WO2019134395A1 - 光强检测单元、显示面板和检测光强的方法 - Google Patents

光强检测单元、显示面板和检测光强的方法 Download PDF

Info

Publication number
WO2019134395A1
WO2019134395A1 PCT/CN2018/105991 CN2018105991W WO2019134395A1 WO 2019134395 A1 WO2019134395 A1 WO 2019134395A1 CN 2018105991 W CN2018105991 W CN 2018105991W WO 2019134395 A1 WO2019134395 A1 WO 2019134395A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
signal line
circuit
light intensity
transistor
Prior art date
Application number
PCT/CN2018/105991
Other languages
English (en)
French (fr)
Inventor
李东升
袁广才
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18855160.0A priority Critical patent/EP3736797A4/en
Priority to US16/336,278 priority patent/US11132525B2/en
Publication of WO2019134395A1 publication Critical patent/WO2019134395A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/941Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector
    • H03K17/943Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated using an optical detector using a plurality of optical emitters or detectors, e.g. keyboard
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0804Sub-multiplexed active matrix panel, i.e. wherein one active driving circuit is used at pixel level for multiple image producing elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a light intensity detecting unit, a display panel, and a method of detecting light intensity.
  • the photoelectric conversion element is capable of collecting optical signals and can be used in the field of fingerprint recognition.
  • the photoelectric conversion element, the switching element, and the wiring in the light intensity detecting unit may cause a problem that the fingerprint collection is inaccurate.
  • a light intensity detecting unit comprising N scanning signal lines, wherein N is a positive integer; J reading signal lines, wherein J is a positive integer; at least one enabling signal line; configured N x J photoelectric conversion circuits that convert optical signals into electrical signals; and at least one gating circuit.
  • Each of said read signal lines is connected to one or more of said at least one gate circuit, each of said gate circuits being coupled to an output of said plurality of said photoelectric conversion circuits, each of said scan signals A line is connected to one or more of the photoelectric conversion circuits, and each of the enable signal lines is connected to one or more of the at least one gate circuit.
  • the gating circuit is configured to transmit the electrical signal to the read signal line connected thereto in response to an enable signal of the enable signal line connected thereto.
  • the photoelectric conversion circuits connected to the same read signal line are divided into K groups, wherein K is a positive integer greater than or equal to 2, and each set of the photoelectric conversion circuits is connected to The same said strobe circuit.
  • each of the scanning signal lines is connected to only one of the photoelectric conversion circuits in a group of the photoelectric conversion circuits.
  • each set of said photoelectric conversion circuits is comprised of M of said photoelectric conversion circuits, wherein M is a positive integer.
  • M K
  • N is a positive integer greater than or equal to 3.
  • the at least one gating circuit includes a plurality of gating circuits, and the gating circuits connected to the same one of the read signal lines are each connected to a different one of the enable signal lines.
  • the at least one gating circuit includes a plurality of gating circuits, and the gating circuits connected to the same one of the enable signal lines are each connected to a different one of the read signal lines.
  • each of the photoelectric conversion circuits includes a first transistor and a photoelectric conversion element, wherein the first transistor includes a gate, a first pole, and a second pole, and a gate connection of the first transistor To one of the scanning signal lines, the photoelectric conversion element is connected to a first pole of the first transistor, and the second of the first transistor is substantially the output end of the photoelectric conversion circuit, and each The gate circuit includes a second transistor, wherein the second transistor includes a gate, a first pole, and a second pole, wherein a gate of the second transistor is coupled to one of the enable signal lines, A first pole of the second transistor is coupled to the second pole of the first transistor, and a second pole of the second transistor is coupled to one of the read signal lines.
  • the first transistor and the second transistor have the same aspect ratio.
  • the photoelectric conversion element is a photodiode, and a first pole of the first transistor is coupled to an anode of the photodiode, and a cathode of the photodiode is coupled to an operating voltage terminal.
  • the enable signal line is parallel to the scan signal line.
  • a display panel comprising a fingerprint recognition circuit, the fingerprint recognition circuit comprising the light intensity detecting unit according to any one of claims 1-11.
  • the light intensity detecting unit is located in a display area of the display panel.
  • the display panel further includes horizontally intersecting gate lines and data lines, wherein each of the scan signal lines, the read signal lines, and the enable signal lines are The gate lines or the data lines are on different layers.
  • a method for detecting light intensity using a light intensity detecting unit comprising: N scanning signal lines, wherein N is a positive integer; J reading signals a line, wherein J is a positive integer; at least one enable signal line; N x J photoelectric conversion circuits configured to convert the optical signal into an electrical signal; and at least one gating circuit.
  • Each of said read signal lines is connected to one or more of said at least one gate circuit, each of said gate circuits being coupled to an output of said plurality of said photoelectric conversion circuits, each of said scan signals A line is connected to one or more of the photoelectric conversion circuits, and each of the enable signal lines is connected to one or more of the at least one gate circuit.
  • the gating circuit is configured to transmit the electrical signal to the read signal line connected thereto in response to an enable signal of the enable signal line connected thereto.
  • the method includes:
  • the step of receiving the scan signal by the photoelectric conversion circuit connected to the gating circuit to turn on the photoelectric conversion circuit comprises:
  • the step of transmitting the electrical signal to the read signal line through the turned-on strobe circuit by the turned-on photoelectric conversion circuit comprises:
  • the electrical signal is transmitted to the read signal line one by one or simultaneously by the gating circuit.
  • the step of receiving the enable signal by the gating circuit to turn on the gating circuit comprises:
  • the scan signal is received by the photoelectric conversion circuit connected to the gate circuit to turn on the photoelectric conversion circuit
  • the scanning signal transmitted by the scanning signal line connected thereto is received one by one by the photoelectric conversion circuit connected to the turned-on gate circuit to turn on the photoelectric conversion circuit one by one.
  • FIG. 1 schematically shows the structure of a light intensity detecting unit of an embodiment of the present disclosure
  • FIG. 2 is a view schematically showing a wiring pattern of the photoelectric conversion circuit of FIG. 1;
  • FIG. 3 schematically shows the structure of another light intensity detecting unit of an embodiment of the present disclosure
  • FIG. 4 is a view schematically showing another wiring diagram of the photoelectric conversion circuit of FIG. 1;
  • FIG. 5 schematically shows the structure of still another light intensity detecting unit of an embodiment of the present disclosure
  • Figure 6 is a view schematically showing a plurality of gate circuits connected to the same read signal line and circuits of the photoelectric conversion circuits connected to the respective gate circuits;
  • FIG. 7 is a schematic diagram showing a test of an IV curve of a second transistor in a light intensity detecting unit provided by an embodiment of the present application.
  • FIG. 8 schematically illustrates a structure of a display panel 200 according to an embodiment of the present disclosure
  • Figure 9 is a view schematically showing the structure of a fingerprint identification circuit
  • FIG. 10 schematically illustrates a flow chart of a method of detecting light intensity in accordance with an embodiment of the present disclosure
  • Figure 11 schematically shows the divided control area of the light intensity detecting unit
  • Fig. 12 schematically shows a timing chart of signal lines of the light intensity detecting unit.
  • a photoelectric conversion element can collect an optical signal and convert the collected optical signal into an electrical signal.
  • photoelectric conversion elements are widely used in the field of fingerprint recognition.
  • the photoelectric conversion element is connected to a signal line through a switching transistor.
  • the switching transistor can control the photoelectric conversion element to output the collected fingerprint signal to the signal line.
  • the shape of the fingerprint can be obtained.
  • the switching transistor itself has a leakage current (ie, an off-state current I off ).
  • the off-state current is relatively large relative to the weak fingerprint signal. Therefore, when the off-state current I off flows to the signal line, interference occurs on the fingerprint signal on the signal line, thereby causing an inaccurate fingerprint collection.
  • the present disclosure provides a light intensity detecting unit, a display panel, and a method of detecting light intensity, which can reduce the influence of the off-state current I off of the switching transistor on the measurement accuracy of the light intensity.
  • FIG. 1 schematically shows the structure of a light intensity detecting unit 01 according to an embodiment of the present disclosure.
  • the light intensity detecting unit 01 includes N scanning signal lines GL and J reading signal lines RL. Both N and J are positive integers.
  • the light intensity detecting unit 01 further includes N x J photoelectric conversion circuits 10. That is, each of the scanning signal lines GL and each of the reading signal lines RL together define one photoelectric conversion circuit 10. This means that in the light intensity detecting unit 01, the N photoelectric conversion circuits 10 are connected to the same read signal line RL, and the J photoelectric conversion circuits 10 are leveled to the same scanning signal line GL.
  • the light intensity detecting unit 01 further includes at least one gate circuit 20.
  • the output terminals of the plurality of photoelectric conversion circuits 10 are connected to the same read signal line RL through a gate circuit 20.
  • the light intensity detecting unit 01 further includes an enable signal line EN, and the gate circuit 20 is also connected to the enable signal line EN.
  • the gate circuit 20 is configured to turn on the gate circuit 20 in response to an enable signal from the enable signal line EN, thereby outputting the electrical signals converted from the optical signals of the respective photoelectric conversion circuits 10 one by one to the read signal line RL.
  • each of the photoelectric conversion circuits is connected to a corresponding one of the scan signal lines and a corresponding one of the gate circuits, and is connected to the corresponding one of the gate circuits by the corresponding one of the gate circuits The corresponding one of the read signal lines.
  • each of the strobe circuits is coupled to a corresponding one of the enable signal lines and configured to responsive to an enable signal from the corresponding one of the enable signal lines Transmitting to the corresponding one of the read signal lines.
  • corresponding refers only to the connection relationship and does not denote a limitation in quantity.
  • each photoelectric conversion circuit is connected to a corresponding one of the gate circuits
  • each photoelectric conversion circuit is connected to a gate circuit, but does not mean that the photoelectric conversion circuit and the gate circuit have a one-to-one correspondence.
  • the expression may indicate a case where a plurality of photoelectric conversion circuits are connected to the same gate circuit, and another plurality of photoelectric conversion circuits are connected to another gate circuit.
  • each photoelectric conversion circuit is connected to a corresponding one of the scanning signal lines
  • the expression “each gate circuit is connected to the enable signal line” Corresponding to one” includes the case where a plurality of gate circuits are connected to the same enable signal line.
  • N &gt That is, in one light intensity detecting unit 01, there are at least three scanning signal lines.
  • each of the read signal lines can be connected to three or more photoelectric conversion circuits.
  • J ⁇ 2, that is, each scanning signal line can be connected to two or more photoelectric conversion circuits.
  • FIG. 2 schematically shows a wiring diagram of the photoelectric conversion circuit 10 of FIG. 1.
  • the photoelectric conversion circuit may include a first transistor M1 and a photoelectric conversion element L.
  • the first transistor includes a gate, a first pole, and a second pole.
  • the first and second poles represent the source and drain, respectively, in the source and drain of the transistor.
  • the first pole is the source of the transistor and the second pole is the drain of the transistor.
  • the first pole is the drain of the transistor and the second pole is the source of the transistor.
  • the photoelectric conversion element L is connected to the first electrode of the first transistor M1. That is, the photoelectric conversion element L may be connected to the source of the first transistor M1 or may be connected to the drain of the first transistor M1.
  • the second terminal of the first transistor is an output terminal of the photoelectric conversion circuit.
  • the photoelectric conversion element L may be a photodiode (PIN diode).
  • the first electrode of the first transistor M1 is connected to the anode of the photodiode, and the gate of the first transistor M1 is connected to the scanning signal line GL.
  • the cathode of the photodiode is connected to the operating voltage terminal V + .
  • the operating voltage terminal V + may have a magnitude between 5V and 8V, such that the PIN diode operates in a reverse biased state.
  • the above-mentioned photoelectric conversion element L may also be an element capable of converting an optical signal into an electrical signal, such as a phototransistor, a photo resistor, or the like, which is not limited in the present application.
  • the photoelectric conversion element L is specifically described by taking a PIN diode as an example.
  • the electrical signal converted by the PIN diode according to the optical signal is a current signal.
  • the current signal is output to the above-described read signal line RL to realize detection of light intensity.
  • the current signal on the read signal line RL is large, and when the light intensity is small, the current signal on the read signal line RL is small.
  • the gating circuit 20 can include a second transistor M2.
  • the second transistor M2 also includes a gate, a first pole, and a second pole. It should be noted that the selection of the first and second poles of the second transistor M2 is independent of the selection of the first and second poles of the first transistor M1. For example, when the first source of the first transistor M1 is the first source and the second terminal is the drain, the first electrode of the second transistor M2 may be the source and the second drain, or the first pole of the second transistor M2 may It is the drain and the second source is extremely strong.
  • the gate of the second transistor M2 is connected to the enable signal line EN.
  • the first pole of the second transistor M2 is connected to the second pole of the first transistor M1, and the second pole of the second transistor M2 is connected to the read signal line RL. That is, one of the source and drain of the second transistor M2 is connected to the second electrode of the first transistor M1, and the other of the source and drain of the second transistor M2 is connected to the read signal line RL. It should be understood that the expression "one electrode of the source and drain of the second transistor M2 is connected to the second electrode of the first transistor M1" means that one of the source and the drain of the second transistor M2 is connected to the source and drain of the first transistor M1. One of the poles, and the other of the source and drain of the first transistor M1 is connected to the photoelectric conversion element L.
  • first transistor M1 and the second transistor M2 may both be N-type transistors (as shown in FIG. 2) or both P-type transistors. This application does not limit this.
  • the first transistor M1 of each of the photoelectric conversion circuits 10 connected to the gate circuit 20 can be in phase with the first transistor M1.
  • the electrical signal converted by the connected photoelectric conversion element L is transmitted to the read signal line RL connected to the above-described turned-on second transistor M2. Therefore, a portion of the gate circuit 20 can be selectively turned on. For example, as shown in FIG. 2, under the control of the enable signal line EN1, the second transistor M2 in the gate circuit 20 connected to the enable signal line EN1 can be turned on to turn on the gate circuit.
  • the purpose of 20 is shown in FIG.
  • the plurality of photoelectric conversion circuits 10 connected to the same read signal line RL1 through the gate circuit 20 can respectively perform the first of the respective photoelectric conversion circuits 10 under the action of the respective scanning signal lines GL.
  • the transistor M1 is turned on, so that the photoelectric conversion element L in each of the photoelectric conversion circuits 10 transmits an electric signal converted into an electric signal into the above-described read signal line RL1 through the turned-on first transistor M1 and second transistor M2.
  • K is a positive integer, and in some embodiments, K >
  • the first transistor M1 in the photoelectric conversion circuit 10' connected to the scanning signal line GL(N-1) and the scanning signal line GL(N) respectively has a leakage current, since it is in a closed state Among the leakage currents of the plurality of first transistors M1 to which the second transistor M2 of the gate circuit 20' is connected, the amount of current that can flow to the read signal line RL through the second transistor M2 is received by the leakage current of the second transistor M2.
  • the size of the second transistor M2 in the gating circuit 20' can limit the off-state current I off transmitted to the read signal line RL1, thereby reducing the off-state current I off of each of the first transistors M1.
  • the influence of the electrical signal on the signal line RL1 is taken to improve the accuracy of the light intensity detecting unit 01.
  • the light intensity detecting unit 01 provided in the embodiment of the present application can collect light. Also, the brightness of the collected light matches the size of the converted electrical signal. Therefore, the above-described light intensity detecting unit 01 can be applied to fields such as fingerprint recognition devices, X-ray detection, vein recognition, and the like. This application does not limit this.
  • the first transistor M1 and the second transistor M2 need not drive the load, but only need to realize the first pole (or the second pole) of the transistor to the second pole (or the first pole) in the on state. Signal transmission. Therefore, the sizes of the first transistor M1 and the second transistor M2 described above need not be made large. In order to reduce the manufacturing difficulty and optimize the wiring space, optionally, the first transistor M1 and the second transistor M2 have the same width-to-length ratio.
  • the maximum leakage current that the second transistor M2 can allow to pass is the same as the leakage current of any one of the first transistors M1 connected to the second transistor M2. .
  • the light intensity detecting unit 01 includes a plurality of gate circuits 20, in order to optimize the wiring space, optionally, as shown in FIG. 1, a plurality of gate circuits 20 connected to the same read signal line RL are provided. Connect different enable signal lines EN.
  • the gate circuit 20 can output signals to the same read signal line RL at different timings.
  • two gate circuits 20 connected to the same read signal line RL1 are respectively connected to the enable signal line EN1 and the enable signal line EN2, and the enable signal line EN1 and the enable signal line EN2 can be at different timings.
  • a signal is output to the same read signal line RL1.
  • one enable signal line EN can connect a plurality of gate circuits, and thus control electrical signal output to a plurality of read signal lines.
  • the plurality of gate circuits 20 connected to the plurality of photoelectric conversion circuits 10 connected to the same scanning signal line GL may be connected to the same enabling signal line EN (for example, enabled) Signal line EN1).
  • the same enable signal line EN can simultaneously turn on the plurality of gate circuits 20.
  • the plurality of photoelectric conversion circuits 10 that are turned on can simultaneously output the converted electrical signals to different read signal lines RL through the respective connected gate circuits 20 in the on state. .
  • the number of photoelectric conversion circuits 10 connected to each of the gate circuits 20 may be the same.
  • each of the gate circuits 20 may be connected to three photoelectric conversion circuits 10.
  • FIG. 3 schematically shows the structure of another light intensity detecting unit 02 according to an embodiment of the present disclosure. As shown in FIG. 3, different gating circuits 20 are connected to different numbers of photoelectric conversion circuits 10. This application does not limit this.
  • FIG. 4 schematically shows another wiring diagram of the photoelectric conversion circuit 10 of FIG. 1.
  • the photoelectric conversion circuit 10 is divided into K groups in accordance with the enable signal line EN, and K is a positive integer. Based on this, the light intensity detecting unit 01 includes K stripping signal lines EN and K x J gate circuits 20.
  • the N photoelectric conversion circuits 10 connected to the same read signal line RL may be divided into K groups in accordance with the enable signal line EN.
  • Each set of photoelectric conversion circuits 10 includes M photoelectric conversion circuits 10.
  • the photoelectric conversion circuit 10 in each group is connected to one read signal line RL through a gate circuit 20, and different sets of photoelectric conversion circuits 10 are connected to different gate circuits 20.
  • the light intensity detecting unit according to the present disclosure may include only one gate circuit.
  • FIG. 5 schematically shows the structure of another light intensity detecting unit 03 according to an embodiment of the present disclosure. As can be seen from Fig. 5, only a part of the photoelectric conversion circuit is connected to the gate circuit. When the photoelectric conversion circuit not connected to the gate circuit receives the scan signal from the scanning signal line, the off-state current I off of the photoelectric conversion circuit connected to the gate circuit is also limited.
  • FIG. 6 schematically shows a plurality of gate circuits 20 that connect the same read signal line RL (for example, the read signal line RL1) and a circuit of the photoelectric conversion circuit 10 connected to each of the gate circuits 20.
  • the outputs of the M photoelectric conversion circuits 10 in the same group are each connected to the same gate circuit 20.
  • the output terminal of the photoelectric conversion circuit refers to a port that outputs an electrical signal generated by the photoelectric conversion circuit.
  • the total leakage current I nosie on each read signal line RL is:
  • I noise [(K-1)+(M-1)] ⁇ I off (1)
  • I off is the leakage current of any one of the transistors.
  • the basis of the formula (1) is that the first transistor M1 and the second transistor M2 have the same aspect ratio.
  • the K-1 second transistors M2 are turned off.
  • the K-1 second transistors M2 in the off state may restrict the off current of the first transistor M1 among the plurality of photoelectric conversion circuits 10 connected to the K-1 second transistors M2 to flow to the above state.
  • the magnitude of the current of the signal line RL1 is read, thereby achieving the purpose of reducing the leakage current flowing to the read signal line RL1.
  • the output ends of the plurality of first transistors M1 connected to the same second transistor M2 are electrically connected, and the second transistors M1 to which the M first transistors M1 are respectively connected are connected.
  • the second transistor M2 in the off state allows only M A part of the leakage current of the first transistor M1 passes, and the maximum value of the leakage current passed is the above I off .
  • FIG. 7 is a graph schematically showing an IV curve of a second transistor M2 in the light intensity detecting unit 01 provided by the embodiment of the present application.
  • the voltage drop V SD on the second transistor M2 changes, but the change in V SD does not greatly affect the leakage current I off of the second transistor M2. Therefore, the magnitude of the leakage current allowed to pass by the second transistor M2 does not vary greatly depending on whether the respective transistors of the M first transistors M1 connected to the second transistor M2 are turned on or off.
  • the light intensity detecting unit provided by the embodiment of the present application reduces the interference signal on each read signal line RL.
  • the leakage current I off of the first transistor M1 or the second transistor M2 is 1 ⁇ 10 -13 A
  • the total leakage current I nosie ' on the read signal line RL is:
  • the signal-to-noise ratio R' is small. Therefore, the noise of the output signal on the read signal line RL is large, and the signal detection accuracy is low.
  • the total leakage current I nosie on the strip read signal line RL is:
  • the signal-to-noise ratio R is increased, and R ⁇ 15.5R'. Therefore, the noise of the output signal on the read signal line RL of the light intensity detecting unit according to the embodiment of the present disclosure is remarkably reduced, thereby contributing to an improvement in detection accuracy.
  • the embodiment of the present application further provides a display panel.
  • the display panel includes a fingerprint recognition circuit 40.
  • the fingerprint recognition circuit 40 includes the light intensity detecting unit 01 as described in any of the above embodiments.
  • FIG. 8 schematically illustrates the structure of a display panel 200 according to an embodiment of the present disclosure.
  • the light intensity detecting unit 01 is located in the display area 30 of the display panel 200 or the non-display area 35 of the display panel. This application does not limit this.
  • the light intensity detecting unit 01 constitutes a part of the fingerprint identifying circuit 40.
  • the fingerprint identification circuit 40 further includes a processor 50 to process electrical signals from the light intensity detecting unit.
  • Fig. 9 schematically shows a structural diagram of a fingerprint identification circuit.
  • the light intensity detecting unit 01 when the light intensity detecting unit 01 is located in the display area of the display panel, the light intensity detecting unit 01 may be evenly distributed in the display area or disposed in a part of the display area. limited.
  • the light intensity detecting unit 01 is located in the display area of the display panel, when the display area of the display panel further includes the horizontally intersecting gate line Gate and the data line Data, in order to avoid multiple signal lines in the same layer wiring
  • the scan signal line GL, the read signal line RL, and the enable signal line EN in the light intensity detecting unit 01 may be located at different layers from the gate line Gata or the data line Data.
  • the above display panel has the same technical effects as the light intensity detecting unit 01 provided in the foregoing embodiment, and details are not described herein again.
  • the present disclosure also provides a method for detecting light intensity by using a light intensity detecting unit, wherein the light intensity detecting unit includes:
  • N N scanning signal lines, where N is a positive integer
  • J reads the signal line, where J is a positive integer
  • N x J photoelectric conversion circuits configured to convert optical signals into electrical signals
  • each of the photoelectric conversion circuits is connected to one of the N scanning signal lines and the gate circuit, and is connected to the J reading by the gate circuit One of the signal lines reads the signal line, and
  • the gating circuit is coupled to the enable signal line and configured to transmit the electrical signal to the one of the J read signal lines in response to an enable signal from the enable signal line A read signal line.
  • Figure 10 schematically illustrates the steps of the method.
  • the method comprises:
  • the enable signal terminal EN(K) can control the second transistor M2 connected thereto to be turned off.
  • the second transistor M2 can limit the amount of leakage current flowing to the read signal line RL among the plurality of first transistors M1 connected thereto, so that the magnitude of noise on the read signal line RL can be reduced.
  • the scanning mode of the scanning signal line GL includes: when the light intensity detecting unit 01 includes N scanning signal lines GL, the scanning signals are input to the photoelectric conversion circuit one by one by the N scanning signal lines GL, to open the scanning one by one The photoelectric conversion circuit is described.
  • the manner of reading the signal line RL output signal includes: after one scan signal line GL inputs the scan signal, the gate signal is transmitted by the gate circuit one by one to the one connected to the one of the scan signal lines Read the signal line.
  • the above J read signal lines RL can be output to the data processor through one data channel.
  • the manner in which the signal line RL is outputted may be: when a scan signal line GL inputs a scan signal, the gate signal is simultaneously transmitted by the gate circuit to be connected to the one of the scan signal lines. The read signal line. At this time, the J read signal lines RL can be output to the data processor through different data channels.
  • the photoelectric conversion circuit connected to the same one of the J read signal lines is divided into K groups, where K is a positive integer greater than or equal to 2, and each set of the photoelectric conversion
  • the enable signals are input one by one to turn on the gating circuit one by one.
  • the photoelectric conversion circuit connected to the turned-on gate circuit receives the scan signal to
  • the step of turning on the photoelectric conversion circuit includes: receiving, by the M scanning signal lines, the scanning signals by the M photoelectric conversion circuits connected to the turned-on gate circuit, respectively, to open the scanning signals one by one Photoelectric conversion circuit.
  • Fig. 11 schematically shows a divided control area of the light intensity detecting unit.
  • the light intensity detecting unit 01 can be divided into a plurality of control areas 100, each of which includes an enable signal line EN and M scan signal lines GL. That is, each control region 100 includes one or more gate circuits 20 connected to the enable signal line EN and a group (total M) of the photoelectric conversion circuits 10 connected to the gate circuit 20.
  • Fig. 12 schematically shows signal timing charts of the above-described enable signal lines EN1 and M scanning signal lines (GL1, GL2, GL3, ..., GL(M)).
  • the M scanning signal lines (GL1, GL2, GL3, ... GL(M)) output a high level one by one, and enable the pulse width of the signal line EN1.
  • the sum of signal pulse widths larger than M scanning signal lines (GL1, GL2, GL3, ... GL(M)).
  • the reading signal line RL outputs a current signal.
  • Embodiments of the present application provide a light intensity detecting unit, a display panel, and a method for detecting light intensity.
  • each of the photoelectric conversion circuits connected to the gate circuit can be turned on under the control of the scanning signal line, thereby transmitting the converted electrical signals one by one to the above
  • the open gating unit is connected to the read signal line. In this way, the partial gating circuit can be selectively turned on. At the same time, part of the gating circuit can be selectively turned off.
  • the gate circuit in the off state allows only a part of the transistor leakage current in the plurality of photoelectric conversion circuits connected thereto to pass, because the leakage current that can flow to the read signal line through the above-described gate circuit is subjected to the The limitation of the transistor's own leakage current in the gate circuit. Therefore, the gate circuit can limit the off-state current transmitted to the read signal line, thereby reducing the influence of the off-state current on the signal collected on the read signal line, and improving the detection precision of the light intensity detecting unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image Input (AREA)

Abstract

一种光强检测单元、显示面板和检测光强的方法。该光强检测单元(01)包括N条扫描信号线(GL),其中N为正整数;J条读取信号线(RL),其中J为正整数;至少一条使能信号线(EN);配置成将光信号转换成电信号的N×J个光电转换电路(10);以及至少一个选通电路(20)。每一条读取信号线(RL)连接到至少一个选通电路(20)中的一个或多个。每一个选通电路(20)连接到多个光电转换电路(10)的输出端。每一条扫描信号线(GL)连接到一个或多个光电转换电路(10)。每一条使能信号线(EN)连接到至少一个选通电路(20)中的一个或多个。选通电路(20)配置成响应于与其连接的使能信号线(EN)的使能信号,将电信号传输至与其连接的读取信号线(RL)。

Description

光强检测单元、显示面板和检测光强的方法
相关专利申请
本申请主张于2018年1月2日提交的中国专利申请No.201810003875.5的优先权,其全部内容通过引用结合于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种光强检测单元、显示面板以及检测光强的方法。
背景技术
光电转换元件能够对光信号进行采集,并可以用于指纹识别领域中。然而,在相关技术中,光强检测单元中的光电转换元件、开关元件以及布线有可能造成指纹采集不准确的问题。
发明内容
根据本申请的一方面,提供一种光强检测单元,包括N条扫描信号线,其中N为正整数;J条读取信号线,其中J为正整数;至少一条使能信号线;配置成将光信号转换成电信号的N×J个光电转换电路;以及至少一个选通电路。每一条所述读取信号线连接到所述至少一个选通电路中的一个或多个,每一个所述选通电路连接到多个所述光电转换电路的输出端,每一条所述扫描信号线连接到一个或多个所述光电转换电路,并且每一条所述使能信号线连接到所述至少一个选通电路中的一个或多个。所述选通电路配置成响应于与其连接的所述使能信号线的使能信号,将所述电信号传输至与其连接的所述读取信号线。
在一些实施例中,连接至同一条所述读取信号线的所述光电转换电路被分为K组,其中K为大于或等于2的正整数,并且每一组所述光电转换电路连接到同一个所述选通电路。
在一些实施例中,每一条所述扫描信号线在一组所述光电转换电路中只连接到一个所述光电转换电路。
在一些实施例中,每一组所述光电转换电路都由M个所述光电转换电路组成,其中M为正整数。
在一些实施例中,M=K。
在一些实施例中,N为大于或等于3的正整数。
在一些实施例中,所述至少一个选通电路包括多个选通电路,并且连接到同一条所述读取信号线的所述选通电路各自连接到不同的所述使能信号线。
在一些实施例中,所述至少一个选通电路包括多个选通电路,并且连接到同一条所述使能信号线的所述选通电路各自连接到不同的所述读取信号线。
在一些实施例中,每一个所述光电转换电路包括第一晶体管和光电转换元件,其中所述第一晶体管包括栅极、第一极和第二极,并且所述第一晶体管的栅极连接到所述扫描信号线之一,所述光电转换元件与所述第一晶体管的第一极相连接,所述第一晶体管的第二极为所述光电转换电路的所述输出端,并且每一个所述选通电路包括第二晶体管,其中所述第二晶体管包括栅极、第一极和第二极,其中所述第二晶体管的栅极连接到所述使能信号线之一,所述第二晶体管的第一极连接到所述第一晶体管的第二极,并且所述第二晶体管的第二极连接到所述读取信号线之一。
在一些实施例中,所述第一晶体管和所述第二晶体管的宽长比相同。
在一些实施例中,所述光电转换元件为光电二极管,并且所述第一晶体管的第一极连接到所述光电二极管的阳极,所述光电二极管的阴极连接到工作电压端。
在一些实施例中,所述使能信号线与所述扫描信号线平行。
根据本申请的另一方面,提供了一种显示面板,包括指纹识别电路,所述指纹识别电路包括如权利要求1-11中的任一项所述的光强检测单元。
在一些实施例中,所述光强检测单元位于所述显示面板的显示区域。
在一些实施例中,所述显示面板还包括横纵交叉的栅线和数据线,其中所述扫描信号线、所述读取信号线以及所述使能信号线中的每一个都与所述栅线或所述数据线位于不同层。
根据本申请的又一方面,提供了一种利用光强检测单元来检测光 强的方法,其中所述光强检测单元包括:N条扫描信号线,其中N为正整数;J条读取信号线,其中J为正整数;至少一条使能信号线;配置成将光信号转换成电信号的N×J个光电转换电路;以及至少一个选通电路。每一条所述读取信号线连接到所述至少一个选通电路中的一个或多个,每一个所述选通电路连接到多个所述光电转换电路的输出端,每一条所述扫描信号线连接到一个或多个所述光电转换电路,并且每一条所述使能信号线连接到所述至少一个选通电路中的一个或多个。所述选通电路配置成响应于与其连接的所述使能信号线的使能信号,将所述电信号传输至与其连接的所述读取信号线。所述方法包括:
-由所述选通电路接收所述使能信号以开启所述选通电路,
-由与所述选通电路相连接的所述光电转换电路接收扫描信号以开启所述光电转换电路,以及
-由开启的所述光电转换电路将所述电信号通过开启的所述选通电路传输至所述读取信号线。
在一些实施例中,由与所述选通电路相连接的所述光电转换电路接收所述扫描信号以开启所述光电转换电路的步骤包括:
-由与所述选通电路相连接的所述光电转换电路逐个接收由与其相连的所述扫描信号线传输的所述扫描信号,以逐个开启所述光电转换电路。
在一些实施例中,由开启的所述光电转换电路将所述电信号通过开启的所述选通电路传输至所述读取信号线的步骤包括:
-在所述光电转换电路接收到所述扫描信号后,由所述选通电路逐个或同时将所述电信号传输至所述读取信号线。
在一些实施例中,由所述选通电路接收所述使能信号以开启所述选通电路的步骤包括:
-由所述使能信号线向所述选通电路逐个输入使能信号,以逐个开启所述选通电路;
并且当与同一条所述使能信号线相连接的多个选通电路被开启时,由与所述选通电路相连接的所述光电转换电路接收所述扫描信号以开启所述光电转换电路的步骤包括:
-由与开启的所述选通电路相连接的所述光电转换电路逐个接收由与其相连的所述扫描信号线传输的所述扫描信号,以逐个开启所述 光电转换电路。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本公开实施例的一种光强检测单元的结构;
图2示意性地示出了图1中的光电转换电路的布线图;
图3示意性地示出了本公开实施例的另一种光强检测单元的结构;
图4示意性地示出了图1中的光电转换电路的另一布线图;
图5示意性地示出了本公开实施例的又一种光强检测单元的结构;
图6示意性地示出了连接同一条读取信号线的多个选通电路以及与各个选通电路所连接的光电转换电路的电路;
图7示意性地示出了对本申请实施例提供的光强检测单元中的第二晶体管的IV曲线进行测试而得到的曲线图;
图8示意性地示出了根据本公开实施例的显示面板200的结构;
图9示意性地示出了指纹识别电路的结构图;
图10示意性地示出了根据本公开实施例的一种检测光强的方法的流程图;
图11示意性地示出了光强检测单元的被划分的控制区;以及
图12示意性地示出了光强检测单元的信号线的时序图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例都属于本公开保护的范围。
在光强检测的领域中,已知光电转换元件能够对光信号进行采集,并将采集到的光信号转换成电信号。目前,光电转换元件在指纹识别领域的应用较为广泛。通常,光电转换元件通过一个开关晶体管与一 信号线相连接。该开关晶体管可以控制光电转换元件将采集到的指纹信号输出至上述信号线。通过处理指纹信号,可以得到指纹的形状。
然而,开关晶体管自身存在漏电流(即,关态电流I off)。关态电流相对于微弱的指纹信号是比较大的。因此当关态电流I off流到信号线后,会对该信号线上的指纹信号产生干扰,从而造成指纹采集不准确的问题。
本公开提供一种光强检测单元、显示面板以及检测光强的方法,能够降低开关晶体管的关态电流I off对光强的测量精度的影响。
图1示意性地示出了根据本公开实施例的一种光强检测单元01的结构。如图1所示,光强检测单元01包括N条扫描信号线GL和J条读取信号线RL。N和J都为正整数。光强检测单元01还包括N×J个光电转换电路10。也就是说,每一条扫描信号线GL和每一条读取信号线RL一起定义一个光电转换电路10。这意味着,在光强检测单元01中,N个光电转换电路10连接到同一条读取信号线RL,并且J个光电转换电路10练级到同一条扫描信号线GL。
此外,光强检测单元01还包括至少一个选通电路20。多个光电转换电路10的输出端通过一个选通电路20连接到同一条读取信号线RL。另外,光强检测单元01还包括使能信号线EN,并且该选通电路20还连接到使能信号线EN。选通电路20配置成响应于来自使能信号线EN的使能信号而开启选通电路20,从而将各个光电转换电路10从光信号转换得到的电信号逐个输出至读取信号线RL。在一实施例中,每一个所述光电转换电路连接到所述扫描信号线中的对应一个和所述选通电路中的对应一个,并通过所述选通电路中的所述对应一个连接到所述读取信号线中的对应一个。并且,每一个所述选通电路连接到所述使能信号线中的对应一个,并配置成响应于来自所述使能信号线中的所述对应一个的使能信号,将所述电信号传输至所述读取信号线中的所述对应一个。术语“对应”仅表示连接关系,而不表示数量上的限制。例如,表述“每一个光电转换电路连接到选通电路中的对应一个”表示每一个光电转换电路都会连接到一个选通电路,但并不表示光电转换电路和选通电路是一一对应的关系。例如,该表述可以表示多个光电转换电路连接到同一个选通电路,并且另外的多个光电转换电路连接到另一个选通电路的情况。另外,表述“每一个光电转换电路连接 到扫描信号线中的对应一个”包括多个光电转换电路连接到同一条扫描信号线的情况,并且表述“每一个选通电路连接到使能信号线中的对应一个”包括多个选通电路连接到同一条使能信号线的情况。
在一些实施例中N≥3。也就是说,在一个光强检测单元01中,至少有3条扫描信号线。换句话说,每一条读取信号线可以连接到3个或更多个光电转换电路。在一些实施例中,J≥2,也就是说每一条扫描信号线可以连接到2个或更多个光电转换电路。
为了优化布线空间,可选的,上述使能信号线EN可以与扫描信号线GL平行布置。图2示意性地示出了图1中的光电转换电路10的布线图。如图2所示,光电转换电路可以包括第一晶体管M1和光电转换元件L。第一晶体管包括栅极、第一极和第二极。第一极和第二极分别表示晶体管中的源漏极中的源极和漏极。例如,在一实施例中,第一极是晶体管的源极,则第二极是晶体管的漏极。或者,在另一实施例中,第一极是晶体管的漏极,则第二极是晶体管的源极。在光电转换电路10中,光电转换元件L与该第一晶体管M1的第一极相连接。也就是说,光电转换元件L可以与该第一晶体管M1的源极相连接,也可以与该第一晶体管M1的漏极相连接。第一晶体管的第二极为光电转换电路的输出端。
在一些实施例中,光电转换元件L可以为光电二极管(PIN二极管)。在此情况下,上述第一晶体管M1的第一极连接该光电二极管的阳极,第一晶体管M1的栅极连接上述扫描信号线GL。此外,该光电二极管的阴极连接工作电压端V +。该工作电压端V +的幅值可以在5V~8V之间,从而使得上述PIN二极管工作在反向偏压状态。
可替代地,上述光电转换元件L还可以为诸如光电三极管、光电电阻等的能够实现将光信号转换为电信号的元件,本申请对此不做限定。
为了方便说明,在本申请实施例中,以PIN二极管为例来具体描述光电转换元件L。在此情况下,由该PIN二极管根据光信号而转换得到的电信号为电流信号。该电流信号输出至上述读取信号线RL,以实现对光强的检测。当光强较大时,读取信号线RL上的电流信号较大,而当光强较小时,读取信号线RL上的电流信号较小。
在一些实施例中,选通电路20可以包括第二晶体管M2。第二晶 体管M2也包括栅极、第一极和第二极。应注意,第二晶体管M2的第一极和第二极的选择与第一晶体管M1的第一极和第二极的选择无关。例如,在第一晶体管M1的第一极为源极且第二极为漏极时,第二晶体管M2的第一极可以是源极且第二极为漏极,或者第二晶体管M2的第一极可以是漏极且第二极为源极。该第二晶体管M2的栅极连接使能信号线EN。第二晶体管M2的第一极与第一晶体管M1的第二极相连接,并且第二晶体管M2的第二极连接读取信号线RL。也就是说,第二晶体管M2的源漏极中的一个电极连接到第一晶体管M1的第二极,而第二晶体管M2的源漏极中的另一个电极连接到读取信号线RL。应理解,表述“第二晶体管M2的源漏极中的一个电极连接到第一晶体管M1的第二极”表示第二晶体管M2的源漏极中的一个电极连接到第一晶体管M1的源漏极中的一个,并且第一晶体管M1的源漏极中的另一个连接到光电转换元件L。
需要说明的是,上述第一晶体管M1和第二晶体管M2可以均为N型晶体管(如图2所示),或者均为P型晶体管。本申请对此不做限定。
在此情况下,只有当选通电路20中的第二晶体管M2导通时,与该选通电路20相连接的各个光电转换电路10中的第一晶体管M1才可以将与该第一晶体管M1相连接的光电转换元件L转换的电信号传输至与上述导通的第二晶体管M2相连接的读取信号线RL上。因此,可以选择性的开启部分的选通电路20。例如,如图2所示,在使能信号线EN1的控制下,与该使能信号线EN1相连接的选通电路20中的第二晶体管M2可以被导通,以达到开启该选通电路20的目的。在此情况下,通过该选通电路20与同一读取信号线RL1相连接的多个光电转换电路10,可以分别在各个扫描信号线GL的作用下,将各个光电转换电路10中的第一晶体管M1导通,从而使得各个光电转换电路10中的光电转换元件L将由光信号转换成的电信号通过导通的第一晶体管M1和第二晶体管M2传输至上述读取信号线RL1中。同时,也可以选择性的关闭部分的选通电路。例如,如图2所示,在使能信号线EN(K)的控制下,与该使能信号线EN(K)相连接的选通电路20’中的第二晶体管M2可以被截止,以达到关闭该选通电路20’的目的。K为正整数,且在一些实施例中,K≥2。在此情况下,虽然与扫描信 号线GL(N-1)和扫描信号线GL(N)分别相连接的光电转换电路10’中的第一晶体管M1存在漏电流,但是由于与处于关闭状态的选通电路20’中的第二晶体管M2相连接的多个第一晶体管M1的漏电流中,能够通过上述第二晶体管M2而流向读取信号线RL的量受到该第二晶体管M2的漏电流大小的限制,因此上述选通电路20’中第二晶体管M2能够对传输至读取信号线RL1的关态电流I off进行限制,进而能够降低各个第一晶体管M1的关态电流I off对读取信号线RL1上的电信号的影响,以便提高该光强检测单元01的精度。
需要说明的是,本申请实施例提供的光强检测单元01能够对光线进行采集。并且,被采集到的光线的亮度与被转化的电信号的大小相匹配。因此上述光强检测单元01可以应用至指纹识别器件、X-ray探测、静脉识别等领域。本申请对此不作限定。
由上述可知,上述第一晶体管M1和第二晶体管M2无需带动负载,而是只需要在导通状态下实现上述晶体管的第一极(或第二极)向第二极(或第一极)信号的传输。因此上述第一晶体管M1和第二晶体管M2的尺寸无需制作很大。为了降低制作难度并优化布线空间,可选的,上述第一晶体管M1和第二晶体管M2的宽长比相同。
当第一晶体管M1和第二晶体管M2的宽长比相同时,第二晶体管M2能够允许通过的最大漏电流和与该第二晶体管M2相连接的任一个第一晶体管M1的漏电流的大小相同。这样,能够在简化制作工艺的同时,有效减小流向至读取信号线RL上的漏电流。
在此基础上,当光强检测单元01包括多个选通电路20时,为了优化布线空间,可选的,如图1所示,连接同一条读取信号线RL的多个选通电路20连接不同的使能信号线EN。这样一来,当不同的使能信号线EN按照不同的时序输出的使能信号时,选通电路20可以在不同的时刻向同一条读取信号线RL输出信号。例如,与同一条读取信号线RL1相连接的两个选通电路20分别连接使能信号线EN1和使能信号线EN2,并且使能信号线EN1和使能信号线EN2能够在不同的时刻向同一条读取信号线RL1输出信号。
此外,一条使能信号线EN能够连接多个选通电路,并因此控制向多个读取信号线的电信号输出。换句话说,与连接同一条扫描信号线GL(例如,扫描信号线GL1)的多个光电转换电路10相连接的多个选 通电路20可以连接同一条使能信号线EN(例如,使能信号线EN1)。这样一来,同一条使能信号线EN可以同时开启多个选通电路20。并且,在同一条扫描信号线GL的控制下,开启的多个光电转换电路10可以通过各自相连的处于开启状态的选通电路20而将转换的电信号同时输出至不同的读取信号线RL。
在一些实施例中,如图1所示,每一个选通电路20连接的光电转换电路10的数量可以相同。例如每个选通电路20可以均连接三个光电转换电路10。图3示意性地示出了根据本公开实施例的另一种光强检测单元02的结构。如图3所示,不同的选通电路20连接不同数量的光电转换电路10。本申请对此不作限定。
下面以每个选通电路20连接的光电转换电路10的数量相同这一方案为例,进行详细的说明。图4示意性地示出了图1中的光电转换电路10的另一布线图。如图4所示,在光强检测单元01中,光电转换电路10按照使能信号线EN被分为K组,K为正整数。在此基础上,光强检测单元01包括K条使能信号线EN以及K×J个选通电路20。
此时,连接至同一条读取信号线RL的N个光电转换电路10也可以按照使能信号线EN被划分为K组。每组光电转换电路10包括M个光电转换电路10。每一组中的光电转换电路10通过一个选通电路20与一条读取信号线RL相连接,且不同组的光电转换电路10连接不同的选通电路20。由上述可知,每一组由M个光电转换电路10构成,此时,K×M=N。在一实施例中,M和K均大于2。
在又一实施例中,根据本公开的光强检测单元可以只包括一个选通电路。图5示意性地示出了根据本公开实施例的另一种光强检测单元03的结构。由图5可知,仅部分的光电转换电路与选通电路相连接。当未与该选通电路连接的光电转换电路接收到来自扫描信号线的扫描信号时,与该选通电路连接的光电转换电路的关态电流I off也被限制。
图6示意性地示出了连接同一条读取信号线RL(例如读取信号线RL1)的多个选通电路20以及与各个选通电路20所连接的光电转换电路10的电路。由图6可以看出,同一组中的M个光电转换电路10的输出端各自连接到同一个选通电路20。光电转换电路的输出端是指输出该光电转换电路产生的电信号的端口。
在此情况下,当连接同一条读取信号线RL1的K个选通电路20 中只有一个选通电路20开启,且与该开启的选通电路20相连接的M个光电转换电路10中只有一个光电转换电路10的第一晶体管M1导通时,开启的选通电路所连接的第一晶体管M1中,除了导通的一个第一晶体管,其余的M-1个晶体管产生关态电流I off,并且未开启的K-1个选通电路也产生关态电流I off。因此,每条读取信号线RL上的总的漏电流I nosie为:
I noise=[(K-1)+(M-1)]×I off    (1)
其中,I off为任意一个晶体管的漏电流。需要说明的是,公式(1)的基础是上述第一晶体管M1和第二晶体管M2的宽长比相同。具体来说,在公式(1)中,如上所述,K-1个第二晶体管M2截止。此时,上述处于截止状态K-1个第二晶体管M2可以限制与该K-1个第二晶体管M2分别相连接的多个光电转换电路10中的第一晶体管M1的关态电流中流至上述读取信号线RL1的电流的大小,从而达到减小流向至读取信号线RL1的漏电流的目的。
以下对当第二晶体管M2截止时,与该截止的第二晶体管M2相连接的多个第一晶体管M1的流向读取信号线RL的漏电流被限制的过程进行说明。
具体的,由图6可知,与同一个第二晶体管M2相连接的多个第一晶体管M1的输出端是电气连接的,而该M个第一晶体管M1分别和其共同连接的第二晶体管M2串联。因此在第一晶体管M1与第二晶体管M2的尺寸相同,且假设第一晶体管M1和第二晶体管M2漏电流的电流值均为I off的情况下,处于截止状态的第二晶体管M2只允许M个第一晶体管M1的部分漏电流通过,且通过的漏电流的最大值为上述I off
图7示意性地示出了对本申请实施例提供的光强检测单元01中的一个第二晶体管M2的IV曲线进行测试而得到的曲线图。如图7所示,当在与该第二晶体管M2相连接的多个第一晶体管M1中,处于截止状态的第一晶体管M1和处于导通状态的第一晶体管M1的数量发生变化时,上述第二晶体管M2上的压降V SD发生变化,但是V SD的变化不会对第二晶体管M2的漏电流I off产生较大影响。所以,第二晶体管M2 允许通过的漏电流的大小并不会根据和该第二晶体管M2相连接的M个第一晶体管M1中的各个晶体管的导通或截止而发生较大的变化。
此外,与同一个开启的选通电路20相连接的M个光电转换电路10中,只有一个光电转换电路10的第一晶体管M1导通,并且另外M-1个截止的第一晶体管M1的漏电流可以通过导通的第二晶体管M2流向上述读取信号线RL1。
下面举例说明本申请实施例提供的光强检测单元减小每一条读取信号线RL上的干扰信号的原理。
具体的,假设上述第一晶体管M1或第二晶体管M2的漏电流I off=1×10 -13A,并且上述光电转换元件L的光电流为I PIN=1×10 -11A。并且,假设该光强检测单元01中向同一条读取信号线RL输入电信号的光电转换电路10的数量N=900。在此情况下,当上述光强检测单元01中不具有上述第二晶体管M2,且与同一条读取信号线RL相连接的N个第一晶体管M1中只有一个第一晶体管M1导通时,该条读取信号线RL上的总的漏电流I nosie’为:
I noice'=(900-1)×I off=8.99×10 -11A  (2)
此时,信噪比为
R'=I PIN/I noice'≈0.11    (3)。
由公式(3)可以看出,在未提供上述第二晶体管M2的情况下,信噪比R’较小。因此上述读取信号线RL上输出信号的噪声较大,信号检测精度低。
当采用本申请实施例提供的方案时,假设与同一条读取信号线RL相连接的第二晶体管M2的个数K=30,且每一组光电转换电路中包括的光电转换电路的个数M=K=30,并且在30个第二晶体管M2中只有一个第二晶体管M2导通,且与该导通的第二晶体管M2相连接的30个第一晶体管M1中只有一个第一晶体管M1导通。此时,由上述公式(1)可知,该条读取信号线RL上的总的漏电流I nosie为:
I noice=[(30-1)+(30-1)]×I off=5.8×10 -12A
此时,信噪比为
R=I PIN/I noice≈1.72   (4)
由公式(4)可以看出,在包括上述第二晶体管M2的情况下,信噪比R增大,并且R≈15.5R'。因此,根据本公开实施例的光强检测单元的读取信号线RL上输出信号的噪声明显减小,从而有利于提高检测精度。
另外,已知数学公式a 2+b 2≥2ab。在此基础上,
Figure PCTCN2018105991-appb-000001
当K-1=M-1时,上述公式(5)的两端相等,此时该漏电流I nosie为最小值。因此,可以得出,当K的数值与M的数值相等时,每一条读取信号线RL上的总的漏电流I nosie最小。
本申请实施例还提供一种显示面板。该显示面板包括指纹识别电路40。指纹识别电路40包括如上述实施例中的任意一个所述的光强检测单元01。图8示意性地示出了根据本公开实施例的显示面板200的结构。该光强检测单元01位于上述显示面板200的显示区域30或者该显示面板的非显示区域35。本申请对此不作限定。所述光强检测单元01构成所述指纹识别电路40的一部分。在一实施例中,该指纹识别电路40还包括处理器50,以处理来自光强检测单元的电信号。图9示意性地示出了指纹识别电路的结构图。
可选的,当光强检测单元01位于上述显示面板的显示区域时,上述光强检测单元01可以均匀的分布于该显示区域中,或者布置在该显示区域的一部分中,本申请对此不作限定。
在上述光强检测单元01位于该显示面板的显示区域的情况下,当上述显示面板的显示区域还包括横纵交叉的栅线Gate和数据线Data时,为了避免多种信号线在同层布线导致布线空间紧张的问题,可选的,光强检测单元01中的扫描信号线GL、读取信号线RL以及使能信 号线EN与上述栅线Gata或数据线Data可以位于不同层。
需要说明的是,上述显示面板具有与前述实施例提供的光强检测单元01相同的技术效果,此处不再赘述。
本公开还提供一种利用光强检测单元检测光强的方法,其中所述光强检测单元包括:
N条扫描信号线,其中N为正整数,
J条读取信号线,其中J为正整数,
使能信号线,
配置成将光信号转换成电信号的N×J个光电转换电路,以及
选通电路,
其中所述光电转换电路中的每一个光电转换电路连接到所述N条扫描信号线中的一条扫描信号线以及所述选通电路,并通过所述选通电路连接到所述J条读取信号线中的一条读取信号线,并且
所述选通电路连接到所述使能信号线,并配置成响应于来自所述使能信号线的使能信号,将所述电信号传输至所述J条读取信号线中的所述一条读取信号线。
图10示意性地示出了所述方法的步骤。在一些实施例中,所述方法包括:
S101:由选通电路20接收所述使能信号,以开启所述选通电路20,
S102:由与选通电路20相连接的所述光电转换电路10接收扫描信号,以开启所述光电转换电路10,以及
S103:由开启的所述光电转换电路10将所述电信号通过开启的所述选通电路20传输至所述读取信号线RL。
具体来说,使能信号端EN(K)可以控制与其相连接的第二晶体管M2截止。此时,该第二晶体管M2可以限制与其相连接的多个第一晶体管M1的漏电流中流向上述读取信号线RL的量,从而可以减小该读取信号线RL上的噪声的大小。
扫描信号线GL的扫描方式包括:当光强检测单元01包括N条扫描信号线GL时,由所述N条扫描信号线GL逐条向所述光电转换电路输入所述扫描信号,以逐个开启所述光电转换电路。
读取信号线RL输出信号的方式包括:当一条所述扫描信号线GL输入扫描信号后,由所述选通电路逐个将所述电信号传输至连接到所 述一条所述扫描信号线的所述读取信号线。
在此情况下,上述J条读取信号线RL可以通过一个数据通道输出至数据处理器。
或者,读取信号线RL输出信号的方式还可以为:当一条扫描信号线GL输入扫描信号后,由所述选通电路同时将所述电信号传输至连接到所述一条所述扫描信号线的所述读取信号线。此时J条读取信号线RL可以通过不同的数据通道输出至数据处理器。
当连接至所述J条读取信号线中的同一条读取信号线的所述光电转换电路被分为K组,其中K为大于或等于2的正整数,并且每一组所述光电转换电路都由M个所述光电转换电路组成,且M=K时,由所述选通电路接收所述使能信号以开启所述选通电路的步骤包括:由K条所述使能信号线逐条输入使能信号,以逐个开启所述选通电路。
接下来,当与同一条所述使能信号线相连接的多个选通电路被开启时,所述由与开启的所述选通电路相连接的所述光电转换电路接收所述扫描信号以开启所述光电转换电路的步骤包括:由与开启的所述选通电路相连接的M个所述光电转换电路分别通过M条所述扫描信号线逐个接收所述扫描信号,以逐个开启所述光电转换电路。
图11示意性地示出了光强检测单元的划分的控制区。如图11所示,光强检测单元01可以划分为多个控制区100,每个控制区包括一条使能信号线EN和M条扫描信号线GL。即,每个控制区100包括与使能信号线EN相连接的一个或多个选通电路20以及与该选通电路20相连接的一组(共M个)光电转换电路10。
图12示意性地示出了上述使能信号线EN1和M条扫描信号线(GL1、GL2、GL3……GL(M))的信号时序图。如图12所示,使能信号线EN1输出高电平后,M条扫描信号线(GL1、GL2、GL3……GL(M))逐个输出高电平,并且使能信号线EN1的脉宽大于M条扫描信号线(GL1、GL2、GL3……GL(M))的信号脉宽之和。如图12所示,当扫描信号线GL1输出高电平后,读取信号线RL输出电流信号。
本申请实施例提供一种光强检测单元、显示面板以及检测光强的方法。当该光强检测单元中当只有一选通电路开启时,与该选通电路相连接的各个光电转换电路才可以在扫描信号线的控制下开启,从而 将转换的电信号逐个传输至与上述开启的选通单元相连接的读取信号线上。这样一来,可以选择性的开启部分选通电路。与此同时,可以选择性的关闭部分选通电路。在此情况下,处于关闭状态的选通电路只允许与其相连接的多个光电转换电路中的晶体管漏电流的一部分通过,因为能够通过上述选通电路流向至读取信号线的漏电流受到该选通电路中晶体管自身漏电流的限制。因此上述选通电路能够对传输至读取信号线的关态电流进行限制,进而能够降低该关态电流对读取信号线上采集到的信号的影响,提高该光强检测单元的检测精度。
应理解,除非明确说明,否则权利要求书和说明书中的元件的复数形式并不意图将该元件限定为多个。以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光强检测单元,包括:
    N条扫描信号线,其中N为正整数,
    J条读取信号线,其中J为正整数,
    至少一条使能信号线,
    配置成将光信号转换成电信号的N×J个光电转换电路,以及
    至少一个选通电路,
    其中每一条所述读取信号线连接到所述至少一个选通电路中的一个或多个,每一个所述选通电路连接到多个所述光电转换电路的输出端,每一条所述扫描信号线连接到一个或多个所述光电转换电路,并且每一条所述使能信号线连接到所述至少一个选通电路中的一个或多个,
    其中所述选通电路配置成响应于与其连接的所述使能信号线的使能信号,将所述电信号传输至与其连接的所述读取信号线。
  2. 根据权利要求1所述的光强检测单元,其中连接至同一条所述读取信号线的所述光电转换电路被分为K组,其中K为大于或等于2的正整数,并且每一组所述光电转换电路连接到同一个所述选通电路。
  3. 根据权利要求2所述的光强检测单元,其中每一条所述扫描信号线在一组所述光电转换电路中只连接到一个所述光电转换电路。
  4. 根据权利要求3所述的光强检测单元,其中每一组所述光电转换电路都由M个所述光电转换电路组成,其中M为正整数。
  5. 根据权利要求4所述的光强检测单元,其中M=K。
  6. 根据权利要求1所述的光强检测单元,其中N为大于或等于3的正整数。
  7. 根据权利要求1所述的光强检测单元,其中所述至少一个选通电路包括多个选通电路,并且连接到同一条所述读取信号线的所述选通电路各自连接到不同的所述使能信号线。
  8. 根据权利要求1所述的光强检测单元,其中所述至少一个选通电路包括多个选通电路,并且连接到同一条所述使能信号线的所述选通电路各自连接到不同的所述读取信号线。
  9. 根据权利要求1所述的光强检测单元,其中每一个所述光电转 换电路包括第一晶体管和光电转换元件,其中所述第一晶体管包括栅极、第一极和第二极,并且所述第一晶体管的栅极连接到所述扫描信号线之一,所述光电转换元件与所述第一晶体管的第一极相连接,所述第一晶体管的第二极为所述光电转换电路的所述输出端,并且
    每一个所述选通电路包括第二晶体管,其中所述第二晶体管包括栅极、第一极和第二极,其中所述第二晶体管的栅极连接到所述使能信号线之一,所述第二晶体管的第一极连接到所述第一晶体管的第二极,并且所述第二晶体管的第二极连接到所述读取信号线之一。
  10. 根据权利要求9所述的光强检测单元,其中所述第一晶体管和所述第二晶体管的宽长比相同。
  11. 根据权利要求9所述的光强检测单元,其中所述光电转换元件为光电二极管,并且所述第一晶体管的第一极连接到所述光电二极管的阳极,所述光电二极管的阴极连接到工作电压端。
  12. 根据权利要求1所述的光强检测单元,其中所述使能信号线与所述扫描信号线平行。
  13. 一种显示面板,包括指纹识别电路,所述指纹识别电路包括如权利要求1-11中的任一项所述的光强检测单元。
  14. 根据权利要求13所述的显示面板,其中所述光强检测单元位于所述显示面板的显示区域。
  15. 根据权利要求14所述的显示面板,还包括横纵交叉的栅线和数据线,其中所述扫描信号线、所述读取信号线以及所述使能信号线中的每一个都与所述栅线或所述数据线位于不同层。
  16. 一种利用光强检测单元来检测光强的方法,其中所述光强检测单元包括:
    N条扫描信号线,其中N为正整数,
    J条读取信号线,其中J为正整数,
    至少一条使能信号线,
    配置成将光信号转换成电信号的N×J个光电转换电路,以及
    至少一个选通电路,
    其中每一条所述读取信号线连接到所述至少一个选通电路中的一个或多个,每一个所述选通电路连接到多个所述光电转换电路的输出端,每一条所述扫描信号线连接到一个或多个所述光电转换电路,并 且每一条所述使能信号线连接到所述至少一个选通电路中的一个或多个,
    其中所述选通电路配置成响应于与其连接的所述使能信号线的使能信号,将所述电信号传输至与其连接的所述读取信号线;
    所述方法包括:
    -由所述选通电路接收所述使能信号以开启所述选通电路,
    -由与所述选通电路相连接的所述光电转换电路接收扫描信号以开启所述光电转换电路,以及
    -由开启的所述光电转换电路将所述电信号通过开启的所述选通电路传输至所述读取信号线。
  17. 根据权利要求16所述的方法,其中由与所述选通电路相连接的所述光电转换电路接收所述扫描信号以开启所述光电转换电路的步骤包括:
    -由与所述选通电路相连接的所述光电转换电路逐个接收由与其相连的所述扫描信号线传输的所述扫描信号,以逐个开启所述光电转换电路。
  18. 根据权利要求17所述的方法,其中由开启的所述光电转换电路将所述电信号通过开启的所述选通电路传输至所述读取信号线的步骤包括:
    -在所述光电转换电路接收到所述扫描信号后,由所述选通电路逐个或同时将所述电信号传输至所述读取信号线。
  19. 根据权利要求17或18所述的方法,其中由所述选通电路接收所述使能信号以开启所述选通电路的步骤包括:
    -由所述使能信号线向所述选通电路逐个输入使能信号,以逐个开启所述选通电路;
    并且当与同一条所述使能信号线相连接的多个选通电路被开启时,由与所述选通电路相连接的所述光电转换电路接收所述扫描信号以开启所述光电转换电路的步骤包括:
    -由与开启的所述选通电路相连接的所述光电转换电路逐个接收由与其相连的所述扫描信号线传输的所述扫描信号,以逐个开启所述光电转换电路。
PCT/CN2018/105991 2018-01-02 2018-09-17 光强检测单元、显示面板和检测光强的方法 WO2019134395A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18855160.0A EP3736797A4 (en) 2018-01-02 2018-09-17 LIGHT INTENSITY DETECTOR, DISPLAY BOARD AND METHOD OF DETECTING LIGHT INTENSITY
US16/336,278 US11132525B2 (en) 2018-01-02 2018-09-17 Light intensity detecting unit, display panel, and method for detecting light intensity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810003875.5 2018-01-02
CN201810003875.5A CN109994063B (zh) 2018-01-02 2018-01-02 一种光强检测单元及其控制方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019134395A1 true WO2019134395A1 (zh) 2019-07-11

Family

ID=67128950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105991 WO2019134395A1 (zh) 2018-01-02 2018-09-17 光强检测单元、显示面板和检测光强的方法

Country Status (4)

Country Link
US (1) US11132525B2 (zh)
EP (1) EP3736797A4 (zh)
CN (1) CN109994063B (zh)
WO (1) WO2019134395A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860271B (zh) * 2019-04-16 2021-03-02 京东方科技集团股份有限公司 显示面板及其读取电路、显示终端
KR20210129312A (ko) 2020-04-17 2021-10-28 삼성디스플레이 주식회사 입력 감지 장치 및 이를 포함하는 표시 장치
CN111785231A (zh) * 2020-07-09 2020-10-16 深圳市华星光电半导体显示技术有限公司 光感驱动电路及其驱动方法,显示面板及显示装置
CN113920915B (zh) * 2021-10-19 2024-05-28 上海闻泰信息技术有限公司 一种光感驱动电路、驱动方法及显示面板
CN114040550B (zh) * 2021-11-04 2023-09-29 中山水木光华电子信息科技有限公司 一种光强调节方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090039241A1 (en) * 2007-08-07 2009-02-12 Hironori Ueki Biometric device and information terminal
US20110150303A1 (en) * 2009-12-23 2011-06-23 Lockheed Martin Corporation Standoff and mobile fingerprint collection
CN106326845A (zh) * 2016-08-15 2017-01-11 京东方科技集团股份有限公司 指纹识别单元及制作方法、阵列基板、显示装置及指纹识别方法
CN106897699A (zh) * 2017-02-24 2017-06-27 京东方科技集团股份有限公司 一种指纹识别器件、oled显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971586B2 (ja) * 2004-09-01 2012-07-11 キヤノン株式会社 固体撮像装置
KR101462149B1 (ko) * 2008-05-22 2014-12-04 삼성디스플레이 주식회사 터치센서, 이를 갖는 액정표시패널 및 터치센서의 센싱방법
WO2010038513A1 (ja) * 2008-09-30 2010-04-08 シャープ株式会社 表示装置
TWI431362B (zh) * 2009-05-29 2014-03-21 Japan Display West Inc 觸控感測器、顯示器及電子裝置
US20120313913A1 (en) 2010-02-26 2012-12-13 Sharp Kabushiki Kaisha Display device
JP5126305B2 (ja) * 2010-07-02 2013-01-23 株式会社ニコン 固体撮像素子
CN103680385B (zh) * 2013-11-29 2017-01-11 合肥京东方光电科技有限公司 触控电路及其驱动方法、阵列基板、触控显示装置
CN104850292B (zh) 2015-06-01 2017-09-29 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN105095874B (zh) 2015-07-31 2018-10-16 京东方科技集团股份有限公司 指纹识别电路、驱动控制电路、显示基板和显示装置
KR101718476B1 (ko) * 2015-09-17 2017-03-21 주식회사 비욘드아이즈 지문 인식 기능을 구비한 표시 장치
CN105550662B (zh) * 2016-01-05 2019-03-15 京东方科技集团股份有限公司 一种指纹识别装置及其制作方法、阵列基板、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090039241A1 (en) * 2007-08-07 2009-02-12 Hironori Ueki Biometric device and information terminal
US20110150303A1 (en) * 2009-12-23 2011-06-23 Lockheed Martin Corporation Standoff and mobile fingerprint collection
CN106326845A (zh) * 2016-08-15 2017-01-11 京东方科技集团股份有限公司 指纹识别单元及制作方法、阵列基板、显示装置及指纹识别方法
CN106897699A (zh) * 2017-02-24 2017-06-27 京东方科技集团股份有限公司 一种指纹识别器件、oled显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3736797A4 *

Also Published As

Publication number Publication date
US11132525B2 (en) 2021-09-28
CN109994063B (zh) 2021-02-09
US20200380234A1 (en) 2020-12-03
EP3736797A4 (en) 2021-09-29
EP3736797A1 (en) 2020-11-11
CN109994063A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019134395A1 (zh) 光强检测单元、显示面板和检测光强的方法
CN111179834B (zh) 一种光感驱动电路及其驱动方法、光感显示装置
US11086450B2 (en) Touch circuit, touch device and touch method
CN106980842B (zh) 指纹识别模块和显示基板
JP5967406B2 (ja) センス回路とその動作方法および光電変換アレイ
CN107578026B (zh) 指纹检测电路、指纹检测电路的检测方法和指纹传感器
CN108171192B (zh) 指纹识别检测电路及其驱动方法、显示装置
US9848145B2 (en) Imaging device including pixels
CN108304803A (zh) 光检测电路、光检测方法和显示装置
CN102314840B (zh) 图像传感器、电子设备及其背光调节方法
JPWO2012124760A1 (ja) ゲイン可変方法、ゲイン可変光電変換素子、ゲイン可変光電変換セル、ゲイン可変光電変換アレイ、読み出し方法、および、回路
CN108061599B (zh) 光检测电路及其检测方法、光检测装置
JP2771221B2 (ja) 感光ドットマトリクス
CN108089764B (zh) 压感检测电路、压感检测电路阵列、触控面板及检测方法
CN106959384B (zh) 一种光电检测电路、显示面板及显示装置
CN109470283B (zh) 探测电路及其驱动方法、基板、探测器
WO2022257284A1 (zh) 一种选通电路和光学传感器电路
US20220196857A1 (en) Radiation imaging apparatus and radiation imaging system
US6356065B1 (en) Current-voltage converter with changeable threshold based on peak inputted current
EP1081858A2 (en) Current-voltage converter
CN109646030B (zh) 感光单元和x射线探测器
TWI795803B (zh) 影像感測器
CN218975452U (zh) 光电传感器
JP7257300B2 (ja) 撮像システム
JPH09196975A (ja) 信号出力回路及びピーク検出回路

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018855160

Country of ref document: EP

Effective date: 20200803