixing plate 19-141, and at the same time facilitating the heat sink 19 -1 mounting in the furnace body 01 (see Fig.
  • the fixing plates 19-141 are further away from the heat conducting plates 19-13
  • a plurality of equally spaced circular through holes 19-143 are disposed on one side, and the number of circular through holes 19-143 is the same as the number of U-shaped heat pipes 19-12. In this embodiment, eight are also provided.
  • the structure of the second side panels 19-15 is the same as that of the first side panels 19-14, and the two side panels are symmetrically arranged.
  • a plurality of parallel concave strips are disposed on a side of the heat conducting plate 19-13 that is in close contact with the heat dissipating fin set 19-11, and the cross section of the concave strip is semicircular, that is, the second semicircular concave strip 19-131.
  • the number of the second semi-circular concave strips 19-131 is eight (corresponding to the number of U-shaped heat pipes 19-12), and is set to two at a certain distance. Groups, each of which is next to each other as a group.
  • the heat conducting plate 19-13 is further provided with a plurality of third mounting holes 19-132 penetrating in the thickness direction for mounting the second heat sink 19-1 of the present invention on other components, for example, by screw mounting at a low temperature.
  • the body temperature of the dry body calibrator is in the furnace body 1.
  • the heat dissipating fins are sheet-like aluminum foils, and the plurality of heat dissipating fins are preferably arranged in parallel at equal intervals, and the plurality of heat dissipating fins form the heat dissipating fin groups 19-11; each of the heat dissipating fins is adjacent to the heat conducting board 19-13
  • the second semicircular concave strips 19-131 are each provided with a first semicircular opening, and the plurality of first semicircular openings at the same horizontal position form a first semicircular concave strip 19-111; the heat conducting plate 19-
  • the second semi-circular recess on the 13 is opposite to the first semi-circular recess 19-111 of the fin assembly 19-11 and the second semi-circular opening 19-142 on the side fixing plates 19-141
  • a complete circular hole is formed, defined as the first circular hole.
  • the heat dissipating fin set 19-11 is provided with a plurality of equally spaced circular holes on the side remote from the heat conducting plates 19-13, defined as second circular holes 19-112.
  • the heat dissipating fins at the positions corresponding to the third mounting holes 19-132 on the heat conducting plates 19-13 are removed, which facilitates the mounting and fixing of the second heat sink 19-1 of the present invention.
  • each U-shaped heat pipe 19-12 includes a first side arm 19-12, a second side arm 19-122 and a first side arm and a second side connected in parallel
  • the connecting portion 19-123 of the arm is provided with a cavity inside each of the U-shaped heat pipes 19-12, and the cavity is filled with a cooling medium (preferably a cooling liquid such as water), and the inner surface of the cavity is a porous structure (for example The copper powder sintered layer) helps to form a cooling cycle; the first side arms 19-121 of each set of U-shaped heat pipes 19-12 are in close contact with each other, and the second side arms are equally spaced apart, such a design is advantageous for the heat sink 19
  • the heat at the hot end of -1 is concentrated and introduced and dispersed to enhance the
  • the first side arms 19-121 of the U-shaped heat pipes 19-12 respectively pass through the first circular holes formed by the heat dissipation fin sets 19-11 and the heat conducting plates 19-13 and the two side fixing plates 19-141.
  • the second side arm 19-122 passes through the second circular hole 19-112 of the heat dissipation fin group 19-11, and the U-shaped heat pipe 19-12 is embedded inside the heat dissipation fin group 19-11 and the heat conduction plate 19-13, saving
  • the heat sink space, the U-shaped heat pipe 19-12 and the heat-dissipating fin group 19-11 work together to dissipate heat, thereby improving the heat dissipation effect.
  • the above components are assembled according to the above relationship to the second heat sink 19-1 of the invention, and the heat dissipation fin sets 19-11 can be welded, crimped or bonded to the heat conducting plates 19-13, the first side plates 19-14 and The second side panels 19-15 are connected in one piece.
  • the heat conducting plates 19-13 are close to or in contact with the heat source, and the heat radiated by the heat source is conducted by the U-shaped heat pipes 19-12 and the heat radiating fin groups 19-11 to achieve heat dissipation.
  • the heat dissipating fin of the second heat sink 19-1 of the present invention is made of aluminum foil, has a thin thickness and light weight, and reduces the weight of the heat sink as a whole; the U-shaped heat pipe 19-12 of the second heat sink is made of copper.
  • the heat sink has a power dissipation of 200W to 300W, which is about twice that of an aluminum extruded radiator.
  • the second heat sink 19-1 of the present invention is used in the furnace body 1 of the low temperature dry body temperature calibrator.
  • the second heat sink 19-1 is provided with two, respectively, in the foam insulation
  • the two sides of the body 11-2 are fixed to the foaming heat insulating body 11-2 by screws;
  • the cooling sheet 11-4 is embedded in the through groove provided in the two side walls of the foaming heat insulating body 11-2, and one side and the constant temperature block 11- 3 contacts, the other side is in contact with the second heat sink 19-1.
  • the number of the cooling sheets 11-4 is set as needed.
  • the cooling sheets 11-4 are divided into two groups and disposed opposite to each other on the two sides of the constant temperature block 11-3, and respectively with two The heat conducting plates 19-13 of the two heat sinks 19-1 are in contact.
  • the position of the refrigerating sheet 11-4 corresponds to the position at which the first side arm 19-121 of the U-shaped heat pipe 19-12 is located, such that the cooling sheet 11-4 can dissipate the heat of the thermostat block 11-3. It is quickly transferred to the second heat sink 19-1 and quickly led out by the second heat sink 19-1.
  • the above embodiment is just one example of a low temperature dry body temperature calibrator, and the present invention is not limited to this embodiment.
  • the heat sink 19-1 of the present invention can be applied to other dry body temperature calibrators, as long as the heat conducting plate 19-13 of the heat sink 19-1 is brought close to or in contact with the heat source of the dry body temperature calibrator, the heat dissipation effect can be achieved.
  • the second heat sink of the present invention is light in weight, the low-temperature dry body temperature calibrator using the second heat sink is lighter in weight and more convenient to carry; the second heat sink of the present invention has a heat dissipating power of up to 200w to 300w, and uses the second heat dissipation. The time for the cooling process of the low temperature dry body temperature calibrator is significantly shortened.
  • control panel assembly 2 is equivalent to the brain of the low temperature dry body temperature calibrator for controlling a stable temperature environment and receiving data collected by each sensor for analysis and processing and controlling the execution of each electrical component. .
  • the control board assembly 2 includes a control board bracket 21, a switching power supply 22 and a control board 24.
  • the control board bracket 21 has a U-shaped slot structure, and a switching power supply 22 (such as an ESP-120-24 switching power supply) is placed on the control board bracket 21
  • a switching power supply 22 such as an ESP-120-24 switching power supply
  • the formed U-shaped groove is fixed in the lower part of the control board 24, and a heat-dissipating block 23 is mounted on the lower part of the control board 24.
  • the bottom surface of the heat-dissipating block 23 contacts the base 5.
  • the bottom part of the base 5 which is in contact with the bottom surface of the heat-dissipating block 23 is provided with a ventilation slot 51 (see FIG. 23).
  • the heat dissipating block 23 is a metal block having good thermal conductivity;
  • the control board 24 is fixed at the U-shaped opening of the control board bracket 21, and the side of the control board 24 on which the heat dissipating block 23 is mounted faces the switching power supply 22;
  • the top of 22 is provided with a diversion fan 26 and a power connection terminal 27, and the switching power supply 22 is externally connected to the power supply line through the power connection terminal 27, and the voltage of the external power supply is rectified into a stable voltage to supply the entire low temperature dry body temperature calibrator;
  • the flow plate 25 is obliquely fixed to the upper end of the control board bracket 21 and is located on the upper side of the switching power supply 22, so as to be arranged to guide the exhaust air of the flow guiding fan 26, so that the exhaust fan 26 is exhausted from the upper casing. 6 heat diss
  • one or more horizontally disposed mounting members 7 are disposed at the lowermost end of the control panel bracket 21, and the mounting holes of the mounting member 7 and the mounting on the base 5 are provided.
  • the holes are aligned to fix the control board assembly 2 to the base 5 by mounting screws; further, a plurality of mounting members 7 are extended on the bottom surface of the control board bracket 21, and the assembly parts 7 outside the adjacent furnace body 1 are aligned. To fix the control board assembly 2 to the furnace body 1 by means of mounting screws.
  • the switching power supply 22 serves as a power source for the entire low-temperature dry body temperature calibrator, and supplies power to other components.
  • the switching power supply 22 is prone to heat during operation, and the switching power supply 22 is limited to the space formed by the control board bracket 21 and the control board 24.
  • the furnace body 1 is isolated to reduce the influence of the heat generated by the switching power supply 22 on the furnace body 1.
  • part of the heat generated by the lower portion of the switching power supply 22 is derived from the ventilation slot 51 of the base 5 through the heat dissipation block 23 mounted on the control board 24.
  • the upper heat is dissipated through the heat dissipation holes 62 of the upper casing 6 under the guidance of the deflector 25 by the airflow generated by the deflector fan 26.
  • the airflow generated by the flow guiding fan 26 is discharged from the heat dissipation hole 62 of the upper casing 6 in the direction of the deflector 25 due to the cooperation of the deflector 25 and the flow guiding fan 26, thereby driving the control panel assembly 2
  • the internal airflow movement can also introduce outside air from below the control panel assembly 2 (the ventilation slot 51 is formed in the base 5 below the control panel assembly 2), thereby realizing the periphery of the control panel assembly 2 and the furnace body 1 adjacent thereto. Cooling.
  • the control board 24 is provided with a processor, a processing circuit, various electrical interfaces, a communication interface, etc., a cooling sheet 11-4 in the furnace body 1, a cooling fan 13, a sensor group 11-5, a system board assembly 3, and a measuring board assembly 4 Both are electrically connected to the control board 24, and the control board 24 receives the temperature data collected by the sensor group 11-5, the parameters set by the system board assembly 3, and the electrical signals measured by the measuring board assembly 4 for analysis processing and generates control commands to be sent to the furnace body.
  • the refrigeration unit 11-4 of 1 and the actuator of the cooling fan 13 thereby control the temperature of the furnace core 11 while transmitting the processed data to the system board assembly 3 for display.
  • the control board 24 is provided with a Bluetooth and wifi component, and can implement wireless communication with other wireless terminals.
  • the system board assembly 3 is mainly used for parameter setting and data, and result display to realize human-computer interaction.
  • the system board assembly 3 is of a modular design. As shown in FIG. 2, the system board assembly 3 is mounted above the baffle 25 of the control board assembly 2 of the low temperature dry body temperature calibrator and is fixed to the housing 61 of the upper case 6. On the top, it is tilted for easy observation and operation by the operator.
  • the structure of the system board assembly 3 is as shown in FIG. 14 and FIG. 15, including a touch screen panel 35, a touch screen foam 34, a touch liquid crystal panel 33, a touch screen holder 32, and a system board 31 which are disposed in order from the front to the rear, and the touch screen panel 35 has a cover shape.
  • the cover surface is provided with an assembly area matching the shape and size of the touch liquid crystal panel 33.
  • One or more connection ports 36 are disposed on the side of the system board 31, and an interface hole 37 is left on the side of the corresponding touch screen panel 35, and the connection port 36 is installed corresponding to the interface hole 37.
  • the touch screen foam 34, the touch liquid crystal panel 33, the touch liquid crystal panel bracket 32, and the system board 31 are sequentially assembled to the touch screen panel 35 to form the system board module 3 integrally.
  • the left and right sides of the system board module 3 are respectively connected to the housing 61 of the upper case 6 by screws, and are thus detachably mounted on the upper portion of the front side of the upper case 6.
  • the measuring plate assembly 4 is mainly used to connect the measuring lines.
  • the measuring plate assembly 4 is of a modular design. As shown in FIG. 2, the measuring plate assembly 4 is mounted on the front side of the control board assembly 2, and the bottom thereof is fixed to the base 5.
  • the measuring board assembly 4 includes a front panel 41 and a measuring board 42 provided with a TC socket element (thermocouple cold end temperature compensation structure) 43 and a plurality of test connection terminals, a front panel 41 and a measuring board 42 The stack of the stack is fixedly formed around the measuring plate assembly 4, and the test connection terminal of the measuring board 42 protrudes from the terminal hole provided in the front panel 41.
  • TC socket element thermocouple cold end temperature compensation structure
  • the top of the measuring board assembly 4 is fixed to the housing 61 of the upper casing 6 by screws, and the measuring board assembly 2 is located in front of the control board assembly 2 and has a spacing from the control board assembly 2 to facilitate heat dissipation.
  • the front panel 41, the touch screen panel 35 of the system board assembly 3, and the upper casing 6 and the base 5 package the low temperature dry body temperature calibrator of the present invention as a whole.
  • the measuring board assembly 4 is integrated with a TC socket member 43, that is, a thermocouple cold junction temperature compensating structure 43, and the thermocouple cold junction temperature compensating structure 43 is fixed by a screw attached to the tail.
  • the front end two sockets 041 are aligned with the jacks on the front panel 41, and the thermocouples can be plugged through the jacks (see Fig. 20).
  • thermocouple cold junction compensation structure adopts a scheme in which a temperature block is placed in a cold-end heat preservation chamber, and a cold-end temperature sensor, a cold junction of a thermocouple and a temperature-equal block are closely adhered, and the cold junction of the thermocouple is
  • the thermal resistance existing between the temperature equalizing blocks therefore, in order to reduce the temperature difference between the cold end temperature sensor on the temperature equalizing block and the cold end of the thermocouple, it is necessary to wait for a long time, especially when mass measuring the thermocouple, the efficiency is low.
  • the present invention integrates a thermocouple cold junction temperature compensation structure for quickly measuring the temperature of the cold junction of the thermocouple in the measuring board assembly 2, which is capable of making the temperature and cold of the cold junction of the thermocouple 05 in a shorter time.
  • the temperature of the end temperature sensor 01 is agreed to improve the measurement efficiency of the cold junction temperature of the thermocouple.
  • thermocouple cold junction compensation structure includes a cold junction temperature sensor 01, a spring piece 02 and a second heat equalization block 03, and the second heat equalization block 03 is a large heat capacity heat conductor, and two pieces are provided.
  • the elastic piece 02 is an elastic body with good heat conduction and small heat capacity, and two pieces are respectively fixed on the two second heat equalizing blocks 03, and the elastic piece 02 is designed as an S-shaped structure, and the tail end thereof is right in FIG.
  • thermocouple 01 The cold end of 05 can be inserted between the shrapnel 02 and the second soaking block 03 from the head end of the shrapnel 02 (see Fig. 20).
  • the cold junction temperature sensor 01 has the characteristics of small size and low heat capacity, and can be mounted on the upper side of any of the elastic pieces 02 for measuring the cold end temperature of the thermocouple 05.
  • a thermal conductive glue may be added between the two second heat equalizing blocks 03 to facilitate heat transfer between the two second heat equalizing blocks 03 to ensure that the temperatures of the two second heat equalizing blocks 03 are substantially consistent.
  • the cold end temperature sensor 01 is usually bonded to the elastic piece 02.
  • a guard plate is respectively disposed on both sides of the position where the elastic piece 02 is bonded to the cold end temperature sensor 01.
  • the cold junction temperature sensor 01 lead wire is led out through a lead wire terminal 06, and the lead wire terminal 06 is inserted into the measuring board 42.
  • the thermocouple cold junction temperature compensation structure of the present invention further comprises a cap 04, the cap 04 is a square box body, the cold end temperature sensor 01, the shrapnel 02 and the second
  • the heat equalizing block 03 is placed in the cap 04, and the second heat equalizing block 03 is fixed by the screw 07 and the cap 04.
  • the lead wire of the cold end temperature sensor 01 is taken out from the tail of the cap 04 and then connected to the lead wire terminal 06.
  • the front end of the cap 04 is provided with two sockets 041, which respectively correspond to the position between the elastic piece 02 and the second heat equalizing block 03, and the cold end of the thermocouple 05 is inserted into the elastic piece 02 and the second from the two sockets 041, respectively.
  • the elastic piece 02 and the second heat equalizing block 03 are in close contact with the cold end of the thermocouple 05.
  • the heat capacity of the second heat equalizing block 03 is required to be much larger than the heat capacity of the shrapnel 02 and the cold end temperature sensor 01, and at the same time, the thermocouple 05 cold end and the second soaking block 03
  • the shrapnel 02 and the cold end temperature sensor 01 have good thermal conductivity; the cold end temperature sensor 01 on the shrapnel 02 should be insulated from the environment as much as possible, for example, a plastic sleeve or a portion of the cold end temperature sensor 01 that is not in contact with the shrapnel 02. Insulation glue.
  • the cold end of the thermocouple 05 is connected between the shrapnel 02 and the second soaking block 03.
  • the cold junction temperature of the thermocouple 05 is inconsistent with the second soaking block 03 and the shrapnel 02, there is heat from the thermoelectricity.
  • the cold end of the even 05 is transferred to the second heat equalizing block 03 and the shrapnel 02.
  • the temperature of the cold end of the thermocouple 05 tends to the temperature of the soaking block 03, and at the same time due to the shrapnel 02 and
  • the cold junction temperature sensor 01 on the shrapnel 02 has a relatively small heat capacity, and the temperature of the cold junction temperature sensor 01 rapidly approaches the temperature of the cold junction of the thermocouple 05, so that the temperature of the cold junction temperature sensor 01 quickly reaches the cold junction temperature of the thermocouple 05.
  • Figure 21 shows the working curve of the thermocouple cold junction temperature compensation structure of the present invention, and the whole work process is divided into three stages:
  • the first stage is a first stage
  • the cold junction temperature sensor 01 and the second soaking block 03 are in the cap 04 (corresponding to the conventional cold end holding chamber), the temperature is basically the same; the temperature of the cold junction of the thermocouple 05 and the cold junction temperature sensor 01, the second soaking block The temperature of 03 is inconsistent.
  • thermocouple 05 starts to transfer heat to the second heat equalizing block 03 and the cold end temperature sensor 01 on the elastic piece 02 and the elastic piece 02, and the temperature starts to change, and the cold end temperature of the thermocouple 05 tends to the cold end temperature sensor 01 (shrap piece) 02) and the second heat equalizing block 03;
  • the heat capacity of the second heat equalizing block 03 is relatively large, and the relative temperature change is slow, and also because the heat capacity of the second heat equalizing block 03 is large, and the temperature of the cold end of the thermocouple 05 is faster to the temperature of the second heat equalizing block 03. Variety;
  • the cold junction temperature sensor 01 on the shrapnel 02 and the shrapnel 02 has a smaller heat capacity and a faster temperature change, and the temperature of the cold end temperature sensor 01 on the shrapnel 02 and the shrapnel 02 rapidly changes to the temperature of the cold end of the thermocouple 05;
  • the temperature of the cold junction temperature sensor 01 will quickly coincide with the temperature of the cold junction of the thermocouple 05.
  • the cold junction temperature sensor on the shrapnel 02 The temperature of 01 has been substantially the same as the temperature of the cold junction of the thermocouple 05, but there is still some difference from the temperature of the second soaking block 03.
  • the third phase is the third phase
  • thermocouple cold junction temperature compensation structure can quickly measure the temperature of the cold junction of the thermocouple and has high efficiency.
  • the thermocouple cold junction temperature compensation structure of the present invention can reduce the waiting time from the original minutes or even ten minutes to ten. In seconds or even seconds (depending on factors such as the temperature of the cold junction and cold junction temperature sensor 01 of the thermocouple 05), especially in the case of batch measurement of the temperature of the cold junction of the thermocouple, the measurement efficiency is significantly improved and time is saved.
  • the outer casing of the low-temperature dry body temperature calibrator of the present invention comprises an upper casing 6 and a base 5, as shown in FIG. 22, the lower end of the upper casing 6 is open, and is integrally fastened on the base 5 and is fixedly coupled with the circumferential side of the base 5, and is controlled.
  • the plate assembly 2 and the furnace body 1 are placed in the outer casing formed by the upper casing 6 and the base 5; the lower portion of the front side of the upper casing 6 is provided with a matching area with the shape and size of the measuring plate assembly 4, and the upper portion of the front side is provided with the system plate
  • the assembly area of the component 3 is matched in shape and size.
  • the top surface of the casing 61 of the upper casing 6 is provided with a through hole 63 opposite to the furnace mouth of the upper end of the furnace body 1 for wearing the temperature component to be tested; for the purpose of facilitating heat dissipation, the upper casing 6
  • the top surface of the casing 61 is further provided with a heat dissipation hole 62 for the heat dissipation of the furnace body 1 on the one hand and the exhaust air outlet for the exhaust fan 26 on the other hand.
  • the top surface of the casing 61 of the upper casing 6 is spaced from the upper end guiding fan 26 of the control panel assembly 2, so that when the guiding fan 26 is operated, not only the airflow in the control panel assembly 2 but also the airflow inside the casing is driven. Exercise is conducive to the overall heat dissipation of the instrument.
  • the upper end of the upper casing 6 is also provided with a handle.
  • the base 5 serves as a supporting member of the whole machine, and is engaged with the upper casing 6 to form an instrument casing.
  • a plurality of mounting holes are disposed on the base 5 for assembling the furnace body 1, the control board assembly 2, the measuring board assembly 4 and the upper casing 6.
  • a plurality of ventilation slots 51 are defined in the bottom surface and the side surface of the base 5. It is used to introduce outside air to facilitate heat dissipation.
  • the form, quantity and position of the ventilation slots are designed according to the needs, and no restrictions are imposed.
  • the upper casing 6 can be made of plastic to help reduce the weight of the entire low temperature dry body temperature calibrator.
  • the above components are assembled according to the above connection relationship to the low temperature dry body temperature calibrator.
  • the low temperature dry body temperature calibrator of the present invention can be assembled as follows: the furnace body 1 is installed at the rear position of the base 5, and the control panel assembly 2 is mounted on The base 5 is adjacent to the position of the furnace body 1 and connected to the furnace body 1.
  • the upper casing 6 is placed on the base 5 and fastened to the circumferential side of the base 5, and the measuring plate assembly 4 is mounted on the lower part of the front panel of the upper casing 6 of the instrument.
  • the system board assembly 3 is mounted on the front panel of the upper casing 6, thus completing the complete assembly of the low temperature dry body temperature calibrator.
  • the system board 31, the measuring board 41, the cooling sheet 11-4, the sensor group 11-5, the cooling fan 13, the flow guiding fan 26, and the like are electrically connected to the control board 24, each of which is The components are all powered by a switching power supply 22.
  • the control board 24 receives the temperature data collected by the sensor group 11-5, the parameters set by the system board assembly 3, and the electrical signals measured by the measuring board assembly 4 for analysis processing and generates a cooling command sent to the furnace body 1 by the control command. 11-4 and an actuator of the cooling fan 13, thereby controlling the temperature of the furnace core 11, while transmitting the processed data to the system board assembly 3 for display.
  • the low-temperature dry body temperature calibrator adopts a modular design, and the furnace body 1 and the components are independent from each other, which is convenient for disassembly and maintenance; the Bluetooth and wifi components are arranged in the control panel assembly 2 to realize wireless communication with the external terminal, and is convenient for on-site use;
  • the touch screen is used for parameter setting, the operation efficiency is high, and the use is convenient;
  • the structure design of the low-temperature dry body temperature calibrator is reasonable, compact, small in size, light in weight, and convenient to carry.

Abstract

一种低温干体温度校验仪,属于温度仪器仪表校验技术领域,用于对待测温度元件进行温度校验,包括模块化设计的炉体(1)、控制板组件(2)和外壳,炉体(1)和控制板组件(2)装配在外壳内,外壳顶面设置有多个散热孔(62),控制板组件(2)顶部与外壳顶面之间有间距,且控制板组件(2)顶部设置有导流风扇(26),导流风扇(26)上方设置向外壳顶面的散热孔(62)倾斜的导流板(25)。提供的炉体(1)结构紧凑,其使用的散热器(11-1,19-1)重量轻,散热效率高,提高了炉体(1)工作的稳定性和温度测量精度,适用于低温待测温度元件的温度测量。

Description

一种低温干体温度校验仪 技术领域
本发明属于温度仪器仪表校验技术领域,具体涉及一种低温干体温度校验仪。
背景技术
目前干体温度校验仪,特别是便携式干体温度校验仪被广泛应用于各行各业的工业现场、计量场所和实验室,具有广阔的市场前景。
在低温干体温度校验仪中,炉体在使用过程中,其附近的温度条件对其它一些元器件来说,是属于比较恶劣的环境条件,因此需要将其周围的环境与其它零部件进行隔离。同时,其作为核心部件,在生产、使用过程中,往往需要对其单独进行调试和维护,现有的产品往往和其它零部件锁定在一起,一旦出现问题就需要将整机进行拆解,大大增加了维护成本。
发明内容
本发明提供一种模块化装配的低温干体温度校验仪。
本发明的低温干体温度校验仪是由以下技术方案来实现的:
一种低温干体温度校验仪,用于对待测温度元件进行温度校验,包括:
炉体(1),设置有插入待测温度元件的炉口,底部固定于一底座(5)上;
控制板组件(2),底部固定于所述底座(5)上;
所述底座(5)与一上壳(6)将所述炉体(1)和所述控制板组件(2)扣合在内,所述上壳(6)与所述炉体(1)的炉口对应处开设一通孔(63),所述上壳(6)的顶面上设置多个散热孔(62)。
上述低温干体温度校验仪还包括系统板组件(3),与所述控制板组件(2)电连接,装配在所述上壳(6)的前侧面。
上述低温干体温度校验仪中,所述控制板组件(2)的顶部与上壳(6)之间有间距,且所述控制板组件(2)顶部设置有导流风扇(26),所述导流风扇(26)上方设置向散热孔(62)导流的导流板(25)。
上述低温干体温度校验仪中,所述控制板组件(2)包括:
控制板支架(21),为U形槽结构;
开关电源(22),置于所述控制板支架(21)的U形槽中固定;
控制板(24),固定在所述控制板支架(21)的U形槽开口处;
所述控制板(24)下部一侧安装有散热块(23),且所述控制板(24)安装有散热块(23)的一侧朝向开关电源(22);所述导流风扇(26)安装在开关电源(22) 的顶部。
上述低温干体温度校验仪中,所述系统板组件(3)包括从前向后依次设置的触摸屏面板(35)、触摸屏泡棉(34)、触摸液晶屏(33)、触摸屏支架(32)和系统板(31),所述触摸屏面板(35)为罩状,其罩面开设有与触摸液晶屏(33)形状和尺寸匹配的装配区域,所述系统板(31)侧面设置一个或多个连接端口(36),所述触摸屏面板(35)侧面设有多个接口孔(37),所述连接端口(36)与接口孔(37)对应安装,所述触摸屏泡棉(34)、触摸液晶屏(33)、触摸液晶屏支架(32)和系统板(31)依序向触摸屏面板(35)罩体内叠置装配为一体。
上述低温干体温度校验仪还包括测量板组件(4),所述测量板组件(4)装配在上壳(6)的侧面,测量板组件(4)与控制板组件(2)电连接。
上述低温干体温度校验仪中,所述测量板组件(4)包括前面板(41)和测量板(42),所述测量板(42)上设置有多个测试连接端子,前面板(41)上与测量板(42)的测试连接端子对应处各设置一插孔,所述前面板(41)和所述测量板(42)以所述插孔与所述测试连接端子对位方式叠置且四周固定。
上述低温干体温度校验仪中,所述测量板(42)设置有TC插座元件(43),所述TC插座元件(43)为热电偶冷端温度补偿结构,其固定在测量板(42)上,其前端两个插口(041)与前面板(41)上设置的插孔对应,用于从外部插接热电偶。
上述低温干体温度校验仪中,所述上壳(6)与底座(5)的周边卡接固定,所述底座(5)底面和侧面各开设有多个通风槽(51)。
上述低温干体温度校验仪中,所述上壳(6)由塑料制成。
上述低温干体温度校验仪中,所述炉体(1)包括:
炉芯(11),包括发泡保温体(11-2)、设置在所述发泡保温体(11-2)内部的恒温块(11-3)、安装在所述恒温块(11-3)上部设有的开口槽中的均热块(11-7)以及安装于所述发泡保温体(11-2)两侧的散热器;和
冷却风扇(13),放置在炉芯(11)的下方。
上述低温干体温度校验仪中,所述炉芯(11)还包括多个制冷片(11-4),所述制冷片(11-4)安装在发泡保温体(11-2)两侧壁各设有的通槽中,所述制冷片(11-4)一侧与置于发泡保温体(11-2)内的恒温块(11-3)接触,另一侧与所述散热器的热端接触。
上述低温干体温度校验仪中,所述恒温块(11-3)为由相对的两内凹的弧形 面(11-31)和相对的两水平侧面所形成的方形体,其横截面形状为两头宽中间窄的沙漏形状,所述恒温块(11-3)的两水平侧面分别与所述制冷片(11-4)接触。
上述低温干体温度校验仪中,所述恒温块(11-3)的两弧形面(11-31)所夹持的部分,其两头最宽的部位为宽阔部(11-32),中间最窄的部位为狭窄部(11-33),所述宽阔部(11-32)的宽度尺寸范围为30mm至80mm,所述狭窄部(11-33)的宽度尺寸范围为20mm至50mm。
上述低温干体温度校验仪中,所述炉芯(11)还包括传感器组(11-5),传感器组(11-5)包括多个传感元件,所述传感元件包括一对差分热偶、热电阻温度传感器和超温报警传感器,所述传感元件安装在发泡保温体(11-2)上设有的多个安装过孔中,传感元件的探头部分嵌入所述恒温块(11-3)中。
上述低温干体温度校验仪中,所述炉芯(11)还包括导风板(11-6),所述发泡保温体(11-2)的底部为V字形结构,导风板(11-6)的横截面为V字形的长板结构,其与发泡保温体(11-2)的V字形底部叠合,且导风板(11-6)的两侧边分别固定在两侧散热器(11-1)的底部靠近发泡保温体(11-2)的边缘。
上述低温干体温度校验仪中,所述炉体(1)还包括炉体支架(12),所述炉体支架(12)包括围框(12-1)和两侧板(12-2),围框(12-1)的底部安装所述冷却风扇(13),两侧板(12-2)分别安装在围框(12-1)的两侧,所述炉芯(11)安装在炉体支架(12)内。
上述低温干体温度校验仪中,所述炉体(1)还包括由聚四氯乙烯材料制成的炉口隔热块(14)和设置在炉口隔热块(14)顶部的顶部装饰板(11-8),炉口隔热块(14)安装于所述炉芯(11)上端的炉口处,顶部装饰板(11-8)通过螺钉连接至所述散热器上。
上述低温干体温度校验仪中,所述散热器为第一散热器(11-1),所述第一散热器(11-1)包括多个鳍片所形成的的鳍片组(11-11)和与所述鳍片组(11-11)垂向连接的均温板(11-12),所述鳍片为片状铝箔,多个鳍片平行设置且相互之间有间距;所述鳍片组(11-11)通过焊接、压接或粘接方式与所述均温板(11-12)连接为一体。
上述低温干体温度校验仪中,所述第一散热器(11-1)还包括固定连接于所述均温板(11-12)上的基板(11-13),所述均温板(11-12)包括平板部(11-121),所述平板部(11-121)一侧与所述鳍片组(11-11)贴紧固定,另一侧向外延伸有凸台部(11-122),所述凸台部(11-122)的内部设置有空腔(11-123),所述空 腔(11-123)的内表面为多孔结构,所述空腔(11-123)内填充有冷却工质;所述基板(11-13)上开设有与所述均温板(11-12)的凸台部(11-122)的形状、尺寸相匹配的一个或多个贯通槽(11-131),所述均温板(11-12)的凸台部(11-122)嵌入到所述贯通槽(11-131)中,所述基板(11-13)与所述均温板(11-12)固定连接为一体。
上述低温干体温度校验仪中,所述散热器为第二散热器(19-1),第二散热器(19-1)包括U形热管(19-12)、导热板(19-13)和多个散热鳍片形成的散热鳍片组(19-11),所述散热鳍片为片状铝箔,多个散热鳍片平行设置且有间距形成所述散热鳍片组(19-11),散热鳍片组(19-11)通过焊接、压接或粘接方式与导热板(19-13)连接为一体;U形热管包括平行设置的第一侧臂(19-121)、第二侧臂(19-122)和连接第一侧臂与第二侧臂的连接部(19-123),第一侧臂(19-121)穿插在散热鳍片组(19-11)和导热板(19-13)之间,第二侧臂(19-122)穿插在散热鳍片组(19-11)中。
上述低温干体温度校验仪中,所述U形热管内部设有空腔,所述空腔内填充有冷却工质,该空腔内表面为多孔结构。
上述低温干体温度校验仪中,所述第二散热器(19-1)还包括第一侧板(19-14)和第二侧板(19-15),第一侧板(19-14)和第二侧板(19-15)分别垂直设置在导热板(19-13)的两侧形成矩形凹槽结构,导热板(19-13)位于该矩形凹槽结构的底部,所述散热鳍片组(19-11)设置在该矩形凹槽结构的内部,且各散热鳍片平行于两侧的第一侧板(19-14)和第二侧板(19-14)。
上述低温干体温度校验仪中,所述第一侧板(19-14)包括紧贴散热鳍片组(19-11)的矩形的固定板(19-141),所述固定板(19-141)未与所述导热板(19-13)相邻的三个边各向外垂向延伸出折边;第二侧板(19-15)与第一侧板(19-14)结构相同且对称设置在导热板(19-13)的两侧;所述导热板(19-13)与散热鳍片组(19-11)紧贴的一侧面设有的多个第二半圆形凹条(19-131)与散热鳍片组(19-11)设有的多个第一半圆形凹条(19-111)以及两侧固定板(19-141)上设有的多个第二半圆形开口(19-142)相对组合形成多个第一圆孔,所述U形热管(19-12)的第一侧臂(19-121)穿插在对应的第一圆孔中;所述固定板(19-141)远离导热板(19-13)的另一侧设有的等间距分布的多个圆形通孔(19-143);所述散热鳍片组(19-11)在远离述导热板(19-13)的一侧设置有等间距设置的多个第二圆孔(19-112),所述U型热管(19-12)的第二侧臂(19-122)穿过固定 板(19-141)的圆形通孔(19-143)并穿插在散热鳍片组(19-11)的第二圆孔(19-112)中。
上述低温干体温度校验仪中,多个U形热管(19-12)分为两组,每组U形热管(19-12)的第一侧臂(19-121)紧贴在一起,第二侧臂(19-122)等间距散开,对应的第一圆孔也分为两组,与U形热管(19-12)的第一侧臂(19-121)的形状相匹配,所述第二圆孔(19-112)等间距散开,与U形热管(19-12)的第二侧臂(19-122)的形状相匹配。
上述低温干体温度校验仪中,所述热电偶冷端温度补偿结构包括冷端温度传感器(01)、第二均热块(03)和套帽(04),第二均热块(03)设有两块且呈间距设置,每一第二均热块(03)上连接一弹片(02),冷端温度传感器(01)安装在任一弹片(02)的上侧,热电偶(05)冷端置于弹片(02)和第二均热块(03)之间且紧贴弹片(02)和第二均热块(03),且第二均热块(03)的热容远大于弹片(02)和冷端温度传感器(01)的热容。
上述低温干体温度校验仪中,所述弹片(02)为小热容、导热性良好的弹性体,为S形结构,其尾端固定于第二均热块(03)的尾部,所述弹片(02)的头端上扬,靠近头端的部分自由置于第二均热块(03)的上表面;两第二均热块(03)之间加设导热胶。
上述低温干体温度校验仪中,所述热电偶冷端温度补偿结构还包括引出线端子(06),所述冷端温度传感器(01)的引出线从套帽(04)的尾部引出至引出线端子(06),引出线端子(06)插接在测量板(42)上;所述套帽(04)的前端设置有两个插口,该插口对应弹片(02)与第二均热块(03)之间的位置以插入热电偶(05)冷端。
上述低温干体温度校验仪中,安装于弹片(02)上的冷端温度传感器(01)不与弹片(02)接触的部分加设塑料套或绝热胶;所述冷端温度传感器(01)通过胶粘接在弹片(02)上,弹片(02)粘接冷端温度传感器(01)的位置两侧分别设置一护板。
本发明采用以上技术方案取得如下技术效果:
本发明低温干体温度校验仪采用模块化设计,炉体、控制板组件、系统板组件和测量板组件之间相互独立装配,便于组装及拆卸单个组件,从而在单个组件故障时,仅单独拆卸故障组件,无需整机拆解,能够降低维护成本提高维护效率。
(1)本发明低温干体温度校验仪采用模块化设计,炉体与其他组件、部件能 够独立拆卸,从而有效提高生产、维护的便利性,降低产品生产、维护成本;
(2)本发明提供两种散热器,一种通过将鳍片组与内部空腔填充有冷却工质的均温板垂向设置并连接为一体,均温板一侧接触热源,并与鳍片组共同作用下进行散热,提高了散热效率,提升了散热效果;另一种通过将U形热管嵌入到散热鳍片组和导热板的内部,节省了散热器空间,U形热管和散热鳍片组共同作用下进行散热,提升了散热效果;
(2)本发明散热器的散热鳍片均由片状铝箔制成,间距小,重量轻,相比铝挤散热器,在同样的散热面积下,重量可减轻约23%~40%。
(3)本发明炉体中的均热块横截面设置为两侧宽中间窄的沙漏形状,这种结构使得均热块的重量轻、热容小,对温度变化比较灵敏,有助于被测装置测量准确性,同时,由于均热块相对的两侧面较宽,设置在均热块两侧面上的制冷片的尺寸也较大,散热效果好;
(4)本发明炉体结构布局合理,结构紧凑,独立的两风道密封设计,使得炉体的高温空气不会对其他部件工作环境造成恶劣影响,增加电子元器件的使用寿命,同时也隔绝了其他部件的发热对炉体的影响,提高了炉体工作的稳定性和温度测量精度,适用于低温待测温度元件的温度测量。
附图说明
图1为本发明低温干体温度校验仪的整体结构示意图;
图2为本发明低温干体温度校验仪的结构分解示意图;
图3为炉体的结构示意图;
图4A为安装有第一散热器的炉芯的结构分解示意图;
图4B为安装有第二散热器的炉芯的结构分解示意图;
图5为均热块的立体图;
图6为炉体支架的结构示意图;
图7为炉体的风道示意图;
图8为第一散热器的的结构分解示意图;
图9为第一散热器的横向截面图;
图10为第二散热器的立体结构示意图;
图11为第二散热器的结构分解示意图;
图12为控制板组件的立体结构示意图;
图13为控制板组件的分解结构示意图;
图14为系统板组件的立体结构示意图;
图15为系统板组件的分解结构示意图;
图16为测量板组件的分解结构示意图;
图17为热电偶冷端温度补偿结构的主视图;
图18为热电偶冷端温度补偿结构的结构分解图;
图19为图17中沿A-A线截取的截面图;
图20为热电偶冷端温度补偿结构与热电偶配合使用的结构示意图;
图21为热电偶冷端温度补偿结构的工作曲线;
图22为上壳组件的结构示意图;
图23为下壳组件的结构示意图。
主要标号:
1:炉体,11:炉芯,12:炉体支架,13:冷却风扇,14:炉口隔热块;
2:控制板组件,21:控制板支架,22:开关电源,23:控制板散热器,24:控制板,25:导流板,26:导流风扇,27:电源接线端子;
3:系统板组件,31:系统板,32:触摸屏支架,33:触摸液晶屏,34:触摸屏泡棉,35:触摸屏面板,36:连接端口,37:接口孔;
4:测量板组件,41:前面板,42:测量板,43:TC插座元件(热电偶冷端温度补偿模块);
5:底座,51:通风槽;
6:上壳,61:壳体,62:散热孔,63:通孔;
7:装配部件;
01:冷端温度传感器,02:弹片,03:第二均热块,04:套帽,041:插口;05:热电偶,06:引出线端子,07:螺钉。
具体实施方式
以下结合附图和具体实施例,对本发明低温干体温度校验仪进行详细说明。
本发明低温干体温度校验仪采用模块化设计,能够方便的进行拆装,如图6所示的实施例中,本发明低温干体温度校验仪包括炉体1、控制板组件2、系统板组件3、测量板组件4以及上壳6和底座5,系统板组件3装配在上壳6的前侧面,炉体1与控制板组件2分别固定在底座(5)上,上壳6与底座5扣合形成外壳,炉体1及控制板组件2位于外壳内,炉体1上部设置有炉口,上壳6与炉体1的炉口对应处开设有用于穿套待测温度元件的通孔63,上壳6顶面设置若干散热孔62。在一个实施例 中,炉体1与控制板组件2相邻并固定,测量板组件4可以固定于控制板组件2的前侧,测量板组件4和控制板组件2的上部可以安装系统板组件3,测量板组件4设置有前面板41,系统板组件3设置有触摸屏面板35,前面板41、触摸屏面板35和外壳形成的封闭空间将炉体1、控制板组件2以及系统板组件3和测量板组件4的部分封装起来形成一个整体,炉体1和各组件均能独立拆卸,方便维护和更换。
控制板组件2相当于低温干体温度校验仪的大脑,系统板组件3、测量板组件4以及炉体1中的冷却风扇13、制冷片11-4、传感器组11-5(参见炉体1章节)均与控制板组件2电连接,并与控制板组件2进行数据交互,即控制板组件2读取传感器组11-5测量的温度数据、测量板组件4测量的电信号以及系统板组件3设置的各参数,再根据预定的控制策略和执行顺序生成控制命令发送到制冷片11-4和冷却风扇13的执行机构,并将处理的数据发送到系统板组件3进行显示。
以下结合各部件详细说明:
炉体1
炉体1为本发明低温干体温度校验仪的核心部件,用于插入待检温度元件进行校验并保持温度均匀、稳定。
该部分使用以下标号:
11:炉芯,11-1:散热器,11-2:发泡保温体,11-3:恒温块,11-31:弧形面,11-32:宽阔部,11-33:狭窄部,11-4:制冷片,11-5:传感器组,11-6:导风板,11-7:均热块,;11-8:顶部装饰板;
12:炉体支架,12-1:围框,12-2:侧板,12-3:安装卡扣,12-4:锁紧螺钉孔;
13:冷却风扇,14:炉口隔热块;
炉体1为本发明低温干体温度校验仪的核心部件,如图3所示,包括炉芯11、炉体支架12、冷却风扇13和炉口隔热块14,炉芯11和冷却风扇13均位于炉体支架12内,且冷却风扇13设置在炉芯11的下方,炉口隔热块14位于炉芯11上端的炉口处。
图4A和图4B示出了炉芯11的结构,炉芯11包括散热器、发泡保温体11-2、恒温块11-3、制冷片11-4、传感器组11-5、导风板11-6和均热块11-7,其中,恒温块11-3设置在发泡保温体11-2的内部;发泡保温体11-2的两侧各设置多个通孔,用于安装制冷片11-4,发泡保温体11-2上还预留多个传感器安装过孔,用于安装传感器组11-5的传感器;散热器设置有两个,分别安装在发泡保温体11-2的两侧, 且散热器的热端与制冷片11-4相接触,可通过螺钉将散热器固定于发泡保温体11-2上,安装时,散热器的压紧力经过了预先设计,既要保证散热器与制冷片11-4接触,又保证制冷片11-4不会碎裂。
制冷片11-4嵌入发泡保温体11-2两侧壁上的通孔内,并在形成通孔的侧壁内涂导热硅脂或者敷设软质导热垫片以增强制冷片11-4的导热性,优选的,制冷片11-4的横截面尺寸为40mm×40mm,制冷面积大,制冷效果好。
恒温块11-3内设有顶端开口的开口槽,均热块11-7置于恒温块11-3的开口槽内,恒温块11-3起到为均热快11-7提供其需要的温度环境;均热块11-7上部设置有若干盲孔以容纳待测温度元件。如图3所示,恒温块11-3为类方形体,相对的两面设置成内凹的弧形面11-31,恒温块11-3的横截面设置为两头宽中间窄的沙漏形状,恒温块11-3较宽的两侧面与制冷片11-4接触,上述结构使得恒温块11-3的重量轻、热容小,对温度变化比较灵敏。恒温块11-3两侧的弧形面11-31所夹持的部分,其两头最宽的部位为宽阔部11-32,中间最窄的部位为狭窄部11-33,宽阔部11-32的宽度(指两弧形面11-31相对位置连线的长度)尺寸范围为30mm至80mm,狭窄部11-33的宽度尺寸范围为20mm至50mm,优选地,宽阔部11-32的宽度尺寸范围为40mm至60mm,狭窄部11-33的宽度尺寸范围为30mm至40mm。在本实施例中,宽阔部11-32的宽度为42mm,狭窄部的宽度为31mm,进而与宽阔部11-32接触的制冷片的尺寸为40mmx40mm。恒温块11-3的尺寸设置在上述范围内可以使得恒温块11-3的重量较轻、灵敏性较好,且其宽阔部11-32所在的侧面面积较大进而可以放置较大尺寸的制冷片11-4。
传感器组11-5包括多个传感元件,传感元件包括一对差分热偶、一个热电阻温度传感器和一个超温报警传感器,传感元件分别安装在炉芯11的发泡保温体11-2设有的安装过孔内,且传感元件的探头部分嵌入恒温块11-3内的测温孔内。
发泡保温体11-2的底部为V字形结构(参见图4A和图4B),导风板11-6的横截面为V字形的长板结构,其与发泡保温体11-2的V字形底部叠合,且导风板11-6的两侧边固定在两侧散热器的底部靠近发泡保温体11-2的边缘,导风板V字形的结构能够让冷空气均匀的流向两侧散热器,同时,导风板11-6还作为炉芯11线缆固定装卡部件,使得走线更整洁、顺畅。
图4A和图4B所示的实施例中,炉芯11还包括顶部装饰板11-8,顶部装饰板11-8设置在炉口隔热块14的顶部,顶部装饰板11-8通过螺钉连接散热器上。
参照图6,炉体支架12包括围框12-1和侧板12-2,围框12-1的底部安装冷却风 扇13,侧板12-2设有两块,侧板12-2上设置有安装卡扣12-3和锁紧螺钉孔12-4,两侧板12-2分别安装在围框12-1的两侧,炉芯11安装在炉体支架12内。安装时,先将炉芯11固定在围框12-1上,然后将侧板12-2分别通过安装卡扣12-3安装在炉芯11的散热器上,在通过螺钉穿过侧板12-2的锁紧螺钉孔12-4将侧板12-2完全锁紧。
如图3以及图4A、图4B所示,炉口隔热块14放置于炉口,其作用是防止炉芯11内部热量散失,起到改善内部温场、降低能耗的作用,同时具有改善操作者工作环境、防止被烫伤的作用,炉口隔热块14的材料可选用导热系数低、耐温性好的聚四氯乙烯。
图7为炉体11的风道示意图。如图7所示,散热器包括多个平行设置的鳍片且鳍片之间有间隙,鳍片之间的间隙可以用作气流通道。炉体底部的冷却风扇13产生的气流被导风板11-6引导至两侧的散热器,再穿过鳍片之间的间隙到底炉口,在此过程中散热器实现了散热的效果。炉芯11底部和炉体支架12底部形成一个静压舱,有利于使两侧散热器的气流均匀分布,V字形结构的导风板11-6起到分流、降低风阻的作用。
以上部件按照上述连接关系组装成本发明低温炉炉体1及包括该低温炉炉体1的低温干体温度校验仪,该低温炉炉体1中的恒温块11-3,其为类长方体,其横截面设置为两侧宽中间窄的沙漏形状,这种结构使得恒温块11-3的重量轻、热容小,对温度变化比较灵敏,有助于被测装置测量准确性,同时,由于恒温块11-3相对的两侧面较宽,设置在恒温块11-3两侧面上的制冷片11-4的尺寸也较大,散热效果好;本发明低温干体温度校验仪采用模块化设计,炉体1与其他组件、部件能够独立拆卸,从而有效提高生产、维护的便利性,降低产品生产、维护成本;本发明炉体1结构布局合理,结构紧凑,独立的两风道密封设计,使得炉体1的高温空气不会对其他部件工作环境造成恶劣影响,增加电子元器件的使用寿命,同时也隔绝了其他部件的发热对炉体1的影响,提高了炉体1工作的稳定性和温度测量精度。
散热器可以使用现有技术中常用的散热器(例如铝挤散热器),由于铝挤散热器的鳍片较厚,导致同样散热面积条件下,铝挤散热器的重量较大,且炉体内空间有限,导致散热鳍片的散热面积比较小;同样的散热条件下,铝挤散热器的散热效率低,导致干体温度校验仪的散热效果较差。因此,本发明提供两种重量轻且散热效率高的散热器,应用于本发明低温干体温度校验仪中。本发明图4所示的 实施例中所使用的散热器有两种,图(a)中炉体1使用的散热器为第一散热器11-1,图(b)中炉体1使用的散热器为第二散热器19-1,以下对两种新型散热器分别进行描述。
第一散热器11-1
第一散热器11-1可以用在本发明低温干体温度校验仪的炉体1中,用于将炉体1中的热量及时导出。
该部分使用以下标号:
11-1:第一散热器,11-11:鳍片组,
11-12:均温板,11-121:平板部,11-122:凸台部,11-123:空腔,11-124:第一安装孔;
11-13:基板,11-131:贯通槽,11-132:台阶,11-133:第二安装孔;
11-14:左侧板,11-15:右侧板。
如图8所示,本发明第一散热器11-1(参见图4)包括平行设置且有间距的多个鳍片形成的鳍片组11-11和与鳍片组垂向连接的均温板11-12,其中:
鳍片为片状铝箔,其优选的方式为等间距设置,其与均温板11-12垂向设置,可通过焊接、压接或者粘接等方式与均温板11-12连接为一体。多个鳍片形成的鳍片组11-11可覆盖均温板或部分覆盖均温板,也可以超出均温板的边界,根据实际应用需要进行设置。
在图8和图9所示的实施例中,均温板11-12包括平板部11-121,平板部为方形平板,平板部11-121一侧与鳍片组11-11贴紧固定,平板部11-121另一侧向外延伸有凸台部11-122,凸台部11-122的横截面形状不限(例如,可以为多边形、圆形或者不规则形状),凸台部11-122的内部设置有空腔11-123,空腔内填充有冷却工质(优选为冷却液,例如水),该空腔的内表面为多孔结构(例如铜粉烧结层),有助于形成冷却循环。
本发明第一散热器11-1包括至少一个均温板11-12,优选的,包括多个均温板11-12,多个均温板11-12适用于多个分散热源的情况,多个均温板能够将分散热源的热量集中通过与之相连接的鳍片组11-11导出,使得散热效果提升。在本发明图8所示的实施例中,第一散热器11-1包括两个均温板11-12。
如图8和图9所示,第一散热器11-1还包括基板11-13,基板11-13固定连接于均温板11-12上,基板11-13上开设有一个或多个贯通槽11-131,该通孔与均温板11-12的凸台部11-122形状、尺寸和位置相匹配,使得凸台部11-122卡 嵌于基板11-13的贯通槽11-131中。图1所示的实施例中,基板11-13设有两个方形贯通槽11-131,该贯通槽在垂直于基板11-13方向上向远离鳍片组11-11的一侧延伸,且孔径前宽后窄(即图2中下宽上窄)形成台阶11-132;均温板11-12的凸台部11-122嵌入到贯通槽11-131的孔径较窄部分,平板部11-121嵌入到贯通槽11-131的孔径较宽部分,基板11-13与均温板11-12固定连接为一体。
本发明第一散热器11-1还包括由左侧板11-14和右侧板11-15组成的外框,两侧板平行于鳍片组11-11的鳍片并包裹在鳍片组11-11的两端,并与鳍片组11-11焊接在一起形成围护,保护鳍片组11-11,并与其他部件进行连接,将第一散热器11-1各部件封装为一个整体。
第一散热器11-1安装于低温干体温度校验仪的炉体1中,如图4A所示的实施例中,第一散热器11-1设有两个,分别位于发泡保温体11-2的两侧并通过螺钉固定至发泡保温体11-2;制冷片11-4嵌入发泡保温体11-2两侧壁设有的通槽内,一侧与恒温块11-3接触,另一侧与第一散热器11-1接触。第一散热器11-1的外侧是炉体支架12,第一散热器11-1通过机械连接的方式(例如螺接和卡接相结合的方式)与炉体支架12固定。为了将第一散热器11-1安装在发泡保温体11-2,均温板11-12的四角位置设置有第一安装孔11-124,基板11-13的贯通槽11-131四周设置有第二安装孔11-133,第一安装孔11-124与第二安装孔11-133对齐,且鳍片组11-11与基板11-13的第二安装孔11-133对应的位置的鳍片去除,便于将散热器11-1安装于发泡保温体11-2上。
以上部件按照上述关系组装成本发明的第一散热器,将基板11-13和均温板11-12靠近鳍片组11-11的一端定义为冷端,基板11-13和均温板11-12另一端定义为热端,热端接触干体温度检验仪的炉体中制冷片,冷端连接鳍片组11-11。由于均温板11-12的真空空腔内充满冷却工质,当均温板11-12的热端接触热源,冷却工质受热汽化,蒸汽在微小的压差下流向冷端释放热量,蒸汽凝结成液体,液体靠毛细力作用沿空腔内表面的多孔材料流回热端,从而热量有均温板11-12的热端传至冷端(鳍片组端),再有鳍片组11-11散发出去。同时,由于鳍片组11-11的多个鳍片之间的空间用于通风,实现风冷效果。因此,该散热器的采用均温板实现快速导热和鳍片快速散热相结合的方式,散热效率高。
本发明第一散热器包括多个均温板11-12的实施方式适用于多个分散热源的情况,这种实施方式能够将分散热源的热量集中通过鳍片组11-11导出,散热效果得到提升;鳍片组的鳍片厚度薄、间距小(例如,铝箔制成的鳍片厚度可达0.4mm, 间距为2.3mm),重量轻,与铝挤散热器同样体积下,重量可减轻23%至40%,并提高了散热效率;均温板11-12具有良好的导热性能,与铝挤散热器相比,在同等条件下,均温板能够快速将热端热源(制冷片的热量)传递至鳍片组11-11,进而获得更好的散热效果。
由于本发明第一散热器11-1重量轻,使用该散热器的低温干体温度校验仪重量减轻,更便于携带;本发明第一散热器11-1的均温板与炉体1内的制冷片11-4位置对应且接触,能够将炉体1的热量及时传导至第一散热器11-1,并且本发明第一散热器11-1的鳍片薄,间距大,多个鳍片间的通风面积更大,因此该散热器具有更低的风阻,并且通风量增加,使用该第一散热器11-1的低温干体式温度校验仪,在工作时噪音更低,散热性能好,使用第一散热器的低温干体温度校验仪降温过程的时间显著缩短。
第二散热器19-1
第二散热器19-1可以用在本发明低温干体温度校验仪的炉体1中,同样用于将炉体1中的热量及时导出。
该部分使用以下标号:
19-1:第二散热器;
19-11:散热鳍片组,19-111:第一半圆形凹条,19-112:第二圆孔;
19-12:U形热管,19-121:第一侧臂,19-122:第二侧臂,19-123:连接部;
19-13:导热板,19-131:第二半圆形凹条,19-132:第三安装孔;
19-14:第一侧板,19-141:固定板,19-142:第二半圆形开口,19-143:圆形通孔;19-15:第二侧板。
在图10所示的实施例中,本发明第二散热器19-1(参见图4B)包括多个平行设置且有间距的散热鳍片形成的散热鳍片组19-11、U形热管19-12、第一侧板19-14、第二侧板19-15和导热板19-13,第一侧板19-14和第二侧板19-15分别垂直设置在导热板19-13的两侧形成矩形凹槽结构,导热板19-13位于凹槽结构的底部,散热鳍片组19-11设置在该凹槽结构的内部,且各散热鳍片平行于两侧的第一侧板19-14和第二侧板19-15,其中:
如图11所示,第一侧板19-14包括紧贴散热鳍片组19-11的矩形的固定板19-141,所述固定板19-141与导热板19-13相邻的一边端面上设置有多个第二半圆形开口19-142,第二半圆形开口19-142个数与U形热管的个数一致,本实施例中,第二半圆形开口19-142设有八个,每四个紧邻的第二半圆形开口19-142为 一组,且两组第二半圆形开口19-142相距一定距离设置;所述固定板19-141另外三个边各向外垂向延伸出折边,目的是阻挡气流,使气流从散热器19-1的散热鳍片组19-11通过,防止气流进入固定板19-141侧,同时,便于散热器19-1在炉体01中的安装(参见图4B,可通过螺钉穿过固定板19-141的折边固定于填充泡沫19-13上);固定板19-141远离导热板19-13的另一侧设置有多个等间距分布的圆形通孔19-143,圆形通孔19-143的个数与U形热管19-12的个数一致,本实施例中,也设置有八个。第二侧板19-15的结构与第一侧板19-14的结构相同,且两侧板对称布置。
导热板19-13与散热鳍片组19-11紧贴的一侧面上设置有多个平行凹条,凹条的横截面均为半圆形,即第二半圆形凹条19-131。在图10和图11所示的实施例中,第二半圆形凹条19-131个数为八个(与U形热管19-12的个数相对应),设置为相距一定距离的两组,每四个彼此紧邻作为一组。导热板19-13上还设置有在厚度方向上贯穿的多个第三安装孔19-132,用于将本发明第二散热器19-1安装在其他部件上使用,例如通过螺钉安装在低温干体温度校验仪的炉体1中。
散热鳍片为片状铝箔,多个散热鳍片优选的设置方式为等间距平行设置,多个散热鳍片形成散热鳍片组19-11;每一散热鳍片在靠近导热板19-13的第二半圆形凹条19-131的位置均设有第一半圆形开口,同一水平位置的多个第一半圆形开口形成第一半圆形凹条19-111;导热板19-13上的第二半圆形凹条与散热鳍片组19-11的第一半圆形凹条19-111以及两侧固定板19-141上的第二半圆形开口19-142相对组合形成完整的圆孔,定义为第一圆孔。散热鳍片组19-11在远离导热板19-13的一侧设置有多个等间距设置的圆孔,定义为第二圆孔19-112。散热鳍片组19-11与导热板19-13上的第三安装孔19-132对应位置处的散热鳍片被去除,便于本发明第二散热器19-1的安装固定。
U形热管19-12的个数和具体结构可根据实际需要进行设置,在图10和图11所示的实施例中,U形热管19-12设有八个,分为两组,每四个紧邻的U形热管19-12作为一组,每一U形热管19-12包括平行设置的第一侧臂19-121、第二侧臂19-122和连接第一侧臂和第二侧臂的连接部19-123,每一U形热管19-12内部设有空腔,空腔内填充有冷却工质(优选为冷却液,例如水),该空腔内表面为多孔结构(例如铜粉烧结层),有助于形成冷却循环;每组U形热管19-12的第一侧臂19-121紧贴,第二侧臂等间距散开,这样的设计有利于将散热器19-1的热端的热量集中导入并分散散发出去,提升散热效果。
安装时,U形热管19-12的第一侧臂19-121分别穿过散热鳍片组19-11与导热板19-13、两侧固定板19-141所形成的的第一圆孔,第二侧臂19-122穿过散热鳍片组19-11的第二圆孔19-112,U形热管19-12嵌入到散热鳍片组19-11和导热板19-13的内部,节省了散热器空间,U形热管19-12和散热鳍片组19-11共同作用下进行散热,提升了散热效果。
以上部件按照上述关系组装成本发明的第二散热器19-1,散热鳍片组19-11可通过焊接、压接或者粘接等方式与导热板19-13、第一侧板19-14和第二侧板19-15连接为一体。在使用时,导热板19-13靠近或接触热源,热源散发的热量通过U形热管19-12和散热鳍片组19-11共同作用传导出去,从而达到散热效果。
本发明第二散热器19-1的散热鳍片由铝箔制成,其厚度薄,重量轻,整体上减轻了散热器的重量;第二散热器的U形热管19-12由铜制成,使得散热器的耗散功率高达200w至300瓦,约为铝挤散热器的两倍。
本发明第二散热器19-1用在低温干体温度校验仪的炉体1中,图4B所示的实施例中,第二散热器19-1设有两个,分别位于发泡保温体11-2的两侧并通过螺钉固定至发泡保温体11-2;制冷片11-4嵌入发泡保温体11-2两侧壁设有的通槽内,一侧与恒温块11-3接触,另一侧与第二散热器19-1接触。
制冷片11-4的个数根据需要进行设置,图4B所示的实施例中,制冷片11-4分为两组且相对设置在恒温块11-3的两侧,并分别与两个第二散热器19-1的导热板19-13相接触。优选的,制冷片11-4的位置与U形热管19-12的第一侧臂19-121所处的位置相对应,这样设置使得制冷片11-4能够将恒温块11-3散发的热量快速传递至第二散热器19-1并由第二散热器19-1快速导出。
上述实施例只是低温干体温度校验仪的其中一个示例,本发明并不局限于该实施例。本发明散热器19-1可应用于其他干体温度校验仪中,只要将散热器19-1的导热板19-13靠近或接触干体温度校验仪的热源,即可实现散热效果。
由于本发明第二散热器重量轻,使用第二散热器的低温干体温度校验仪重量减轻,更便于携带;本发明第二散热器的热量耗散功率高达200w至300w,使用第二散热器的低温干体温度校验仪降温过程的时间显著缩短。
控制板组件2
在低温干体温度校验仪中,控制板组件2相当于低温干体温度校验仪的大脑,用于控制稳定的温度环境以及接收各传感器采集数据进行分析处理并控制各电气部件的动作执行。
结合图12、图13和图2所示,控制板组件2一侧紧邻炉体1设置并固定于炉体1的炉体支架12上,底部固定于底座5上。控制板组件2包括控制板支架21、开关电源22和控制板24,控制板支架21的截面为U形槽结构,开关电源22(例如ESP-120-24开关电源)置于控制板支架21所形成的的U形槽中固定,控制板24一侧下部安装有一散热块23,散热块23的底面接触底座5,底座5与散热块23底面相接触的部位设置有通风槽51(参见图23),优选的,散热块23为导热性良好的金属块;控制板24固定在控制板支架21的U形开口处,且控制板24安装有散热块23的一侧朝向开关电源22;开关电源22的顶部设置有一导流风扇26和一电源接线端子27,开关电源22通过电源接线端子27外接电源线,将外接电源的电压整流成稳定电压供给整个低温干体温度校验仪供电;一导流板25倾斜固定于控制板支架21的上端,并位于开关电源22的上侧,这样设置的目的是对导流风扇26的排风进行导流,使得导流风扇26的排风从上壳6的散热孔62排出。
为方便控制板组件2安装于低温干体温度校验仪中,在控制板支架21槽体最下端设置一个或多个水平布设的装配部件7,装配部件7的安装孔与底座5上的安装孔对位,以通过安装螺钉将控制板组件2固定在底座5上;另外在控制板支架21槽体底面延伸设多个装配部件7,与相邻的炉体1外的装配部件7对位,以通过安装螺钉将控制板组件2与炉体1固定连接。
开关电源22作为整个低温干体温度校验仪的电源,给其他部件供电,开关电源22在工作过程中容易发热,开关电源22被限制在控制板支架21和控制板24所形成的空间中,与炉体1隔离开,减少开关电源22产生的热量对炉体1的影响,同时,开关电源22下部产生的热量一部分通过安装在控制板24上的散热块23由底座5的通风槽51导出,上部热量随着导流风扇26产生的气流在导流板25引导下通过上壳6的散热孔62发散出去。
控制板组件2中由于导流板25和导流风扇26的配合设置,使得导流风扇26产生的气流沿导流板25的方向从上壳6的散热孔62排出,从而带动控制板组件2内部的气流运动,还能从控制板组件2的下方引入外界空气(控制板组件2下方的底座5上开设通风槽51),从而实现对控制板组件2以及与其相邻的炉体1等外围散热。
控制板24设有处理器、处理电路、各种电接口、通讯接口等,炉体1中的制冷片11-4、冷却风扇13、传感器组11-5以及系统板组件3、测量板组件4均与控制板24电连接,控制板24接收传感器组11-5采集到的温度数据、系统板组件3设置的参数以及测量板组件4测量的电信号进行分析处理并生成控制指令发送到炉体1中的 制冷片11-4和冷却风扇13的执行机构,从而控制炉芯11的温度,同时将处理后的数据发送到系统板组件3中进行显示。控制板24设置有蓝牙、wifi组件,可以与其他无线终端实现无线通信。
系统板组件3
在低温干体温度校验仪中,系统板组件3主要用于参数设置及数据、结果显示以实现人机交互。系统板组件3为模块化设计,如图2所示,系统板组件3安装在低温干体温度校验仪的控制板组件2的导流板25的上方并固定于上壳6的壳体61上,呈倾斜设置,方便操作人员观察和操作。系统板组件3的结构参见图14和图15,包括从前向后依次设置的触摸屏面板35、触摸屏泡棉34、触摸液晶屏33、触摸屏支架32和系统板31,触摸屏面板35为罩状,其罩面开设与触摸液晶屏33形状和尺寸匹配的装配区域,系统板31侧面设置一个或多个连接端口36,相应的触摸屏面板35侧面留有接口孔37,连接端口36与接口孔37对应安装,触摸屏泡棉34、触摸液晶屏33、触摸液晶屏支架32和系统板31依序向触摸屏面板35罩体内叠置装配为一体形成系统板模块3。系统板模块3左右两侧面分别通过螺钉与上壳6的壳体61连接,如此可拆卸的安装在上壳6的前侧面上部。
测量板组件4
在低温干体温度校验仪中,测量板组件4主要用于连接测量线。本发明中,测量板组件4为模块化设计,如图2所示,测量板组件4安装在控制板组件2的前侧,其底部固定于底座5上。参见图16,测量板组件4包括前面板41和测量板42,测量板42设置有TC插座元件(热电偶冷端温度补偿结构)43和多个测试连接端子,前面板41和测量板42对位叠合并于四周固定形成测量板组件4,测量板42的测试连接端子从前面板41设有的端子孔伸出,测量板组件4顶部通过螺钉与上壳6的壳体61固定,测量板组件2位于控制板组件2之前且与控制板组件2之间有一间距以利于散热。如图1所示,前面板41、系统板组件3的触摸屏面板35以及上壳6和底座5将本发明低温干体温度校验仪封装为一个整体。
为了准确测量热电偶的温度,如图16所示,测量板组件4集成有TC插座元件43,即热电偶冷端温度补偿结构43,热电偶冷端温度补偿结构43通过尾部自带的螺钉固定在测量板42上,其前端两个插口041与前面板41上的插孔对齐,可以透过插孔插接热电偶(参见图20)。现有的热电偶冷端补偿结构采用冷端保温仓内放置均温块、并使冷端温度传感器、热电偶冷端与均温块紧密贴合的方案,该结构中因热 电偶冷端与均温块之间存在的热阻,因此,为了使均温块上的冷端温度传感器与热电偶冷端的温差减小,需要等待较长时间,尤其是批量测量热电偶时,效率低。为了解决上述问题,本发明在测量板组件2中集成一快速测量热电偶冷端温度的热电偶冷端温度补偿结构,该结构能够能够在更短的时间内使热电偶05冷端的温度与冷端温度传感器01的温度达成一致,提高热电偶冷端温度的测量效率。
图17至图20为本发明热电偶冷端温度补偿结构的示意图。如图17至图20所示,该热电偶冷端补偿结构包括冷端温度传感器01、弹片02和第二均热块03,第二均热块03为大热容导热体,设有两块且有间距;弹片02为小热容导热良好的弹性体,设有两片,分别固定于两块第二均热块03上,弹片02设计为S形结构,其尾端(图19中右侧为尾端)固定于第二均热块03的尾部,弹片02的头端上扬,弹片02靠近头端的部分自由置于第二均热块03的上表面,由于弹片02具有弹性,热电偶05冷端能够从弹片02头端插入弹片02与第二均热块03之间(参见图20)。冷端温度传感器01具有尺寸小、热容低的特点,可安装在任一弹片02的上侧,用于测量热电偶05的冷端温度。优选的,两第二均热块03之间可加设导热胶,有利于热量在两第二均热块03之间进行热传递,保证两第二均热块03的温度基本保持一致。另外,冷端温度传感器01通常粘接在弹片02上,为了防止在粘接过程中胶溢出弹片02,在弹片02粘接冷端温度传感器01的位置两侧分别设置一护板。
为了将冷端温度传感器1测量的温度值进一步处理及应用,冷端温度传感器01引出线通过一引出线端子06引出,引出线端子06插接到测量板42上。
为了将该热电偶冷端补偿结构封装起来便于使用,本发明热电偶冷端温度补偿结构还包括一套帽04,套帽04为一方形盒体,冷端温度传感器01、弹片02和第二均热块03均置于套帽04内,第二均热块03通过螺钉07与套帽04固定,冷端温度传感器01的引出线从套帽04的尾部引出后接入引出线端子06中,套帽04的前端设置有两个插口041,该插口分别对应弹片02与第二均热块03之间的位置,热电偶05的冷端从两个插口041分别插入到弹片02与第二均热块03之间,在弹片02的弹性力的作用下,弹片02与第二均热块03均与热电偶05的冷端紧密接触。
为了保证热电偶冷端温度补偿结构的性能,要求第二均热块03的热容远大于弹片02和冷端温度传感器01的热容,同时,热电偶05冷端、第二均热块03、弹片02和冷端温度传感器01均导热性良好;弹片02上的冷端温度传感器01尽量 要与环境做绝热处理,例如在冷端温度传感器01不与弹片02接触的部分施加塑料套或加绝热胶。
实际使用时,热电偶05的冷端接入弹片02和第二均热块03之间,当热电偶05的冷端温度与第二均热块03、弹片02不一致时,会有热量从热电偶05冷端传递到第二均热块03和弹片02,由于第二均热块03的热容相对很大,热电偶05冷端的温度会趋向均热块03的温度,同时由于弹片02及弹片02上的冷端温度传感器01热容相对较小,冷端温度传感器01的温度会快速的趋向热电偶05冷端的温度,使冷端温度传感器01的温度快速达到与热电偶05冷端温度基本一致。
图21示出了本发明热电偶冷端温度补偿结构的工作曲线,整个工作过程分为三个阶段:
第一阶段:
冷端温度传感器01和第二均热块03处于套帽04(相当于传统的冷端保温仓)中,温度基本一致;热电偶05冷端的温度与冷端温度传感器01、第二均热块03的温度不一致。
第二阶段:
热电偶05冷端开始同时向第二均热块03和弹片02及弹片02上的冷端温度传感器01传递热量,同时温度开始变化,热电偶05冷端温度趋向于冷端温度传感器01(弹片02)及第二均热块03;
第二均热块03的热容相对较大,温度相对变化缓慢,同时也是由于第二均热块03热容大,热电偶05冷端的温度会较快的向第二均热块03的温度变化;
弹片02及弹片02上的冷端温度传感器01热容较小,温度变化较快,弹片02及弹片02上的冷端温度传感器01的温度会快速的向热电偶05冷端的温度变化;
在第二均热块03及弹片02的综合影响下,冷端温度传感器01的温度会迅速的与热电偶05冷端的温度趋于一致,第二阶段结束时,弹片02上的冷端温度传感器01的温度已经和热电偶05冷端的温度基本一致,但与第二均热块03的温度还有些差距。
第三阶段:
热电偶05冷端及弹片02上的冷端温度传感器01温度几乎同步变化,冷端温度传感器01的温度已经能精确反映热电偶05冷端的温度。
该热电偶冷端温度补偿结构能够快速测量热电偶冷端温度,效率高。在热电偶测量过程中,为了让热电偶05冷端温度与冷端温度传感器01的温度一致,本发 明热电偶冷端温度补偿结构可将等待时间由原来的几分钟甚至十几分钟降低为十几秒甚至几秒(取决于热电偶05冷端与冷端温度传感器01的温度等因素),尤其是在批量测量热电偶冷端温度的情况下,会显著的提高测量效率,节约时间。
外壳
本发明低温干体温度校验仪的外壳包括上壳6和底座5,如图22所示,上壳6下端开放,整体扣合在底座5上并与底座5的周侧卡接固定,控制板组件2和炉体1置于上壳6与底座5所形成的外壳内;上壳6的前侧面下部开设有与测量板组件4形状和尺寸相匹配区域,前侧面上部开设有与系统板组件3形状和尺寸相匹配的装配区域,上壳6的壳体61顶面开设有与炉体1上端炉口相对位的通孔63以穿套待测温度元件;为了便于散热,上壳6的壳体61顶面还设置有散热孔62,一方面用于炉体1的散热,另一方面还能够作为导流风扇26的排风的排风口。
进一步优化,上壳6的壳体61顶面与控制板组件2上端导流风扇26留有间距,这样导流风扇26工作时,不仅使控制板组件2内气流运动,还带动外壳内部的气流运动,有利于仪器整体散热。搬运时为了便于携带,上壳6上端还设置有一提手。
如图23所示,底座5作为整机的支撑部件,并与上壳6卡接固定形成仪器外壳。底座5上分布设有若干安装孔用于装配炉体1、控制板组件2、测量板组件4和上壳6;为了向仪器内提供外部空气,底座5的底面和侧面开设有若干通风槽51,用于引入外界空气以利于散热,通风槽的形式、数量、位置等根据需要进行分布设计,不做限制。
上壳6可由塑料制成,有利于减轻整个低温干体温度校验仪的重量。
以上部件按照上述连接关系组装成本发明低温干体温度校验仪,本发明低温干体温度校验仪可如下装配:将炉体1安装在底座5的靠后位置,将控制板组件2安装在底座5上临近炉体1位置并与炉体1连接,将上壳6置于底座5上并卡接于底座5的周侧固定,将测量板组件4安装在仪器上壳6的前面板下部,将系统板组件3安装在上壳6前面板上部,如此完成低温干体温度校验仪的整机装配。
本发明低温干体温度校验仪中,系统板31、测量板41、制冷片11-4、传感器组11-5、冷却风扇13、导流风扇26等均与控制板24电连接,上述各部件均由开关电源22供电。工作时,控制板24接收传感器组11-5采集到的温度数据、系统板组件3设置的参数以及测量板组件4测量的电信号进行分析处理并生成控制指令发送到炉体1中的制冷片11-4和冷却风扇13的执行机构,从而控制炉芯11的温度,同时将处理后的数据发送到系统板组件3中进行显示。
该低温干体温度校验仪采用模块化设计,炉体1和各组件之间相互独立,便于拆卸维护;控制板组件2中设置蓝牙、wifi组件,实现与外部终端无线通信,方便现场使用;采用触摸屏进行参数设置,操作效率高,使用方便;该低温干体温度校验仪结构设计合理、紧凑,体积小、重量轻,方便携带。
本领域技术人员应当理解,这些实施例或实施方式仅用于说明本发明而不限制本发明,对本发明所做的各种等价变型和修改均属于本发明公开内容。

Claims (29)

  1. 一种低温干体温度校验仪,用于对待测温度元件进行温度校验,包括:
    炉体(1),设置插入待测温度元件的炉口,底部固定于一底座(5)上;
    控制板组件(2),底部固定于所述底座(5)上;
    所述底座(5)与一上壳(6)将所述炉体(1)和所述控制板组件(2)扣合在内,所述上壳(6)与所述炉体(1)的炉口对应处开设一通孔(63),所述上壳(6)的顶面上设置多个散热孔(62)。
  2. 根据权利要求1所述的低温干体温度校验仪,还包括系统板组件(3),与所述控制板组件(2)电连接,装配在所述上壳(6)的前侧面。
  3. 根据权利要求2所述的低温干体温度校验仪,所述控制板组件(2)的顶部与上壳(6)之间有间距,且所述控制板组件(2)顶部设置有导流风扇(26),所述导流风扇(26)上方设置向散热孔(62)导流的导流板(25)。
  4. 根据权利要求3所述的低温干体温度校验仪,所述控制板组件(2)包括:
    控制板支架(21),为U形槽结构;
    开关电源(22),置于所述控制板支架(21)的U形槽中固定;
    控制板(24),固定在所述控制板支架(21)的U形槽开口处;
    所述控制板(24)下部一侧安装有散热块(23),且所述控制板(24)安装有散热块(23)的一侧朝向开关电源(22);所述导流风扇(26)安装在开关电源(22)的顶部。
  5. 根据权利要求1所述的低温干体温度校验仪,所述系统板组件(3)包括从前向后依次设置的触摸屏面板(35)、触摸屏泡棉(34)、触摸液晶屏(33)、触摸屏支架(32)和系统板(31),所述触摸屏面板(35)为罩状,其罩面开设有与触摸液晶屏(33)形状和尺寸匹配的装配区域,所述系统板(31)侧面设置一个或多个连接端口(36),所述触摸屏面板(35)侧面设有多个接口孔(37),所述连接端口(36)与接口孔(37)对应安装,所述触摸屏泡棉(34)、触摸液晶屏(33)、触摸液晶屏支架(32)和系统板(31)依序向触摸屏面板(35)罩体内叠置装配为一体。
  6. 根据权利要求1至5任一项所述的低温干体温度校验仪,还包括测量板组件(4),所述测量板组件(4)装配在上壳(6)的侧面,测量板组件(4)与控制板组件(2)电连接。
  7. 根据权利要求6所述的低温干体温度校验仪,所述测量板组件(4)包括 前面板(41)和测量板(42),所述测量板(42)上设置有多个测试连接端子,前面板(41)上与测量板(42)的测试连接端子对应处各设置一插孔,所述前面板(41)和所述测量板(42)以所述插孔与所述测试连接端子对位方式叠置且四周固定。
  8. 根据权利要求7所述的低温干体温度校验仪,所述测量板(42)设置有TC插座元件(43),所述TC插座元件(43)为热电偶冷端温度补偿结构,其固定在测量板(42)上,其前端两个插口(041)与前面板(41)上设置的插孔对应,用于从外部插接热电偶。
  9. 根据权利要求1至8任一项所述的低温干体温度校验仪,所述上壳(6)与底座(5)的周边卡接固定,所述底座(5)底面和侧面各开设有多个通风槽(51)。
  10. 根据权利要求1至9任一项所述的低温干体温度校验仪,所述上壳(6)由塑料制成。
  11. 根据权利要求1至10任一项所述的低温干体温度校验仪,所述炉体(1)包括:
    炉芯(11),包括发泡保温体(11-2)、设置在所述发泡保温体(11-2)内部的恒温块(11-3)、安装在所述恒温块(11-3)上部设有的开口槽中的均热块(11-7)以及安装于所述发泡保温体(11-2)两侧的散热器;和
    冷却风扇(13),放置在炉芯(11)的下方。
  12. 根据权利要求11所述的低温干体温度校验仪,所述炉芯(11)还包括多个制冷片(11-4),所述制冷片(11-4)安装在发泡保温体(11-2)两侧壁各设有的通槽中,所述制冷片(11-4)一侧与置于发泡保温体(11-2)内的恒温块(11-3)接触,另一侧与所述散热器的热端接触。
  13. 根据权利要求12所述的低温干体温度校验仪,所述恒温块(11-3)为由相对的两内凹的弧形面(11-31)和相对的两水平侧面所形成的方形体,其横截面形状为两头宽中间窄的沙漏形状,所述恒温块(11-3)的两水平侧面分别与所述制冷片(11-4)接触。
  14. 根据权利要求13所述的低温干体温度校验仪,所述恒温块(11-3)的两弧形面(11-31)所夹持的部分,其两头最宽的部位为宽阔部(11-32),中间最窄的部位为狭窄部(11-33),所述宽阔部(11-32)的宽度尺寸范围为30mm至80mm,所述狭窄部(11-33)的宽度尺寸范围为20mm至50mm。
  15. 根据权利要求11至14任一项所述的低温干体温度校验仪,所述炉芯(11) 还包括传感器组(11-5),传感器组(11-5)包括多个传感元件,所述传感元件包括一对差分热偶、热电阻温度传感器和超温报警传感器,所述传感元件安装在发泡保温体(11-2)上设有的多个安装过孔中,传感元件的探头部分嵌入所述恒温块(11-3)中。
  16. 根据权利要求11至14任一项所述的低温干体温度校验仪,所述炉芯(11)还包括导风板(11-6),所述发泡保温体(11-2)的底部为V字形结构,导风板(11-6)的横截面为V字形的长板结构,其与发泡保温体(11-2)的V字形底部叠合,且导风板(11-6)的两侧边分别固定在两侧散热器(11-1)的底部靠近发泡保温体(11-2)的边缘。
  17. 根据权利要求11至14任一项所述的低温干体温度校验仪,所述炉体(1)还包括炉体支架(12),所述炉体支架(12)包括围框(12-1)和两侧板(12-2),围框(12-1)的底部安装所述冷却风扇(13),两侧板(12-2)分别安装在围框(12-1)的两侧,所述炉芯(11)安装在炉体支架(12)内。
  18. 根据权利要求11至14任一项所述的低温干体温度校验仪,所述炉体(1)还包括由聚四氯乙烯材料制成的炉口隔热块(14)和设置在炉口隔热块(14)顶部的顶部装饰板(11-8),炉口隔热块(14)安装于所述炉芯(11)上端的炉口处,顶部装饰板(11-8)通过螺钉连接至所述散热器上。
  19. 根据权利要求11至18任一项所述的低温干体温度校验仪,所述散热器为第一散热器(11-1),所述第一散热器(11-1)包括多个鳍片所形成的鳍片组(11-11)和与所述鳍片组(11-11)垂向连接的均温板(11-12),所述鳍片为片状铝箔,多个鳍片平行设置且相互之间有间距;所述鳍片组(11-11)通过焊接、压接或粘接方式与所述均温板(11-12)连接为一体。
  20. 根据权利要求19所述的低温干体温度校验仪,所述第一散热器(11-1)还包括固定连接于所述均温板(11-12)上的基板(11-13),所述均温板(11-12)包括平板部(11-121),所述平板部(11-121)一侧与所述鳍片组(11-11)贴紧固定,另一侧向外延伸有凸台部(11-122),所述凸台部(11-122)的内部设置有空腔(11-123),所述空腔(11-123)的内表面为多孔结构,所述空腔(11-123)内填充有冷却工质;所述基板(11-13)上开设有与所述均温板(11-12)的凸台部(11-122)的形状、尺寸相匹配的一个或多个贯通槽(11-131),所述均温板(11-12)的凸台部(11-122)嵌入到所述贯通槽(11-131)中,所述基板(11-13)与所述均温板(11-12)固定连接为一体。
  21. 根据权利要求11至18任一项所述的低温干体温度校验仪,所述散热器为第二散热器(19-1),第二散热器(19-1)包括U形热管(19-12)、导热板(19-13)和多个散热鳍片形成的散热鳍片组(19-11),所述散热鳍片为片状铝箔,多个散热鳍片平行设置且有间距形成所述散热鳍片组(19-11),散热鳍片组(19-11)通过焊接、压接或粘接方式与导热板(19-13)连接为一体;U形热管包括平行设置的第一侧臂(19-121)、第二侧臂(19-122)和连接第一侧臂与第二侧臂的连接部(19-123),第一侧臂(19-121)穿插在散热鳍片组(19-11)和导热板(19-13)之间,第二侧臂(19-122)穿插在散热鳍片组(19-11)中。
  22. 根据权利要求21所述的低温干体温度校验仪,所述U形热管内部设有空腔,所述空腔内填充有冷却工质,该空腔内表面为多孔结构。
  23. 根据权利要求21或22所述的低温干体温度校验仪,所述第二散热器(19-1)还包括第一侧板(19-14)和第二侧板(19-15),第一侧板(19-14)和第二侧板(19-15)分别垂直设置在导热板(19-13)的两侧形成矩形凹槽结构,导热板(19-13)位于该矩形凹槽结构的底部,所述散热鳍片组(19-11)设置在该矩形凹槽结构的内部,且各散热鳍片平行于两侧的第一侧板(19-14)和第二侧板(19-14)。
  24. 根据权利要求23所述的低温干体温度校验仪,所述第一侧板(19-14)包括紧贴散热鳍片组(19-11)的矩形的固定板(19-141),所述固定板(19-141)未与所述导热板(19-13)相邻的三个边各向外垂向延伸出折边;第二侧板(19-15)与第一侧板(19-14)结构相同且对称设置在导热板(19-13)的两侧;所述导热板(19-13)与散热鳍片组(19-11)紧贴的一侧面设有的多个第二半圆形凹条(19-131)与散热鳍片组(19-11)设有的多个第一半圆形凹条(19-111)以及两侧固定板(19-141)上设有的多个第二半圆形开口(19-142)相对组合形成多个第一圆孔,所述U形热管(19-12)的第一侧臂(19-121)穿插在对应的第一圆孔中;所述固定板(19-141)远离导热板(19-13)的另一侧设有的等间距分布的多个圆形通孔(19-143);所述散热鳍片组(19-11)在远离述导热板(19-13)的一侧设置有等间距设置的多个第二圆孔(19-112),所述U型热管(19-12)的第二侧臂(19-122)穿过固定板(19-141)的圆形通孔(19-143)并穿插在散热鳍片组(19-11)的第二圆孔(19-112)中。
  25. 根据权利要求24所述的低温干体温度校验仪,多个U形热管(19-12)分为两组,每组U形热管(19-12)的第一侧臂(19-121)紧贴在一起,第二侧臂 (19-122)等间距散开,对应的第一圆孔也分为两组,与U形热管(19-12)的第一侧臂(19-121)的形状相匹配,所述第二圆孔(19-112)等间距散开,与U形热管(19-12)的第二侧臂(19-122)的形状相匹配。
  26. 根据权利要求8所述的低温干体温度校验仪,所述热电偶冷端温度补偿结构包括冷端温度传感器(01)、第二均热块(03)和套帽(04),第二均热块(03)设有两块且呈间距设置,每一第二均热块(03)上连接一弹片(02),冷端温度传感器(01)安装在任一弹片(02)的上侧,热电偶(05)冷端置于弹片(02)和第二均热块(03)之间且紧贴弹片(02)和第二均热块(03),且第二均热块(03)的热容远大于弹片(02)和冷端温度传感器(01)的热容。
  27. 根据权利要求26所述的低温干体温度校验仪,所述弹片(02)为小热容、导热性良好的弹性体,为S形结构,其尾端固定于第二均热块(03)的尾部,所述弹片(02)的头端上扬,靠近头端的部分自由置于第二均热块(03)的上表面;两第二均热块(03)之间加设导热胶。
  28. 根据权利要求26或27所述的低温干体温度校验仪,所述热电偶冷端温度补偿结构还包括引出线端子(06),所述冷端温度传感器(01)的引出线从套帽(04)的尾部引出至引出线端子(06),引出线端子(06)插接在测量板(42)上;所述套帽(04)的前端设置有两个插口,该插口对应弹片(02)与第二均热块(03)之间的位置以插入热电偶(05)冷端。
  29. 根据权利要求26至28任一项所述的低温干体温度校验仪,安装于弹片(02)上的冷端温度传感器(01)不与弹片(02)接触的部分加设塑料套或绝热胶;所述冷端温度传感器(01)通过胶粘接在弹片(02)上,弹片(02)粘接冷端温度传感器(01)的位置两侧分别设置一护板。
PCT/CN2019/070621 2018-01-09 2019-01-07 一种低温干体温度校验仪 WO2019137330A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/961,134 US11402278B2 (en) 2018-01-09 2019-01-07 Low-temperature dry block temperature calibrator
EP19738064.5A EP3739313A4 (en) 2018-01-09 2019-01-07 TEMPERATURE CALIBRATOR FOR LOW TEMPERATURE DRY BLOCK

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN201810018472.8A CN110017913A (zh) 2018-01-09 2018-01-09 低温炉炉体及包括该低温炉炉体的低温干体温度校验仪
CN201810019030.5 2018-01-09
CN201810019111.5A CN110022661A (zh) 2018-01-09 2018-01-09 一种散热器及具有该散热器的炉体和干体温度校验仪
CN201810018472.8 2018-01-09
CN201810019111.5 2018-01-09
CN201820032475.2 2018-01-09
CN201820031567.9 2018-01-09
CN201820032013.0U CN207706617U (zh) 2018-01-09 2018-01-09 一种散热器及具有该散热器的炉体和干体温度校验仪
CN201820032475.2U CN207706618U (zh) 2018-01-09 2018-01-09 一种散热器及具有该散热器的炉体和干体温度校验仪
CN201820031598.4 2018-01-09
CN201810019030.5A CN110022660A (zh) 2018-01-09 2018-01-09 一种散热器及具有该散热器的炉体和干体温度校验仪
CN201820032013.0 2018-01-09
CN201820033217.6 2018-01-09
CN201810019770.9A CN110017917A (zh) 2018-01-09 2018-01-09 一种低温干体温度校验仪
CN201820033217.6U CN207866392U (zh) 2018-01-09 2018-01-09 一种低温干体温度校验仪
CN201820031567.9U CN207675334U (zh) 2018-01-09 2018-01-09 低温炉炉体及包括该低温炉炉体的低温干体温度校验仪
CN201820031598.4U CN207675327U (zh) 2018-01-09 2018-01-09 热电偶冷端温度补偿结构
CN201810019770.9 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019137330A1 true WO2019137330A1 (zh) 2019-07-18

Family

ID=67219408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070621 WO2019137330A1 (zh) 2018-01-09 2019-01-07 一种低温干体温度校验仪

Country Status (3)

Country Link
US (1) US11402278B2 (zh)
EP (1) EP3739313A4 (zh)
WO (1) WO2019137330A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461116A (zh) * 2019-08-19 2019-11-15 遨博(北京)智能科技有限公司 一种控制柜
US20210010876A1 (en) * 2018-03-22 2021-01-14 Beijing Const Instruments Technology Inc. Method for calibrating short temperature measuring device using dry body temperature calibrator
US20210063253A1 (en) * 2018-01-09 2021-03-04 Beijing Const Instruments Technology Inc. Flow guiding and heat dissipating type dry block temperature calibrator
CN116524966A (zh) * 2023-02-16 2023-08-01 固存芯控半导体科技(苏州)有限公司 一种可提高ssd传输速率的管理系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739313A4 (en) * 2018-01-09 2022-01-26 Beijing Const Instruments Technology Inc. TEMPERATURE CALIBRATOR FOR LOW TEMPERATURE DRY BLOCK
DE102018114615A1 (de) * 2018-06-19 2019-12-19 SIKA Dr. Siebert & Kühn GmbH & Co. KG Temperaturkalibrator
CN113702886A (zh) * 2021-08-25 2021-11-26 浙江纽联科技有限公司 一种便捷式校准工装和校准车
CN114964383B (zh) * 2022-06-14 2023-10-13 江苏斯菲尔电气股份有限公司 一种温湿度监测装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070206653A1 (en) * 2006-03-02 2007-09-06 National Institute Of Advanced Industrial Science And Technology Low-temperature comparison calibrator for thermometers
US20070289314A1 (en) * 2006-06-14 2007-12-20 Fluke Corporation Temperature calibration device having reconfigurable heating/cooling modules to provide wide temperature range
US20070291814A1 (en) * 2006-06-14 2007-12-20 Fluke Corporation Insert and/or calibrator block formed of aluminum-bronze alloy, temperature calibration device using same, and methods of use
US20090064603A1 (en) * 2007-09-11 2009-03-12 Fluke Corporation Venting system for drywell calibrators
US20130148687A1 (en) * 2007-11-14 2013-06-13 Fluke Corporation Open-loop vertical drywell gradient correction system and method
KR101393053B1 (ko) * 2012-11-16 2014-05-09 한전케이피에스 주식회사 다기능 온도 교정기
CN204188309U (zh) * 2014-11-20 2015-03-04 泰安磐然测控科技有限公司 一种精密热电偶参考端均温补偿模块
CN104502000A (zh) * 2014-12-26 2015-04-08 上海市计量测试技术研究院 一种浅式微型温度校验炉及校验方法
CN105651421A (zh) * 2015-12-30 2016-06-08 太原理工大学 一种分布式光纤温度传感器定标校准恒温装置
CN205449333U (zh) * 2016-03-15 2016-08-10 厦门瑞德利校准检测技术有限公司 一种便携式温度校准仪
CN106644172A (zh) * 2017-01-23 2017-05-10 扬州大学 一种便携式现场校验用热电偶冷端恒温装置及其控制方法
CN106686942A (zh) * 2015-11-10 2017-05-17 奇鋐科技股份有限公司 散热装置组合结构
CN207675334U (zh) * 2018-01-09 2018-07-31 北京康斯特仪表科技股份有限公司 低温炉炉体及包括该低温炉炉体的低温干体温度校验仪
CN207866392U (zh) * 2018-01-09 2018-09-14 北京康斯特仪表科技股份有限公司 一种低温干体温度校验仪

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492482A (en) * 1994-06-07 1996-02-20 Fluke Corporation Compact thermocouple connector
US7669427B2 (en) * 2006-06-14 2010-03-02 Fluke Corporation Temperature calibration device driving heating/cooling modules in a manner to allow operation over wide temperature range
CN101639390B (zh) * 2009-09-07 2011-04-27 上海量值测控仪器科技有限公司 立式新型热电偶检定炉
US11740139B2 (en) * 2018-01-09 2023-08-29 Beijing Const Instruments Technology Inc. Flow guiding and heat dissipating type dry block temperature calibrator
EP3739312B1 (en) * 2018-01-09 2023-12-20 Beijing Const Instruments Technology Inc. High temperature dry block temperature calibrator
EP3739313A4 (en) * 2018-01-09 2022-01-26 Beijing Const Instruments Technology Inc. TEMPERATURE CALIBRATOR FOR LOW TEMPERATURE DRY BLOCK
DE102018114615A1 (de) * 2018-06-19 2019-12-19 SIKA Dr. Siebert & Kühn GmbH & Co. KG Temperaturkalibrator
FI129008B (en) * 2019-10-28 2021-05-14 Beamex Oy Ab ADVANCED SAFETY MECHANISMS IN THE INTELLIGENT TEMPERATURE CALIBRATOR

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070206653A1 (en) * 2006-03-02 2007-09-06 National Institute Of Advanced Industrial Science And Technology Low-temperature comparison calibrator for thermometers
US20070289314A1 (en) * 2006-06-14 2007-12-20 Fluke Corporation Temperature calibration device having reconfigurable heating/cooling modules to provide wide temperature range
US20070291814A1 (en) * 2006-06-14 2007-12-20 Fluke Corporation Insert and/or calibrator block formed of aluminum-bronze alloy, temperature calibration device using same, and methods of use
US20090064603A1 (en) * 2007-09-11 2009-03-12 Fluke Corporation Venting system for drywell calibrators
US20130148687A1 (en) * 2007-11-14 2013-06-13 Fluke Corporation Open-loop vertical drywell gradient correction system and method
KR101393053B1 (ko) * 2012-11-16 2014-05-09 한전케이피에스 주식회사 다기능 온도 교정기
CN204188309U (zh) * 2014-11-20 2015-03-04 泰安磐然测控科技有限公司 一种精密热电偶参考端均温补偿模块
CN104502000A (zh) * 2014-12-26 2015-04-08 上海市计量测试技术研究院 一种浅式微型温度校验炉及校验方法
CN106686942A (zh) * 2015-11-10 2017-05-17 奇鋐科技股份有限公司 散热装置组合结构
CN105651421A (zh) * 2015-12-30 2016-06-08 太原理工大学 一种分布式光纤温度传感器定标校准恒温装置
CN205449333U (zh) * 2016-03-15 2016-08-10 厦门瑞德利校准检测技术有限公司 一种便携式温度校准仪
CN106644172A (zh) * 2017-01-23 2017-05-10 扬州大学 一种便携式现场校验用热电偶冷端恒温装置及其控制方法
CN207675334U (zh) * 2018-01-09 2018-07-31 北京康斯特仪表科技股份有限公司 低温炉炉体及包括该低温炉炉体的低温干体温度校验仪
CN207866392U (zh) * 2018-01-09 2018-09-14 北京康斯特仪表科技股份有限公司 一种低温干体温度校验仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739313A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210063253A1 (en) * 2018-01-09 2021-03-04 Beijing Const Instruments Technology Inc. Flow guiding and heat dissipating type dry block temperature calibrator
US11740139B2 (en) * 2018-01-09 2023-08-29 Beijing Const Instruments Technology Inc. Flow guiding and heat dissipating type dry block temperature calibrator
US20210010876A1 (en) * 2018-03-22 2021-01-14 Beijing Const Instruments Technology Inc. Method for calibrating short temperature measuring device using dry body temperature calibrator
US11733108B2 (en) * 2018-03-22 2023-08-22 Beijing Const Instruments Technology Inc. Method for calibrating short temperature measuring device using dry body temperature calibrator
CN110461116A (zh) * 2019-08-19 2019-11-15 遨博(北京)智能科技有限公司 一种控制柜
CN116524966A (zh) * 2023-02-16 2023-08-01 固存芯控半导体科技(苏州)有限公司 一种可提高ssd传输速率的管理系统及方法

Also Published As

Publication number Publication date
US11402278B2 (en) 2022-08-02
EP3739313A4 (en) 2022-01-26
EP3739313A1 (en) 2020-11-18
US20200400512A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2019137330A1 (zh) 一种低温干体温度校验仪
CN101191779A (zh) 散热器热阻值测量装置
JP5028060B2 (ja) パフォーマンスボードおよびカバー部材
CN111289877B (zh) 一种老化测试设备
CN102216791B (zh) 探针单元用基座构件及探针单元
CN207866392U (zh) 一种低温干体温度校验仪
EP3739312B1 (en) High temperature dry block temperature calibrator
CN104661487A (zh) 光模块散热结构及电子产品
US9772664B1 (en) Memory heater and heating aid arrangement
TWI735686B (zh) 電連接器組件
CN110631248A (zh) 防凝露电器盒、变频压缩机以及变频空调
CN207675334U (zh) 低温炉炉体及包括该低温炉炉体的低温干体温度校验仪
CN214173703U (zh) 温控测试箱
CN110017917A (zh) 一种低温干体温度校验仪
JP2018013352A (ja) ガスセンサの製造方法
TWI771889B (zh) 熱源模擬結構
CN218554126U (zh) 一种多工位加热器
CN214201670U (zh) 控温结构、电路板组件及自动化测试设备
JP2000004090A (ja) 電子機器筐体の熱交換装置
CN214154868U (zh) 一种便于安装的热棒
CN220271782U (zh) 一种温控装置
CN218603837U (zh) 带有散热结构的nas盒子
CN220191244U (zh) 一种温控盒组件
CN214413067U (zh) 热源模拟结构
CN218675214U (zh) 一种芯片热测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19738064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019738064

Country of ref document: EP

Effective date: 20200810