WO2019137156A1 - 单相直流无刷电机及其控制设备和控制方法 - Google Patents

单相直流无刷电机及其控制设备和控制方法 Download PDF

Info

Publication number
WO2019137156A1
WO2019137156A1 PCT/CN2018/121420 CN2018121420W WO2019137156A1 WO 2019137156 A1 WO2019137156 A1 WO 2019137156A1 CN 2018121420 W CN2018121420 W CN 2018121420W WO 2019137156 A1 WO2019137156 A1 WO 2019137156A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
position detecting
predetermined angle
control
detecting device
Prior art date
Application number
PCT/CN2018/121420
Other languages
English (en)
French (fr)
Inventor
吴健
Original Assignee
博世电动工具(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世电动工具(中国)有限公司 filed Critical 博世电动工具(中国)有限公司
Priority to EP18899252.3A priority Critical patent/EP3739745A4/en
Publication of WO2019137156A1 publication Critical patent/WO2019137156A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/22Arrangements for starting in a selected direction of rotation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/26Arrangements for controlling single phase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation

Definitions

  • the present application relates to the field of motor and motor control, and more particularly to a single-phase brushless DC motor, and a control device and control method for a single-phase brushless DC motor.
  • the brushless DC (BLDC) motor replaces the mechanical brush and the mechanical commutator with an electronic commutator, so that the motor not only retains the advantages of the DC motor, but also has the structure of the AC motor, reliable operation, convenient maintenance, etc. advantage. Therefore, brushless direct current (BLDC) motors are used by various power tools.
  • single-phase brushless DC motors have the advantages of long life, fast acceleration, simple structure, and low cost.
  • existing single-phase brushless DC motors can only rotate in one direction due to their own electrical characteristics. In this way, power tools using single-phase DC brushless motors can only work in one direction. When a certain operation requires a power tool to rotate in one direction and sometimes in another relative direction, a power tool using a single-phase DC brushless motor cannot satisfy such a demand.
  • the present invention is directed to an improved single phase brushless DC motor having improved control apparatus that enables a single phase brushless DC motor to be started and operated in both forward and reverse directions.
  • a control apparatus for a single-phase brushless DC motor wherein a body of the motor includes a rotor and a stator, the stator being composed of a plurality of coil windings, The rotor is composed of one or more pairs of magnetic poles in which N poles and S poles are alternately arranged, and the control device includes:
  • a first position detecting device mounted on the body of the motor for detecting a position of the rotor and outputting a rotor position signal
  • a predetermined angle detecting device configured to detect whether the rotor is rotated forward by a predetermined angle with respect to the first position detecting device, and output a detection signal
  • a commutation circuit device coupled to the motor body for switching a phase sequence of energization of the coil windings to control a direction of rotation and operation of the rotor;
  • control device coupled to the first position detecting device, the predetermined angle detecting device, and the commutation circuit device, wherein the control device is configured to, upon receiving a reverse start command, according to the A rotor position signal received by a position detecting device controls a energization phase sequence of the commutation circuit device to the coil winding to cause the rotor to rotate forward; and is configured to detect when received from the predetermined angle detecting device A signal is instructed to control the energization phase sequence of the commutation circuit device to the coil windings when the rotor is rotated forward by the predetermined angle relative to the first position detecting device to cause the rotor to rotate in the reverse direction.
  • control device is further configured to: when the state of the rotor position signal changes each time, control a phase sequence of energization of the commutating circuit device to the coil winding, the rotor position The change in state of the signal indicates a change in the magnetic pole of the rotor opposite the first position detecting device.
  • the predetermined angle detecting means is a second position detecting means for detecting the position of the rotor and outputting a rotor position signal, the second detecting means (220') being opposite to the first position a detecting device (210) is located in a forward rotation direction of the rotor (110), and an off angle between the second detecting device (220') and the first position detecting device (210) corresponds to the predetermined angle,
  • the state of the rotor position signal output by the second position detecting means changes when the rotor (110) is rotated forward by the predetermined angle.
  • the second position detecting device is disposed opposite to the same coil winding of the first position detecting device and the stator, and the second position detecting device and the first position detecting device The deviation angle between the two and the first position detecting means are smaller than the mechanical angle of the one coil winding with respect to the deviation angle of the coil winding starting point.
  • the first position detecting device and the second position sensor respectively employ one of a Hall sensor, a shaft angle sensor, or a photoelectric sensor.
  • the predetermined angle detecting means is a timer, the control means being configured to enable the timer while the rotor is rotating forward, the count value of the timer reaching a predetermined count value It is indicated that the rotor is rotated forward by a predetermined angle.
  • control device further comprises a drive device coupled to the control device and the commutation circuit device for outputting a corresponding drive signal in accordance with an output of the control device.
  • the commutation circuit device adopts an H-bridge circuit, and is composed of two half-bridges connected by two power logic switches, and the output ends of the respective half bridges are respectively connected to the coil windings.
  • the drive signal causes each power logic switch to be turned “on” or “off” to control the energization phase sequence of the coil winding.
  • control device further includes signal processing means coupled to the first position detecting means, the predetermined angle detecting means and the control means for the first position signal and the The detection signal is signal processed, and the processed signal is output to the control device.
  • control device employs a microcontroller or DSP or ARM.
  • a control method of a single-phase brushless DC motor wherein a body of the motor includes a rotor and a stator, the stator being composed of a plurality of coil windings, the rotor being composed of One or more pairs of magnetic poles in which N poles and S poles are alternately arranged, and the control method includes:
  • the energization phase sequence of the coil winding is switched to cause the rotor to rotate in the reverse direction.
  • control method further includes: switching the energization phase sequence of the coil windings each time a state change of the rotor position signal is detected, wherein a state change of the rotor position signal A magnetic pole change of the rotor opposite to the first position detecting device is indicated.
  • determining whether the rotor is rotated by a predetermined angle with respect to the first position detecting device comprises: determining whether a state of a rotor position signal detected by the second position detecting device is changed, the second position detecting A change in state of the rotor position signal detected by the device indicates that the rotor is positively rotated by the predetermined angle.
  • determining whether the rotor is rotated by a predetermined angle with respect to the first position detecting device comprises: enabling a timer while the rotor is rotating forward; and determining whether a count value of the timer is A predetermined count value is reached, and the count value of the timer reaching the predetermined count value indicates that the rotor is rotated forward by the predetermined angle.
  • a single phase brushless DC motor comprising:
  • a body having a rotor and a stator, the stator being composed of a plurality of coil windings, the rotor being composed of one or more pairs of magnetic poles in which N poles and S poles are alternately arranged;
  • control device connected to the body, the control device comprising:
  • a first position detecting device connected to the body of the motor for detecting a position of the rotor and outputting a rotor position signal
  • a predetermined angle detecting device configured to detect whether the rotor is rotated forward by a predetermined angle with respect to the first position detecting device, and output a detection signal
  • a commutation circuit device coupled to the motor body for switching a phase sequence of energization of the coil windings to control a direction of rotation and operation of the rotor;
  • control device coupled to the first position detecting device, the predetermined angle detecting device, and the commutation circuit device, wherein the control device is configured to, upon receiving a reverse start command, according to the A rotor position signal received by a position detecting device controls a energization phase sequence of the commutation circuit device to the coil winding to cause the rotor to rotate forward; and is configured to detect when received from the predetermined angle detecting device A signal is instructed to control the energization phase sequence of the commutation circuit device to the coil windings when the rotor is rotated forward by the predetermined angle relative to the first position detecting device to cause the rotor to rotate in the reverse direction.
  • the single-phase brushless brush motor according to the present invention is more applicable in itself, and in particular, can be applied to a power tool that rotates in two directions.
  • Figure 1a is a block diagram showing a control apparatus of a single-phase brushless DC motor according to an embodiment of the present invention
  • Figure 1b is a schematic view showing a partial structure of a body and a control device of the single-phase brushless DC motor illustrated in Figure 1a;
  • FIG. 2a is a block diagram showing a control apparatus of a single-phase brushless DC motor according to another embodiment of the present invention.
  • Figure 2b is a schematic view showing a part of the structure of the body and the control device of the single-phase brushless DC motor illustrated in Figure 2a;
  • FIG. 3 is a block diagram showing a control apparatus of a single-phase brushless DC motor according to still another embodiment of the present invention.
  • FIG. 4 is a flow chart showing a control method of a single-phase brushless DC motor according to the present invention.
  • the present invention generally relates to a single phase brushless DC motor including a motor body and a control device coupled to the motor body.
  • the motor body includes a stator and a rotor.
  • the single-phase brushless DC motor structurally asymmetrically processes the slots of the stator to create an asymmetrical air gap reluctance to overcome the electromagnetic torque dead center. That is, for a single-phase brushless DC motor, the center line of the magnetic circuit of the rotor is offset from the stator center line (see AA', BB' in Fig. 1a) by a certain angle in a state where the power is not supplied.
  • the direction deviating from the centerline of the stator is defined as the positive steering of the rotor of the motor, and the other direction is the reverse direction of the rotor of the motor.
  • the counterclockwise direction is the positive direction.
  • the clockwise direction is the positive direction.
  • the energized phase sequence that causes the rotor of the motor to rotate in the forward direction is defined as a positive phase sequence (or first phase sequence) such that the energized phase sequence of the reverse rotation of the motor rotor is defined as a reverse phase sequence (or a second phase sequence).
  • forward and reverse are relative concepts, and it is also possible to define the correspondence between the steering of the rotor of the motor and the phase sequence of the energization in other suitable ways.
  • the single-phase brushless DC motor is designed to be able to cross the electromagnetic torque dead center and smoothly enter the acceleration state based on its structurally asymmetric design.
  • a control device and a control method capable of inverting the startup of the single-phase brushless DC motor according to the technical solution of the present invention will be mainly described.
  • Figure 1a shows a block diagram of a control apparatus for a single phase brushless DC motor in accordance with one embodiment of the present invention.
  • Figure 1b is a schematic illustration of the body and control apparatus of the single phase brushless DC motor illustrated in Figure 1a, wherein the motor body 100 includes a rotor 110 and a stator 120.
  • the stator 120 has a plurality of coil windings that are connected in a single phase configuration.
  • the rotor 110 has one or more pairs of magnetic poles which are arranged such that N magnetic poles and S magnetic poles are alternately arranged.
  • N magnetic poles and S magnetic poles are alternately arranged.
  • a single-phase brushless motor control apparatus 200 includes a first position detecting device 210, a predetermined angle detecting device 220, a commutation circuit device 230, and a control device 240.
  • the first position detecting device 210 is coupled to the motor body 100 for detecting the position of the rotor 110 and outputting a rotor position signal.
  • the first position detecting device 210 is shown on the stator groove center line AA', but is not limited thereto.
  • the first position detecting device 210 can be disposed at any other suitable location.
  • the predetermined angle detecting device 220 is connected to the motor body 100 for detecting whether the rotor 110 is rotated forward by a predetermined angle ⁇ with respect to the first position detecting device 110, and outputs a detection signal.
  • the commutation circuit arrangement 230 is coupled to the motor body 100 for switching the energization phase sequence of the coil windings to control the direction of rotation of the rotor 110.
  • the control device 240 is connected to the first position detecting device 210, the predetermined angle detecting device 220, and the commutation circuit device 230.
  • the control device 240 receives the rotor position signal output by the first position detecting device 110 and the detection signal output from the predetermined angle detecting device 220, and controls the energization phase sequence of the commutation circuit device 230 to the coil winding based on the rotor position signal and the detection signal.
  • the first position detecting device 210 is, for example, a Hall sensor that outputs a high level signal or a low level signal depending on whether it is the N magnetic pole or the S magnetic pole of the rotor.
  • the N magnetic pole corresponds to a high level signal
  • the S magnetic pole corresponds to a low level signal, or vice versa.
  • control device 240 When the control device 240 detects a state change of the rotor position signal, that is, a change of a high level and a low level (for example, a high level becomes a low level or a low level becomes a high level), that is, with the first position detecting device
  • control device 240 controls commutation circuit arrangement 230 to switch the energization phase sequence to the coil windings.
  • the predetermined angle detecting device 220 is, for example, an angle sensor that detects a rotation angle of the rotor 110 with respect to the first position detecting device 110.
  • control switching circuit device 230 switches the energization phase sequence to the coil winding.
  • the control device 240 Upon receiving the reverse start command, the control device 240 controls the energization phase sequence of the commutation circuit device 230 to the coil winding based on the rotor position signal received from the first position detecting device 210 to cause the rotor 110 to rotate in the forward direction.
  • the control device 240 monitors the detection signal output from the predetermined angle detecting device 220.
  • the control device 240 determines that the detection signal indicates that the rotor 110 is rotated forward by a predetermined angle ⁇ with respect to the first position detecting device 210, the commutation circuit device 230 is controlled to energize the coil windings to cause the rotor 110 to rotate in the reverse direction. .
  • the control device 240 detects that the state of the rotor position signal output by the first position detecting device 210 changes each time, the commutation circuit device 230 is controlled to switch the energization phase sequence to the coil winding.
  • the state change of the rotor position signal output by the first position detecting device 210 indicates the rotor magnetic pole change with respect to the first position detecting device 210.
  • control device 240 employs a microcontroller or DSP or ARM. It should be understood that the control device 240 can also be implemented in other suitable manners, and is not limited thereto.
  • a single phase brushless DC motor control apparatus 200 in accordance with the present invention further includes a drive unit 250 and a signal processing unit 260.
  • the driving device 250 is connected to the control device 240 and the commutation circuit device 230 for outputting a corresponding driving signal according to a control signal output from the control device 240 to drive the commutation circuit device 230.
  • the signal processing device 260 is coupled between the output of the first position detecting device 210 and the output of the predetermined angle detecting device 220 and the input of the control device 240.
  • the signal processing device 260 performs signal processing, such as filtering processing and/or shaping processing, on the rotor position signal output by the first position detecting device 210 and the detection signal output from the predetermined angle detecting device 220, and outputs the processed signal to the control device 240. .
  • the commutation circuit device 230 is an H-bridge circuit composed of two half-bridges (Q1-Q2 and Q3-Q4) connected by two power logic switches Q1, Q2, Q3, and Q4.
  • the output of the half bridge is connected to the coil windings.
  • the drive signal output by the drive device 250 causes each of the power logic switches Q1, Q2, Q3, and Q4 to be turned “on” or "off” to control the energization phase sequence of the coil windings. For example, when the first phase sequence is energized to the coil windings, Q1 and Q3 are turned on, and Q2 and Q4 are turned off.
  • power logic switches Q1, Q2, Q3, and Q4 are all power metal FETs.
  • FIG. 2a is a block diagram showing a control apparatus of a single-phase brushless DC motor according to another embodiment of the present invention
  • FIG. 2b is a schematic view of a main portion of a body and a control apparatus of the single-phase brushless DC motor illustrated in FIG. 2a.
  • the predetermined angle detecting means 220 is implemented as the second position detecting means 220', and other aspects are the same as those of the above embodiment, and the description thereof will not be repeated here.
  • the second position detecting means 220' is for detecting the position of the rotor 110 and outputting a rotor position signal. When the rotor 110 is rotated forward by a predetermined angle ⁇ with respect to the first position detecting device 210, the state of the rotor position signal detected by the second position detecting device 220' changes.
  • the second position detecting device 220' is disposed in common with the first position detecting device 210 with respect to the same coil winding of the stator 120. That is, both the second position detecting device 220' and the first position detecting device 210 are located within the mechanical angular range of the same coil of the stator 120. The second detecting device 220' is located in the forward rotation direction of the rotor 110 with respect to the first position detecting device 210. Referring to FIG.
  • the angle of deviation of the first position detecting device 210 from the starting point of the coil winding opposite thereto is ⁇
  • the angle of deviation between the second position detecting device 220' and the first position detecting device 210 is ⁇ , that is, The angle of deviation between the second position detecting device 220' and the first position detecting device 210 corresponds to a predetermined angle ⁇ .
  • the control means 240 changes the energization phase sequence of the commutation circuit means 230 to the coil winding in accordance with the state of the rotor position signal detected by the second position detecting means 220' to cause the motor rotor to rotate in the reverse direction.
  • the deviation angle ⁇ between the second position detecting device 220' and the first position detecting device 210 and the deviation angle of the first position detecting device 210 from the starting point of the coil winding opposite thereto are smaller than that of one coil winding.
  • the mechanical angle of a coil winding is equal to 360° divided by the number of coil windings the stator has.
  • Figure 2b shows that the stator has 4 coil windings, and the mechanical angle of one coil winding is 90°.
  • the first position detecting device 210 and the second position detecting device 220' are both Hall sensors.
  • the rotor position signal output by the Hall sensor is, for example, a high level;
  • the rotor position signal output by the Hall sensor is, for example, a low level.
  • the state change of the rotor position signal (for example, the high level becomes the low level or the low level becomes the high level) represents the change in the position of the rotor, that is, the change in the rotor magnetic pole opposite to the Hall sensor, for example, It changes from N magnetic pole to S magnetic pole or from S magnetic pole to N magnetic pole.
  • the correspondence between the N magnetic pole and the S magnetic pole and the high level and the low level can also be reversed.
  • first position detecting device 210 and the second position detecting device 220' may be implemented in any other suitable form.
  • the first position detecting device 210 and the second position detecting device 220' may also be a shaft angle sensor or a photoelectric sensor or the like.
  • FIG. 3 is a block diagram showing a control apparatus of a single-phase brushless DC motor according to still another embodiment of the present invention.
  • the predetermined angle detecting device 220 is implemented as a timer 220", and other aspects are the same as the above embodiment, and the description is not repeated here.
  • the timer 220" may be implemented in a software manner or in a hardware manner. It can also be implemented in a combination of software and hardware.
  • the timer 220" shown in Fig. 3 is exemplified as a program module in the control device 240, but the invention is not limited thereto.
  • the timer 220" is enabled to count the forward rotation of the motor rotor 110, and output the count value to the control device 240.
  • a predetermined count value is stored in a memory (not shown) of the control device 240, the predetermined count value corresponding to the predetermined angle ⁇ .
  • the count value outputted by the timer 220" reaches the predetermined count value indicating that the rotor 110 is rotated forward by a predetermined angle ⁇ .
  • the control device 240 determines that the count value output by the timer 220" reaches the predetermined count value, the commutation circuit device 230 is controlled.
  • the energization phase sequence of the coil windings is such that the rotor of the motor rotates in the opposite direction.
  • FIG. 4 shows a flow chart of a control method of a single-phase brushless DC motor according to an embodiment of the present invention, in which the motor body 100 includes a rotor 110 and a stator 120.
  • the stator 120 has a plurality of coil windings that are connected in a single phase configuration.
  • the rotor 110 has one or more pairs of magnetic poles which are arranged such that N magnetic poles and S magnetic poles are alternately arranged.
  • the control method of the single-phase brushless DC motor according to the present invention will be specifically described below.
  • a reverse start command is acquired.
  • the reverse start command may be indicated by a user, such as a power tool applied by a user to a single-phase brushless DC motor.
  • control device 240 sets the initial PWM duty cycle of the motor to enable the motor to operate when activated.
  • the first position detecting assembly 210 detects the position of the rotor 110, outputs a rotor position signal to the control device 240, and the control device 240 controls the energization phase sequence of the coil winding based on the received rotor position signal to cause the rotor 110 is rotating in the forward direction.
  • control device 240 determines whether the rotor 110 is rotated forward by a predetermined angle ⁇ with respect to the first position detecting device 210. In one embodiment, control device 240 determines if the state of the rotor position signal detected by second position detecting device 220' has changed. When the rotor 110 is rotated forward by a predetermined angle ⁇ , the state of the rotor position signal outputted by the second position detecting means 220' changes. In another embodiment, the timer 220" is enabled while the rotor 110 begins to rotate forward, and the control device 240 determines whether the count value of the timer 220" has reached a predetermined count value. The count value of the timer 220" reaches the predetermined count value indicating that the rotor 110 is rotated forward by a predetermined angle ⁇ .
  • the predetermined count value is a value corresponding to the predetermined angle ⁇ .
  • control device 240 determines that rotor 110 is positively rotated a predetermined angle a, the energized phase sequence of the coil windings is switched to cause the motor rotor to rotate in the reverse direction.
  • the state change of the rotor position signal outputted by the first position detecting device 210 indicates a change in the magnetic pole of the rotor opposed to the first position detecting device 210, for example, changing from the S magnetic pole to the N magnetic pole or from the N magnetic pole to the S magnetic pole.
  • the single-phase brushless DC motor can be started upright or reversely under the control of its control device.
  • the single-phase brushless brushless motor according to the present invention can be applied to a power tool that operates in two directions.
  • the single-phase brushless DC motor and the control device thereof of the invention greatly improve the application range thereof with a simple structure and low cost, and also have the advantages of long life, reliable operation and the like.

Abstract

一种单相直流无刷电机及其控制设备与控制方法。电机的本体(100)包括有转子(110)和定子(120)。控制设备(200)包括:第一位置检测装置(210),用于检测所述转子(110)的位置,输出转子位置信号;预定角度检测装置(220),用于检测所述转子(110)是否相对于所述第一位置检测装置(210)正向旋转了预定角度,输出检测信号;换相电路装置(230),用于切换对所述线圈绕组的通电相序;以及控制装置(240)。控制装置(240)被配置为在接收到反转启动指令时,根据转子位置信号控制换相电路装置(230)以使得转子(110)正向旋转;并被配置为当检测信号指示转子(110)正向旋转了预定角度时,控制换相电路装置(230)以使得转子(110)反向旋转。

Description

单相直流无刷电机及其控制设备和控制方法 技术领域
本申请涉及电机及电机控制领域,更具体地,涉及单相直流无刷电机、以及单相直流无刷电机的控制设备和控制方法。
背景技术
无刷直流(BLDC)电机利用电子换相器取代了机械电刷和机械换相器,使这种电动机不仅保留了直流电动机的优点,而且又具有交流电动机的结构简单、运行可靠、维护方便等优点。因此,无刷直流(BLDC)电机被各种电动工具采用。
在各种类型的无刷直流(BLDC)电机中,单相直流无刷电机尤其具有寿命长、加速快、结构简单、成本低等优点。但是,现有的单相直流无刷电机由于其自身的电气特性而仅能在一个方向上旋转。这样一来,采用单相直流无刷电机的电动工具也只能在一个方向上作用。当某一操作工作需要电动工具时而在一个方向上旋转,时而在另一个相对方向上旋转时,采用单相直流无刷电机的电动工具就无法满足这样的需求了。
因此,亟需一种改进的单相无刷直流电机,以克服现有技术中存在的缺陷。
发明内容
本发明旨在提供一种改进的单相无刷直流电机,其具有改进的控制设备,使得单相无刷直流电机能够以正转和反转两种方式启动并运转。
为此,根据本发明的一个方面,提供了一种单相直流无刷电机的控制设备,其中,所述电机的本体包括有转子和定子,所述定子由多个线圈绕组相连构成,所述转子由1对或多对N极和S极交替排列的磁极构成,所述控制设备包括:
第一位置检测装置,安装于所述电机的本体,用于检测所述转子的位置,输出转子位置信号;
预定角度检测装置,用于检测所述转子是否相对于所述第一位置检测装置正向旋转了预定角度,输出检测信号;
换相电路装置,与所述电机本体相连,用于切换对所述线圈绕组的通电相序,以控制所述转子的旋转方向及运转;以及
控制装置,与所述第一位置检测装置、所述预定角度检测装置和所述换相电路装置相连,其中,所述控制装置被配置为在接收到反转启动指令时,根据从所述第一位置检测装置接收的转子位置信号控制所述换相电路装置给所述线圈绕组的通电相序,以使得所述转子正向旋转;并被配置为当从所述预定角度检测装置接收的检测信号指示所述转子相对于所述第一位置检测装置正向旋转了所述预定角度时,控制所述换相电路装置给所述线圈绕组的通电相序,以使得所述转子反向旋转。
在一个实施例中,所述控制装置还被配置为:在所述转子位置信号的状态每次改变时,控制所述换相电路装置切换给所述线圈绕组的通电相序,所述转子位置信号的状态改变指示与所述第一位置检测装置相对的转子的磁极改变。
在一个实施例中,所述预定角度检测装置是第二位置检测装置,用于检测所述转子的位置并输出转子位置信号,所述第二检测装置(220’)相对于所述第一位置检测装置(210)位于所述转子(110)的正转方向上,所述第二检测装置(220’)与所述第一位置检测装置(210)中间的偏离角度对应于所述预定角度,所述转子(110)正向旋转了所述预定角度时,所述第二位置检测装置输出的转子位置信号的状态变化。
在一个实施例中,所述第二位置检测装置被设置为与所述第一位置检测装置和所述定子的同一线圈绕组相对,所述第二位置检测装置与所述第一位置检测装置之间的偏离角度以及所述第一位置检测装置相对于与其相对的线圈绕组起始点的偏离角度之和小于一个线圈绕组的机械角度。
在一个实施例中,所述第一位置检测装置和所述第二位置传感器 分别采用霍尔传感器、轴角传感器或光电传感器中的一种。
在一个实施例中,所述预定角度检测装置是定时器,所述控制装置被配置为在所述转子正向旋转的同时使能所述定时器,所述定时器的计数值达到预定计数值表示所述转子正向旋转了预定角度。
在一个实施例中,所述控制设备还包括驱动装置,所述驱动装置与所述控制装置和所述换相电路装置相连,用于根据所述控制装置的输出而输出相应的驱动信号。
在一个实施例中,所述换相电路装置采用H桥式电路,由4个功率逻辑开关两两连接成的2个半桥组成,各半桥的输出端分别与所述线圈绕组相连,所述驱动信号使得各功率逻辑开关导通或关断,以控制所述线圈绕组的通电相序。
在一个实施例中,所述控制设备还包括信号处理装置,与所述第一位置检测装置、所述预定角度检测装置和所述控制装置相连,用于对所述第一位置信号和所述检测信号进行信号处理,将经处理的信号输出给所述控制装置。
在一个实施例中,所述控制装置采用单片机或DSP或ARM。
根据本发明的另一个方面,提供了一种单相直流无刷电机的控制方法,其中,所述电机的本体包括有转子和定子,所述定子由多个线圈绕组相连构成,所述转子由一对或多对N极和S极交替排列的磁极构成,所述控制方法包括:
获取反转启动指令;
根据由第一位置检测装置所检测的转子位置信号控制对所述线圈绕组的通电相序,以使得所述转子正向旋转;
判断所述转子是否相对于所述第一位置检测装置正向旋转了预定角度;以及
如果判定为所述转子正向旋转了所述预定角度,则所述线圈绕组的通电相序被切换,以使得所述转子反向旋转。
在一个实施例中,所述的控制方法还包括:在每次检测到所述转子位置信号的状态变化时,给所述线圈绕组的通电相序被切换,其中所述转子位置信号的状态变化表示与所述第一位置检测装置相对的转 子的磁极变化。
在一个实施例中,判断所述转子是否相对于所述第一位置检测装置旋转了预定角度包括:判断由第二位置检测装置所检测的转子位置信号的状态是否变化,所述第二位置检测装置所检测的转子位置信号的状态变化表示所述转子正向旋转了所述预定角度。
在一个实施例中,判断所述转子是否相对于所述第一位置检测装置旋转了预定角度包括:在所述转子正向旋转的同时使能定时器;以及判断所述定时器的计数值是否达到预定计数值,所述定时器的计数值达到所述预定计数值表示所述转子正向旋转了所述预定角度。
根据本发明的又一个发面,提供了一种单相直流无刷电机,其包括:
本体,具有转子和定子,所述定子由多个线圈绕组相连构成,所述转子由一对或多对N极和S极交替排列的磁极构成;
与所述本体相连的控制设备,所述控制设备包括:
第一位置检测装置,安装于所述电机的本体相连,用于检测所述转子的位置,输出转子位置信号;
预定角度检测装置,用于检测所述转子是否相对于所述第一位置检测装置正向旋转了预定角度,输出检测信号;
换相电路装置,与所述电机本体相连,用于切换对所述线圈绕组的通电相序,以控制所述转子的旋转方向及运转;以及
控制装置,与所述第一位置检测装置、所述预定角度检测装置和所述换相电路装置相连,其中,所述控制装置被配置为在接收到反转启动指令时,根据从所述第一位置检测装置接收的转子位置信号控制所述换相电路装置给所述线圈绕组的通电相序,以使得所述转子正向旋转;并被配置为当从所述预定角度检测装置接收的检测信号指示所述转子相对于所述第一位置检测装置正向旋转了所述预定角度时,控制所述换相电路装置给所述线圈绕组的通电相序,以使得所述转子反向旋转。
根据本发明的单相直流无刷电机其本身适用性更广,尤其是能够应用于两个方向旋转的电动工具。
附图说明
下面将根据具体实施方式并且结合附图来更彻底地理解并认识本申请的上述和其它方面,在附图中:
图1a示出了根据本发明的一个实施方式的单相直流无刷电机的控制设备的方框图;
图1b是图1a中例示的单相直流无刷电机的本体和控制设备的部分结构的示意图;
图2a示出了根据本发明的另一个实施方式的单相直流无刷电机的控制设备的方框图;
图2b是图2a中例示的单相直流无刷电机的本体和控制设备的部分结构的示意图;
图3示出了根据本发明的又一个实施方式的单相直流无刷电机的控制设备的方框图;
图4示出了根据本发明的单相直流无刷电机的控制方法的流程图。
具体实施方式
下面将详细说明本发明的实施例,附图中图示了本发明的示例,附图中相似的标号始终表示相似的元件。
本发明总体上涉及单相直流无刷电机,其包括电机本体和与电机本体相连的控制设备。电机本体包括定子和转子。单相直流无刷电机在结构上会对定子的齿槽进行不对称处理,以产生不对称的气隙磁阻,从而克服电磁转矩死点。也就是说,对于单相直流无刷电机,在不通电的状态下,转子的磁路中心线偏离定子中心线(参见图1a中的AA’、BB’)一定角度。将偏离定子中心线的方向定义为电机转子的正转向,另一个方向则为电机转子的反转向。例如,参照图1a中例示的不对称结构,逆时针方向为正方向。应当理解,对于单相直流无刷电机,也可以在结构上设计为与图1a中的不对称结构相反的样式,则相应地,顺时针方向为正方向。使得电机转子正向旋转的通电相序定义为正相序(或第一相序),使得电机转子反向旋转的通电相序定义为反相序 (或第二相序)。当然,正向和反向是相对的概念,以其他适合的方式来限定电机转子的转向与通电相序的对应性也是可以的。
单相直流无刷电机基于其在结构上的不对称设计,在正转启动时能够越过电磁转矩死点,顺利进入加速状态。以下,主要描述根据本发明的技术方案,使得单相直流无刷电机能够反转启动的控制设备以及控制方法。
图1a示出了根据本发明的一个实施方式的单相直流无刷电机的控制设备的方框图。图1b是图1a中例示的单相直流无刷电机的本体和控制设备的示意图,其中,电机本体100包括转子110和定子120。定子120具有多个线圈绕组,这些线圈绕组相连成单相的结构。转子110具有1对或多对磁极,这些磁极被排列为N磁极和S磁极交替布置。在图1b中,示出了定子由4个线圈绕组相连构成的例子,但本发明不限于此,线圈绕组的个数和排列方式可以以其他的适合方式来实现。在图1b中,示出了转子由4个(2对)磁极构成的例子,但是本发明不限于此,磁极的对数可以为其他的数量。如图1a所示,根据本发明的单相直流无刷电机的控制设备200包括:第一位置检测装置210、预定角度检测装置220、换相电路装置230和控制装置240。
第一位置检测装置210与电机本体100相连,用于检测转子110的位置,输出转子位置信号。在图1b中,示出了第一位置检测装置210位于定子槽中心线AA’上,但是不限于此。第一位置检测装置210可以设置在其他的任何适当位置。预定角度检测装置220与电机本体100相连,用于检测转子110是否相对于第一位置检测装置110正向旋转了预定角度α,输出检测信号。换相电路装置230与电机本体100相连,用于切换对线圈绕组的通电相序,以控制转子110的旋转方向。控制装置240与第一位置检测装置210、预定角度检测装置220和换相电路装置230相连。控制装置240接收第一位置检测装置110输出的转子位置信号和预定角度检测装置220输出的检测信号,并根据转子位置信号和检测信号来控制换相电路装置230给线圈绕组的通电相序。
第一位置检测装置210例如是霍尔传感器,根据与其相对的是转子的N磁极还是S磁极而输出高电平信号或低电平信号。例如,N磁极对应于高电平信号,S磁极对应于低电平信号,或者反过来也是可以的。当控制装置240监测到转子位置信号的状态变化时,即高低电平的变化(例如,高电平变为低电平或低电平变为高电平),也就是与第一位置检测装置210相对的转子磁极变化时,控制装置240控制换相电路装置230切换对线圈绕组的通电相序。预定角度检测装置220例如是角度传感器,对转子110相对于第一位置检测装置110的旋转角度进行检测。当控制装置240监测到角度传感器输出的检测信号表示转子110相对于第一位置检测装置110正向旋转了预定角度α时,控制换相电路装置230切换对线圈绕组的通电相序。
以下,具体说明采用本发明的控制装置200来控制单相直流无刷电机反转的过程。控制装置240在接收到反转启动指令时,根据从第一位置检测装置210接收的转子位置信号控制换相电路装置230给线圈绕组的通电相序,以使得转子110正向旋转。控制装置240监测从预定角度检测装置220输出的检测信号。当控制装置240判定为该检测信号指示转子110相对于第一位置检测装置210正向旋转了预定角度α时,控制换相电路装置230给线圈绕组的通电相序,以使得转子110反向旋转。在控制装置240监测到第一位置检测装置210输出的转子位置信号的状态每次改变时,控制换相电路装置230切换给线圈绕组的通电相序。第一位置检测装置210输出的转子位置信号的状态改变表示与第一位置检测装置210相对的转子磁极变化。也就是说,在每次与第一位置检测装置210相对的磁极改变时,切换对线圈绕组的通电相序,以维持电机转子110始终朝着希望方向旋转。在一个实例中,控制装置240采用单片机或DSP或ARM。应当理解,控制装置240也可以采用其他适合的方式来实现,不限于此。
继续参见图1a,根据本发明的单相直流无刷电机的控制设备200还包括驱动装置250和信号处理装置260。驱动装置250与控制装置240和换相电路装置230相连,用于根据控制装置240输出的控制信号来输出相应的驱动信号,以驱动换相电路装置230。信号处理装置 260连接在第一位置检测装置210的输出端和预定角度检测装置220的输出端与控制装置240的输入端之间。信号处理装置260对第一位置检测装置210输出的转子位置信号和预定角度检测装置220输出的检测信号进行信号处理,例如滤波处理和/或整形处理,并将经处理的信号输出给控制装置240。
在一个实例中,换相电路装置230采用H桥式电路,由4个功率逻辑开关Q1、Q2、Q3和Q4两两连接成的2个半桥(Q1-Q2和Q3-Q4)组成,各半桥的输出端分别与线圈绕组相连。驱动装置250输出的驱动信号使得各功率逻辑开关Q1、Q2、Q3和Q4导通或关断,以控制线圈绕组的通电相序。例如,当对线圈绕组进行第一相序通电时,Q1和Q3导通,且Q2和Q4关断。当对线圈绕组进行第二相序通电时,Q1和Q3关断,且Q2和Q4导通。当然,通电相序与各功率逻辑开关的导通或关断的对应性也可以以其他方式来限定。在一个实例中,功率逻辑开关Q1、Q2、Q3和Q4均为功率金属场效应管。
图2a示出了根据本发明的另一个实施方式的单相直流无刷电机的控制设备的方框图,图2b是图2a中例示的单相直流无刷电机的本体和控制设备的主要部分的示意图。在该实施方式中,预定角度检测装置220实现为第二位置检测装置220’,其他方面与上述实施方式相同,这里不再重复描述。第二位置检测装置220’用于检测转子110的位置,输出转子位置信号。当转子110相对于第一位置检测装置210正向旋转了预定角度α时,第二位置检测装置220’所检测的转子位置信号的状态发生变化。
第二位置检测装置220’被设置为与第一位置检测装置210共同相对于定子120的同一线圈绕组。也就是说,第二位置检测装置220’和第一位置检测装置210都位于定子120的同一线圈的机械角度范围内。第二检测装置220’相对于第一位置检测装置210位于转子110的正转方向上。参见图2b,第一位置检测装置210相对于与其相对的线圈绕组起始点的偏离角度为β,第二位置检测装置220’与所述第一位置检测装置210之间的偏离角度为α,即第二位置检测装置220’与所述第一位置检测装置210之间的偏离角度对应于预定角度α。当 转子110正向旋转了预定角度α时,第二位置检测装置220’所检测转子位置信号的状态发生变化。控制装置240根据第二位置检测装置220’所检测到转子位置信号的状态改变控制换相电路装置230给线圈绕组的通电相序,以使得电机转子反向旋转。这里,第二位置检测装置220’与第一位置检测装置210之间的偏离角度α以及第一位置检测装置210相对于与其相对的线圈绕组起始点的偏离角度β之和小于一个线圈绕组的机械角度。一个线圈绕组的机械角度等于360°除以定子所具有的线圈绕组个数。例如,图2b示出了定子具有4个线圈绕组,则一个线圈绕组的机械角度为90°。
例如,第一位置检测装置210和第二位置检测装置220’都是霍尔传感器。当转子的位置为与霍尔传感器相对的转子磁极是N磁极时,霍尔传感器输出的转子位置信号例如是高电平;当转子的位置为与霍尔传感器相对的转子磁极是S磁极时,霍尔传感器输出的转子位置信号例如是低电平。由此可见,转子位置信号的状态变化(例如,高电平变为低电平或者低电平变为高电平)表示转子的位置变化,即,与霍尔传感器相对的转子磁极变化,例如从N磁极变为S磁极或从S磁极变为N磁极。当然,N磁极、S磁极与高电平、低电平之间的对应性也可以反过来限定。
可以理解,第一位置检测装置210和第二位置检测装置220’可以以任何其他适当的形式来实现。例如,第一位置检测装置210和第二位置检测装置220’还可以是轴角传感器或光电传感器等。
图3示出了根据本发明的又一个实施方式的单相直流无刷电机的控制设备的方框图。在该实施方式中,预定角度检测装置220实现为定时器220”,其他方面与上述实施方式相同,这里不再重复描述。定时器220”可以以软件方式来实现,也可以以硬件方式来实现,还可以以软件和硬件相结合的方式来实现。在图3中示出的定时器220”例示为控制装置240中的程序模块,但本发明不限于此。在该实施例中,在对线圈绕组进行第一相序通电的同时,也就是说,在电机转子110开始正转的同时,使能定时器220”,以对电机转子110的正转进行计数,并将计数值输出给控制装置240。在控制装置240的存储器 (未示出)中存储有预定计数值,该预定计数值与预定角度α相对应。定时器220”输出的计数值达到该预定计数值表示转子110正向旋转了预定角度α。当控制装置240判定为定时器220”输出的计数值达到预定计数值时,控制换相电路装置230给线圈绕组的通电相序,以使得电机转子反向旋转。
图4示出了根据本发明的一个实施方式的单相直流无刷电机的控制方法的流程图,其中电机本体100包括转子110和定子120。定子120具有多个线圈绕组,这些线圈绕组相连成单相的结构。转子110具有1对或多对磁极,这些磁极被排列为N磁极和S磁极交替布置。以下具体描述根据本发明的单相直流无刷电机的控制方法。
在方框S410,获取反转启动指令。这里,反转启动指令可以是由用户指示的,例如由用户施加给单相直流无刷电机所应用的电动工具。在获取启动指令之后,控制装置240设置电机的初始PWM占空比,以使得电机在启动时能够运转起来。
在方框S420,第一位置检测装210对转子110的位子进行检测,输出转子位置信号给控制装置240,控制装置240根据所接收的转子位置信号控制对线圈绕组的通电相序,以使得转子110正向旋转。
在方框S430,控制装置240判断转子110是否相对于第一位置检测装210正向旋转了预定角度α。在一个实施例中,控制装置240判断由第二位置检测装置220’所检测的转子位置信号的状态是否变化。当转子110正向旋转了预定角度α时,第二位置检测装置220’所输出的转子位置信号的状态变化。在另一个实施例中,在转子110开始正转的同时使能定时器220”,并且控制装置240判断定时器220”的计数值是否达到预定计数值。定时器220”的计数值达到预定计数值表示转子110正向旋转了预定角度α。这里,预定计数值是与预定角度α相对应的数值。
在方框S440中,如果控制装置240确定为转子110正向旋转了预定角度α,则线圈绕组的通电相序被切换,以使得电机转子反向旋转。
在方框S450中,在控制装置240每次监测到第一位置检测装210输出的转子位置信号的状态变化时,所述线圈绕组的通电相序被切换。 第一位置检测装210输出的转子位置信号的状态变化表示与第一位置检测装置210相对的转子的磁极变化,例如从S磁极变化为N磁极,或者从N磁极变化为S磁极。
根据本发明的技术方案,单相直流无刷电机在其控制设备的控制下,可以正转启动,也可以反转启动。由此,根据本发明的单相直流无刷电机能够应用于在两个方向上运转的电动工具。本发明的单相直流无刷电机及其控制设备以简单的结构和低成本大大提高了其适用范围,并且还具有寿命长、运行可靠等优点。
虽然这里参考具体的实施方式描述了本申请,但是本申请的范围并不局限于所示的细节。在不偏离本申请的基本原理的情况下,可针对这些细节做出各种修改。

Claims (15)

  1. 一种单相直流无刷电机的控制设备,其中,所述电机的本体(100)包括有转子(110)和定子(120),所述定子(120)由多个线圈绕组相连构成,所述转子(110)由1对或多对N极和S极交替排列的磁极构成,所述控制设备(200)包括:
    第一位置检测装置(210),安装于所述电机的本体(100),用于检测所述转子(110)的位置,输出转子位置信号;
    预定角度检测装置(220),用于检测所述转子(110)是否相对于所述第一位置检测装置(210)正向旋转了预定角度,输出检测信号;
    换相电路装置(230),与所述电机本体(100)相连,用于切换对所述线圈绕组的通电相序,以控制所述转子(110)的旋转方向及运转;以及
    控制装置(240),与所述第一位置检测装置(210)、所述预定角度检测装置(220)和所述换相电路装置(230)相连,其中,所述控制装置(240)被配置为在接收到反转启动指令时,根据从所述第一位置检测装置(210)接收的转子位置信号控制所述换相电路装置(230)给所述线圈绕的通电相序,以使得所述转子正向旋转;并被配置为当从所述预定角度检测装置(220)接收的检测信号指示所述转子相对于所述第一位置检测装置(210)正向旋转了所述预定角度时,控制所述换相电路装置(230)给所述线圈绕的通电相序,以使得所述转子(110)反向旋转。
  2. 根据权利要求1所述的控制设备,所述控制装置(240)还被配置为:在所述转子位置信号的状态每次改变时,控制所述换相电路装置(230)切换给所述线圈绕组的通电相序,所述转子位置信号的状态改变指示与所述第一位置检测装置(210)相对的转子(110)的磁极改变。
  3. 根据权利要求2所述的控制设备,所述预定角度检测装置(220)是第二位置检测装置(220’),用于检测所述转子(110)的位置并输出转子位置信号,所述第二检测装置(220’)相对于所述第一位置检测装置(210)位于所述转子(110)的正转方向上,所述第二检测装置(220’)与所述第一位置检测装置(210)的偏离角度对应于所述预定角度,所述转子(110)正向旋转了所述预定角度时,所述第二位置检测装置(220’)输出的转子位置信号的状态变化。
  4. 根据权利要求3所述的控制设备,所述第二位置检测装置(220’)被设置为与所述第一位置检测装置(210)一起与所述定子(120)的同一线圈绕组相对,所述第二位置检测装置(220’)与所述第一位置检测装置(210)的偏离角度以及所述第一位置检测装置(210)相对于与其相对的线圈绕组起始点的偏离角度之和小于一个线圈绕组的机械角度。
  5. 根据权利要求3或4所述控制设备,所述第一位置检测装置(210)和所述第二位置传感器(220’)分别采用霍尔传感器、轴角传感器或光电传感器中的一种。
  6. 根据权利要求1或2所述的控制设备,所述预定角度检测装置(220)是定时器(220”),所述控制装置(240)被配置为在所述转子正向旋转的同时使能所述定时器(220”),所述定时器(220”)的计数值达到预定计数值表示所述转子(110)正向旋转了预定角度。
  7. 根据权利要求1或2所述控制设备,还包括驱动装置(250),所述驱动装置(250)与所述控制装置(240)和所述换相电路装置(230)相连,用于根据所述控制装置(240)的输出而输出相应的驱动信号。
  8. 根据权利要求7所述的控制设备,所述换相电路装置(230)采用H桥式电路,由4个功率逻辑开关两两连接成的2个半桥组成, 各半桥的输出端分别与所述线圈绕组相连,所述驱动信号使得各功率逻辑开关导通或关断,以控制所述线圈绕组的通电相序。
  9. 根据权利要求1所述控制设备,还包括信号处理装置(260),与所述第一位置检测装置(210)、所述预定角度检测装置(220)和所述控制装置(240)相连,用于对所述第一位置信号和所述检测信号进行信号处理,将经处理的信号输出给所述控制装置(240)。
  10. 根据权利要求1所述的控制设备,所述控制装置(240)采用单片机或DSP或ARM。
  11. 一种单相直流无刷电机的控制方法,其中,所述电机的本体(100)包括有转子(110)和定子(120),所述定子(120)由多个线圈绕组相连构成,所述转子(110)由一对或多对N极和S极交替排列的磁极构成,所述控制方法包括:
    获取反转启动指令;
    根据由第一位置检测装置(210)所检测的转子位置信号控制对所述线圈绕的通电相序,以使得所述转子(110)正向旋转;
    判断所述转子(110)是否相对于所述第一位置检测装置(210)正向旋转了预定角度;以及
    如果判定为所述转子(110)正向旋转了所述预定角度,则所述线圈绕组的通电相序被切换,以使得所述转子(110)反向旋转。
  12. 根据权利要求11所述的控制方法,还包括:在每次检测到所述转子位置信号的状态变化时,所述线圈绕组的通电相序被切换,其中所述转子位置信号的状态变化表示与所述第一位置检测装置(210)相对的转子的磁极变化。
  13. 根据权利要求11或12所述的方法,判断所述转子(110)是否相对于所述第一位置检测装置(210)旋转了预定角度包括:判断由 第二位置检测装置(220’)所检测的转子位置信号的状态是否变化,所述第二位置检测装置(220’)所检测的转子位置信号的状态变化表示所述转子(110)正向旋转了所述预定角度。
  14. 根据权利要求11或12所述的方法,判断所述转子(110)是否相对于所述第一位置检测装置(210)旋转了所述预定角度包括:在所述转子正向旋转的同时使能定时器(220”);以及判断所述定时器(220”)的计数值是否达到预定计数值,所述定时器(220”)的计数值达到所述预定计数值表示所述转子(110)正向旋转了所述预定角度。
  15. 一种单相直流无刷电机,包括:
    本体(100),具有转子(110)和定子(120),所述定子(120)由多个线圈绕组相连构成,所述转子(110)由一对或多对N极和S极交替排列的磁极构成;
    与所述本体(100)相连的控制设备(200),所述控制设备(200)包括:
    第一位置检测装置(210),安装于所述电机的本体(100)相连,用于检测所述转子(110)的位置,输出转子位置信号;
    预定角度检测装置(220),用于检测所述转子(110)是否相对于所述第一位置检测装置(210)正向旋转了预定角度,输出检测信号;
    换相电路装置(230),与所述电机本体(100)相连,用于切换对所述线圈绕组的通电相序,以控制所述转子(110)的旋转方向及运转;以及
    控制装置(240),与所述第一位置检测装置(210)、所述预定角度检测装置(220)和所述换相电路装置(230)相连,其中,所述控制装置(240)被配置为在接收到反转启动指令时,根据从所述第一位置检测装置(210)接收的转子位置信号控制所述换相电路装置(230)给所述线圈绕组的通电相序,以使得所述转子(110)正向旋 转;并被配置为当从所述预定角度检测装置(220)接收的检测信号指示所述转子(110)相对于所述第一位置检测装置(210)正向旋转了所述预定角度时,控制所述换相电路装置(230)给所述线圈绕的通电相序,以使得所述转子(110)反向旋转。
PCT/CN2018/121420 2018-01-09 2018-12-17 单相直流无刷电机及其控制设备和控制方法 WO2019137156A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18899252.3A EP3739745A4 (en) 2018-01-09 2018-12-17 SINGLE-PHASE BRUSHLESS DC MOTOR AND CONTROL UNIT AND CONTROL PROCEDURE FOR IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810017756.5A CN110022100B (zh) 2018-01-09 2018-01-09 单相直流无刷电机及其控制设备和控制方法
CN201810017756.5 2018-01-09

Publications (1)

Publication Number Publication Date
WO2019137156A1 true WO2019137156A1 (zh) 2019-07-18

Family

ID=67187595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121420 WO2019137156A1 (zh) 2018-01-09 2018-12-17 单相直流无刷电机及其控制设备和控制方法

Country Status (3)

Country Link
EP (1) EP3739745A4 (zh)
CN (1) CN110022100B (zh)
WO (1) WO2019137156A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996014A (zh) * 2023-03-22 2023-04-21 季华实验室 电机相序检测及控制方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111342713A (zh) * 2020-03-03 2020-06-26 浙江大学 一种单相无刷直流电机双向起动的控制方法
CN115213923B (zh) * 2022-09-20 2023-01-06 深圳市欢创科技有限公司 旋转座、测距装置及移动机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201215936Y (zh) * 2008-06-11 2009-04-01 徐享渊 单相无刷正反转控制电路装置
CN101635549A (zh) * 2008-07-25 2010-01-27 松下电工株式会社 单相无刷直流电动机驱动电路
CN102412771A (zh) * 2010-09-21 2012-04-11 台达电子工业股份有限公司 单相直流无刷马达控制器及控制其马达转速及转向的方法
CN103563239A (zh) * 2011-03-25 2014-02-05 泰克尼莱克有限公司 适于磁通量切换机的设计改进
WO2017077574A1 (ja) * 2015-11-02 2017-05-11 三菱電機株式会社 単相交流モータの制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008009413U1 (de) * 2008-07-12 2008-10-02 Hsu, Hsia-Yuan, Daya Drehrichtungs-Steuerschaltung für einen einphasigen bürstenlosen Motor
TWI418136B (zh) * 2010-09-21 2013-12-01 Delta Electronics Inc 單相直流無刷馬達控制器以及控制單相直流無刷馬達轉速及轉向之方法
JP5726572B2 (ja) * 2011-02-28 2015-06-03 ミネベア株式会社 モータ駆動回路
JP5835917B2 (ja) * 2011-03-22 2015-12-24 ローム株式会社 モータ駆動回路、方法およびそれを用いた冷却装置、電子機器
US8786233B2 (en) * 2011-04-27 2014-07-22 Medtronic Xomed, Inc. Electric ratchet for a powered screwdriver
CN105186934A (zh) * 2014-12-23 2015-12-23 西南交通大学 单相无刷直流电机反转及反转启动控制电路
CN106301096B (zh) * 2015-05-11 2018-09-25 德信科技股份有限公司 用于单相无刷直流风扇电机的正反转驱动控制电路
US9748878B1 (en) * 2015-08-18 2017-08-29 Marvell International, Ltd. Adaptive brake timing for a brushless motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201215936Y (zh) * 2008-06-11 2009-04-01 徐享渊 单相无刷正反转控制电路装置
CN101635549A (zh) * 2008-07-25 2010-01-27 松下电工株式会社 单相无刷直流电动机驱动电路
CN102412771A (zh) * 2010-09-21 2012-04-11 台达电子工业股份有限公司 单相直流无刷马达控制器及控制其马达转速及转向的方法
CN103563239A (zh) * 2011-03-25 2014-02-05 泰克尼莱克有限公司 适于磁通量切换机的设计改进
WO2017077574A1 (ja) * 2015-11-02 2017-05-11 三菱電機株式会社 単相交流モータの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3739745A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996014A (zh) * 2023-03-22 2023-04-21 季华实验室 电机相序检测及控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110022100B (zh) 2022-04-22
CN110022100A (zh) 2019-07-16
EP3739745A1 (en) 2020-11-18
EP3739745A4 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US7514887B2 (en) Electrical machine and method of controlling the same
US10658956B2 (en) Process of operating a hybrid controller for brushless DC motor
JP4115423B2 (ja) ブラシレス直流モータの転流制御方法、およびその方法を実施する転流制御装置
WO2019137156A1 (zh) 单相直流无刷电机及其控制设备和控制方法
JP2013179833A (ja) 電動圧縮機および家庭用電気機器
JP4633433B2 (ja) ブラシレス直流モータの転流方法
JP2020513720A (ja) ギアモータ、対応するワイパーシステム及び対応する制御方法
EP1219013A1 (en) State advance controller commutation loop for brushless d.c. motors
JP2017127182A (ja) モータ制御システム、制御方法、及び電気掃除機
TWI459712B (zh) 晶片,電腦可讀記憶媒體,電動馬達及用於起始一馬達中的一轉子的旋轉的方法
JPH10337073A (ja) 3相srモータの起動方法
TWI581559B (zh) 具有一個霍爾感測器運轉的系統及其方法
US20050135794A1 (en) Method and system for negative torque reduction in a brushless DC motor
CN109463038B (zh) 电动工具及其无刷电机的驱动方法
US20180219500A1 (en) 2-phase brushless ac motor with embedded electronic control
WO2018037830A1 (ja) モータ制御装置
JP5326948B2 (ja) インバータ制御装置と電動圧縮機および電気機器
JP2005312145A (ja) ブラシレスモータの駆動装置
KR102558382B1 (ko) 모터 제어 장치 및 방법
CA2544557C (en) Electrical machine and method of controlling the same
WO2017114485A1 (zh) 无刷电机的控制方法
JP2004007872A (ja) ブラシレス・センサレスdcモータの起動方法
JP4312115B2 (ja) モータ駆動装置
JP3105557B2 (ja) モータ装置
JP2005304255A (ja) モータ駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018899252

Country of ref document: EP

Effective date: 20200810