WO2019134430A1 - 引线固定结构、谐振式传感器及测量装置 - Google Patents

引线固定结构、谐振式传感器及测量装置 Download PDF

Info

Publication number
WO2019134430A1
WO2019134430A1 PCT/CN2018/113357 CN2018113357W WO2019134430A1 WO 2019134430 A1 WO2019134430 A1 WO 2019134430A1 CN 2018113357 W CN2018113357 W CN 2018113357W WO 2019134430 A1 WO2019134430 A1 WO 2019134430A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
metal
protective film
resonator
metal resonator
Prior art date
Application number
PCT/CN2018/113357
Other languages
English (en)
French (fr)
Inventor
罗凡
Original Assignee
成都瑞帆智达科技有限公司
罗凡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都瑞帆智达科技有限公司, 罗凡 filed Critical 成都瑞帆智达科技有限公司
Publication of WO2019134430A1 publication Critical patent/WO2019134430A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/26Windows; Cover glasses; Sealings therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • G01L1/106Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
    • G01N2009/006Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis vibrating tube, tuning fork

Definitions

  • the present invention relates to the field of measurement and automation technologies, and in particular to a lead fixing structure for a resonant sensor, a resonant sensor, and a measuring device having the same.
  • the mass flow rate and/or density of a fluid flowing in a pipe is typically determined using a meter that uses a resonant sensor and its associated measurement and control circuitry to induce flow through
  • the reaction forces in the fluid of the sensor in particular the Coriolis force corresponding to the mass flow rate and the inertial force corresponding to the density, and thus the measurement signals representing the respective mass flow rates and/or corresponding densities of the fluid.
  • Coriolis mass flowmeters are usually composed of sensors and transmitters.
  • the sensors include exciters, signal detectors, vibrating tubes, vibration isolators, and temperature measuring resistors.
  • exciters and signal detectors generally use magnetoelectrics.
  • the structure, that is, the magnet and the coil constitute a relative motion form, thereby achieving mutual conversion between vibration and electrical signals.
  • Positive and negative poles need to be set on the coils of the exciter and signal detector, and then the signal is connected to the processing circuit in the transmitter through the lead wires.
  • a Coriolis mass flowmeter in which a lead wire is adhered to a vibrating tube by an adhesive or a tape, such as a spiral wiring disclosed in Chinese Patent Publication No.
  • each lead wire is in the form of a spiral wire. Wrapped around the U-shaped measuring tube, and the lead wire and the U-shaped measuring tube are fixed by glue, and then the lead wires are collected into a bundle and then taken out from the sensor base to the transmitter.
  • the lead is attached to the vibrating tube as an additional mass, the quality and firmness of which seriously affect the vibration performance of the sensor, and the lead must not be allowed to relax or peel off.
  • the adhesive or tape due to the temperature limitations of the adhesive or tape, when the above sensor is applied to low temperature ( ⁇ -40 ° C) or high temperature (> 250 ° C), the adhesive or tape will fail, causing the lead to peel off the vibrating tube. Lose the sensor's ability to work.
  • an object of the present invention is to provide a lead fixing structure to solve the problem that the prior art resonant sensor lead fixing structure is easy to fail in a low temperature or high temperature environment, and the lead is peeled off from the metal resonator. problem.
  • Another object of the present invention is to provide a resonant sensor for a Coriolis mass flowmeter to solve the problem that the lead wire of the sensor in the prior art is easily peeled off from the metal resonator in a low temperature or high temperature environment. The problem of sensor failure.
  • another object of the present invention is to provide a Coriolis mass flowmeter to solve the problem that the prior art Coriolis mass flowmeter is easily peeled off from the metal resonator in a low temperature or high temperature environment. The problem of sensor failure.
  • the present invention provides a lead fixing structure for a resonant sensor including a resonator body, an exciter disposed on the resonator body, and a signal detector, the excitation And the signal detector is connected with a lead, the lead fixing structure includes a lead and a metal protective film, and the metal protective film is coated on the outer side of the lead to attach the lead to the metal of the resonant sensor On the resonator body, the metal protective film and the metal resonator are fixedly connected by soldering.
  • the metal protective film has a first soldering portion and a second soldering portion on both sides of the lead for soldering with the metal resonator, and a middle portion of the metal protective film is in the first soldering portion Forming, after the second soldering portion is soldered to the metal resonator, a lead protection cavity for accommodating the lead and having a lead wire inlet and a lead wire outlet, the lead being capable of being along the lead protection cavity The lead wire is stretched and slid in the direction of the wire.
  • the first soldering portion and the second soldering portion are respectively soldered on the metal resonator body in a continuous or intermittent or spot welding manner.
  • the welding is argon arc welding or brazing or laser welding or plasma welding.
  • the metal protective film is made of the same material as the metal resonator.
  • the metal protective film has a thickness of no more than 0.05 mm.
  • the metal protective film is square or circular or elliptical or rectangular or triangular or trapezoidal.
  • the metal resonator is a vibrating tube for a Coriolis mass flow meter, and the lead wires are routed along an extending direction of the vibrating tube.
  • the present invention provides a resonant sensor including a metal resonator, and an exciter provided on the metal resonator for driving vibration of the metal resonator and for detecting vibration of the metal resonator
  • the signal detector, the exciter and the signal detector output signals to the external signal data processing device through leads, and further includes the lead fixing structure described above.
  • the exciter and the signal detector are of a magnetoelectric structure.
  • one pole of the exciter coil is led to the left side vibration isolating plate along the left side of the metal resonator body, and the other pole is led to the right side vibration isolating piece along the right side of the metal resonator body;
  • the two poles of the signal detector are respectively led to the left side vibration isolating plate along the left side of the metal resonator;
  • the two poles of the right side signal detector are all taken out to the right side of the metal resonator body to the right side vibration isolating piece; or Both the exciter and the signal detector are led out to the left or right side of the vibration isolator along the left or right side of the metal resonator.
  • the present invention provides a measuring device having a resonant sensor, comprising:
  • a signal data processing device, the exciter and the signal detector are coupled to a processing circuit of the signal data processing device via the lead.
  • the measuring device is a Coriolis mass flow meter.
  • the measuring device is a resonant densitometer or has a resonant pressure gauge.
  • the lead fixing structure provided by the present invention replaces the adhesive tape in the prior art by a metal protective film, replaces the adhesive with welding, presses the metal protective film against the lead wire, and then welds the metal protective film to the metal resonance. Physically.
  • the metal protective film has a small or even difference, which makes the metal protective film and the metal resonator have the same deformation in the extreme temperature environment or high temperature, and is not easy to tear, thereby ensuring the tear.
  • the lead wire is not easily peeled off from the metal resonator; in addition, the strength of the metal protective film is better than that of the tape, so that a thin metal protective film can be used, thereby ensuring a small weight attached to the metal resonator, and an additional mass Less affected.
  • the lead fixing structure provided by the present invention, wherein the metal protective film is soldered to the metal resonator by a first soldering portion and a second soldering portion on both sides of the lead wire, so that the metal protective film is fixed only to the lead wire.
  • the direction of progression of the degrees of freedom extends in the front-rear direction and the left-right direction), and the direction along which the leads extend is not limited, which allows the lead, the metal resonator, and the metal protective film to have different linear expansion coefficients along the lead extension direction at extreme temperatures. Stretching and sliding on the metal resonator ensures that at extreme temperatures, the lead can vibrate along with the metal resonator without tearing due to different expansion coefficients.
  • the lead fixing structure provided by the present invention, the metal protective film and the metal resonator are made of the same material, which makes the metal protective film and the metal resonator have the same linear expansion coefficient, and the deformation of the two is uniform at the extreme temperature, which makes the metal protective film After welding to the metal resonator, the connection strength between the two is higher and the service life is longer.
  • FIG. 1 is a schematic structural view of a lead wire of a lead fixing structure according to a first embodiment of the present invention, which is symmetrically drawn from a bilateral side of a metal resonator;
  • FIG. 2 is a schematic structural view of a lead wire of a lead fixing structure taken out from one side of a metal resonator according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural view of a lead fixing structure according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a sensor of a Coriolis mass flow meter.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the invention provides a lead 3 fixing structure, which mainly solves the requirement of a reliable lead 3 in a vibrating environment, that is, mainly applied to a vibration-sensitive machine, such as a resonant sensor.
  • the resonant sensor is a sensor that converts a measured parameter into a frequency signal using a resonant element. When the measured parameter changes, the natural vibration frequency of the vibrating element changes accordingly. Through the corresponding measuring circuit, an electrical signal having a certain relationship with the measured parameter can be obtained.
  • the resonant sensor comprises a resonator 4, an exciter 1 and a signal exciter 1, and the exciter 1 and the signal detector 2 are connected with a lead 3, which may be a power line or a signal communication line connecting the sensor and an external transmitter. .
  • the core solution of the present invention is: a lead 3 fixing structure for a resonant sensor, the resonant sensor comprising a metal resonator 4, an exciter 1 and a signal detector 2 disposed on the metal resonator 4,
  • the actuator 1 and the signal detector 2 are connected with a lead 3
  • the lead 3 fixing structure includes a lead 3 and a metal protective film 6, and the metal protective film 6 is wrapped around the lead 3 to
  • the lead 3 is attached to the metal resonator 4 of the resonant sensor, and the metal protective film 6 and the metal resonator 4 are fixedly connected by soldering.
  • the prior art used tape and glue to fix the lead 3 to the vibrating tube, and to prevent relative movement between the lead 3, the tape and the metal resonator 4, by passing the lead 3
  • the six degrees of freedom are all fixed, and the lead 3 is integrated with the resonator 4.
  • the extreme temperature is, for example, a low temperature of ⁇ -40 ° C or a high temperature of >250 ° C or a large temperature change
  • the tape, the lead 3 and the metal resonator 4 are in contact with each other due to the difference in linear expansion coefficient - Sliding occurs, which in turn causes tearing, which actually destroys the integral structure of the lead 3 and the resonator 4, rendering the sensor incapable of working.
  • the metal protective film 6 is used to replace the tape in the prior art, the adhesive is replaced by soldering, the metal protective film 6 is pressed against the lead 3, and then the metal protective film 6 is soldered to the metal resonance.
  • the metal protective film 6 is smaller or even the same as the linear expansion coefficient of the tape and the metal resonator 4, which makes the deformation of the metal protective film 6 and the metal resonator 4 at a low temperature ⁇ -40 ° C or a high temperature > 250 ° C in an extreme temperature environment.
  • the strength of the metal protective film 6 is better than that of the tape, so that a thin metal protective film 6 can be used, thereby It is ensured that the weight attached to the metal resonator 4 is small, and the influence of the additional mass is small.
  • the embodiment provides a lead 3 fixing structure for a sensor of a Coriolis mass flow meter, the sensor comprising a vibrating tube, an exciter 1, a signal detector 2, a signal lead line, a vibration isolating plate and a base 5,
  • the exciter 1 and the signal detector 2 adopt an electromagnetic structure, that is, a relative motion form composed of a magnet and a coil, thereby realizing mutual conversion between vibration and electric signals.
  • Positive and negative poles need to be set on the coils of the exciter 1 and the signal detector 2, and then the signal is connected to the processing circuit in the transmitter through the signal lead-out line.
  • the lead wires are adhered to the vibration isolating plate by adhesive or tape, and after being bundled, they are taken out from the sensor base 5 to the transmitter.
  • the wiring pattern of the lead 3 is bilaterally symmetrically drawn: as shown in FIG. 1, one pole of the exciter 1 is taken out from the left side of the vibrating tube to the left vibration isolator, and the other pole is vibrated.
  • the right side of the tube is led to the right vibration isolator; the two poles of the left signal detector 2 are led to the left vibration isolation plate along the left side of the metal resonator 4; the two poles of the right signal detector 2 are all taken along the right side of the metal resonator 4 Right to the vibration plate.
  • the metal protective film 6 is used instead of the tape, and the adhesive is replaced by welding, and the metal protective film 6 is pressed against the signal. The wire is taken out, and then the metal protective film 6 is welded to the vibration tube by welding. Since the metal protective film 6 and the vibrating tube are made of the same or similar materials, the two have the same or similar temperature resistance, and have the same or similar linear expansion coefficient, which ensures that the signal lead wire does not peel off at extreme temperatures. As a preferred embodiment of the present invention, in the present embodiment, the metal protective film 6 is made of the same material as the vibrating tube.
  • the metal protective film 6 has a first soldering portion and a second soldering portion on both sides of the lead wire 3, the first soldering portion and The second soldering portion may be a metal protective film 6 located on two sides of the lead 3, or may be a portion of the two side edges.
  • the first soldering portion and the second soldering portion are used for the vibration tube as the name suggests.
  • the metal protective film 6 When the two welded portions of the metal protective film 6 are welded to the vibrating tube, the metal protective film 6 is coated on the outer side of the signal lead-out line to protect the metal. Both sides of the film 6 are welded to the vibrating tube, and the degree of freedom in the four directions of the signal lead line is substantially perpendicular to the front-back direction and the left-right direction of the extending direction of the lead wire 3, and the direction along the extending direction of the lead wire 3 is not limited.
  • the metal resonator 4 can be stretched and slid along the extending direction of the lead 3, thereby ensuring that the lead 3 can be used at an extreme temperature. As the metal resonator 4 vibrates together, tearing does not occur due to a difference in expansion coefficient.
  • the signal line includes at least one wire harness, as shown in FIG. 3, the signal wire includes three wire harnesses, and the same metal protective film 6 is in close contact with the vibration tube.
  • the number of signal lines is not limited to three, and in other embodiments, one, two, four or even more.
  • the first welding the first weld portion and the second weld portion are respectively welded to the vibration tube in a continuous form to form two continuous weld seams 7.
  • the continuous welding method makes the integral structure of the metal protective film 6 and the vibrating tube more stable.
  • intermittent or spot welding it is also possible to use intermittent or spot welding. Those skilled in the art can select according to the characteristics of different welding methods.
  • the welding uses one of argon arc welding, brazing, laser welding, plasma welding, and the selection of the welding type can also be selected according to the characteristics of different types of welding.
  • the thickness of the metal protective film 6 is not more than 0.05 mm, and in the present embodiment, the thickness of the metal protective film 6 is 0.03 mm.
  • the metal protective film 6 is thin and light in weight, and has a small weight attached to the vibrating tube, and the additional mass has little influence on the vibrating tube.
  • the thickness of the metal protective film 6 may also be 0.01 mm, 0.02 mm, 0.04 mm, 0.05 mm. Those skilled in the art can select metal protective films 6 of different thicknesses according to different needs.
  • the shape of the metal protective film 6 may be various, and may be, for example, a square, a circle, an ellipse, a rectangle, a triangle, a trapezoid, or the like. In the present embodiment, the metal protective film 6 is preferably rectangular.
  • the signal outgoing line can also be a single-sided extraction mode: as shown in FIG. 2, both the excitation pole 1 and the signal detector 2 are along the metal resonance.
  • the left or right side of the body 4 leads to the left or right vibration isolator.
  • the embodiment provides a resonant sensor including a metal resonator 4, an exciter 1 and a signal detector 2 disposed on the metal resonator 4, and the exciter 1 and the signal detector 2 are connected with leads 3.
  • the lead 3 fixing structure includes a lead 3 and a metal protective film 6, and the metal protective film 6 is wrapped around the outside of the lead 3 to attach the lead 3 to the metal resonator 4 of the resonant sensor.
  • the metal protective film 6 and the metal resonator 4 are fixedly connected by soldering.
  • the resonant sensor is a sensor for a mass flow meter
  • the metal resonator 4 is a vibrating tube for a mass flow meter.
  • the resonant sensor of this embodiment includes the lead 3 fixing structure of the first embodiment.
  • the resonant sensor may also be a resonant densitometer, and the metal resonator 4 is a metal cylinder for a resonant densitometer, a metal cylinder
  • the diameter is larger than the diameter of the vibrating tube, and the vibration frequency is also higher than the vibration frequency of the vibrating tube.
  • the resonant sensor can also be a resonant pressure sensor for a resonant pressure gauge.
  • This embodiment provides a measuring device having the resonant sensor of the second embodiment, which is a Coriolis mass flow meter. It should be noted, however, that the measuring device of the present embodiment may also be a Coriolis mass flow meter or a resonant densitometer or a resonant pressure gauge.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种引线(3)固定结构,包括引线(3)和金属保护膜(6),金属保护膜(6)包覆于引线(3)外侧以将引线(3)贴附于谐振式传感器的金属谐振体(4)上,金属保护膜(6)与金属谐振体(4)通过焊接固定连接。通过金属保护膜(6)替代现有技术中的胶带,用焊接替代了粘接,将金属保护膜(6)紧压在引线(3)上,然后将金属保护膜(6)焊接在金属谐振体(4)上,金属保护膜(6)相比胶带与金属谐振体(4)的线性膨胀系数相差较小甚至相同,这使得在极端温度下金属保护膜(6)与金属谐振体(4)的变形基本一致,不容易发生撕裂,进而保证了引线(3)不容易从金属谐振体(4)上剥落;此外,金属保护膜(6)强度比胶带的强度更好,能够使用较薄的金属保护膜(6),保证附加在金属谐振体(4)上的重量较小,附加质量的影响较小。还公开了包含引线(3)固定结构的谐振传感器以及具有谐振传感器的测量装置。

Description

引线固定结构、谐振式传感器及测量装置 技术领域
本发明涉及测量和自动化技术领域,具体涉及一种用于谐振式传感器的引线固定结构、谐振式传感器及具有该谐振式传感器的测量装置。
背景技术
在测量和自动化技术中,管道中流动的流体,特别是液体,的质量流速和/或密度通常是利用这样的仪表确定的:其使用谐振式传感器和与其相连的测量及控制电路,感应流经传感器的流体中的反作用力,特别是对应于质量流速的科里奥利力和对应于密度的惯性力,并由此得出代表流体的相应质量流速和/或相应密度的测量信号。
科里奥利质量流量计通常由传感器和变送器组成,传感器包括激励器、信号检测器、振动管、隔振片和测温电阻等部件,其中,激励器和信号检测器一般采用磁电式结构,即由磁铁和线圈组成相对运动形式,从而实现振动与电信号之间的互相转换。在激励器和信号检测器的线圈上需要设置正负极,然后通过引线将信号与变送器中的处理电路接通。现有技术中通常采用将引线由粘胶剂或胶带紧贴着振动管,例如中国专利文献CN205388494U公开的一种螺旋布线的科里奥利质量流量计,其各条引线以螺旋走线的形式缠绕在U型测量管上,且引线与U型测量管之间通过粘胶固定,之后再将各条引线汇集成一束后,从传感器底座引出至变送器。
然而,上述现有技术在实际使用中发现存在如下缺陷:引线作为附加质量贴附于振动管之上,其质量和牢固程度会严重影响传感器的振动性能,是绝不能允许引线松弛或剥落的。但是,因粘胶剂或胶带的温度限制,当上述传感器应用到低温(<-40℃)或高温(>250℃)时,粘胶剂或胶带会失效,从而导致引线从振动管上剥落,使传感器丧失工作能力。
发明内容
有鉴于此,本发明的目的是提供一种引线固定结构,以解决现有技术中谐振式传感器引线固定结构在低温或高温环境下粘胶剂或胶带容易失效导致引线从金属谐振体上剥落的问题。
进一步地,本发明的另一目的是提供一种用于科里奥利质量流量计的谐振式传感器,以解决现有技术中传感器的引线容易在低温或高温环境下从金属谐振体上剥落导致传感器失效的问题。
再进一步地,本发明的另一目的是提供一种科里奥利质量流量计,以解决现有技术中科里奥利质量流量计在低温或高温环境下引线容易从金属谐振体上剥落导致传感器失效的问题。
为此,第一方面,本发明提供了一种用于谐振式传感器的引线固定结构,所述谐振式传感器包括谐振体、设置在所述谐振体上的激励器和信号检测器,所述激励器和所述信号检测器连接有引线,所述引线固定结构包括引线和金属保护膜,所述金属保护膜包覆于所述引线外侧以将所述引线贴附于所述谐振式传感器的金属谐振体上,所述金属保护膜与所述金属谐振体通过焊接固定连接。
可选地,所述金属保护膜具有位于所述引线两侧用于与所述金属谐振体焊接的第一焊接部和第二焊接部,所述金属保护膜的中部在所述第一焊接部和第二焊接部与所述金属谐振体焊接后形成用于容纳所述引线且具有引线进线口和引线出线口的引线保护腔,所述引线在所述引线保护腔中能够沿着所述引线的走线方向伸缩滑动。
可选地,所述第一焊接部和所述第二焊接部分别以连续或断续或点焊的方式焊接在所述金属谐振体上。
可选地,所述焊接为氩弧焊或硬钎焊或激光焊或等离子焊接。
可选地,所述金属保护膜与所述金属谐振体材质相同。
可选地,所述金属保护膜的厚度不大于0.05mm。
可选地,所述金属保护膜为正方形或圆形或椭圆形或长方形或三角形或梯形。
可选地,所述金属谐振体为用于科里奥利质量流量计的振动管,所述引线沿着所述振动管的延伸方向走线。
第二方面,本发明提供了一种谐振式传感器,包括金属谐振体,以及设于所述金属谐振体上用于驱动所述金属谐振体振动的激励器和用于检测所述金属谐振体振动的信号检测器,所述激励器和所述信号检测器通过引线将信号输出至外接信号数据处理设备,还包括上述所述的引线固定结构。
可选地,所述激励器和所述信号检测器为磁电式结构。
可选地,所述激励器线圈的一极沿所述金属谐振体的左侧引至左侧隔振片,另一极沿所述金属谐振体右侧引至右侧隔振片;左侧信号检测器的两极均沿所述金属谐振体的左侧引出至左侧隔振片;右侧信号检测器的两极均沿所述金属谐振体右侧引出至右侧隔振片;或者,所述激励器和信号检测器的两极都沿所述金属谐振体的左侧或右侧引出至左侧或右侧隔振片。
第三方面,本发明提供了一种具有谐振式传感器的测量装置,包括:
上述的谐振式传感器;
信号数据处理设备,所述激励器和所述信号检测器通过所述引线将信号与所述信号数据处理设备的处理电路接通。
可选地,所述测量装置为科里奥利质量流量计。
可选地,所述测量装置为谐振式密度计或者具有谐振式压力计。
本发明的优点:
1、本发明提供的引线固定结构,通过金属保护膜替代现有技术中的胶带,用焊接替代了粘胶,将金属保护膜紧压在所述引线上,然后将金属保护膜焊接在金属谐振体上。金属保护膜相比胶带与金属谐振体的线性膨胀系数相差较小甚至相同,这使得在极端温度环境或高温)金属保护膜与金属谐振体的变形基本一致,不容易发生撕裂,进而保证了引线不容易从金属谐振体上剥落;此外,金属保护膜强度比胶带的强度更好,这样就能够使用较薄的金属保护膜,从而保证附加在金属谐振体上的重量较小,附加质量的影响较小。
2、本发明提供的引线固定结构,所述金属保护膜通过位于引线两侧的第一焊接部和第二焊接部焊接在所述金属谐振体上,这使得金属保护膜对引线仅固定了4个自由度延伸方向的前后方向和左右方向),而沿着引线延伸的方向没有限定,这使得在极端温度下引线、金属谐振体和金属保护膜的线性膨胀系数不同时可以沿着引线延伸方向在金属谐振体上伸缩滑动,从而保证了在极端温度下,引线既能随着金属谐振体一起振动,又不会因为膨胀系数不同的原因而导致撕裂。
3、本发明提供的引线固定结构,金属保护膜与金属谐振体材质相同,这使得金属保护膜与金属谐振体的线性膨胀系数相同,在极端温度下两者的变形一致,这使得金属保护膜焊接在金属谐振体之后,两者的连接强度更高,使用寿命长。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1为本发明实施例一提供的引线固定结构的引线从金属谐振体双侧对称引出的结构示意图;
图2为本发明实施例一提供的引线固定结构的引线从金属谐振体单侧引出的结构示意图;
图3为本发明实施例一提供的引线固定结构的结构示意图;
图4为科里奥利质量流量计的传感器的结构示意图。
附图标记说明:
1-激励器;2-信号检测器;3-引线;4-谐振体;5-底座;6-金属保护膜;7-焊缝。
具体实施方式
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是 指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明提供一种引线3固定结构,主要解决的是振动环境下的可靠引线3需求,即主要应用于对振动敏感的机械上,例如谐振式传感器。所述谐振式传感器是利用谐振元件把被测参量转换为频率信号的传感器。当被测参量发生变化时,振动元件的固有振动频率随之改变,通过相应的测量电路,就可得到与被测参量成一定关系的电信号。谐振式传感器包括谐振体4、激励器1和信号激励器1,激励器1和信号检测器2连接有引线3,所述引线3可以是连接传感器和外接变送器的电源线或信号通讯线。
本发明的核心方案是:一种用于谐振式传感器的引线3固定结构,所述谐振式传感器包括金属谐振体4、设置在所述金属谐振体4上的激励器1和信号检测器2,所述激励器1和所述信号检测器2连接有引线3,所述引线3固定结构包括引线3和金属保护膜6,所述金属保护膜6包覆于所述引线3外侧以将所述引线3贴附于所述谐振式传感器的金属谐振体4上,所述金属保护膜6与所述金属谐振体4通过焊接固定连接。
在本发明之前,现有技术都是采用胶带和粘胶的方式,将引线3固定在振动管上,并且为了防止引线3、胶带及金属谐振体4之间发生相对运动,通过将引线3的6个自由度全部固定,让引线3与谐振体4成为一体。然而,在极端温度例如是低温<-40℃或高温>250℃或者温度变化很大时,胶带、引线3以及金属谐振体4三者由于线性膨胀系数的不同,在三者互相接触的界面-产生滑动,进而导致撕裂,这实际上破坏了引线3与谐振体4 的一体结构,使传感器丧失工作能力。而本发明方案中,通过金属保护膜6替代现有技术中的胶带,用焊接替代了粘胶,将金属保护膜6紧压在所述引线3上,然后将金属保护膜6焊接在金属谐振体4上。金属保护膜6相比胶带与金属谐振体4的线性膨胀系数相差较小甚至相同,这使得在极端温度环境低温<-40℃或高温>250℃金属保护膜6与金属谐振体4的变形基本一致,不容易发生撕裂,进而保证了引线3不容易从金属谐振体4上剥落;此外,金属保护膜6强度比胶带的强度更好,这样就能够使用较薄的金属保护膜6,从而保证附加在金属谐振体4上的重量较小,附加质量的影响较小。
实施例一
本实施例提供一种用于科里奥利质量流量计的传感器的引线3固定结构,所述传感器包括振动管、激励器1、信号检测器2、信号引出线、隔振片和底座5,其中,激励器1和信号检测器2采用电磁式结构,即由磁铁和线圈组成的相对运动形式,从而实现振动与电信号之间的互相转换。在激励器1和信号检测器2的线圈上需要设置正负极,然后通过信号引出线将信号与变送器中的处理电路接通。常规情况下,引出线都是用粘胶剂或胶带紧贴着振动管至隔振片处,在汇集成一束后,从传感器底座5引出至变送器。
在本实施例中,所述引线3的走线方式为双侧对称引出:如图1所示,激励器1的一极从沿振动管左侧引出至左隔振片,另一极沿振动管右侧引至右隔振片;左侧信号检测器2的两极都沿金属谐振体4左侧引出至左隔振片;右侧信号检测器2的两极都沿金属谐振体4右侧引出至右隔振片。
为了提高质量流量计传感器在极端温度下的工作能力,在本实施例的引出线固定结构中,采用金属保护膜6替代了胶带,用焊接替代了粘胶,将金属保护膜6压紧在信号引出线上,然后用焊接将金属保护膜6焊接在振动管上。由于金属保护膜6与振动管的材质相同或相近,两者具有相同或相近的耐温性能,也具有相同或相近的线性膨胀系数,保证了信号引出线在极端温度下不会发生剥落。作为本发明的优选实施例,在本实施例中, 所述金属保护膜6与所述振动管的材质相同。
进一步地,如图3和图4所示,在本实施例中,所述金属保护膜6具有位于所述引线3两侧的第一焊接部和第二焊接部,所述第一焊接部和第二焊接部可以是金属保护膜6位于引线3两侧的两个侧边,也可以是两个侧边靠里的部位,第一焊接部和第二焊接部顾名思义是用于与振动管的管体进行焊接的部位,当金属保护膜6通过第一焊接部和第二焊接部与振动管的管体焊接后,其中部形成具有引线3进线口和引线3出线口的引线3保护腔,引线3从进线口入从出线口出,当金属保护膜6的两个焊接部与振动管焊接后,一方面金属保护膜6包覆在信号引出线的外侧起到保护作用,金属保护膜6的两侧与振动管焊接,其实质上是对信号引出线的4个方向的自由度垂直于引线3延伸方向的前后方向和左右方向进行了限制,而沿着引线3延伸的方向没有限制,这使得在极端温度温度过高或过低下引线3、金属谐振体4和金属保护膜6的线性膨胀系数不同时可以沿着引线3延伸方向在金属谐振体4上伸缩滑动,从而保证了在极端温度下,引线3既能随着金属谐振体4一起振动,又不会因为膨胀系数不同的原因而导致撕裂。
所述信号线包括至少一条线束,如图3所示,所述信号线包括三条线束,由同一金属保护膜6紧贴在振动管上。信号线的数量不限于三条,在其他实施例中,还可以为一条、两条、四条甚至更多条。
在本实施例中,所述第一焊接所述第一焊接部和所述第二焊接部分别以连续的形式焊接在振动管上,以形成两道连续的焊缝7。连续的焊接方式使得金属保护膜6与振动管形成的一体结构更稳固。但是,作为本发明连续焊接方式的可替换方式,还可以采用断续或者点焊的方式焊接。本领域技术人员可以根据不同焊接方式的特点进行选择。
在本实施例中,所述焊接采用的是氩弧焊、硬钎焊、激光焊、等离子焊接中的其中一种,同上,焊接种类的选择也可以根据不同种类焊接的特点进行选择。
另外,所述金属保护膜6的厚度不大于0.05mm,在本实施例中,金属保 护膜6的厚度为0.03mm。金属保护膜6的厚度薄、质量轻,附加在振动管上的重量较小,附加质量对振动管的影响较小。
作为金属保护膜6厚度的可替换实施例,所述金属保护膜6的厚度还可以是0.01mm、0.02mm、0.04mm、0.05mm。本领域技术人员可以根据不同需求,选择不同厚度的金属保护膜6。
此外,所述金属保护膜6的形状也可以是多样的,例如可以是正方形、圆形、椭圆形、长方形、三角形、梯形等。在本实施例中,所述金属保护膜6优选为长方形。
再者,作为信号引出线的走线方式的可替换实施例,所述信号引出线还可以为单侧引出方式:如图2所示,激励器1和信号检测器2的两极都沿金属谐振体4左侧或右侧引出至左或者右隔振片。
实施例二
本实施例提供一种谐振式传感器,包括金属谐振体4、设置在所述金属谐振体4上的激励器1和信号检测器2,所述激励器1和所述信号检测器2连接有引线3,所述引线3固定结构包括引线3和金属保护膜6,所述金属保护膜6包覆于所述引线3外侧以将所述引线3贴附于所述谐振式传感器的金属谐振体4上,所述金属保护膜6与所述金属谐振体4通过焊接固定连接。
在本实施例中,谐振式传感器为用于质量流量计的传感器,金属谐振体4为用于质量流量计的振动管。本实施例的谐振式传感器包括实施例一的引线3固定结构。
需要说明的是,作为质量流量计的一种可替换方式,所述谐振式传感器还可以为谐振式密度计,所述金属谐振体4为用于谐振式密度计的金属圆筒,金属圆筒的直径大于振动管的直径,振动频率也高于振动管的振动频率。谐振式传感器也可以为用于谐振式压力计的谐振式压力传感器。
实施例三
本实施例提供一种具有实施例二谐振式传感器的测量装置,该测量装置为科里奥利质量流量计。但是需要说明的是,本实施例的测量装置还可 以是科里奥利质量流量计或者谐振式密度计或者谐振式压力计。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (14)

  1. 一种用于谐振式传感器的引线(3)固定结构,所述谐振式传感器包括谐振体(4)、设置在所述谐振体(4)上的激励器(1)和信号检测器(2),所述激励器(1)和所述信号检测器(2)连接有引线(3),其特征在于,所述引线(3)固定结构包括引线(3)和金属保护膜(6),所述金属保护膜(6)包覆于所述引线(3)外侧以将所述引线(3)贴附于所述谐振式传感器的金属谐振体(4)上,所述金属保护膜(6)与所述金属谐振体(4)通过焊接固定连接。
  2. 根据权利要求1所述的引线(3)固定结构,其特征在于,所述金属保护膜(6)具有位于所述引线(3)两侧用于与所述金属谐振体(4)焊接的第一焊接部和第二焊接部,所述金属保护膜(6)的中部在所述第一焊接部和第二焊接部与所述金属谐振体(4)焊接后形成用于容纳所述引线(3)且具有引线(3)进线口和引线(3)出线口的引线(3)保护腔,所述引线(3)在所述引线(3)保护腔中能够沿着所述引线(3)的走线方向伸缩滑动。
  3. 根据权利要求2所述的引线(3)固定结构,其特征在于,所述第一焊接部和所述第二焊接部分别以连续或断续或点焊的方式焊接在所述金属谐振体(4)上。
  4. 根据权利要求1-3中任一项所述的引线(3)固定结构,其特征在于,所述焊接为氩弧焊或硬钎焊或激光焊或等离子焊接。
  5. 根据权利要求1-4中任一项所述的引线(3)固定结构,其特征在于,所述金属保护膜(6)与所述金属谐振体(4)材质相同。
  6. 根据权利要求1-5中任一项所述的引线(3)固定结构,其特征在于,所述金属保护膜(6)的厚度不大于0.05mm。
  7. 根据权利要求1-6中任一项所述的引线(3)固定结构,其特征在于,所述金属保护膜(6)为正方形或圆形或椭圆形或长方形或三角形或梯形。
  8. 根据权利要求1-7中任一项所述的引线(3)固定结构,其特征在于,所述金属谐振体(4)为用于科里奥利质量流量计的振动管,所述引线(3) 沿着所述振动管的延伸方向走线。
  9. 一种谐振式传感器,包括金属谐振体(4),以及设于所述金属谐振体(4)上用于驱动所述金属谐振体(4)振动的激励器(1)和用于检测所述金属谐振体(4)振动的信号检测器(2),所述激励器(1)和所述信号检测器(2)通过引线(3)将信号输出至外接信号数据处理设备,其特征在于,还包括权利要求1-8中任一项所述的引线(3)固定结构。
  10. 根据权利要求9所述的谐振式传感器,其特征在于,所述激励器(1)和所述信号检测器(2)为磁电式结构。
  11. 根据权利要求10所述的谐振式传感器,其特征在于,所述激励器(1)线圈的一极沿所述金属谐振体(4)的左侧引至左侧隔振片,另一极沿所述金属谐振体(4)右侧引至右侧隔振片;左侧信号检测器(2)的两极均沿所述金属谐振体(4)的左侧引出至左侧隔振片;右侧信号检测器(2)的两极均沿所述金属谐振体(4)右侧引出至右侧隔振片;或者,
    所述激励器(1)和信号检测器(2)的两极都沿所述金属谐振体(4)的左侧或右侧引出至左侧或右侧隔振片。
  12. 一种具有谐振式传感器的测量装置,其特征在于,包括:
    如权利要求9-11中任一项所述的谐振式传感器;
    信号数据处理设备,所述激励器(1)和所述信号检测器(2)通过所述引线(3)将信号与所述信号数据处理设备的处理电路接通。
  13. 根据权利要求12所述的测量装置,其特征在于,所述测量装置为科里奥利质量流量计。
  14. 根据权利要求12所述的测量装置,其特征在于,所述测量装置为谐振式密度计或者具有谐振式压力计。
PCT/CN2018/113357 2018-01-03 2018-11-01 引线固定结构、谐振式传感器及测量装置 WO2019134430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810006677.4 2018-01-03
CN201810006677.4A CN109990856A (zh) 2018-01-03 2018-01-03 引线固定结构、谐振式传感器及测量装置

Publications (1)

Publication Number Publication Date
WO2019134430A1 true WO2019134430A1 (zh) 2019-07-11

Family

ID=67128989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113357 WO2019134430A1 (zh) 2018-01-03 2018-11-01 引线固定结构、谐振式传感器及测量装置

Country Status (2)

Country Link
CN (1) CN109990856A (zh)
WO (1) WO2019134430A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186232A1 (en) * 2020-03-17 2021-09-23 Saudi Arabian Oil Company Systems and methods for distributed mass flow measurement
US11333538B2 (en) 2020-04-22 2022-05-17 Saudi Arabian Oil Company Systems and methods for fluid flow measurement with mass flow and electrical permittivity sensors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959577A (en) * 1974-06-10 1976-05-25 Westinghouse Electric Corporation Hermetic seals for insulating-casing structures
CN1103979A (zh) * 1993-10-15 1995-06-21 株式会社村田制作所 压电蜂鸣器
CN2731405Y (zh) * 2004-06-08 2005-10-05 浙江大学 海洋探测设备软细引线的密封装置
CN2835970Y (zh) * 2005-10-20 2006-11-08 上海光华仪表有限公司 核安全级电容式差压/压力变送器测量部件的密封结构
CN101252179A (zh) * 2008-03-31 2008-08-27 深圳华为通信技术有限公司 电极引线封装方法和结构及其电池封装方法和结构
CN101937751A (zh) * 2010-06-18 2011-01-05 中国科学院电工研究所 低温超导电流引线密封装置
CN202676193U (zh) * 2012-05-25 2013-01-16 核工业理化工程研究院 一种引线密封装置
CN103808347A (zh) * 2014-02-28 2014-05-21 广州中国科学院先进技术研究所 一种密闭金属壳体引线密封装置及方法
CN203933269U (zh) * 2014-07-11 2014-11-05 卧龙电气集团股份有限公司 外置式电机轴承测温装置
CN208171356U (zh) * 2018-01-03 2018-11-30 成都瑞帆智达科技有限公司 引线固定结构、谐振式传感器及测量装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731527A (en) * 1996-09-20 1998-03-24 Micro Motion, Inc. Coriolis flowmeters using fibers and anisotropic material to control selected vibrational flowmeter characteristics
JP2003227741A (ja) * 2002-02-05 2003-08-15 Yokogawa Electric Corp コリオリ質量流量計
JP5060319B2 (ja) * 2008-01-17 2012-10-31 一般財団法人電力中央研究所 板状光ファイバセンサおよび板状光ファイバセンサの製造方法
DE102011085408A1 (de) * 2011-10-28 2013-05-02 Endress + Hauser Flowtec Ag Meßwandler sowie damit gebildetes Meßsystem
CN203657867U (zh) * 2014-01-07 2014-06-18 成都安迪生测量有限公司 一种科里奥利质量流量计的飞线接线结构
CN205388494U (zh) * 2015-12-17 2016-07-20 成都瑞帆智达科技有限公司 一种螺旋布线的科里奥利质量流量计
CN105424113B (zh) * 2015-12-17 2018-08-07 成都瑞帆智达科技有限公司 一种螺旋布线的科里奥利质量流量计及布线方法
CN206269861U (zh) * 2016-10-25 2017-06-20 合肥科迈捷智能传感技术有限公司 一种抗振型涡街流量计传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959577A (en) * 1974-06-10 1976-05-25 Westinghouse Electric Corporation Hermetic seals for insulating-casing structures
CN1103979A (zh) * 1993-10-15 1995-06-21 株式会社村田制作所 压电蜂鸣器
CN2731405Y (zh) * 2004-06-08 2005-10-05 浙江大学 海洋探测设备软细引线的密封装置
CN2835970Y (zh) * 2005-10-20 2006-11-08 上海光华仪表有限公司 核安全级电容式差压/压力变送器测量部件的密封结构
CN101252179A (zh) * 2008-03-31 2008-08-27 深圳华为通信技术有限公司 电极引线封装方法和结构及其电池封装方法和结构
CN101937751A (zh) * 2010-06-18 2011-01-05 中国科学院电工研究所 低温超导电流引线密封装置
CN202676193U (zh) * 2012-05-25 2013-01-16 核工业理化工程研究院 一种引线密封装置
CN103808347A (zh) * 2014-02-28 2014-05-21 广州中国科学院先进技术研究所 一种密闭金属壳体引线密封装置及方法
CN203933269U (zh) * 2014-07-11 2014-11-05 卧龙电气集团股份有限公司 外置式电机轴承测温装置
CN208171356U (zh) * 2018-01-03 2018-11-30 成都瑞帆智达科技有限公司 引线固定结构、谐振式传感器及测量装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186232A1 (en) * 2020-03-17 2021-09-23 Saudi Arabian Oil Company Systems and methods for distributed mass flow measurement
US11333538B2 (en) 2020-04-22 2022-05-17 Saudi Arabian Oil Company Systems and methods for fluid flow measurement with mass flow and electrical permittivity sensors

Also Published As

Publication number Publication date
CN109990856A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
US6860158B2 (en) Coriolis mass flow rate/density/viscoy sensor with two bent measuring tubes
RU2538422C2 (ru) Первичный измерительный преобразователь вибрационного типа
RU2571174C2 (ru) Усовершенствованная электрическая конфигурация для вибрационного измерителя
RU2465557C1 (ru) Электромагнитное устройство, а также датчик вибрационного типа с таким электромагнитным устройством
CA2708271C (en) A vibrating flow device and method for fabricating a vibrating flow device
EP2682721B1 (en) Magnet assembly
KR101609734B1 (ko) 개선된 진동계 케이스를 포함한 진동계
WO2013071680A1 (zh) 科里奥利质量流量计、振动管密度计及其中使用的振动片
JPH02150724A (ja) 高温コリオリ質量流量計
WO2019134430A1 (zh) 引线固定结构、谐振式传感器及测量装置
JPH0754266B2 (ja) 振動する構造体にセンサ−を取付けるための装置
KR101687948B1 (ko) 감쇠된 측정기 구성 요소를 포함하는 진동형 측정기
CN104316123A (zh) 一种高密封性液体流量计
CN208171356U (zh) 引线固定结构、谐振式传感器及测量装置
US20160041018A1 (en) Meßwandler vom Vibrationstyp sowie damit gebildetes Meßsystem
JP4166248B2 (ja) コリオリメータ
JP3428563B2 (ja) コリオリ質量流量計
CN104296815A (zh) 一种高精度液体流量计
JP2021038928A (ja) コリオリ流量計
CN118583231A (zh) 流量检测装置和流量检测方法
JP2005055371A (ja) コリオリメータ
JP2004294090A (ja) 振動式測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898284

Country of ref document: EP

Kind code of ref document: A1