WO2019134492A1 - 空调用循环系统、空调及空调控制方法 - Google Patents

空调用循环系统、空调及空调控制方法 Download PDF

Info

Publication number
WO2019134492A1
WO2019134492A1 PCT/CN2018/121183 CN2018121183W WO2019134492A1 WO 2019134492 A1 WO2019134492 A1 WO 2019134492A1 CN 2018121183 W CN2018121183 W CN 2018121183W WO 2019134492 A1 WO2019134492 A1 WO 2019134492A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heat exchanger
opening
branch
refrigerant
Prior art date
Application number
PCT/CN2018/121183
Other languages
English (en)
French (fr)
Inventor
张龙爱
王传华
贺秋
孙思
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US16/960,075 priority Critical patent/US11543162B2/en
Priority to ES18898300T priority patent/ES2930362T3/es
Priority to EP18898300.1A priority patent/EP3736513B1/en
Publication of WO2019134492A1 publication Critical patent/WO2019134492A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present disclosure relates to the field of air conditioning, and in particular to a circulation system for an air conditioner, an air conditioner, and an air conditioner control method.
  • a related air conditioning system includes an indoor heat exchanger, an outdoor heat exchanger, and a compressor, and the refrigerant circulates in a circuit formed by the above components.
  • One of the indoor heat exchanger and the outdoor heat exchanger serves as an evaporator and the other serves as a condenser.
  • the high temperature and high pressure refrigerant coming out of the compressor enters the condenser and condenses into a liquid, and then flows to the evaporator to evaporate into a low temperature and low pressure gas, and finally returns to the compressor.
  • the inventors have recognized that when the compressor is switched to the defrosting mode, it is switched by the four-way valve, and the compressor is liable to generate a liquid hit at the moment of switching, which may damage the compressor.
  • Embodiments of the present disclosure provide a circulation system for an air conditioner, an air conditioner, and an air conditioner control method for improving the oil return problem of the compressor.
  • the present disclosure provides a circulation system for an air conditioner, comprising:
  • gas-liquid separation assembly forming a circuit with the compressor, the first heat exchanger, and the second heat exchanger;
  • the gas-liquid separation assembly includes two or more gas-liquid separators, each of the gas A liquid separator is connected in series, and the gas-liquid separation unit is used for gas-liquid separation of the refrigerant.
  • the gas-liquid separation assembly comprises:
  • a first gas-liquid separator comprising a heat exchange branch and a gas-liquid separation branch
  • the refrigerant inlet of the heat exchange branch being selectively connectable to the first opening or the second heat exchanger of the first heat exchanger a second opening communication
  • a refrigerant outlet of the heat exchange branch is selectively in communication with a second opening of the second heat exchanger or a first opening of the first heat exchanger
  • the gas-liquid separation branch The refrigerant inlet is selectively in communication with the first opening of the second heat exchanger or the second opening of the first heat exchanger
  • the refrigerant outlet of the gas-liquid separation branch is in communication with the refrigerant inlet of the compressor .
  • the gas-liquid separation component further comprises:
  • a refrigerant outlet of the gas-liquid separation branch is in communication with a refrigerant inlet of the second gas-liquid separator, a refrigerant outlet of the second gas-liquid separator, and a refrigerant inlet of the compressor Connected.
  • the air conditioning circulation system further includes:
  • An oil return branch the oil return branch inlet of the oil return branch is in communication with an oil return hole of the first heat exchanger, and the oil return hole is located corresponding to the oil in the first heat exchanger
  • the height of the oil return branch outlet of the oil return branch communicates with the refrigerant inlet of the second gas-liquid separator and/or with the refrigerant outlet of the gas-liquid separation branch.
  • the oil return branch is provided with a control valve for controlling the return or bypass of the oil return branch.
  • a refrigerant outlet of the compressor is in communication with a second opening of the first heat exchanger, and a first opening of the first heat exchanger is in communication with a refrigerant inlet of the heat exchange branch, a refrigerant outlet of the heat exchange branch is in communication with a second opening of the second heat exchanger, and a first opening of the second heat exchanger is in communication with a refrigerant inlet of the gas-liquid separation branch, the gas The refrigerant outlet of the liquid separation branch is in communication with the refrigerant inlet of the compressor.
  • a refrigerant outlet of the compressor is in communication with a first opening of the second heat exchanger, and a second opening of the second heat exchanger is in communication with a refrigerant inlet of the heat exchange branch, a refrigerant outlet of the heat exchange branch is in communication with the first opening of the first heat exchanger, and a second opening of the first heat exchanger is in communication with a refrigerant inlet of the gas-liquid separation branch, the gas-liquid separation
  • the refrigerant outlet of the branch is in communication with the refrigerant inlet of the compressor.
  • the air conditioning circulation system further includes a four-way valve, the first opening of the four-way valve is in communication with a refrigerant outlet of the compressor, and the second opening of the four-way valve is opposite to the first a second opening of the heat exchanger is in communication with a third opening of the four-way valve communicating with a refrigerant inlet of the gas-liquid separation branch, a fourth opening of the four-way valve and a first of the second heat exchanger Opening communication;
  • first opening of the four-way valve is in communication with the second opening of the four-way valve
  • third opening of the four-way valve is in communication with the fourth opening of the four-way valve
  • four-way A first opening of the valve is in communication with a fourth opening of the four-way valve
  • a second opening of the four-way valve is in communication with a third opening of the four-way valve.
  • the first heat exchanger comprises a shell and tube heat exchanger
  • the second heat exchanger comprises a finned heat exchanger
  • a first filter and a first one-way valve are disposed between the refrigerant outlet of the heat exchange branch and the first opening of the first heat exchanger.
  • a second filter and a second one-way valve are provided between the second opening of the second heat exchanger and the refrigerant inlet of the heat exchange branch.
  • a third filter is disposed between the first one-way valve and the first opening of the first heat exchanger.
  • a fourth filter is disposed between the second opening of the first heat exchanger and the refrigerant inlet of the gas-liquid separation branch, and the fourth filter is also located in the first change Between the second opening of the heat exchanger and the refrigerant outlet of the compressor.
  • the first filter and the fourth one-way valve are disposed between a refrigerant outlet of the heat exchange branch and a second opening of the second heat exchanger.
  • an electronic expansion valve is further disposed between the first filter and the fourth one-way valve, the electronic expansion valve being further in the first filter and the first one-way valve between.
  • the third filter and the third one-way valve are disposed between a first opening of the first heat exchanger and a refrigerant inlet of the heat exchange branch.
  • the air conditioning circulation system includes a first mode of operation and/or a second mode of operation.
  • the first mode of operation comprises a heating mode.
  • the second mode of operation comprises a cooling mode and a defrost mode.
  • the air conditioning circulation system further includes:
  • the oil return branch inlet of the oil return branch is in communication with the oil return hole of the first heat exchanger, and the oil return branch outlet of the oil return branch is connected to a preset position
  • the preset position is located on a flow path between a refrigerant outlet of the gas-liquid separator upstream of the refrigerant flow direction and a refrigerant inlet of the gas-liquid separator located at the most downstream of the refrigerant flow direction in the gas-liquid separation module.
  • Another embodiment of the present disclosure provides an air conditioner, including the air conditioning circulation system provided by any one of the technical solutions of the present disclosure.
  • Another embodiment of the present disclosure provides an air conditioning control method, including the following steps:
  • the control refrigerant flows according to the following path: the refrigerant flowing out of the compressor flows to the first heat exchanger, the heat exchange branch of the first gas-liquid separator, the second heat exchanger, and the gas-liquid separation branch of the first gas-liquid separator The road, the second gas-liquid separator, then flows back to the compressor.
  • a further embodiment of the present disclosure provides a method for controlling an air conditioner, including the following steps:
  • the control refrigerant flows according to the following path: the refrigerant flowing out of the compressor flows to the second heat exchanger, the heat exchange branch of the first gas-liquid separator, the first heat exchanger, and the gas-liquid separation branch of the first gas-liquid separator The road, the second gas-liquid separator, then flows back to the compressor.
  • the air circulation system for air conditioning provided by the above technical solution includes two or more gas-liquid separators connected in series, and each gas-liquid separator separates the gas and liquid of the refrigerant, thereby reducing the belt when the compressor is returned to the oil.
  • the liquid problem even when the air conditioning circulation system is switched to the defrosting mode, effectively reduces or even avoids the oil return problem of the compressor.
  • FIG. 1 is a schematic diagram of the principle of a circulation system for an air conditioner according to some embodiments of the present disclosure
  • FIG. 2 is a wetting diagram of a circulation system for an air conditioner according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram showing the principle of a first working mode of a circulation system for an air conditioner according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram of the principle of the second working mode of the circulation system for an air conditioner according to some embodiments of the present disclosure.
  • the embodiment provides a circulation system for an air conditioner, including a compressor 1, a first heat exchanger 4, a second heat exchanger 14, and a gas-liquid separation assembly.
  • the gas-liquid separation unit forms a circuit with the compressor 1, the first heat exchanger 4, and the second heat exchanger 14.
  • the gas-liquid separation module comprises two or more gas-liquid separators, each of which is connected in series, and the gas-liquid separation module is used for gas-liquid separation of the refrigerant.
  • Each heat exchanger is, for example, a fin heat exchanger or a full liquid shell and tube heat exchanger.
  • the plurality of gas-liquid separators included in the gas-liquid separation module have the same structure or are different.
  • the series connection of the gas-liquid separator means that the refrigerant flows through the respective gas-liquid separators, so that the refrigerant passes through multiple gas-liquid separations.
  • other components are provided between the gas-liquid separators connected in series.
  • the gas-liquid separation module includes two gas-liquid separators, other components are disposed between the two gas-liquid separators such that the refrigerant flows through one of the gas-liquid separators, other components, and flows to the other gas. Liquid separator.
  • the gas-liquid separation module includes three or more gas-liquid separators, there are other components disposed between the two gas-liquid separators so that the refrigerant flows through one of the gas-liquid separators, other components, and flows to another A gas-liquid separator.
  • the remaining gas-liquid separators are, for example, adjacent or spaced apart from either of the two.
  • the gas-liquid separation assembly includes a first gas-liquid separator 9 of the following structure.
  • the first gas-liquid separator 9 includes a heat exchange branch 91 and a gas-liquid separation branch 92.
  • the refrigerant inlet 911 of the heat exchange branch 91 is selectively in communication with the first opening 41 of the first heat exchanger 4 or the second opening 142 of the second heat exchanger 14.
  • the refrigerant outlet 912 of the heat exchange branch 91 is selectively in communication with the second opening 142 of the second heat exchanger 14 or the first opening 41 of the first heat exchanger 4.
  • the refrigerant inlet 921 of the gas-liquid separation branch 92 is selectively in communication with the first opening 141 of the second heat exchanger 14 or the second opening 42 of the first heat exchanger 4.
  • the refrigerant outlet 922 of the gas-liquid separation branch 92 communicates with the refrigerant inlet 12 of the compressor 1.
  • the first gas-liquid separator 9 having a heat exchange function is adopted, and the high-temperature liquid refrigerant from the condenser and the low-temperature gaseous refrigerant from the evaporator are heat-exchanged in the first gas-liquid separator 9 to make the high temperature.
  • the temperature of the liquid refrigerant is lowered to increase the degree of subcooling, and at the same time, the temperature of the low-temperature gaseous refrigerant is raised to increase the degree of superheat, thereby improving the capacity of the air conditioner.
  • This exchange enables the heat exchange capability of the air conditioning circulatory system to be improved.
  • the above air conditioning circulation system can be operated in the first operation mode and the second operation mode.
  • the first mode of operation includes a heating mode.
  • the air conditioning circulation system is in the heating mode, the refrigerant circulation diagram is shown in Figure 3.
  • the second mode of operation includes a cooling mode and a defrost mode.
  • the refrigerant circulation diagram is shown in Figure 4.
  • the refrigerant cycle diagram is basically the same as the cooling mode.
  • the above-described air conditioning circulation system may be in a communication state in which the refrigerant outlet 11 of the compressor 1 communicates with the second opening 42 of the first heat exchanger 4, and the first opening 41 of the first heat exchanger 4 and the heat exchange branch 91
  • the refrigerant inlet 911 is connected
  • the refrigerant outlet 912 of the heat exchange branch 91 communicates with the second opening 142 of the second heat exchanger 14
  • the first opening 141 of the second heat exchanger 14 and the refrigerant inlet of the gas-liquid separation branch 92 921 is connected
  • the refrigerant outlet 922 of the gas-liquid separation branch 92 communicates with the refrigerant inlet 12 of the compressor 1.
  • the communication state is in the first operation mode for the air conditioning circulation system.
  • the refrigerant flows according to the following path: the refrigerant from the compressor 1 flows to the first heat exchanger 4, and the heat exchange branch of the first gas-liquid separator 9. 91.
  • the above-described air conditioning circulation system may also be in a communication state in which the refrigerant outlet 11 of the compressor 1 communicates with the first opening 141 of the second heat exchanger 14, and the second opening 142 of the second heat exchanger 14 and the heat exchange branch
  • the refrigerant inlet 911 of 91 is in communication
  • the refrigerant outlet 912 of the heat exchange branch 91 communicates with the first opening 41 of the first heat exchanger 4, and the second opening 42 of the first heat exchanger 4 and the refrigerant of the gas-liquid separation branch 92
  • the inlet 921 is in communication
  • the refrigerant outlet 922 of the gas-liquid separation branch 92 communicates with the refrigerant inlet 12 of the compressor 1.
  • the communication state is in the second operation mode for the air conditioning circulation system.
  • the refrigerant flows according to the following path: the refrigerant flow from the compressor 1 flows to the second heat exchanger 14, and the heat exchange branch of the first gas-liquid separator 9. 91.
  • the air conditioning circulation system further includes a second gas-liquid separator 15; the refrigerant outlet 922 of the gas-liquid separation branch 92 communicates with the refrigerant inlet 151 of the second gas-liquid separator 15, and the second The refrigerant outlet 152 of the gas-liquid separator 15 communicates with the refrigerant inlet 12 of the compressor 1.
  • the refrigerant flows according to the following path: the refrigerant flowing out of the compressor 1 flows to the first heat exchanger 4, the heat exchange branch 91 of the first gas-liquid separator 9, and the second exchange The heat exchanger 14, the gas-liquid separation branch 92 of the first gas-liquid separator 9, and the second gas-liquid separator 15 are then returned to the compressor 1.
  • the refrigerant flows according to the following path: the refrigerant flowing out of the compressor 1 flows to the second heat exchanger 14, the heat exchange branch 91 of the first gas-liquid separator 9, and the first heat exchanger 4.
  • the gas-liquid separation branch 92 of the first gas-liquid separator 9 and the second gas-liquid separator 15 are then returned to the compressor 1.
  • the second gas-liquid separator 15 is provided.
  • the liquid refrigerant from the first heat exchanger 4 continuously passes through the first gas-liquid separator 9
  • the gas-liquid separation branch 92 and the second gas-liquid separator 15 are separated by two gas-liquid separations, the separation effect is improved, the refrigerant liquid volume is greatly reduced, and the problem of the refrigerant flowing back to the compressor 1 is effectively improved.
  • the high temperature refrigerant in the heat exchange branch 91 exchanges heat with the low temperature refrigerant in the gas-liquid separation branch 92. Specifically, the high-temperature liquid refrigerant from the condenser and the low-temperature gaseous refrigerant from the evaporator exchange heat in the gas-liquid separator, and the temperature of the high-temperature liquid refrigerant is lowered to increase the degree of subcooling (point 7-point 3 in Fig. 2). The temperature of the low-temperature gaseous refrigerant rises, and the superheat degree is raised (points 1 to 5 in Figure 2). The cooling capacity is increased from point 4 to point 1 in point 2 to point 8 to point 5, and point 8 to point 4 and point are added. 1-point 5 and two paragraphs.
  • the air conditioning circulatory system further includes an oil return branch 18.
  • the oil return branch inlet 181 of the oil return branch communicates with the oil return hole 43 of the first heat exchanger 4, and the oil return branch outlet 182 of the oil return branch 18 is connected to a preset position.
  • the preset position is located on a flow path between a refrigerant outlet of the gas-liquid separator located upstream of the refrigerant flow direction and a refrigerant inlet of the gas-liquid separator located at the most downstream of the refrigerant flow direction in the gas-liquid separation module.
  • the oil return branch 18 draws out the oil in the first heat exchanger 4 by the pressure loss formed by the respective gas-liquid separators upstream of the connection position of the return branch branch outlet 182.
  • the oil return branch 18 draws the oil into the second gas-liquid separator 15 by the pressure loss formed by the gas-liquid separation branch 92.
  • the oil return branch 18 is further included, and the oil return branch inlet 181 of the oil return branch 18 communicates with the oil return hole 43 of the first heat exchanger 4, and the oil return hole 43 is located at the first exchange.
  • the oil return branch outlet 182 of the oil return branch 18 communicates with the refrigerant inlet 151 of the second gas-liquid separator 15, or the oil return branch outlet 182 of the oil return branch 18 and the refrigerant outlet of the gas-liquid separation branch 92 922 connected.
  • the oil returning branch 18 is turned on, that is, the oil accumulated in the first heat exchanger 4 is sucked into the second gas-liquid separator 15 through the oil returning branch 18 at this time. in.
  • the oil return branch 18 is provided with a control valve for controlling the oil return branch 18 to be turned on or off.
  • a control valve for controlling the oil return branch 18 to be turned on or off.
  • the air conditioning circulation system further includes a four-way valve 2.
  • the first opening 21 of the four-way valve 2 is in communication with the refrigerant outlet 11 of the compressor 1
  • the second opening 22 of the four-way valve 2 is in communication with the second opening 42 of the first heat exchanger 4
  • the third opening of the four-way valve 2 23 is in communication with the refrigerant inlet 921 of the gas-liquid separation branch 92
  • the fourth opening 24 of the four-way valve 2 is in communication with the first opening 141 of the second heat exchanger 14.
  • the four-way valve 2 serves as a switching valve, and its four openings are in the following two alternative communication states.
  • the first opening 21 of the four-way valve 2 communicates with the second opening 22 of the four-way valve 2, and the third opening 23 of the four-way valve 2 communicates with the fourth opening 24 of the four-way valve 2. This applies to the air conditioning circulatory system in the first mode of operation.
  • the first opening 21 of the four-way valve 2 communicates with the fourth opening 24 of the four-way valve 2
  • the second opening 22 of the four-way valve 2 communicates with the third opening 23 of the four-way valve 2. This applies to the air conditioning circulatory system in the second mode of operation.
  • the refrigerant flows according to the following path: the refrigerant flowing out of the compressor 1 flows to the four-way valve 2, the first heat exchanger 4, and the first gas-liquid separator 9
  • the refrigerant flows according to the following path: the refrigerant from the compressor 1 flows to the four-way valve 2, the second heat exchanger 14, and the first gas-liquid separator 9
  • the first heat exchanger 4 includes a shell and tube heat exchanger, and/or the second heat exchanger 14 includes a finned heat exchanger.
  • the full-liquid shell-and-tube heat exchanger has the characteristics of large refrigeration capacity and high energy efficiency ratio. Therefore, it is preferable to use the shell-and-tube heat exchanger as the first heat exchanger 4 as the indoor heat exchanger.
  • the first heat exchanger 4 utilizes the advantages of large refrigeration capacity and high energy efficiency ratio
  • the separately provided oil return branch 18 utilizes the pressure difference formed by the first gas-liquid separator 9 itself.
  • the lubricating oil inside the heat exchanger 4 is sucked and sent to the second gas-liquid separator 15, which solves the problem of a large amount of oil accumulation in the shell tube, and improves the heat transfer effect in the shell tube, and ensures that the compressor 1 has sufficient lubricating oil. .
  • a first filter 10 and a first check valve 8 are provided between the refrigerant outlet 912 of the heat exchange branch 91 of the first gas-liquid separator 9 and the first opening 41 of the first heat exchanger 4.
  • the first check valve 8 When the air conditioning circulation system is in the second operation mode, the first check valve 8 is turned on.
  • the first check valve 8 is arranged to quickly control whether the branch of the first check valve 8 is turned on in each working mode.
  • a second filter 101 and a second check valve 7 are provided between the second opening 142 of the second heat exchanger 14 and the refrigerant inlet 911 of the heat exchange branch 91 of the first gas-liquid separator 9.
  • the second check valve 7 When the air conditioning circulation system is in the second operation mode, the second check valve 7 is turned on. By providing the second check valve 7, it is possible to quickly control whether or not the branch of the second check valve 7 is turned on in each operation mode.
  • a third filter 5 is provided between the first one-way valve 8 and the first opening 41 of the first heat exchanger 4.
  • the third filter 5 in the first mode of operation, is used to filter impurities in the refrigerant flowing out of the first heat exchanger 4.
  • the third filter 5 in the second mode of operation, is used to filter impurities in the refrigerant flowing out of the gas-liquid separation branch 92 of the first gas-liquid separator 9, so as to prevent impurities from flowing into the first heat exchanger 4. .
  • a fourth filter 3 is disposed between the second opening 42 of the first heat exchanger 4 and the refrigerant inlet 921 of the gas-liquid separation branch 92.
  • the fourth filter 3 is also located between the second opening 42 of the first heat exchanger 4 and the refrigerant outlet 11 of the compressor 1.
  • the fourth filter 3 filters impurities flowing out of the compressor 1 into the refrigerant of the first heat exchanger 4 to prevent impurities from flowing into the first heat exchanger 4.
  • the fourth filter 3 filters the refrigerant flowing from the first heat exchanger 4 into the refrigerant inlet 921 of the gas-liquid separation branch 92 of the first gas-liquid separator 9. Impurities to prevent impurities from flowing into the four-way valve 2.
  • a first filter 10 and a fourth check valve 13 are disposed between the refrigerant outlet 912 of the heat exchange branch 91 and the second opening 142 of the second heat exchanger 14.
  • the fourth one-way valve 13 is turned on.
  • an electronic expansion valve 102 is further disposed between the first filter 10 and the fourth check valve 13, and the electronic expansion valve 102 is also between the first filter 10 and the first check valve 8.
  • the electronic expansion valve 102 is provided to achieve throttling.
  • a third filter 5 and a third check valve 6 are provided between the first opening 41 of the first heat exchanger 4 and the refrigerant inlet 911 of the heat exchange branch 91.
  • the third one-way valve 6 is turned on.
  • the third one-way valve 6 is turned on.
  • the third check valve 6 does not operate.
  • the refrigerant flows in the shell side of the first heat exchanger 4, absorbing the heat of the brine in the tube process and continuously evaporating.
  • the gas-liquid separation enters the inlet of the compressor 1 to complete the gas-liquid separation.
  • An oil return hole 43 is opened in the vicinity of the liquid level of the oil in the first heat exchanger 4, and the lubricating oil with the liquid refrigerant is introduced into the refrigerant inlet 151 of the second gas-liquid separator 15 by the tube 18 by the pressure difference.
  • the lubricating oil is sucked into the refrigerant inlet 12 of the compressor 1, and the compressor 1 is returned to the oil.
  • the high-pressure gas compressed by the compressor 1 is condensed into a high-temperature liquid refrigerant through the refrigerant outlet 11 of the compressor 1 into the second heat exchanger 14 as a condenser, and the discharged heat is taken away.
  • the condensed liquid passes through the second filter 101 to remove impurities, it enters the first gas-liquid separator 9 through the second check valve 7 and the low-temperature gaseous refrigerant from the first heat exchanger 4 in the first gas-liquid separator 9
  • Heat exchange is carried out to reduce the temperature of the high-temperature liquid refrigerant to increase the degree of subcooling, and at the same time increase the temperature of the low-temperature gaseous refrigerant to increase the degree of superheat.
  • the high-temperature liquid refrigerant after the heat exchange passes through the first gas-liquid separator 9 and then passes through the first filter 10, and then is throttled by the electronic expansion valve 102 to become a low-pressure liquid refrigerant, and then passes through the third check valve 8, and
  • the three filters 5 enter the first heat exchanger 4 to complete the circulation of the refrigerant.
  • the pressure difference formed by the pressure loss of the first gas-liquid separator 9 returns the oil in the evaporator to the inlet of the second gas-liquid separator 15, and the oil and the refrigerant pass through the second gas.
  • the liquid separator 15 is gas-liquid separated, which not only returns the oil in the evaporator to the compressor 1, but also avoids the liquid attack generated during the oil return process, and reduces the oil separator in the full-liquid shell and tube system. .
  • the first heat exchanger 4 acts as an evaporator during cooling, the temperature of the refrigerant in the evaporator is very low, the viscosity of the lubricating oil entering the evaporator is large, and it is not easily brought back to the compressor 1 by the refrigerant, and the lubricating oil accumulated in the evaporator One will affect the heat exchange efficiency, and one will cause damage to the compressor 1 due to lack of oil due to the inability to return oil.
  • two gas-liquid separators are provided, and each gas-liquid separator has a pressure loss, and an oil return hole 43 is opened near the liquid level of the evaporator oil, and the pressure loss is formed by the first gas-liquid separator 9.
  • the principle of defrosting cycle is basically the same as that of refrigeration cycle.
  • the above technical solution uses two gas-liquid separators, and the liquid-containing refrigerant from the evaporator enters from the upper part, depending on the decrease of the air flow speed and the change of direction, the liquid or oil carried by the low-pressure gaseous refrigerant.
  • the droplet separation is carried out through the oil return hole 43, and the gaseous refrigerant and the carried lubricating oil are sucked into the compressor 1.
  • two-stage gas-liquid separation is carried out, which greatly reduces the possibility of liquid hammer and prolongs the service life of the compressor 1 and the reliability of the unit.
  • the refrigerant flows in the second heat exchanger 14 as an evaporator, absorbing external heat and evaporating continuously.
  • the first gas-liquid separator 9 and the second gas-liquid separator 15 are connected in series, and the refrigerant passes through the first gas-liquid separator 9 and the second gas-liquid separation.
  • the gas 15 is separated into the refrigerant inlet 12 of the compressor 1 to complete the gas-liquid separation.
  • the high-pressure gas compressed by the compressor 1 is condensed into a high-temperature liquid refrigerant through the high-pressure exhaust pipe into the first heat exchanger 4 as a condenser, and the released heat is carried away by the brine.
  • the condensed liquid passes through the third filter 5 to remove the impurities, it enters the first gas-liquid separator 9 through the third check valve 6, and the low-temperature liquid refrigerant of the second opening of the second heat exchanger 14 as the evaporator is in the first
  • the heat exchange in the gas-liquid separator 9 reduces the temperature of the high-temperature liquid refrigerant (increasing the degree of subcooling) and simultaneously raises the temperature of the low-temperature gaseous refrigerant (increased superheat).
  • the high-temperature liquid refrigerant exits the gas-liquid separator and then passes through the first filter 10 to be throttled by the electronic expansion valve 102, becomes a low-pressure liquid refrigerant, and then passes through the third check valve 6 to enter the second heat exchanger. 14. Complete the circulation of the refrigerant.
  • the high-temperature liquid refrigerant flowing out of the condenser first passes through the first gas-liquid separator 9, and exchanges heat with the low-temperature gaseous refrigerant from the evaporator in the first gas-liquid separator 9, reducing the temperature of the liquid refrigerant, and increasing Cooling, increasing the temperature of the gas refrigerant, increasing the degree of superheat, thereby increasing the capacity. It can be seen that it uses two gas-liquid separators to solve the four problems of oil recovery, liquid carrying capacity, heat transfer efficiency of the unit.
  • Another embodiment of the present disclosure provides an air conditioner, including the air conditioning circulation system provided by any one of the technical solutions of the present disclosure.
  • the embodiment of the present disclosure further provides an air conditioning control method, which is implemented by using an air conditioner provided by any of the above technical solutions.
  • the method corresponds to a first working mode, which includes the following steps:
  • the control refrigerant flows according to the following path: the refrigerant from the compressor 1 flows to the first heat exchanger 4, the heat exchange branch 91 of the first gas-liquid separator 9, the second heat exchanger 14, and the first gas-liquid separator 9.
  • the embodiment of the present disclosure further provides an air conditioning control method, which is implemented by using an air conditioner provided by the above technical solution.
  • the method corresponds to a second mode of operation of the air conditioner, and includes the following steps:
  • the control refrigerant flows according to the following path: the refrigerant from the compressor 1 flows to the second heat exchanger 14, the heat exchange branch 91 of the first gas-liquid separator 9, the first heat exchanger 4, and the first gas-liquid separator 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Air Conditioning (AREA)

Abstract

一种空调用循环系统、空调及空调控制方法,该空调用循环系统包括压缩机(1)、第一换热器(4)、第二换热器(14)以及气液分离组件,气液分离组件与压缩机(1)、第一换热器(4)、第二换热器(14)形成回路;气液分离组件包括两个或多个气液分离器,各气液分离器串联,气液分离组件用于对冷媒气液分离。该技术方案可对流回到压缩机(1)的冷媒进行两次甚至更多次的气液分离,能有效解决压缩机(1)回油带液问题。

Description

空调用循环系统、空调及空调控制方法
本申请是以CN申请号为201810010469.1,申请日为2018年1月5日的申请为基 础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空气调节领域,具体涉及一种空调用循环系统、空调及空调控制方法。
背景技术
相关的空调系统,包括室内换热器、室外换热器和压缩机,冷媒在上述各部件形成的回路中循环。室内换热器和室外换热器其中一个作为蒸发器,另一个作为冷凝器。从压缩机出来的高温高压冷媒进入冷凝器中冷凝成液体,而后流到蒸发器中蒸发成低温低压气体,最后回到压缩机中。
发明人认识到:压缩机在切换至化霜模式时,通过四通阀切换,压缩机在切换的一瞬间容易产生液击,这会损坏压缩机。
发明内容
本公开实施例提出一种空调用循环系统、空调及空调控制方法,用以改善压缩机的回油带液问题。
本公开提供了一种空调用循环系统,包括:
压缩机;
第一换热器;
第二换热器;以及
气液分离组件,与所述压缩机、所述第一换热器、所述第二换热器形成回路;所述气液分离组件包括两个或多个气液分离器,各所述气液分离器串联,所述气液分离组件用于对冷媒气液分离。
在一些实施例中,所述气液分离组件包括:
第一气液分离器,包括换热支路和气液分离支路,所述换热支路的冷媒入口可选择地与所述第一换热器的第一开口或第二换热器的第二开口连通,所述换热支路的冷媒出口可选择地与所述第二换热器的第二开口或所述第一换热器的第一开口连通,所 述气液分离支路的冷媒入口可选择地与所述第二换热器的第一开口或所述第一换热器的第二开口连通,所述气液分离支路的冷媒出口与所述压缩机的冷媒入口连通。
在一些实施例中,所述气液分离组件还包括:
第二气液分离器;所述气液分离支路的冷媒出口与所述第二气液分离器的冷媒入口连通,所述第二气液分离器的冷媒出口与所述压缩机的冷媒入口连通。
在一些实施例中,空调用循环系统还包括:
回油支路,所述回油支路的回油支路入口与所述第一换热器的回油孔连通,所述回油孔位于所述第一换热器内油液所对应的高度,所述回油支路的回油支路出口与所述第二气液分离器的冷媒入口连通和/或与所述气液分离支路的冷媒出口连通。
在一些实施例中,所述回油支路设有用于控制该回油支路导通或截止的控制阀。
在一些实施例中,所述压缩机的冷媒出口与所述第一换热器的第二开口连通,所述第一换热器的第一开口与所述换热支路的冷媒入口连通,所述换热支路的冷媒出口与所述第二换热器的第二开口连通,所述第二换热器的第一开口与所述气液分离支路的冷媒入口连通,所述气液分离支路的冷媒出口与所述压缩机的冷媒入口连通。
在一些实施例中,所述压缩机的冷媒出口与所述第二换热器的第一开口连通,第二换热器的第二开口与所述换热支路的冷媒入口连通,所述换热支路的冷媒出口与所述第一换热器的第一开口连通,所述第一换热器的第二开口与所述气液分离支路的冷媒入口连通,所述气液分离支路的冷媒出口与所述压缩机的冷媒入口连通。
在一些实施例中,空调用循环系统还包括四通阀,所述四通阀的第一开口与所述压缩机的冷媒出口连通,所述四通阀的第二开口与所述第一换热器的第二开口连通,所述四通阀的第三开口与所述气液分离支路的冷媒入口连通,所述四通阀的第四开口与所述第二换热器的第一开口连通;
其中,所述四通阀的第一开口和所述四通阀的第二开口连通,所述四通阀的第三开口和所述四通阀的第四开口连通;或者,所述四通阀的第一开口和所述四通阀的第四开口连通,所述四通阀的第二开口和所述四通阀的第三开口连通。
在一些实施例中,所述第一换热器包括壳管式换热器,和/或,所述第二换热器包括翅片式换热器。
在一些实施例中,所述换热支路的冷媒出口和所述第一换热器的第一开口之间设有第一过滤器和第一单向阀。
在一些实施例中,所述第二换热器的第二开口和所述换热支路的冷媒入口之间设 有第二过滤器和第二单向阀。
在一些实施例中,所述第一单向阀和所述第一换热器的第一开口之间设有第三过滤器。
在一些实施例中,所述第一换热器的第二开口和所述气液分离支路的冷媒入口之间设有第四过滤器,所述第四过滤器也位于所述第一换热器的第二开口和所述压缩机的冷媒出口之间。
在一些实施例中,所述换热支路的冷媒出口和所述第二换热器的第二开口之间设有所述第一过滤器和第四单向阀。
在一些实施例中,所述第一过滤器和所述第四单向阀之间还设有电子膨胀阀,所述电子膨胀阀还处于所述第一过滤器和所述第一单向阀之间。
在一些实施例中,所述第一换热器的第一开口和所述换热支路的冷媒入口之间设有所述第三过滤器和第三单向阀。
在一些实施例中,所述空调用循环系统包括第一工作模式和/或第二工作模式。
在一些实施例中,所述第一工作模式包括制热模式。
在一些实施例中,所述第二工作模式包括制冷模式和除霜模式。
在一些实施例中,空调用循环系统还包括:
回油支路,所述回油支路的回油支路入口与所述第一换热器的回油孔连通,所述回油支路的回油支路出口连接于预设位置,所述预设位置位于所述气液分离组件中位于冷媒流动方向最上游的气液分离器的冷媒出口和位于冷媒流动方向最下游的气液分离器的冷媒入口之间的流道上。
本公开另一实施例提供一种空调,包括本公开任一技术方案所提供的空调用循环系统。
本公开又一实施例提供一种空调控制方法,包括以下步骤:
控制冷媒按照以下路径流动:压缩机出来的冷媒流向第一换热器、第一气液分离器的换热支路、第二换热器、所述第一气液分离器的气液分离支路、第二气液分离器,然后流回所述压缩机。
本公开再一实施例提供一种空调控制方法,包括以下步骤:
控制冷媒按照以下路径流动:压缩机出来的冷媒流向第二换热器、第一气液分离器的换热支路、第一换热器、所述第一气液分离器的气液分离支路、第二气液分离器,然后流回所述压缩机。
上述技术方案提供的空调用循环系统,其气体分离组件包括两个甚至多个串联的气液分离器,每个气液分离器都对冷媒气液分离,故减少了压缩机回油时的带液问题,即便在空调用循环系统切换至化霜模式时,也有效降低甚至避免了压缩机的回油带液问题。
附图说明
图1为本公开一些实施例提供的空调用循环系统的原理示意图;
图2为本公开一些实施例提供的空调用循环系统的焓湿图;
图3为本公开一些实施例提供的空调用循环系统为第一工作模式的原理示意图;
图4为本公开一些实施例提供的空调用循环系统为第二工作模式的原理示意图。
具体实施方式
下面结合图1~图4对本公开提供的技术方案进行更为详细的阐述。
参见图1,本实施例提供一种空调用循环系统,包括压缩机1、第一换热器4、第二换热器14以及气液分离组件。气液分离组件与压缩机1、第一换热器4、第二换热器14形成回路。气液分离组件包括两个或多个气液分离器,各气液分离器串联,气液分离组件用于对冷媒气液分离。
各个换热器比如采用翅片换热器或是满液式壳管换热器等。气液分离组件所包括的多个气液分离器结构是一样的,或者是不同的。
气液分离器串联是指冷媒流经各个气液分离器,以使得冷媒经过多次气液分离。各个串联的气液分离器之间比如设置有其他部件。具体地,如果气液分离组件包括两个气液分离器,则两个气液分离器之间设置有其他部件,以使得冷媒流经其中一个气液分离器、其他部件、再流向另一个气液分离器。如果气液分离组件包括三个或以上数量的气液分离器,则存在两个气液分离器之间设置有其他部件,以使得冷媒流经其中一个气液分离器、其他部件、再流向另一个气液分离器。其余的气液分离器比如与这两个中的任意一个相邻或者间隔。
在一些实施例中,参见图1,气液分离组件包括以下结构的第一气液分离器9。第一气液分离器9包括换热支路91和气液分离支路92。换热支路91的冷媒入口911可选择地与第一换热器4的第一开口41或第二换热器14的第二开口142连通。换热支路91的冷媒出口912可选择地与第二换热器14的第二开口142或第一换热器4的 第一开口41连通。气液分离支路92的冷媒入口921可选择地与第二换热器14的第一开口141或第一换热器4的第二开口42连通。气液分离支路92的冷媒出口922与压缩机1的冷媒入口12连通。
上述技术方案,采用具有换热功能的第一气液分离器9,从冷凝器出来的高温液态冷媒与从蒸发器出来的低温气态冷媒在第一气液分离器9中热交换,以使得高温液态冷媒的温度降低,以增加过冷度,同时使得低温气态冷媒的温度升高,提升过热度,从而提高空调的能力。该交换使得空调用循环系统的热交换能力得以提升。
上述空调用循环系统可在第一工作模式、第二工作模式下运行。第一工作模式包括制热模式。当空调用循环系统处于制热模式时,其冷媒循环示意图参见图3所示。
在一些实施例中,第二工作模式包括制冷模式和除霜模式。当空调用循环系统处于制冷模式时,其冷媒循环示意图参见图4所示。除霜模式时,冷媒循环示意图与制冷模式基本是相同的。
上述的空调用循环系统可处于以下连通状态:压缩机1的冷媒出口11与第一换热器4的第二开口42连通,第一换热器4的第一开口41与换热支路91的冷媒入口911连通,换热支路91的冷媒出口912与第二换热器14的第二开口142连通,第二换热器14的第一开口141与气液分离支路92的冷媒入口921连通,气液分离支路92的冷媒出口922与压缩机1的冷媒入口12连通。
上述连通状态针对空调用循环系统处于第一工作模式,此情况下,冷媒按照以下路径流动:压缩机1出来的冷媒流向第一换热器4、第一气液分离器9的换热支路91、第二换热器14、第一气液分离器9的气液分离支路92、然后流回压缩机1。
上述的空调用循环系统还可处于以下连通状态:压缩机1的冷媒出口11与第二换热器14的第一开口141连通,第二换热器14的第二开口142与换热支路91的冷媒入口911连通,换热支路91的冷媒出口912与第一换热器4的第一开口41连通,第一换热器4的第二开口42与气液分离支路92的冷媒入口921连通,气液分离支路92的冷媒出口922与压缩机1的冷媒入口12连通。
上述连通状态针对空调用循环系统处于第二工作模式,此情况下,冷媒按照以下路径流动:压缩机1出来的冷媒流向第二换热器14、第一气液分离器9的换热支路91、第一换热器4、第一气液分离器9的气液分离支路92、然后流回压缩机1。
参见图1、图3或图4,空调用循环系统还包括第二气液分离器15;气液分离支路92的冷媒出口922与第二气液分离器15的冷媒入口151连通,第二气液分离器15 的冷媒出口152与压缩机1的冷媒入口12连通。
其中,当空调用循环系统处于第一工作模式,冷媒按照以下路径流动:压缩机1出来的冷媒流向第一换热器4、第一气液分离器9的换热支路91、第二换热器14、第一气液分离器9的气液分离支路92、第二气液分离器15,然后流回压缩机1。
当空调用循环系统处于第二工作模式,冷媒按照以下路径流动:压缩机1出来的冷媒流向第二换热器14、第一气液分离器9的换热支路91、第一换热器4、第一气液分离器9的气液分离支路92、第二气液分离器15,然后流回压缩机1。
上述技术方案,设置了第二气液分离器15,当空调用循环系统处于第一、第二工作模式时,从第一换热器4出来的液态冷媒都连续经过第一气液分离器9的气液分离支路92、第二气液分离器15,经过两次气液分离,分离效果得以提升,冷媒带液量大大减少,有效改善了回向压缩机1的冷媒带液问题。
换热支路91中的高温冷媒与气液分离支路92中的低温冷媒热交换。具体来说,从冷凝器出来的高温液态冷媒与从蒸发器出来的低温气态冷媒在气液分离器内换热,高温液态冷媒温度降低,增加过冷度(图2中点7-点3),低温气态冷媒温度升高,提升过热度(图2中点1-点5),制冷能力由图2中点4-点1提升到点8-点5,增加了点8-点4和点1-点5两段。
在一个或多个实施例中,空调用循环系统还包括回油支路18。回油支路的回油支路入口181与第一换热器4的回油孔43连通,回油支路18的回油支路出口182连接于预设位置。该预设位置位于气液分离组件中位于冷媒流动方向最上游的气液分离器的冷媒出口和位于冷媒流动方向最下游的气液分离器的冷媒入口之间的流道上。
回油支路18利用在其回油支路出口182连接位置的上游的各气液分离器形成的压损将第一换热器4内的油液吸出来。本实施例中,回油支路18利用气液分离支路92形成的压力损失将油液吸到第二气液分离器15中。
为了改善压缩机1的润滑,还包括回油支路18,回油支路18的回油支路入口181与第一换热器4的回油孔43连通,回油孔43位于第一换热器4的油液所对应的高度。回油支路18的回油支路出口182与第二气液分离器15的冷媒入口151连通,或者,回油支路18的回油支路出口182与气液分离支路92的冷媒出口922连通。
其中,当空调用循环系统需要回油时,回油支路18导通,即此时通过回油支路18将第一换热器4中积存的油液吸入到第二气液分离器15中。
本实施例中,回油支路18设有用于控制该回油支路18导通或截止的控制阀。设 置控制阀17,实现了方便地控制回油支路18何时启用。
参见图1,空调用循环系统还包括四通阀2。四通阀2的第一开口21与压缩机1的冷媒出口11连通,四通阀2的第二开口22与第一换热器4的第二开口42连通,四通阀2的第三开口23与气液分离支路92的冷媒入口921连通,四通阀2的第四开口24与第二换热器14的第一开口141连通。
其中,四通阀2作为切换阀,其四个开口处于以下两种可选择的连通状态。
第一种:四通阀2的第一开口21和四通阀2的第二开口22连通,四通阀2的第三开口23和四通阀2的第四开口24连通。此情况适用于空调用循环系统处于第一工作模式。
第二种:四通阀2的第一开口21和四通阀2的第四开口24连通,四通阀2的第二开口22和四通阀2的第三开口23连通。此情况适用于空调用循环系统处于第二工作模式。
设置四通阀2后,当空调用循环系统处于第一工作模式,冷媒按照以下路径流动:压缩机1出来的冷媒流向四通阀2、第一换热器4、第一气液分离器9的换热支路91、第二换热器14、四通阀2、第一气液分离器9的气液分离支路92、然后流回压缩机1。
设置四通阀2后,当空调用循环系统处于第二工作模式,冷媒按照以下路径流动:压缩机1出来的冷媒流向四通阀2、第二换热器14、第一气液分离器9的换热支路91、第一换热器4、四通阀2、第一气液分离器9的气液分离支路92、然后流回压缩机1。
在一个或多个实施例中,第一换热器4包括壳管式换热器,和/或,第二换热器14包括翅片式换热器。
满液式壳管换热器具有制冷能力大、能效比高的特点,所以,第一换热器4作为室内换热器时使用壳管式换热器较佳。上述技术方案,采用第一换热器4利用了其制冷能力大、能效比高的优点,且单独设置的回油支路18利用第一气液分离器9自身压损形成的压差将第一换热器4内部的润滑油吸出输送至第二气液分离器15中,这解决了壳管内大量积油的问题,且会改善壳管内换热效果,保证压缩机1具有足够的润滑油。
参见图1,第一气液分离器9的换热支路91的冷媒出口912和第一换热器4的第一开口41之间设有第一过滤器10和第一单向阀8。
当空调用循环系统处于第二工作模式,第一单向阀8导通。设置第一单向阀8,实现了快速地控制各个工作模式下第一单向阀8所在支路是否导通。
参见图1,第二换热器14的第二开口142和第一气液分离器9的换热支路91的冷媒入口911之间设有第二过滤器101和第二单向阀7。
当空调用循环系统处于第二工作模式,第二单向阀7导通。通过设置第二单向阀7,实现了快速地控制各个工作模式下第二单向阀7所在支路是否导通。
参见图1,第一单向阀8和第一换热器4的第一开口41之间设有第三过滤器5。参见图3,在第一工作模式时,第三过滤器5用于过滤第一换热器4流出的冷媒中的杂质。参见图4,在第二工作模式时,第三过滤器5用于过滤第一气液分离器9的气液分离支路92流出的冷媒中的杂质,以避免杂质流入第一换热器4。
参见图1,第一换热器4的第二开口42和气液分离支路92的冷媒入口921之间设有第四过滤器3。第四过滤器3也位于第一换热器4的第二开口42和压缩机1的冷媒出口11之间。参见图3,在第一工作模式时,第四过滤器3过滤从压缩机1流出的、即将流入第一换热器4的冷媒中的杂质,以避免杂质流入第一换热器4。参见图4,在第二工作模式时,第四过滤器3过滤从第一换热器4流出的、即将流入第一气液分离器9的气液分离支路92的冷媒入口921的冷媒中的杂质,以避免杂质流入四通阀2。
参见图1和图3,换热支路91的冷媒出口912和第二换热器14的第二开口142之间设有第一过滤器10和第四单向阀13。当空调系统处于第一工作模式时,第四单向阀13导通。
参见图3或图4,第一过滤器10和第四单向阀13之间还设有电子膨胀阀102,电子膨胀阀102还处于第一过滤器10和第一单向阀8之间。设置电子膨胀阀102实现节流。
参见图3或图4,第一换热器4的第一开口41和换热支路91的冷媒入口911之间设有第三过滤器5和第三单向阀6。当空调用循环系统处于第一工作模式,第三单向阀6导通。当空调用循环系统处于第一工作模式,第三单向阀6导通。当空调用循环系统处于第二工作模式时,第三单向阀6不工作。
下面结合图1至图4,介绍一些具体实施例。
以采用图1所示的空调用循环系统为例。
制冷循环时:冷媒在第一换热器4的壳程流动,吸收管程内的载冷剂的热量,并不断蒸发。当到达第一换热器4的第一开口41的气体冷媒,顺序流过第一气液分离器9和第二气液分离器15,气液分离后进入压缩机1入口,完成气液分离。在第一换热器4内油液的液位附近开一个回油孔43,利用压差,采用管18将带液态冷媒的润 滑油带入至第二气液分离器15的冷媒入口151。经过气液分离,润滑油被吸入至压缩机1的冷媒入口12,完成压缩机1回油。
经过压缩机1压缩后的高压气体经压缩机1的冷媒出口11进入作为冷凝器的第二换热器14冷凝为高温液态冷媒,放出的热量被带走。冷凝液体再经过第二过滤器101除去杂质后,通过第二单向阀7进入第一气液分离器9,与从第一换热器4出来的低温气态冷媒在第一气液分离器9内进行换热,降低高温液态冷媒的温度以提升过冷度,同时提升低温气态冷媒温度以提升过热度。换热后的高温液态冷媒从第一气液分离器9出来后经过第一过滤器10,而后经过电子膨胀阀102节流,变为低压液态冷媒,再经过第三单向阀8,以及第三过滤器5进入第一换热器4,完成冷媒的循环。
参见图1和图4,制冷循环时,利用第一气液分离器9的压损形成的压差将蒸发器内的油回到第二气液分离器15进口,油与冷媒经过第二气液分离器15,气液分离,既把蒸发器中的油引回至压缩机1,也避免了回油过程中产生的液击,同时减少了使用满液式壳管系统中的油分离器。
因为在制冷时,第一换热器4作为蒸发器,蒸发器内冷媒的温度很低,进入蒸发器的润滑油粘度大,不容易被冷媒带回压缩机1,蒸发器内积存的润滑油一个会影响到换热效率,一个因为无法回油导致压缩机1因缺油而损坏。上述技术方案,设置了两个气液分离器,每个气液分离器存在压损,在蒸发器油液液位附近开一个回油孔43,利用第一气液分离器9的压损形成的压差,将油与液态冷媒通过管18经过回油支路的出口182后进入第二气液分离器15进行分离,将油引入进压缩机1的吸气口,既解决了压缩机1的回油问题,同时解决了回油中带液的问题。同时通过作为控制阀17的电磁阀控制,可选择地,只在制冷时,此管18用来回油,制热时此控制阀17断开,此支路不工作。在一些实施例中,在制热模式下,控制阀17亦处于导通状态,此时该支路工作,该方案解决了制热模式下压缩机1的回油问题。
化霜循环与制冷循环的原理基本相同。当机组化霜时,上述技术方案通过使用两个气液分离器,来自蒸发器的含液气态冷媒,从上部进入,依靠气流速度的降低和方向的改变,经低压气态冷媒携带的液或者油滴分离,通过回油孔43,将气态冷媒以及携带的润滑油吸入压缩机1。经过两次气液分离器,进行两级气液分离,大大地减少液击可能性,延长了压缩机1的使用寿命以及机组的可靠性。
参见图1和图3,制热循环时:冷媒在作为蒸发器的第二换热器14流动,吸收外界的热量,并不断蒸发。当到达第二换热器14的第一开口141时变成气体,第一气 液分离器9和第二气液分离器15串联,冷媒经过第一气液分离器9和第二气液分离器15,气液分离后进入压缩机1的冷媒入口12,完成气液分离。
经过压缩机1压缩后的高压气体经高压排气管进入作为冷凝器的第一换热器4冷凝为高温液态冷媒,放出的热量被载冷剂带走。冷凝液体再经过第三过滤器5除去杂质后,通过第三单向阀6进入第一气液分离器9,与作为蒸发器的第二换热器14的第二开口的低温液态冷媒在第一气液分离器9内进行换热,降低高温液态冷媒的温度(提升过冷度),同时提升低温气态冷媒温度(提升过热度)。换热后的高温液态冷媒从气液分离器出来后经过第一过滤器10时经过电子膨胀阀102节流,变为低压液态冷媒,再经过第三单向阀6,进入第二换热器14,完成冷媒的循环。
上述技术方案,从冷凝器流出的高温液态冷媒先经过第一气液分离器9,与从蒸发器出来的低温气态冷媒在第一气液分离器9内换热,降低液体冷媒温度,增加过冷度,提高气体冷媒温度,增加过热度,从而提升能力。可见,其采用两个气液分离器,解决了机组回油、带液、能力、换热效率四重难题。
本公开另一实施例提供一种空调,包括本公开任一技术方案所提供的空调用循环系统。
本公开实施例还提供一种空调控制方法,该方法比如采用上述任一技术方案提供的空调实现。该方法对应第一工作模式,其包括以下步骤:
控制冷媒按照以下路径流动:压缩机1出来的冷媒流向第一换热器4、第一气液分离器9的换热支路91、第二换热器14、第一气液分离器9的气液分离支路92、第二气液分离器15,然后流回压缩机1。
本公开实施例还提供一种空调控制方法,该方法比如采用上述技术方案提供的空调实现。该方法对应空调的第二工作模式,其包括以下步骤:
控制冷媒按照以下路径流动:压缩机1出来的冷媒流向第二换热器14、第一气液分离器9的换热支路91、第一换热器4、第一气液分离器9的气液分离支路92、第二气液分离器15,然后流回压缩机1。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (23)

  1. 一种空调用循环系统,包括:
    压缩机(1);
    第一换热器(4);
    第二换热器(14);以及
    气液分离组件,与所述压缩机(1)、所述第一换热器(4)、所述第二换热器(14)形成回路;所述气液分离组件包括两个或多个气液分离器,各所述气液分离器串联,所述气液分离组件用于对冷媒气液分离。
  2. 根据权利要求1所述的空调用循环系统,其中,所述气液分离组件包括:
    第一气液分离器(9),包括换热支路(91)和气液分离支路(92),所述换热支路(91)的冷媒入口(911)可选择地与所述第一换热器(4)的第一开口(41)或第二换热器(14)的第二开口(142)连通,所述换热支路(91)的冷媒出口(912)可选择地与所述第二换热器(14)的第二开口(142)或所述第一换热器(4)的第一开口(41)连通,所述气液分离支路(92)的冷媒入口(921)可选择地与所述第二换热器(14)的第一开口(141)或所述第一换热器(4)的第二开口(42)连通,所述气液分离支路(92)的冷媒出口(922)与所述压缩机(1)的冷媒入口(12)连通。
  3. 根据权利要求2所述的空调用循环系统,其中,所述气液分离组件还包括:
    第二气液分离器(15),所述气液分离支路(92)的冷媒出口(922)与所述第二气液分离器(15)的冷媒入口(151)连通,所述第二气液分离器(15)的冷媒出口(152)与所述压缩机(1)的冷媒入口(12)连通。
  4. 根据权利要求3所述的空调用循环系统,还包括:
    回油支路(18),所述回油支路(18)的回油支路入口(181)与所述第一换热器(4)的回油孔(43)连通,所述回油孔(43)位于所述第一换热器(4)内油液所对应的高度,所述回油支路(18)的回油支路出口(182)与所述第二气液分离器(15)的冷媒入口(151)连通和/或与所述气液分离支路(92)的冷媒出口(922)连通。
  5. 根据权利要求4所述的空调用循环系统,其中,所述回油支路(18)设有用于控制该回油支路(18)导通或截止的控制阀(17)。
  6. 根据权利要求2所述的空调用循环系统,其中,所述压缩机(1)的冷媒出口(11)与所述第一换热器(4)的第二开口(42)连通,所述第一换热器(4)的第一开口(41)与所述换热支路(91)的冷媒入口(911)连通,所述换热支路(91)的冷媒出口(912)与所述第二换热器(14)的第二开口(142)连通,所述第二换热器(14)的第一开口(141)与所述气液分离支路(92)的冷媒入口(921)连通,所述气液分离支路(92)的冷媒出口(922)与所述压缩机(1)的冷媒入口(12)连通。
  7. 根据权利要求2所述的空调用循环系统,其中,所述压缩机(1)的冷媒出口(11)与所述第二换热器(14)的第一开口(141)连通,第二换热器(14)的第二开口(142)与所述换热支路(91)的冷媒入口(911)连通,所述换热支路(91)的冷媒出口(912)与所述第一换热器(4)的第一开口(41)连通,所述第一换热器(4)的第二开口(42)与所述气液分离支路(92)的冷媒入口(921)连通,所述气液分离支路(92)的冷媒出口(922)与所述压缩机(1)的冷媒入口(12)连通。
  8. 根据权利要求2所述的空调用循环系统,还包括四通阀(2),所述四通阀(2)的第一开口(21)与所述压缩机(1)的冷媒出口(11)连通,所述四通阀(2)的第二开口(22)与所述第一换热器(4)的第二开口(42)连通,所述四通阀(2)的第三开口(23)与所述气液分离支路(92)的冷媒入口(921)连通,所述四通阀(2)的第四开口(24)与所述第二换热器(14)的第一开口(141)连通;
    其中,所述四通阀(2)的第一开口(21)和所述四通阀(2)的第二开口(22)连通,所述四通阀(2)的第三开口(23)和所述四通阀(2)的第四开口(24)连通;或者,所述四通阀(2)的第一开口(21)和所述四通阀(2)的第四开口(24)连通,所述四通阀(2)的第二开口(22)和所述四通阀(2)的第三开口(23)连通。
  9. 根据权利要求1所述的空调用循环系统,其中,所述第一换热器(4)包括壳管式换热器,和/或,所述第二换热器(14)包括翅片式换热器。
  10. 根据权利要求2所述的空调用循环系统,其中,所述换热支路(91)的冷媒出口(912)和所述第一换热器(4)的第一开口(41)之间设有第一过滤器(10)和第一单向阀(8)。
  11. 根据权利要求2所述的空调用循环系统,其中,所述第二换热器(14)的第二开口(142)和所述换热支路(91)的冷媒入口(911)之间设有第二过滤器(101)和第二单向阀(7)。
  12. 根据权利要求10所述的空调用循环系统,其中,所述第一单向阀(8)和所述第一换热器(4)的第一开口(41)之间设有第三过滤器(5)。
  13. 根据权利要求10所述的空调用循环系统,其中,所述第一换热器(4)的第二开口(42)和所述气液分离支路(92)的冷媒入口(921)之间设有第四过滤器(3),所述第四过滤器(3)也位于所述第一换热器(4)的第二开口(42)和所述压缩机(1)的冷媒出口(11)之间。
  14. 根据权利要求10所述的空调用循环系统,其中,所述换热支路(91)的冷媒出口(912)和所述第二换热器(14)的第二开口(142)之间设有所述第一过滤器(10)和第四单向阀(13)。
  15. 根据权利要求10所述的空调用循环系统,其中,所述第一过滤器(10)和所述第四单向阀(13)之间还设有电子膨胀阀(102),所述电子膨胀阀(102)还处于所述第一过滤器(10)和所述第一单向阀(8)之间。
  16. 根据权利要求12所述的空调用循环系统,其中,所述第一换热器(4)的第一开口(41)和所述换热支路(91)的冷媒入口(911)之间设有所述第三过滤器(5)和第三单向阀(6)。
  17. 根据权利要求1所述的空调用循环系统,其中,所述空调用循环系统包括第一工作模式和/或第二工作模式。
  18. 根据权利要求17所述的空调用循环系统,其中,所述第一工作模式包括制热模式。
  19. 根据权利要求17所述的空调用循环系统,其中,所述第二工作模式包括制冷模式和除霜模式。
  20. 根据权利要求1所述的空调用循环系统,还包括:
    回油支路(18),所述回油支路的回油支路入口(181)与所述第一换热器(4)的回油孔(43)连通,所述回油支路(18)的回油支路出口(182)连接于预设位置,所述预设位置位于所述气液分离组件中位于冷媒流动方向最上游的气液分离器的冷媒出口和位于冷媒流动方向最下游的气液分离器的冷媒入口之间的流道上。
  21. 一种空调,包括权利要求1-20任一所述的空调用循环系统。
  22. 一种空调控制方法,包括以下步骤:
    控制冷媒按照以下路径流动:压缩机出来的冷媒流向第一换热器、第一气液分离器的换热支路、第二换热器、所述第一气液分离器的气液分离支路、第二气液分离器,然后流回所述压缩机。
  23. 一种空调控制方法,包括以下步骤:
    控制冷媒按照以下路径流动:压缩机出来的冷媒流向第二换热器、第一气液分离器的换热支路、第一换热器、所述第一气液分离器的气液分离支路、第二气液分离器,然后流回所述压缩机。
PCT/CN2018/121183 2018-01-05 2018-12-14 空调用循环系统、空调及空调控制方法 WO2019134492A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/960,075 US11543162B2 (en) 2018-01-05 2018-12-14 Circulation system of air conditioner, air conditioner, and air conditioner control method
ES18898300T ES2930362T3 (es) 2018-01-05 2018-12-14 Acondicionador de aire y sistema de circulación para acondicionador de aire
EP18898300.1A EP3736513B1 (en) 2018-01-05 2018-12-14 Circulation system for air conditioner and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810010469.1A CN108036554A (zh) 2018-01-05 2018-01-05 空调用循环系统、空调及空调控制方法
CN201810010469.1 2018-01-05

Publications (1)

Publication Number Publication Date
WO2019134492A1 true WO2019134492A1 (zh) 2019-07-11

Family

ID=62098988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121183 WO2019134492A1 (zh) 2018-01-05 2018-12-14 空调用循环系统、空调及空调控制方法

Country Status (5)

Country Link
US (1) US11543162B2 (zh)
EP (1) EP3736513B1 (zh)
CN (1) CN108036554A (zh)
ES (1) ES2930362T3 (zh)
WO (1) WO2019134492A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108036554A (zh) * 2018-01-05 2018-05-15 珠海格力电器股份有限公司 空调用循环系统、空调及空调控制方法
CN109489293B (zh) * 2018-10-11 2019-11-08 珠海格力电器股份有限公司 空调系统
CN109341160A (zh) * 2018-12-04 2019-02-15 珠海格力电器股份有限公司 空调用循环系统及空调
CN109813009B (zh) * 2018-12-20 2020-04-28 珠海格力电器股份有限公司 空调系统及其回油控制方法
CN110985392B (zh) * 2019-11-14 2021-11-05 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有该压缩机的空调器
CN113959122B (zh) * 2021-09-16 2023-03-31 青岛海尔空调电子有限公司 制冷系统、用于制冷系统的控制方法、控制装置
CN114061183A (zh) * 2021-11-08 2022-02-18 珠海格力电器股份有限公司 空调机组及其控制方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000178A (zh) * 2007-01-11 2007-07-18 清华大学 一种制冷系统
US20070163296A1 (en) * 2006-01-17 2007-07-19 Kenichi Suzuki Vapor compression refrigerating systems and modules which comprise a heat exchanger disposed within a gas-liquid separator
JP2009270745A (ja) * 2008-05-02 2009-11-19 Sanden Corp 冷凍システム
CN201954682U (zh) * 2011-02-09 2011-08-31 河北科技大学 多效清香保健空调系统
CN201983527U (zh) * 2010-11-18 2011-09-21 珠海格力电器股份有限公司 一种部分热回收风冷机组的回油装置
CN202521961U (zh) * 2011-12-07 2012-11-07 深圳市中兴昆腾有限公司 热管空调蒸发器回油装置
CN102878650A (zh) * 2012-09-28 2013-01-16 东南大学 实现温度、湿度分别调节的家用空调装置
JP5195364B2 (ja) * 2008-12-03 2013-05-08 株式会社デンソー エジェクタ式冷凍サイクル
CN105352232A (zh) * 2015-11-30 2016-02-24 珠海格力电器股份有限公司 过冷器及具有其的空调器
CN108036554A (zh) * 2018-01-05 2018-05-15 珠海格力电器股份有限公司 空调用循环系统、空调及空调控制方法
CN207849836U (zh) * 2018-01-05 2018-09-11 珠海格力电器股份有限公司 空调用循环系统及空调

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1079528C (zh) 1993-10-28 2002-02-20 株式会社日立制作所 制冷循环及其控制方法
AU727631B2 (en) * 1997-09-11 2000-12-14 Daikin Industries, Ltd. piping cleaning system and piping cleaning method for refrigeration unit
GB2435088B (en) 2004-03-05 2008-01-23 Mitsubishi Electric Corp Air Conditioning Apparatus
WO2012098582A1 (ja) * 2011-01-20 2012-07-26 三菱電機株式会社 冷凍サイクル装置
JP6091399B2 (ja) 2013-10-17 2017-03-08 三菱電機株式会社 空気調和装置
CN106016811B (zh) * 2014-11-05 2018-08-28 合肥工业大学 带经济器的电动汽车空调热泵系统
CN104848599B (zh) * 2015-05-26 2017-06-13 珠海格力电器股份有限公司 空调系统及其控制方法
CN105571183A (zh) * 2016-02-24 2016-05-11 珠海格力电器股份有限公司 空调系统
CN106766424A (zh) * 2017-01-13 2017-05-31 珠海格力电器股份有限公司 空调系统及其控制方法
CN107024031B (zh) * 2017-05-27 2022-08-02 中原工学院 一种适用于大温差的三压力高效风冷热泵机组
CN108662816B (zh) * 2018-06-11 2023-10-13 珠海格力电器股份有限公司 空调回油系统和空调

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070163296A1 (en) * 2006-01-17 2007-07-19 Kenichi Suzuki Vapor compression refrigerating systems and modules which comprise a heat exchanger disposed within a gas-liquid separator
CN101000178A (zh) * 2007-01-11 2007-07-18 清华大学 一种制冷系统
JP2009270745A (ja) * 2008-05-02 2009-11-19 Sanden Corp 冷凍システム
JP5195364B2 (ja) * 2008-12-03 2013-05-08 株式会社デンソー エジェクタ式冷凍サイクル
CN201983527U (zh) * 2010-11-18 2011-09-21 珠海格力电器股份有限公司 一种部分热回收风冷机组的回油装置
CN201954682U (zh) * 2011-02-09 2011-08-31 河北科技大学 多效清香保健空调系统
CN202521961U (zh) * 2011-12-07 2012-11-07 深圳市中兴昆腾有限公司 热管空调蒸发器回油装置
CN102878650A (zh) * 2012-09-28 2013-01-16 东南大学 实现温度、湿度分别调节的家用空调装置
CN105352232A (zh) * 2015-11-30 2016-02-24 珠海格力电器股份有限公司 过冷器及具有其的空调器
CN108036554A (zh) * 2018-01-05 2018-05-15 珠海格力电器股份有限公司 空调用循环系统、空调及空调控制方法
CN207849836U (zh) * 2018-01-05 2018-09-11 珠海格力电器股份有限公司 空调用循环系统及空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3736513A4

Also Published As

Publication number Publication date
US11543162B2 (en) 2023-01-03
ES2930362T3 (es) 2022-12-09
CN108036554A (zh) 2018-05-15
EP3736513B1 (en) 2022-08-17
EP3736513A4 (en) 2021-02-17
US20210063066A1 (en) 2021-03-04
EP3736513A1 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
WO2019134492A1 (zh) 空调用循环系统、空调及空调控制方法
US8424333B2 (en) Air conditioner
WO2019091241A1 (zh) 空调制冷循环系统及空调器
EP1686323A2 (en) Heat exchanger of air conditioner
JP2009533645A (ja) 高速除霜ヒートポンプ
KR101319778B1 (ko) 공기조화기
JPH0814710A (ja) 冷暖房空気調和機
CN113251473B (zh) 空调装置
CN207849836U (zh) 空调用循环系统及空调
EP3486593A1 (en) Plate heat exchanger and air conditioner having the same
EP3734192A1 (en) Air conditioner system
CN106482407B (zh) 一种防止空调压缩机液击的空调系统及其控制方法
KR101381372B1 (ko) 공기조화기
CN213208028U (zh) 一种空调装置
CN213273264U (zh) 空调机组
CN112032826B (zh) 空调机组及其控制方法
JP2013204952A (ja) 冷凍サイクル装置
KR20100036789A (ko) 공기조화기
CN220524404U (zh) 用于制冷循环系统的热量回收装置和空调系统
KR101626215B1 (ko) 공기 조화기
CN210772889U (zh) 换热器系统及冷水机组
CN220489436U (zh) 一种变频满液式风冷螺杆机组
CN219955525U (zh) 一种污水源磁悬浮离心式多联机空调系统
CN217636249U (zh) 双源式空调热泵机组及其制热兼冰霜清除机组
CN117804106A (zh) 除霜热管理系统及除霜控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018898300

Country of ref document: EP

Effective date: 20200805