WO2019131403A1 - スタッドレスタイヤ用トレッドゴム組成物 - Google Patents

スタッドレスタイヤ用トレッドゴム組成物 Download PDF

Info

Publication number
WO2019131403A1
WO2019131403A1 PCT/JP2018/046865 JP2018046865W WO2019131403A1 WO 2019131403 A1 WO2019131403 A1 WO 2019131403A1 JP 2018046865 W JP2018046865 W JP 2018046865W WO 2019131403 A1 WO2019131403 A1 WO 2019131403A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
conjugated diene
rubber
content
Prior art date
Application number
PCT/JP2018/046865
Other languages
English (en)
French (fr)
Inventor
美夏子 吉岡
晴子 澤木
結香 横山
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to JP2018567768A priority Critical patent/JP6544496B1/ja
Priority to EP18893803.9A priority patent/EP3733756A4/en
Publication of WO2019131403A1 publication Critical patent/WO2019131403A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present invention relates to a tread rubber composition for a studless tire and a studless tire using the same.
  • increasing the amount of butadiene rubber can be considered as a means to improve the performance on ice of studless tires, but if the amount is increased excessively, the mobility in the rubber becomes high and blooming of various chemicals occurs, so the amount of butadiene rubber can be increased. There is a limit.
  • the amount of butadiene rubber is increased, the ratio of natural rubber is lowered accordingly, so that the strength of the rubber is insufficient and there is a problem that the wear resistance is deteriorated.
  • the present invention was made in view of the above-mentioned present situation, and provides a rubber composition for a studless tire capable of improving the performance and the abrasion resistance on a well-balanced basis regardless of the temperature, and a studless tire using the same. To aim.
  • the present invention comprises a rubber component containing an isoprene-based rubber and a modified conjugated diene-based polymer, a water-soluble fine particle, silica, and a liquid plasticizer, and the content of silica relative to 100 parts by mass of the rubber component is 30 parts by mass or more
  • the present invention relates to a tread rubber composition for a studless tire, wherein the content of the liquid plasticizer exceeds 30 parts by mass.
  • the content of isoprene-based rubber in 100% by mass of the rubber component is 20% by mass or more
  • the content of the modified conjugated diene-based polymer is 20% by mass or more
  • the total content of silica and carbon black is preferably 50% by mass or more.
  • the content of the water-soluble fine particles relative to 100 parts by mass of the rubber component is preferably 25 parts by mass or more.
  • the present invention also relates to a studless tire having a tread made using the rubber composition.
  • the studless tire preferably has a gap of 0.1 to 100 ⁇ m in average diameter on the road contact surface of the tread after the following running conditions.
  • (Running condition) It is mounted on all wheels of a vehicle (domestic FR 2000 cc), travels 100 km on a dry road surface at normal temperature, and then travels 4 km on a snow-ice surface at -1 to -10 ° C.
  • the studless tire has a reduction rate of pattern noise after the following running condition with respect to the pattern noise before running as compared with the studless tire having a tread manufactured using the rubber composition of the same composition except that it does not contain water soluble fine particles. It is preferable to improve by 2 to 10%.
  • (Running condition) It is mounted on all wheels of a vehicle (domestic FR 2000 cc), travels 100 km on a dry road surface at normal temperature, and then travels 4 km on a snow-ice surface at -1 to -10 ° C.
  • the present invention comprises a rubber component containing an isoprene-based rubber and a modified conjugated diene-based polymer, a water-soluble fine particle, silica, and a liquid plasticizer, and the content of silica relative to 100 parts by mass of the rubber component is 30 parts by mass or more
  • the tread rubber composition for a studless tire having a liquid plasticizer content exceeding 30 parts by mass can improve on-ice performance and wear resistance in a well-balanced manner regardless of the temperature.
  • the tread rubber composition for a studless tire comprises a rubber component containing an isoprene rubber and a modified conjugated diene polymer, silica, a water-soluble fine particle, and a liquid plasticizer, and a predetermined amount or more of the silica, It has a liquid plasticizer amount.
  • the above rubber composition has well-balanced improvement in performance and wear resistance on ice at any of low temperature (air temperature -10 to -6 ° C) and high temperature (air temperature 0 to -5 ° C).
  • the studless tire is required to have an on-ice grip performance independent of the air temperature, but in order to obtain the performance, it is necessary to use a highly flexible rubber such as a foam rubber.
  • a highly flexible rubber such as a foam rubber.
  • block rigidity can not be maintained, steering stability decreases, wear resistance decreases, and the contact area decreases, so the water film It becomes difficult to secure the grip performance on ice at low temperatures. Therefore, in order to make their performance compatible, it is necessary to make the inside of the rubber flexible at low temperature and to make a void on the tread surface.
  • the rubber composition is excellent in low fuel consumption performance, and the effect that the performance balance of low temperature ice performance, high temperature ice performance, wear resistance, and low fuel efficiency performance is synergistically improved can also be obtained. .
  • the rubber composition contains a rubber component containing an isoprene rubber and a modified conjugated diene polymer.
  • isoprene rubber include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • Modified NR deproteinized natural rubber (DPNR), high purity natural rubber (UPNR), etc.
  • Modified NR epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • the content of isoprene-based rubber in 100% by mass of the rubber component is preferably 20% by mass or more, more preferably 30% by mass from the viewpoint of abrasion resistance, performance on low temperature ice, performance on high temperature ice and performance of abrasion resistance. % Or more.
  • the upper limit of the content is not particularly limited, but is preferably 80% by mass or less, more preferably 60% by mass or less, and still more preferably 50% by mass or less.
  • the modified conjugated diene polymer is not particularly limited as long as it is obtained by modifying the main chain and / or the end of the conjugated diene polymer, and examples thereof include the following. These may be used alone or in combination of two or more.
  • the conjugated diene polymer is, for example, selected from the group consisting of 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and myrcene.
  • a polymer having a repeating unit derived from at least one monomer can be used.
  • a polymer having a repeating unit derived from at least one monomer selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene can be suitably used.
  • At least one conjugated diene compound selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene is a conjugated diene compound constituting the above-mentioned modified conjugated diene-based polymer It is also one of the preferred embodiments of the present invention.
  • the modified conjugated diene-based polymer is particularly preferably a modified butadiene rubber.
  • the cis content (cis-1,4 bond content) of the modified conjugated diene polymer is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass or more. % By mass or more, most preferably 97% by mass or more. This gives better cold ice performance and hot ice performance.
  • the cis content (cis-1,4-linkage) is a value calculated from the signal intensity measured by NMR analysis.
  • the cis content is 80% by mass or more (more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass or more, most preferably 97% by mass % Or more and at least one type of modified conjugated diene-based polymer, and a modified conjugated diene-based polymer having a cis content of 50% by mass or less (more preferably 40% by mass or less, still more preferably 30% by mass or less) It is also possible to use at least one type in combination.
  • a form in which the high cis content modified conjugated diene polymer and the low cis content modified conjugated diene polymer are used in combination is also one of the preferred embodiments of the present invention.
  • a conjugated diene polymer having an active end is used, and an alkoxysilane compound having two or more reactive groups containing an alkoxysilyl group at the active end of the conjugated diene polymer is used.
  • a condensation step (B) in which a residue of the alkoxysilane compound introduced to the active terminal is subjected to a condensation reaction in the presence of a condensation catalyst, and the following (a) to (c) as the conjugated diene polymer It is preferable that it is what is obtained by the manufacturing method using the conjugated diene type polymer which superposed
  • conjugated diene polymer conjugated diene polymer (conjugated diene polymer (I)) having an active end is carried out, and Groups 4, 12, and 13 of the Periodic Table And condensation of an alkoxysilane compound residue of the alkoxysilane compound introduced into the active terminal in the presence of a condensation catalyst containing at least one element of the elements contained in Groups 14 and 15
  • a modified conjugated diene polymer (modified conjugated diene polymer (I)) can be produced.
  • the modification step (A) uses a conjugated diene polymer (conjugated diene polymer (I)) having an active end, and two or more alkoxysilyl groups are contained at the active end of the conjugated diene polymer. This is a step of performing a modification reaction in which an alkoxysilane compound having a reactive group is introduced.
  • conjugated diene polymer (I) for example, a group consisting of 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and myrcene
  • a polymer having a repeating unit derived from at least one monomer selected from can be used.
  • a polymer having a repeating unit derived from at least one monomer selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene can be suitably used.
  • the conjugated diene compound constituting the modified conjugated diene polymer (I) is at least one selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene. Being a conjugated diene compound is also one of the preferred embodiments of the present invention.
  • polymerization may be carried out using a solvent, or polymerization may be carried out without a solvent.
  • a solvent polymerization solvent
  • an inert organic solvent can be used as a solvent used for the polymerization.
  • saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane, heptane, etc.
  • cyclo Saturated alicyclic hydrocarbon having 6 to 20 carbon atoms such as pentane and cyclohexane
  • monoolefins such as 1-butene and 2-butene
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • Halogenated hydrocarbons such as carbon, trichloroethylene, perchloroethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene, chlorotoluene and the like can be mentioned.
  • the polymerization reaction temperature for producing the conjugated diene polymer (I) is preferably ⁇ 30 to 200 ° C., and more preferably 0 to 150 ° C.
  • the type of polymerization reaction is not particularly limited, and may be carried out using a batch reactor, or may be carried out continuously using an apparatus such as a multistage continuous reactor.
  • the monomer concentration in this solvent is preferably 5 to 50% by mass, and more preferably 7 to 35% by mass.
  • the compounds are not mixed as much as possible.
  • conjugated diene polymer (I) a conjugated polymer polymerized in the presence of a catalyst composition (hereinafter also referred to as “catalyst”) mainly comprising a mixture of the following components (a) to (c): A diene polymer is used.
  • a catalyst composition hereinafter also referred to as “catalyst” mainly comprising a mixture of the following components (a) to (c): A diene polymer is used.
  • the component (a) is a lanthanoid-containing compound containing at least one element selected from the group consisting of lanthanides, or a reaction product obtained by the reaction of the lanthanoid-containing compound with a Lewis base.
  • lanthanoids neodymium, praseodymium, cerium, lanthanum, gadolinium and samarium are preferred, and neodymium is particularly preferred.
  • lanthanoid-containing compounds include lanthanoid carboxylates, alkoxides, ⁇ -diketone complexes, phosphates, phosphites and the like. Among these, carboxylates or phosphates are preferable, and carboxylates are more preferable.
  • lanthanoid carboxylates include salts of carboxylic acids represented by the general formula (2); (R 4 -COO) 3 M (wherein, in the general formula (2), M And R 4 represents a lanthanoid, and R 4 is the same or different and represents a hydrocarbon group having 1 to 20 carbon atoms.
  • R 4 is preferably a saturated or unsaturated alkyl group, and is preferably a linear, branched or cyclic alkyl group.
  • the carboxyl group is bonded to a primary, secondary or tertiary carbon atom.
  • octanoic acid 2-ethylhexanoic acid, oleic acid, stearic acid, benzoic acid, naphthenic acid, trade name "Versatic acid” (manufactured by Shell Chemical Co., a carboxyl group is bonded to a tertiary carbon atom) Salts such as carboxylic acids).
  • Salts of versatic acid, 2-ethylhexanoic acid and naphthenic acid are preferred.
  • lanthanoid alkoxide may include those represented by the general formula (3); (R 5 O) 3 M (however, in the general formula (3), M represents a lanthanoid. ).
  • R 5 O specific examples of the alkoxy group represented by "R 5 O” include 2-ethyl-hexyl alkoxy group, oleyl alkoxy group, stearyl alkoxy group, phenoxy group, benzyl alkoxy group, etc. Can be mentioned. Among these, 2-ethyl-hexylalkoxy group and benzylalkoxy group are preferable.
  • lanthanoid ⁇ -diketone complex examples include acetylacetone complex, benzoylacetone complex, propionitrileacetone complex, valerylacetone complex, ethylacetylacetone complex and the like.
  • acetylacetone complex and ethyl acetylacetone complex are preferable.
  • lanthanoid phosphate or phosphite include bis (2-ethylhexyl) phosphate, bis (1-methylheptyl) phosphate, bis (p-nonylphenyl) phosphate, bis (phosphate) Polyethylene glycol-p-nonylphenyl), phosphoric acid (1-methylheptyl) (2-ethylhexyl), phosphoric acid (2-ethylhexyl) (p-nonylphenyl), monoethyl-2-ethylhexyl 2-ethylhexyl phosphate, 2- Ethylhexylphosphonic acid mono-p-nonylphenyl, bis (2-ethylhexyl) phosphinic acid, bis (1-methylheptyl) phosphinic acid, bis (p-nonylphenyl) phosphinic acid, (1-methylheptyl) (2-ethylhexyl
  • neodymium phosphate or neodymium carboxylate is particularly preferable as the lanthanoid-containing compound, and neodymium versatic acid or neodymium 2-ethylhexanoate is most preferable.
  • lanthanoid-containing compound in order to solubilize the above-mentioned lanthanoid-containing compound in a solvent, or to store it stably for a long period of time, mixing the lanthanoid-containing compound and the Lewis base or reacting the lanthanoid-containing compound with the Lewis base to form a reaction product It is also preferable to use a product.
  • the amount of Lewis base is preferably 0 to 30 moles, and more preferably 1 to 10 moles with respect to 1 mole of lanthanoid.
  • Lewis base examples include acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenyl ether, triethylamine, organic phosphorus compounds, monohydric or dihydric alcohols, and the like.
  • the components (a) described above may be used alone or in combination of two or more.
  • the component (b) is an aluminoxane, and an organoaluminum compound represented by the general formula (1); AlR 1 R 2 R 3 (wherein in the general formula (1), R 1 and R 2 are the same) Or different and each represents a hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R 3 is the same as or different from R 1 and R 2 and represents a hydrocarbon group having 1 to 10 carbon atoms. And at least one compound selected from the group consisting of
  • aluminoxane (hereinafter also referred to as “alumoxane”) is a compound the structure of which is represented by the following general formula (4) or (5). Fine Chemicals, 23, (9), 5 (1994), J. Am. Am. Chem. Soc. , 115, 4971 (1993), and J.A. Am. Chem. Soc. , An aggregate of alumoxane disclosed in J. Chem., 117, 6465 (1995).
  • R 6 is the same or different and represents a hydrocarbon group having 1 to 20 carbon atoms.
  • p is an integer of 2 or more.
  • R 6 examples include methyl group, ethyl group, propyl group, butyl group, isobutyl group, t-butyl group, hexyl group, isohexyl group, octyl group and isooctyl group.
  • methyl group, ethyl group, isobutyl group and t-butyl group are preferable, and methyl group is particularly preferable.
  • p is preferably an integer of 4 to 100.
  • alumoxane examples include methylalumoxane (hereinafter also referred to as "MAO"), ethylalumoxane, n-propylalumoxane, n-butylalumoxane, isobutylalumoxane, t-butylalumoxane, hexylalumoxane Xane, isohexylalumoxane etc. are mentioned. Among these, MAO is preferable.
  • the above alumoxane can be produced by a known method.
  • trialkylaluminum or dialkylaluminum monochloride is added to an organic solvent such as benzene, toluene, xylene or the like, and water, water vapor, water vapor-containing nitrogen are further added. It can be produced by adding a gas or a salt having crystal water such as copper sulfate pentahydrate or aluminum sulfate 16-hydrate and causing a reaction.
  • organic solvent such as benzene, toluene, xylene or the like
  • water, water vapor, water vapor-containing nitrogen are further added.
  • It can be produced by adding a gas or a salt having crystal water such as copper sulfate pentahydrate or aluminum sulfate 16-hydrate and causing a reaction.
  • the above alumoxanes may be used alone or in combination of two or more.
  • organoaluminum compound represented by the above general formula (1) examples include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t -Butylaluminum, tripentylaluminum, trihexylaluminum, tricyclohexylaluminum, trioctylaluminum, diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, hydrogenation Dihexylaluminum, Diisohexylaluminum hydride, Dioctylaluminum hydride, Diisooctylaluminum hydride, Ethylaluminum dihydrate, - propyl aluminum dihydride, isobutylalum
  • hydrogenated diisobutylaluminum, triethylaluminum, triisobutylaluminum and diethylaluminum hydride are preferable, and hydrogenated diisobutylaluminum is particularly preferable.
  • the organic aluminum compounds may be used alone or in combination of two or more.
  • the component (c) is an iodine-containing compound containing at least one iodine atom in its molecular structure.
  • the iodine-containing compound is not particularly limited as long as it contains at least one iodine atom in its molecular structure, and, for example, iodine, trimethylsilyl iodide, diethylaluminum iodide, methyl iodide, butyl iodide, Hexyl iodide, octyl iodide, iodoform, diiodomethane, benzylidene iodide, beryllium iodide, magnesium iodide, calcium iodide, barium iodide, zinc iodide, cadmium iodide, mercury iodide, mercury iodide, manganese iodide, iodide Rhenium, copper iodide, silver iodide, gold iodide and the like can be mentioned.
  • iodine trimethyls
  • general formula (6) R 7 q SiI 4-q (in general formula (6), R 7 is the same or different and is a hydrocarbon group having 1 to 20 carbon atoms or And a hydrogen iodide is represented by q is an integer of 0 to 3.
  • An iodohydrocarbon compound or iodine is preferable.
  • the component (c) is at least one iodine-containing compound selected from the group consisting of a silicon iodide compound, an iodohydrocarbon compound, and iodine. It is one of the
  • silicon iodide compound examples include trimethylsilyl iodide, triethylsilyl iodide, dimethylsilyl diiodo and the like. Among them, trimethylsilyl iodide is preferred.
  • specific examples of the above-mentioned iodohydrocarbon compound include methyl iodide, butyl iodide, hexyl iodide, octyl iodide, iodoform, diiodomethane, benzylidene iodide and the like. Can be mentioned. Among them, methyl iodide, iodoform and diiodomethane are preferable.
  • iodine, trimethylsilyliodide, triethylsilyliodide, dimethylsilyldiiodo, methyliodide, iodoform and diiodomethane are particularly preferable as the above-mentioned iodine-containing compounds, and trimethylsilyliodide is most preferable.
  • the iodine-containing compounds may be used alone or in combination of two or more.
  • the proportions of the components ((a) to (c)) may be set as appropriate.
  • the blending amount of the component (a) is, for example, preferably 0.00001 to 1.0 mmol, and more preferably 0.0001 to 0.5 mmol, relative to 100 g of the conjugated diene compound. If it is less than 0.00001 mmol, the polymerization activity may be reduced. When used in excess of 1.0 millimole, the catalyst concentration may be high and a deashing step may be required.
  • the compounding amount of the alumoxane can be represented by the molar ratio of the component (a) to aluminum (Al) contained in the alumoxane, and the "(a) component”: "
  • the aluminum (Al) contained in the alumoxane (molar ratio) is preferably 1: 1 to 1: 500, more preferably 1: 3 to 1: 250, and 1: 5 to 1: 200. Is more preferred. If the amount of the alumoxane compounded is outside the above range, the catalyst activity may be reduced or a step of removing the catalyst residue may be required.
  • the compounding amount of the organoaluminum compound can be represented by the molar ratio of the component (a) to the organoaluminum compound, and “component (a)”:
  • the “organic aluminum compound” (molar ratio) is preferably 1: 1 to 1: 700, and more preferably 1: 3 to 1: 500. If the amount of the organoaluminum compound is out of the above range, the catalyst activity may be reduced or a step of removing the catalyst residue may be required.
  • the compounding amount of the component (c) can be represented by the molar ratio of the iodine atom contained in the component (c) to the component (a), and (iodine atom contained in the component (c)) / (Component (a)) (molar ratio) is preferably 0.5 to 3.0, more preferably 1.0 to 2.5, and further preferably 1.2 to 2.0. preferable.
  • the molar ratio of (iodine atom contained in (c) component) / ((a) component) is less than 0.5, the polymerization catalyst activity may be reduced.
  • the molar ratio of (iodine atom contained in component (c)) / (component (a)) exceeds 3.0, catalyst poisoning may occur.
  • the catalyst described above in addition to the components (a) to (c), at least one compound selected from the group consisting of a conjugated diene compound and a nonconjugated diene compound, if necessary, as a component (a)
  • the content is preferably 1000 mol or less, more preferably 3 to 1000 mol, and still more preferably 5 to 300 mol with respect to 1 mol.
  • the catalyst contains at least one compound selected from the group consisting of a conjugated diene compound and a nonconjugated diene compound, the catalyst activity is preferably further improved.
  • the conjugated diene compound to be used 1,3-butadiene, isoprene and the like can be mentioned as in the case of monomers for polymerization described later.
  • non-conjugated diene compounds include divinylbenzene, diisopropenylbenzene, triisopropenylbenzene, 1,4-vinylhexadiene, ethylidene norbornene and the like.
  • the catalyst composition containing the mixture of the components (a) to (c) as the main component is, for example, the components (a) to (c) dissolved in a solvent, and further a conjugated diene compound and non-compound added as needed. It can be prepared by reacting at least one compound selected from the group consisting of conjugated diene compounds.
  • the addition order of each component in preparation may be arbitrary. However, it is preferable from the viewpoint of improvement of polymerization activity and shortening of a polymerization initiation induction period to mix and react each component in advance and to age the mixture.
  • the ripening temperature is preferably 0 to 100 ° C., and more preferably 20 to 80 ° C.
  • the ripening time is not particularly limited. Further, each component may be brought into contact with each other in a line before being added to the polymerization reaction tank, but in such a case, the aging time of 0.5 minutes or more is sufficient.
  • the prepared catalyst is stable for several days.
  • the conjugated diene polymer (I) used when producing the above-mentioned modified conjugated diene polymer (I) a weight average molecular weight (Mw) and a number average molecular weight (Mn) measured by gel permeation chromatography
  • Mw weight average molecular weight
  • Mn number average molecular weight measured by gel permeation chromatography
  • the ratio that is, the molecular weight distribution (Mw / Mn) is preferably 3.5 or less, more preferably 3.0 or less, and still more preferably 2.5 or less. If the molecular weight distribution exceeds 3.5, rubber physical properties such as fracture characteristics and low heat buildup tend to be lowered. On the other hand, the lower limit of the molecular weight distribution is not particularly limited.
  • the molecular weight distribution means a value calculated by the ratio of weight average molecular weight to number average molecular weight (weight average molecular weight / number average molecular weight).
  • the weight average molecular weight of the conjugated diene polymer is a weight average molecular weight in terms of polystyrene, which is measured by the GPC method (Gel Permeation Chromatography method).
  • the number average molecular weight of the conjugated diene polymer is a polystyrene-equivalent number average molecular weight measured by the GPC method.
  • the vinyl content and cis content of the conjugated diene polymer (I) can be easily adjusted by controlling the polymerization temperature. Further, the Mw / Mn can be easily adjusted by controlling the molar ratio of the components (a) to (c).
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) at 100 ° C. of the conjugated diene polymer (I) is preferably in the range of 5 to 50, and more preferably 10 to 40. If it is less than 5, mechanical properties and abrasion resistance after vulcanization may decrease. On the other hand, if it exceeds 50, the processability at the time of kneading of the modified conjugated diene-based polymer after the modification reaction is It may decrease.
  • the Mooney viscosity can be easily adjusted by controlling the molar ratio of the components (a) to (c).
  • the Mooney viscosity (ML 1 + 4 at 100 ° C.) is a value obtained by the measurement method described in the examples described later.
  • the content of 1,2-vinyl bond (1,2-vinyl bond content, vinyl content) of the conjugated diene polymer (I) is preferably 0.5% by mass or less, and 0.4 mass % Or less is more preferable, and 0.3% by mass or less is even more preferable. If it exceeds 0.5% by mass, rubber physical properties such as fracture characteristics tend to be degraded.
  • the amount of 1,2-vinyl bonding of the conjugated diene polymer (I) is preferably 0.001% by mass or more, and more preferably 0.01% by mass or more. In the present specification, the amount of 1,2-vinyl bond is a value calculated from the signal intensity measured by NMR analysis.
  • the alkoxysilane compound (hereinafter also referred to as "modifier") used in the modification step (A) is one having two or more reactive groups containing an alkoxysilyl group.
  • the type of reactive group other than the alkoxysilyl group is not particularly limited, and it is composed of, for example, (f); epoxy group, (g); isocyanate group, (h); carbonyl group, and (i) cyano group
  • At least one functional group selected from the group is preferred. That is, at least one functional group selected from the group consisting of (f); epoxy group, (g); isocyanate group, (h); carbonyl group, and (i); cyano group; Containing is also one of the preferred embodiments of the present invention.
  • the alkoxysilane compound may be a partial condensate, or may be a mixture of the alkoxysilane compound and the partial condensate.
  • partial condensation product refers to a SiOSi bond (ie, not all) of SiOR (OR represents an alkoxy group) of the alkoxysilane compound is condensed by condensation.
  • conjugated diene type polymer used for the said modification reaction what at least 10% of polymer chains have living property is preferable.
  • alkoxysilane compounds include (f); 2-glycidoxyethyltrimethoxysilane as an alkoxysilane compound containing an epoxy group (hereinafter also referred to as “epoxy group-containing alkoxysilane compound”) -Glycidoxyethyltriethoxysilane, (2-glycidoxyethyl) methyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, (3-glycidoxypropyl) methyl Dimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyl (methyl) dimethoxysilane Although it is mentioned as a suitable
  • alkoxysilane compound containing an isocyanate group for example, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, (g); Examples thereof include 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatepropyltriisopropoxysilane, etc. Among them, 3-isocyanatepropyltrimethoxysilane is particularly preferable.
  • (h) as an alkoxysilane compound containing a carbonyl group (hereinafter also referred to as “carbonyl group-containing alkoxysilane compound”), 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxy Silane, 3-methacryloyloxypropylmethyldiethoxysilane, 3-methacryloyloxypropyltriisopropoxysilane and the like can be mentioned, and among them, 3-methacryloyloxypropyltrimethoxysilane is particularly preferable.
  • modifiers among them, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-methacryloyloxypropyl Particularly preferred is trimethoxysilane or 3-cyanopropyltrimethoxysilane, and most preferred is 3-glycidoxypropyltrimethoxysilane.
  • These modifiers may be used alone or in combination of two or more.
  • the partial condensate of the above-mentioned alkoxysilane compound can also be used.
  • the amount of the alkoxysilane compound used is preferably 0.01 to 200 moles, preferably 0.1 to 150 moles, per mole of the component (a). It is more preferable that If the amount is less than 0.01 mol, the progress of the modification reaction may not be sufficient, and the dispersibility of the filler may not be sufficiently improved. On the other hand, even if it is used in excess of 200 moles, the modification reaction may be saturated, in which case the cost of the used portion is extra.
  • the method of adding the modifying agent is not particularly limited, but may be collectively added, dividedly added, continuously added, etc. Among them, the collectively added method is preferable .
  • the above-mentioned modification reaction is preferably carried out in a solution, and as this solution, a solution containing unreacted monomers used at the time of polymerization can be used as it is.
  • the type of modification reaction is not particularly limited, and may be carried out using a batch reactor, or may be carried out continuously using an apparatus such as a multistage continuous reactor or an in-line mixer.
  • the modification reaction is preferably carried out after completion of the polymerization reaction, prior to the desolvation treatment, water treatment, heat treatment, operations required for polymer isolation, and the like.
  • the temperature of the modification reaction can be the same as the polymerization temperature at the time of polymerizing the conjugated diene polymer. Specifically, 20 to 100 ° C. is preferable, and 30 to 90 ° C. is more preferable. When the temperature is lower than 20 ° C., the viscosity of the polymer tends to increase, and when the temperature exceeds 100 ° C., the polymerization active end may be inactivated.
  • reaction time in the modification reaction is preferably 5 minutes to 5 hours, and more preferably 15 minutes to 1 hour.
  • transducing an alkoxysilane compound residue to the active terminal of a polymer in a condensation process (B) you may add a well-known anti-aging agent and reaction terminator according to need.
  • condensation step (B) a condensation reaction is carried out with the alkoxysilane compound residue which is a modifier introduced at the active terminal, and further consumed is added It is preferable to do. Specifically, it is preferable to add a functional group introducing agent.
  • the functional group introducing agent can improve the abrasion resistance of the modified conjugated diene polymer.
  • the functional group introducing agent is not particularly limited as long as it does not substantially cause direct reaction with the active end and remains as an unreacted substance in the reaction system, but, for example, an alkoxysilane compound used as the modifying agent Different alkoxysilane compounds, ie, alkoxysilane compounds containing at least one functional group selected from the group consisting of (j); amino group, (k); imino group, and (l); mercapto group Is preferred.
  • the alkoxysilane compound used as the functional group introducing agent may be a partial condensation product, or a mixture of a non-partial condensation product of the alkoxysilane compound used as the functional group introduction agent and the partial condensation product. May be
  • the functional group introducing agent include (j); 3-dimethylaminopropyl (triethoxy) silane as an alkoxysilane compound containing an amino group (hereinafter also referred to as “amino group-containing alkoxysilane compound”) 3-Dimethylaminopropyl (trimethoxy) silane, 3-diethylaminopropyl (triethoxy) silane, 3-diethylaminopropyl (trimethoxy) silane, 2-dimethylaminoethyl (triethoxy) silane, 2-dimethylaminoethyl (trimethoxy) silane, 3- Dimethylaminopropyl (diethoxy) methylsilane, 3-dibutylaminopropyl (triethoxy) silane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, aminophenyltrimethoxysilane, amino Henyltrie
  • the amount thereof used is preferably 0.01 to 200 mol, and more preferably 0.1 to 150 mol, per 1 mol of the component (a). If it is less than 0.01 mol, the progress of the condensation reaction may not be sufficient, and the dispersibility of the filler may not be sufficiently improved. On the other hand, even if it is used in excess of 200 moles, the condensation reaction may be saturated, in which case the cost of the used portion is extra.
  • the addition time of the functional group introducing agent is after introducing an alkoxysilane compound residue at the active end of the conjugated diene polymer (I) in the modification step (A), and the condensation step (B) It is preferable before the condensation reaction in the step is started. When it is added after the initiation of the condensation reaction, the functional group introducing agent may not be uniformly dispersed and the catalyst performance may be lowered. Specifically, the addition time of the functional group introducing agent is preferably 5 minutes to 5 hours after the start of the modification reaction, and more preferably 15 minutes to 1 hour after the start of the modification reaction.
  • the condensation reaction between alkoxysilyl groups may occur between a free alkoxysilane compound and an alkoxysilyl group at the end of a conjugated diene polymer, or in some cases, between alkoxysilyl groups at a terminal of a conjugated diene polymer It is preferable from the viewpoint of reaction efficiency, and the reaction between free alkoxysilane compounds is not preferable. Therefore, when an alkoxysilane compound is newly added as a functional group introducing agent, the hydrolyzability of the alkoxysilyl group is lower than the hydrolyzability of the alkoxysilyl group introduced at the end of the conjugated diene polymer. preferable.
  • an alkoxysilane compound used for the reaction with the active end of the conjugated diene polymer (I) uses a compound having a highly hydrolyzable trimethoxysilyl group, and an alkoxy to be newly added as a functional group introducing agent
  • a combination using one containing an alkoxysilyl group (for example, a triethoxysilyl group) having a lower hydrolyzability than the trimethoxysilyl group-containing compound is preferable.
  • an alkoxysilane compound to be newly added as a functional group introducing agent is a compound containing a triethoxysilyl group as the alkoxysilane compound used for the reaction with the active end of the conjugated diene polymer (I) If the compound contains a trimethoxysilyl group, the reaction efficiency may be reduced.
  • the condensation step (B) includes the presence of a condensation catalyst containing at least one element selected from the group consisting of elements contained in Groups 4, 12, 13, 14, and 15 of the Periodic Table. Below, it is the process of condensation-reacting the residue of the alkoxysilane compound introduce
  • the condensation catalyst is not particularly limited as long as it contains at least one element selected from the group consisting of elements contained in Groups 4, 12, 13, 14, and 15 of the periodic table.
  • titanium (Ti) Group 4
  • tin (Sn) Group 14
  • zirconium Zr
  • bismuth Group 15
  • aluminum Al
  • condensation catalyst examples include, as a condensation catalyst containing tin (Sn), for example, bis (n-octanoate) tin, bis (2-ethylhexanoate) tin, bis (laurate) tin, bis (naphthoate) ) Tin, bis (stearate) tin, bis (oleate) tin, dibutyltin diacetate, dibutyltin di n-octanoate, dibutyltin di 2-ethylhexanoate, dibutyltin dilaurate, dibutyltin malate, dibutyltin bis (benzyl malate), Dibutyltin bis (2-ethylhexyl malate), di n-octyl tin diacetate, di n-octyl tin di n-octanoate, di n-octyl tin di 2-e
  • zirconium for example, tetraethoxy zirconium, tetra n-propoxy zirconium, tetra i-propoxy zirconium, tetra n-butoxy zirconium, tetra sec-butoxy zirconium, tetra tert-butoxy zirconium, tetra (2- (2-) Ethylhexyl oxide) Zirconium, zirconium tributoxystearate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethylacetoacetate, zirconium butoxyacetylacetonate bis (ethylacetoacetate), zirconium tetrakis Acetylacetonate), zirconium diacetylacetonate bis (ethylacetoacetate) ), Bis (2-ethoxy zirconium, tetra
  • Bi bismuth
  • tris (2-ethylhexanoate) bismuth for example, tris (laurate) bismuth, tris (naphthoate) bismuth, tris (stearate) bismuth, tris (oleate) bismuth, tris ( Linolate) bismuth etc. are mentioned.
  • Al aluminum
  • Al aluminum
  • triethoxy aluminum tri n-propoxy aluminum, tri i-propoxy aluminum, tri n-butoxy aluminum, tri sec-butoxy aluminum, tri tert-butoxy aluminum, tri (2- (2-) Ethylhexyl oxide
  • Aluminum aluminum dibutoxystearate, aluminum dibutoxy acetylacetonate, aluminum butoxy bis (acetyl acetonate), aluminum dibutoxy ethyl acetoacetate, aluminum tris (acetylacetonate), aluminum tris (ethyl acetoacetate), Tris (2-ethylhexanoate) aluminum, tris (laurate) aluminum, tris (naphthoate) aluminum , Tris (stearate) aluminum, tris (oleate) aluminum, tris (linolate) aluminum, and the like.
  • Ti titanium
  • Ti for example, tetramethoxytitanium, tetraethoxytitanium, tetra n-propoxytitanium, tetra-i-propoxytitanium, tetra n-butoxytitanium, tetra n-butoxytitanium oligomer, tetra-sec-butoxytitanium Tetra-tert-butoxytitanium, tetra (2-ethylhexyl oxide) titanium, bis (octanediolate) bis (2-ethylhexyl oxide) titanium, tetra (octanediolate) titanium, titanium lactate, titanium dipropoxy bis (triethanolamide) ), Titanium dibutoxy bis (triethanol aminate), titanium tributoxy stearate, titanium tripropoxy stearate, Tanium tripropoxy acetylacetonate, titanium dipropoxy bis (ace
  • condensation catalyst a condensation catalyst containing titanium (Ti) is more preferable.
  • the condensation catalysts containing titanium (Ti) alkoxides, carboxylates or acetylacetonate complexes of titanium (Ti) are more preferable.
  • Particularly preferred is tetra-i-propoxytitanium (tetraisopropyl titanate).
  • the amount of the condensation catalyst used is such that the number of moles of the various compounds that can be used as the condensation catalyst is 0.1 to 10 moles with respect to 1 mole of the total of alkoxysilyl groups present in the reaction system. Is preferable, and 0.3 to 5 mol is particularly preferable. If it is less than 0.1 mol, the condensation reaction may not proceed sufficiently. On the other hand, even if it is used in excess of 10 moles, the effect as a condensation catalyst may be saturated, in which case the cost for the used will be extra.
  • the condensation catalyst can be added before the modification reaction, but is preferably added after the modification reaction and before the start of the condensation reaction. If added before the modification reaction, a direct reaction with the active end may occur, and an alkoxysilyl group may not be introduced at the active end. Moreover, when it adds after the condensation reaction start, a condensation catalyst may not be disperse
  • the condensation reaction in the condensation step (B) is preferably carried out in an aqueous solution, and the temperature during the condensation reaction is preferably 85 to 180 ° C., more preferably 100 to 170 ° C., and 110 to 150 ° C. Is particularly preferred. If the temperature at the condensation reaction is less than 85 ° C., the progress of the condensation reaction may not be sufficient, and the condensation reaction may not be completed in some cases. In such a case, the modified conjugated diene polymer (I) obtained Changes over time, which may cause quality problems. On the other hand, if the temperature exceeds 180 ° C., the aging reaction of the polymer may proceed, and the physical properties may be reduced.
  • the pH of the aqueous solution in which the condensation reaction is performed is preferably 9 to 14, and more preferably 10 to 12.
  • the pH of the aqueous solution in which the condensation reaction is performed is preferably 9 to 14, and more preferably 10 to 12.
  • the condensation reaction is promoted, and the temporal stability of the modified conjugated diene polymer (I) can be improved. If the pH is less than 9, the progress of the condensation reaction may not be sufficient, and the condensation reaction may not be completed. In this case, the resulting modified conjugated diene polymer (I) changes with time. May be a quality issue.
  • the pH of the aqueous solution in which the condensation reaction is performed exceeds 14, a large amount of alkali-derived components may remain in the denatured conjugated diene polymer after isolation, and the removal thereof may be difficult.
  • the reaction time of the above condensation reaction is preferably 5 minutes to 10 hours, and more preferably about 15 minutes to 5 hours. If it is less than 5 minutes, the condensation reaction may not be completed. On the other hand, the condensation reaction may be saturated even if it exceeds 10 hours. Further, the pressure in the reaction system at the time of the condensation reaction is preferably 0.01 to 20 MPa, and more preferably 0.05 to 10 MPa.
  • the type of condensation reaction is not particularly limited, and may be carried out using a batch reactor, or may be carried out continuously using an apparatus such as a multistage continuous reactor. Moreover, you may desolvate simultaneously with this condensation reaction.
  • the Mooney viscosity (ML 1 + 4 (125 ° C.)) of the modified conjugated diene polymer (I) is preferably 10 to 150, and more preferably 20 to 100. If the Mooney viscosity (ML 1 + 4 (125 ° C.)) is less than 10, the rubber physical properties including the fracture characteristics may be degraded. On the other hand, when the Mooney viscosity (ML 1 + 4 (125 ° C.)) exceeds 150, workability may be deteriorated, and it may be difficult to knead with the compounding agent.
  • the Mooney viscosity (ML 1 + 4 at 125 ° C.) is a value obtained by the measurement method described in the examples described later.
  • the molecular weight distribution (Mw / Mn) of the modified conjugated diene polymer (I) is preferably 3.5 or less, more preferably 3.0 or less, and 2.5 or less. Is more preferred. When the molecular weight distribution exceeds 3.5, rubber physical properties such as fracture characteristics and low heat buildup tend to be lowered.
  • the weight average molecular weight (Mw) of the modified conjugated diene-based polymer is a weight average molecular weight in terms of polystyrene measured by a GPC method (Gel Permeation Chromatography method).
  • the number average molecular weight (Mn) of the modified conjugated diene-based polymer is a polystyrene-equivalent number average molecular weight measured by the GPC method.
  • the cold flow value (mg / min) of the modified conjugated diene polymer (I) is preferably 1.0 or less, more preferably 0.8 or less. If the cold flow value is more than 1.0, the shape stability of the polymer during storage may be deteriorated. In the present specification, the cold flow value (mg / min) is a value calculated by the measurement method described later.
  • the evaluation value of the temporal stability of the modified conjugated diene polymer (I) is preferably 0 to 5, and more preferably 0 to 2. If this evaluation value exceeds 5, the polymer may change with time during storage.
  • the temporal stability is a value calculated by the measurement method described later.
  • the glass transition temperature of the modified conjugated diene polymer (I) is preferably ⁇ 40 ° C. or less.
  • the temperature is more preferably ⁇ 43 ° C. or less, still more preferably ⁇ 46 ° C. or less, and particularly preferably ⁇ 50 ° C. or less. If the glass transition temperature exceeds -40 ° C., the low temperature characteristics required for a studless tire may not be sufficiently secured.
  • the lower limit of the glass transition temperature is not particularly limited.
  • the glass transition temperature of the modified conjugated diene-based polymer can be measured by the measurement method described in the examples described later.
  • the conjugated diene type polymer (modified conjugated diene type polymer (II)) which has a functional group which interacts with fillers, such as a silica, can also be used.
  • a terminal-modified conjugated diene-based polymer in which at least one end of a conjugated diene-based polymer is modified with a compound (modifier) having the above-mentioned functional group terminal-modified conjugated diene-based polymer having the above-mentioned functional group at the terminal
  • a main chain modified conjugated diene polymer having the above functional group in the main chain or a main chain terminal modified conjugated diene polymer having the above functional group at the main chain and at the end (for example, the above functional group in the main chain (Modified with a main chain terminal-modified conjugated diene-based polymer having at least one end modified with the above modifier) or a polyfunctional compound having two or more epoxy groups in the molecule
  • terminal-modified conjugated diene polymers having an epoxy group introduced terminal-modified conjugated diene-based polymers having an epoxy group introduced.
  • the conjugated diene polymer is, for example, selected from the group consisting of 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and myrcene.
  • a polymer having a repeating unit derived from at least one monomer can be used.
  • a polymer having a repeating unit derived from at least one monomer selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene can be suitably used.
  • the conjugated diene compound constituting the modified conjugated diene polymer (II) is at least one selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene.
  • Being a conjugated diene compound is also one of the preferred embodiments of the present invention.
  • Examples of the functional group include amino group, amide group, silyl group, alkoxysilyl group, isocyanate group, imino group, imidazole group, urea group, ether group, carbonyl group, oxycarbonyl group, mercapto group, sulfide group, disulfide Group, sulfonyl group, sulfinyl group, thiocarbonyl group, ammonium group, imide group, hydrazo group, azo group, azo group, diazo group, carboxyl group, nitrile group, pyridyl group, alkoxy group, hydroxyl group, oxy group, epoxy group etc. .
  • these functional groups may have a substituent.
  • an amino group preferably an amino group having a hydrogen atom of 1 to 6 carbon atoms substituted by a hydrogen atom of the amino group
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably Preferably, an alkoxysilyl group having 1 to 6 carbon atoms is preferable.
  • a conjugated diene polymer or the like modified with a compound (modifier) represented by the following formula can be suitably used.
  • R 11 , R 12 and R 13 are the same or different and each represents an alkyl group, an alkoxy group, a silyloxy group, an acetal group, a carboxyl group (—COOH), a mercapto group (—SH) or derivatives thereof
  • R 14 and R 15 are the same or different and each represents a hydrogen atom or an alkyl group, and R 14 and R 15 may combine to form a ring structure with a nitrogen atom, and n represents an integer.
  • a compound in which the polymerization end (active end) of butadiene rubber (BR) for solution polymerization is represented by the above formula
  • BR butadiene rubber
  • an alkoxy group is suitable (preferably an alkoxy group having 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms).
  • an alkyl group (preferably an alkyl group having 1 to 3 carbon atoms) is suitable.
  • n is preferably 1 to 5, more preferably 2 to 4, and further preferably 3.
  • R 14 and R 15 combine to form a ring structure with a nitrogen atom, it is preferably a 4- to 8-membered ring.
  • the alkoxy group also includes a cycloalkoxy group (such as cyclohexyloxy group) and an aryloxy group (such as phenoxy group and benzyloxy group).
  • the above-mentioned modifier include 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 2-dimethylaminoethyltriethoxysilane, 3-dimethylaminopropyltriethoxysilane, 2-diethylaminoethyltrithiosilane Methoxysilane, 3-diethylaminopropyltrimethoxysilane, 2-diethylaminoethyltriethoxysilane, 3-diethylaminopropyltriethoxysilane and the like can be mentioned.
  • 3-dimethylaminopropyltrimethoxysilane, 3-dimethylaminopropyltriethoxysilane, and 3-diethylaminopropyltrimethoxysilane are preferable. These may be used alone or in combination of two or more.
  • modified conjugated diene polymer (II) a modified conjugated diene polymer modified with the following compound (modifier) can also be suitably used.
  • the modifier include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether, glycerin triglycidyl ether, trimethylol ethane triglycidyl ether, trimethylolpropane triglycidyl ether, and the like; two or more such as diglycidyl bisphenol A Ether of an aromatic compound having a phenolic group; polyepoxy compounds such as 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene and polyepoxidized liquid polybutadiene; 4,4'-diglycidyl-diphenyl Epoxy-containing tertiary amines such as methylamine, 4,4'-diglycidyl-dibenzylmethylamine; diglycidyl
  • Amino-containing acid chlorides such as bis- (1-methylpropyl) carbamic acid chloride, 4-morpholine carbonyl chloride, 1-pyrrolidine carbonyl chloride, N, N-dimethylcarbamic acid chloride, N, N-diethylcarbamic acid chloride;
  • Epoxy group-containing silane compounds such as 2,3-bis- (glycidyloxypropyl) -tetramethyldisiloxane, (3-glycidyloxypropyl) -pentamethyldisiloxane;
  • N-substituted aziridine compounds such as ethyleneimine and propyleneimine; alkoxysilanes such as methyltriethoxysilane; 4-N, N-dimethylaminobenzophenone, 4-N, N-di-t-butylaminobenzophenone, 4-N, N-diphenylaminobenzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'-bis (diphenylamino) benzophenone, N, N, N ', N' (Thio) benzophenone compounds having an amino group and / or a substituted amino group such as -bis- (tetraethylamino) benzophenone; 4-N, N-dimethylaminobenzaldehyde, 4-N, N-diphenylaminobenzaldehyde, 4-N, Amino group such as N-divin
  • the content of 1,2-vinyl bond (1,2-vinyl bond content, vinyl content) of the modified conjugated diene polymer (II) is preferably 35% by mass or less, and 30% by mass or less Is more preferred. If the amount is more than 35% by mass, fuel economy may be reduced.
  • the lower limit of the amount of 1,2-vinyl bond is not particularly limited, but is preferably 1% by mass or more, and more preferably 20% by mass or more. If the amount is less than 1% by mass, the heat resistance and the deterioration resistance may be reduced.
  • the weight average molecular weight (Mw) of the modified conjugated diene polymer (II) is preferably 100,000 or more, and more preferably 400,000 or more. If it is less than 100,000, sufficient breaking strength and bending fatigue resistance may not be obtained. Moreover, 2 million or less is preferable and 800,000 or less is more preferable. If it exceeds 2,000,000, the processability may be reduced to cause dispersion failure, and a sufficient breaking strength may not be obtained.
  • a tin-modified conjugated diene polymer (modified conjugated diene polymer (III)) can also be used as the modified conjugated diene polymer.
  • the conjugated diene polymer is, for example, selected from the group consisting of 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene and myrcene.
  • a polymer having a repeating unit derived from at least one monomer can be used.
  • a polymer having a repeating unit derived from at least one monomer selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene can be suitably used.
  • the conjugated diene compound constituting the modified conjugated diene polymer (III) is at least one selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene. Being a conjugated diene compound is also one of the preferred embodiments of the present invention.
  • the modified conjugated diene polymer (III) is not particularly limited, but tin which is polymerized by a lithium initiator and has a tin atom content of 50 to 3000 ppm, a vinyl content of 5 to 50 mass%, and a molecular weight distribution of 2 or less Modified butadiene rubber (BR) is preferred.
  • the tin-modified BR is obtained by polymerizing 1,3-butadiene with a lithium initiator and then adding a tin compound, and the terminal of the tin-modified BR molecule is further bonded by a tin-carbon bond Is preferred.
  • lithium initiator examples include lithium compounds such as alkyllithium and aryllithium. Moreover, a tin tetrachloride, butyl tin trichloride, etc. are mentioned as said tin compound.
  • the content of tin atoms in the tin-modified BR is preferably 50 ppm or more. Below 50 ppm, tan ⁇ tends to increase. Moreover, it is preferable that it is 3000 ppm or less, and it is more preferable that it is 300 ppm or less. If it exceeds 3000 ppm, the processability of the kneaded material tends to deteriorate.
  • the molecular weight distribution (Mw / Mn) of the modified conjugated diene polymer (III) is preferably 2 or less. When Mw / Mn exceeds 2, tan ⁇ tends to increase.
  • the lower limit of the molecular weight distribution is not particularly limited, but is preferably 1 or more.
  • the vinyl content of the modified conjugated diene polymer (III) is preferably 5% by mass or more. If it is less than 5% by mass, it is difficult to produce tin-modified BR. Moreover, 50 mass% or less is preferable, and 20 mass% or less is more preferable. If it exceeds 50% by mass, the dispersibility of the silica is poor, and the fuel economy, the breaking resistance and the breaking elongation tend to be reduced.
  • the content of the modified conjugated diene-based polymer in 100% by mass of the rubber component is preferably 20% by mass or more from the viewpoint of performance balance on low temperature / high temperature ice, performance on low temperature ice, performance on high temperature ice, and wear resistance. More preferably, it is 30 mass% or more, More preferably, it is 50 mass% or more.
  • the upper limit of the content is not particularly limited, but is preferably 90% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
  • the total content of isoprene-based rubber and modified conjugated diene-based polymer in 100% by mass of the rubber component is preferably 30% by mass or more, more preferably 60% by mass or more, still more preferably 80% by mass
  • the above content is particularly preferably 100% by mass. The higher the total content, the better the low temperature characteristics, and there is a tendency that the required low temperature / high temperature ice performance can be exhibited.
  • the rubber composition may contain other rubber components as long as the effect is not impaired.
  • Other rubber components include non-modified butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR) and butyl rubber (IIR) which are not contained in the above-mentioned modified conjugated diene polymer.
  • diene based rubbers such as styrene-isoprene-butadiene copolymer rubber (SIBR).
  • non-modified BR can be blended. That is, the form which mix
  • the non-modified BR is not particularly limited as long as it is non-modified BR, for example, BR having a high cis content, BR containing 1,2-syndiotactic polybutadiene crystals (SPB-containing BR), rare earth element-based catalyst And butadiene rubber (rare earth based BR) synthesized by using the following.
  • SPB-containing BR 1,2-syndiotactic polybutadiene crystals
  • rare earth element-based catalyst And butadiene rubber rare earth based BR
  • products such as Ube Industries, Ltd., JSR Corporation, Asahi Kasei Corporation, Nippon Zeon Corporation etc. can be used as commercial products. These may be used alone or in combination of two or more.
  • the cis content of the non-modified BR is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more. This gives better cold ice performance and hot ice performance.
  • the water-soluble fine particles are not particularly limited as long as they are fine particles having solubility in water.
  • a material having a solubility of 1 g / 100 g water or more at normal temperature (20 ° C.) can be used.
  • the water-soluble fine particles preferably have a median particle size (median diameter, D50) of 1 ⁇ m to 1 mm from the viewpoint of the balance of performance on high temperature ice and wear resistance. More preferably, it is 2 ⁇ m to 800 ⁇ m, still more preferably 2 ⁇ m to 500 ⁇ m. As used herein, median particle size can be measured by laser diffraction.
  • the content of the water-soluble fine particles is preferably 1 part by mass or more, more preferably 5 parts by mass or more, still more preferably 15 parts by mass or more, still more preferably 20 parts by mass or more, based on 100 parts by mass of the rubber component Preferably it is 25 mass parts or more.
  • the content is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, still more preferably 50 parts by mass or less, and particularly preferably 40 parts by mass or less. By setting the content to the upper limit or less, rubber physical properties such as good abrasion resistance tend to be obtained.
  • water-soluble fine particles examples include water-soluble inorganic salts and water-soluble organic substances. These may be used alone or in combination of two or more.
  • Water-soluble inorganic salts include metal sulfates such as magnesium sulfate and potassium sulfate; metal chlorides such as potassium chloride, sodium chloride, calcium chloride and magnesium chloride; metal hydroxides such as potassium hydroxide and sodium hydroxide; Examples thereof include carbonates such as potassium and sodium carbonate; phosphates such as sodium hydrogen phosphate and sodium dihydrogen phosphate;
  • water-soluble organic substance examples include lignin derivatives and saccharides.
  • lignin derivatives examples include lignin sulfonic acid, lignin sulfonate and the like are preferable.
  • the lignin derivative may be obtained by any of a sulfite pulp method and a kraft pulp method.
  • lignin sulfonates examples include alkali metal salts, alkaline earth metal salts, ammonium salts and alcoholamine salts of lignin sulfonic acid.
  • alkali metal salts potassium salts, sodium salts and the like
  • alkaline earth metal salts calcium salts, magnesium salts, lithium salts, barium salts and the like.
  • the lignin derivative preferably has a degree of sulfonation of 1.5 to 8.0 / OCH 3 .
  • the lignin derivative includes lignin sulfonic acid and / or lignin sulfonic acid salt in which at least a part of lignin and / or its decomposition product is substituted with a sulfo group (sulfone group)
  • the sulfo group may be in a non-ionized state, or hydrogen of the sulfo group may be substituted by an ion such as a metal ion.
  • the degree of sulfonation is more preferably 3.0 to 6.0 / OCH 3 . Within the above range, good on-ice performance can be obtained, and this tends to improve the balance of performance against abrasion.
  • the degree of sulfonation of lignin derivative particles is the introduction rate of sulfo group and can be determined by the following equation.
  • Degree of sulfonation (/ OCH 3 ) S (mole) in sulfone group in lignin derivative / methoxyl group (mole) in lignin derivative
  • the saccharides are not particularly limited in the number of carbon atoms, and may be any of monosaccharides, oligosaccharides and polysaccharides.
  • monosaccharides include tri-carbon sugars such as aldotriose and ketotriose; tetra-carbon sugars such as erythrose and threose; five carbon sugars such as xylose and ribose; six carbon sugars such as mannose, allose, altrose and glucose; sedoheptulose and the like And seven-carbon sugars.
  • oligosaccharides include disaccharides such as sucrose and lactose; trisaccharides such as raffinose and meresitose; tetrasaccharides such as acarbose and stachyose; oligosaccharides such as xylooligosaccharides and cellooligosaccharides.
  • polysaccharides include glycogen, starch (amylose, amylopectin), cellulose, hemicellulose, dextrin, glucan and the like.
  • silica examples include dry method silica (anhydrous silica) and wet method silica (hydrous silica). Among them, wet method silica is preferable because it has many silanol groups.
  • products such as Degussa, Rhodia, Tosoh Silica Corporation, Solvay Japan Ltd., Tokuyama Corporation can be used. These may be used alone or in combination of two or more.
  • the content of silica is 30 parts by mass or more, preferably 50 parts by mass or more, more preferably 55 parts by mass or more, and still more preferably 60 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the upper limit of the content is not particularly limited, but is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, still more preferably 170 parts by mass or less, particularly preferably 100 parts by mass or less, most preferably 80 parts by mass or less is there. By setting the content to the upper limit or less, good dispersibility tends to be obtained.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 70 m 2 / g or more, more preferably 140 m 2 / g or more, and still more preferably 160 m 2 / g or more. By setting the content to the lower limit or more, good abrasion resistance and fracture strength tend to be obtained.
  • the upper limit of N 2 SA of silica is not particularly limited, but is preferably 500 m 2 / g or less, more preferably 300 m 2 / g or less, still more preferably 250 m 2 / g or less. By setting the content to the upper limit or less, good dispersibility tends to be obtained.
  • the N 2 SA of silica is a value measured by the BET method according to ASTM D3037-93.
  • the silica content in 100% by mass of the total content of silica and carbon black is preferably 50% by mass or more, and 80% by mass, from the viewpoint of performance balance of performance on low temperature and high temperature on ice and abrasion resistance.
  • the above is more preferable, and 90 mass% or more is still more preferable.
  • silane coupling agent When the rubber composition contains silica, it preferably further contains a silane coupling agent.
  • the silane coupling agent is not particularly limited. For example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide
  • 3 mass parts or more are preferable with respect to 100 mass parts of silicas, and, as for content of a silane coupling agent, 6 mass parts or more are more preferable. There exists a tendency for favorable fracture strength etc. to be acquired as it is 3 mass parts or more. Moreover, 12 mass parts or less are preferable, and, as for the said content, 10 mass parts or less are more preferable. If the amount is 12 parts by mass or less, an effect commensurate with the amount to be blended tends to be obtained.
  • the rubber composition preferably contains carbon black as a filler from the viewpoint of the performance balance.
  • the carbon black is not particularly limited, and examples thereof include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550, N762 and the like.
  • products such as Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Co., Ltd., Lion Co., Ltd., Nippon Steel Carbon Co., Ltd., Columbia Carbon Co., Ltd. are used. it can. These may be used alone or in combination of two or more.
  • the content of carbon black is preferably 1 part by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass of the rubber component.
  • the content is preferably 10 parts by mass or less, more preferably 7 parts by mass or less.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 50 m 2 / g or more, more preferably 80 m 2 / g or more, and still more preferably 100 m 2 / g or more. By setting the content to the lower limit or more, good abrasion resistance and grip performance on low temperature and high temperature ice tend to be obtained. Further, the N 2 SA is preferably 200 meters 2 / g or less, more preferably 150 meters 2 / g, more preferably not more than 130m 2 / g. Below the upper limit, a good dispersion of carbon black tends to be obtained.
  • the nitrogen adsorption specific surface area of carbon black is determined according to JIS K 6217-2: 2001.
  • the content of the liquid plasticizer exceeds 30 parts by mass with respect to 100 parts by mass of the rubber component. As a result, excellent wear resistance, low temperature / high temperature ice performance, and low fuel consumption performance can be obtained. 33 mass parts or more are preferable, and, as for this content, 35 mass parts or more are more preferable.
  • the upper limit is not particularly limited, but is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and still more preferably 55 parts by mass or less, from the viewpoint of wear resistance and the like.
  • the liquid plasticizer is not particularly limited as long as it is a plasticizer in a liquid state at 25 ° C., and oil, liquid resin, liquid diene polymer and the like can be mentioned. These may be used alone or in combination of two or more.
  • the oils include, for example, process oils, vegetable oils and fats, or mixtures thereof.
  • process oil for example, paraffin-based process oil, aroma-based process oil, naphthene-based process oil and the like can be used.
  • Vegetable fats and oils include castor oil, cottonseed oil, linseed oil, rapeseed oil, palm oil, coconut oil, peanut oil, rosin, pine oil, pine tar, tall oil, corn oil, corn oil, vegetable oil, sesame oil, Olive oil, sunflower oil, palm kernel oil, soy sauce, jojoba oil, macadamia nut oil, soy sauce and the like can be mentioned.
  • terpene resin including terpene phenol resin and aromatic modified terpene resin
  • liquid resin terpene resin (including terpene phenol resin and aromatic modified terpene resin) liquid at 25 ° C.
  • rosin resin including terpene phenol resin and aromatic modified terpene resin
  • styrene resin including terpene phenol resin and aromatic modified terpene resin
  • C5 resin including terpene phenol resin and aromatic modified terpene resin
  • C5 / C9 resin coumarone indene resin
  • coumarone indene resin examples thereof include coumarone and indene simple substance resins, olefin resins, polyurethane resins, acrylic resins and the like.
  • Liquid diene polymers include liquid styrene butadiene copolymer (liquid SBR), liquid butadiene polymer (liquid BR), liquid isoprene polymer (liquid IR), liquid styrene isoprene copolymer (liquid SIR) at 25 ° C. And liquid styrene butadiene styrene block copolymer (liquid SBS block polymer), liquid styrene isoprene styrene block copolymer (liquid SIS block polymer) and the like. The terminal or main chain of these may be modified with a polar group.
  • the rubber composition may include a resin (solid resin: resin in a solid state at normal temperature (25 ° C.)).
  • Examples of the resin (solid resin) include aromatic vinyl polymers, coumarone indene resins, indene resins, rosin resins, terpene resins, acrylic resins and the like.
  • Commercially available products include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yashara Chemical Co., Ltd., Tosoh Co., Ltd., Rutgers Chemicals, BASF, Arizona Chemical Co., Nippon Paint Chemical Co., Ltd., Japan Products such as Catalyst, JX Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Industry Co., Ltd., Toagosei Co., Ltd., etc. can be used. These may be used alone or in combination of two or more. Among them, aromatic vinyl polymers, coumarone indene resins, terpene resins and rosin resins are preferable.
  • the above-mentioned aromatic vinyl polymer is a resin obtained by polymerizing ⁇ -methylstyrene and / or styrene, and a homopolymer of styrene, a homopolymer of ⁇ -methylstyrene, ⁇ -methylstyrene and styrene Copolymers, copolymers of styrene and other monomers, and the like can be mentioned.
  • the above-mentioned coumarone-indene resin is a resin containing coumarone and indene as main monomer components constituting the skeleton (main chain) of the resin, and as a monomer component contained in the skeleton besides coumarone and indene, styrene, ⁇ -Methylstyrene, methyl indene, vinyl toluene and the like.
  • the said indene resin is resin which contains indene as a main monomer component which comprises frame
  • rosin resin examples include natural rosin, polymerized rosin, modified rosin, ester compounds thereof, and rosin resins represented by hydrogenated products thereof.
  • terpene resin a polyterpene resin obtained by polymerizing a terpene compound, an aromatic modified terpene resin obtained by polymerizing a terpene compound and an aromatic compound, and the like can be used. Also, these hydrogenates can be used.
  • the polyterpene resin is a resin obtained by polymerizing a terpene compound.
  • the terpene compound is a hydrocarbon represented by a composition of (C 5 H 8 ) n and an oxygen-containing derivative thereof, and a monoterpene (C 10 H 16 ), a sesquiterpene (C 15 H 24 ), a diterpene (C 20 H) 32 )
  • the pinene resin which uses the terpene compound mentioned above as a raw material, limonene resin, a dipentene resin, a pinene / limonene resin etc. are mentioned.
  • pinene resin is preferable from the viewpoint that polymerization reaction is easy and that natural pine resin is a raw material and inexpensive.
  • pinene resin usually contains both ⁇ -pinene and ⁇ -pinene in an isomer relationship, ⁇ -pinene resin mainly composed of ⁇ -pinene and ⁇ - It is classified into ⁇ -pinene resin containing pinene as a main component.
  • the terpene phenol resin which uses the said terpene compound and a phenol type compound as a raw material the terpene styrene resin which uses the said terpene compound and a styrene compound as a raw material is mentioned.
  • terpene phenol styrene resin which uses the said terpene compound, a phenol type compound, and a styrenic compound as a raw material can also be used.
  • a phenol type compound a phenol, bisphenol A, cresol, xylenol etc. are mentioned, for example.
  • examples of the styrene compound include styrene and ⁇ -methylstyrene.
  • styrene acrylic resins such as a styrene acrylic resin etc. which have a carboxyl group and are obtained by copolymerizing an aromatic vinyl monomer component and an acrylic monomer component, etc.
  • solvent-free carboxyl group-containing styrene acrylic resins can be suitably used.
  • the above-mentioned solventless type carboxyl group-containing styrene acrylic resin is a high temperature continuous polymerization method (high temperature continuous bulk polymerization method) (US Pat. No. 5) without using as much as possible a polymerization initiator, a chain transfer agent, an organic solvent etc. No. 4414370, Japanese Patent Application Laid-Open No. 59-6207, Japanese Examined Patent Application No. 5-58005, Japanese Patent Application Laid-Open No. 1-313522, US Patent No. 5010166, Toago Synthetic Research Annual Report TREND 2000 No. 3 p42-45 (Meth) acrylic resin (polymer) synthesized by the method described in the like.
  • (meth) acrylic means methacrylic and acrylic.
  • acryl-type monomer component which comprises the said acryl-type resin
  • (meth) acrylic acid (meth) acrylic acid ester
  • the alkyl ester such as 2-ethylhexyl acrylate, an aryl ester, an aralkyl ester etc.
  • (meth) acrylamide for example
  • (meth) acrylic acid derivatives such as (meth) acrylamide derivatives.
  • (Meth) acrylic acid is a generic term for acrylic acid and methacrylic acid.
  • aromatic vinyl monomer component constituting the acrylic resin examples include aromatic vinyls such as styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, divinylbenzene, trivinylbenzene and divinylnaphthalene.
  • a monomer component which comprises the said acrylic resin you may use another monomer component with a (meth) acrylic acid, a (meth) acrylic acid derivative, and aromatic vinyl.
  • the total content of the resin (solid resin) and the liquid plasticizer is 33 mass from the viewpoint of performance balance on low temperature ice performance, high temperature ice performance and abrasion resistance with respect to 100 parts by mass of the rubber component.
  • the content is preferably at least part, and more preferably at least 35 parts by mass.
  • the upper limit is not particularly limited, but is preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and still more preferably 55 parts by mass or less, from the viewpoint of wear resistance and the like.
  • the rubber composition preferably contains an antiaging agent from the viewpoints of crack resistance, ozone resistance, and the like.
  • the anti-aging agent is not particularly limited, but is a naphthylamine-based anti-aging agent such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agent such as octylated diphenylamine and 4,4'-bis ( ⁇ , ⁇ '-dimethylbenzyl) diphenylamine N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylene P-phenylenediamine antidegradants such as diamines; quinoline antidegradants such as polymers of 2,2,4-trimethyl-1,2-dihydroquinoline; 2,6-di-t-butyl-4-methyl Monophenol anti-aging agents such as phenol and styrenated phenol; te
  • p-phenylenediamine-based antioxidants and quinoline-based antioxidants are preferable, and N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine and 2,2,4-trimethyl-1 are preferable.
  • polymers of 2-dihydroquinoline are more preferred.
  • products of SEIKO CHEMICAL Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shining Chemical Industry Co., Ltd., Flexis Co., Ltd., etc. can be used.
  • the content of the antiaging agent is preferably 0.2 parts by mass or more, and more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the rubber component. When the content is at least the lower limit, sufficient ozone resistance tends to be obtained.
  • the content is preferably 7.0 parts by mass or less, more preferably 4.0 parts by mass or less. Below the upper limit, a good tire appearance tends to be obtained.
  • the rubber composition preferably contains stearic acid.
  • the content of stearic acid is preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass, with respect to 100 parts by mass of the rubber component, from the viewpoint of the performance balance.
  • stearic acid a conventionally well-known thing can be used, for example, products, such as NOF Corporation, NOF company, Kao company, Fujifilm Wako Pure Chemical Industries, Ltd., Chiba fatty acid company, are used. it can.
  • the rubber composition preferably contains zinc oxide.
  • the content of zinc oxide is preferably 0.5 to 10 parts by mass, and more preferably 1 to 5 parts by mass, with respect to 100 parts by mass of the rubber component, from the viewpoint of the performance balance.
  • zinc oxide a conventionally well-known thing can be used, for example, Mitsui Metal Mining Co., Ltd., Toho Zinc Co., Ltd., Hux Itec Co., Ltd., Shodo Chemical Industry Co., Ltd., Fuso Chemical Industry Co., Ltd. etc. You can use the product of.
  • a wax may be blended in the rubber composition.
  • the wax is not particularly limited, and examples thereof include petroleum waxes, natural waxes and the like, and synthetic waxes obtained by purifying or chemically treating a plurality of waxes can also be used. These waxes may be used alone or in combination of two or more.
  • Examples of petroleum waxes include paraffin wax and microcrystalline wax.
  • Natural waxes are not particularly limited as long as they are waxes derived from non-petroleum resources.
  • plant waxes such as candelilla wax, carnauba wax, wax wax, rice wax, jojoba wax; beeswax, lanolin, sperm wax, etc.
  • products such as Ouchi Emerging Chemical Industry Co., Ltd., Nippon Seiwa Co., Ltd., Seiko Chemical Co., Ltd., etc. can be used.
  • the content of the wax may be set appropriately from the viewpoint of ozone resistance and cost.
  • blend sulfur with the said rubber composition at the point of forming a suitable crosslinked chain in a polymer chain and providing the said favorable performance balance.
  • the content of sulfur is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, and still more preferably 0.7 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the content is preferably 6.0 parts by mass or less, more preferably 4.0 parts by mass or less, and still more preferably 3.0 parts by mass or less. Within the above range, a good balance of the performance tends to be obtained.
  • Sulfur includes powdery sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, soluble sulfur and the like generally used in the rubber industry.
  • products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Kasei Kogyo Co., Ltd., Flexis Japan Co., Ltd., Nippon Hyoruri Kogyo Co., Ltd., Hosoi Kagaku Kogyo Co., Ltd. can be used. These may be used alone or in combination of two or more.
  • the rubber composition preferably contains a vulcanization accelerator.
  • the content of the vulcanization accelerator is not particularly limited and may be freely determined in accordance with the desired vulcanization rate and crosslinking density, but usually 0.3 to 10 parts by mass with respect to 100 parts by mass of the rubber component. , Preferably 0.5 to 7 parts by mass.
  • vulcanization accelerator there are no particular restrictions on the type of vulcanization accelerator, and commonly used ones can be used.
  • Thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide and the like as a vulcanization accelerator; tetramethylthiuram disulfide (TMTD Thiuram-based vulcanization accelerators such as tetrabenzylthiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N), etc .; N-cyclohexyl-2-benzothiazolesulfenamide, Nt-butyl- 2-benzothiazolylsulfenamide, N-oxyethylene-2-benzothiazolesulfenamide, N-oxyethylene-2-benzothiazolesulfenamide,
  • Sulfena De-based vulcanization accelerator diphenylguanidine
  • di-ortho-tolyl guanidine guanidine-based vulcanization accelerators such as ortho tri ruby guanidine.
  • guanidine-based vulcanization accelerators such as ortho tri ruby guanidine.
  • sulfenamide-based vulcanization accelerators and guanidine-based vulcanization accelerators are preferable from the viewpoint of the performance balance.
  • the rubber composition may appropriately contain compounding agents generally used in the tire industry, for example, materials such as a mold release agent.
  • a known method can be used as a method for producing the rubber composition, and for example, it can be produced by a method of kneading the respective components using a rubber kneading apparatus such as an open roll or a Banbury mixer and thereafter vulcanizing. .
  • Kneading temperature is usually 50 to 200 ° C., preferably 80 to 190 ° C.
  • kneading time is usually 30 hours in the base kneading step of kneading the vulcanizing agent and the additives other than the vulcanization accelerator. Seconds to 30 minutes, preferably 1 to 30 minutes.
  • the kneading temperature is usually 100 ° C. or less, preferably from room temperature to 80 ° C.
  • a composition obtained by kneading a vulcanizing agent and a vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 120 to 200 ° C., preferably 140 to 180 ° C.
  • the rubber composition is manufactured by a general method. That is, it can manufacture by the method etc. which knead
  • the rubber composition is used as a tread of a studless tire (a single layer tread, a cap tread of a multilayer tread).
  • the studless tire of the present invention is manufactured by the usual method using the above rubber composition. That is, a rubber composition containing the above components is extruded in an unvulcanized stage according to the shape of a tread (such as a cap tread) and molded together with other tire members by a usual method on a tire molding machine As a result, an unvulcanized tire is formed. The unvulcanized tire is heated and pressurized in a vulcanizer to obtain a studless tire.
  • the studless tire of the present invention can be suitably used as a studless tire for passenger cars.
  • the studless tire preferably has a gap of 0.1 to 100 ⁇ m in average diameter on the road contact surface of the tread after the following running conditions.
  • a studless tire having a tread manufactured using the rubber composition of the present invention into such a shape, the performance on ice can be improved and noise can be reduced while maintaining steering stability.
  • (Running condition) It is mounted on all wheels of a vehicle (domestic FR 2000 cc), travels 100 km on a dry road surface at normal temperature, and then travels 4 km on a snow-ice surface at -1 to -10 ° C.
  • the above-mentioned gap preferably has an average diameter of 0.1 to 100 ⁇ m, more preferably 1 ⁇ m or more, still more preferably 10 ⁇ m or more, from the viewpoint of steering stability, performance on ice, and noise reduction. . Moreover, it is more preferable that it is 80 micrometers or less, and it is still more preferable that it is 70 micrometers or less.
  • gap can be measured by a scanning electron microscope (SEM) observation. Specifically, a photograph is taken with a scanning electron microscope, the diameter of the sphere is used if the shape of the air gap is spherical, the minor diameter if it is needle-like or rod-like, and the average diameter from the central part if irregularly shaped. The average value of the diameters of 100 voids is taken as the average diameter.
  • the studless tire has a reduction ratio of pattern noise after the following running condition to the pattern noise before running as compared with a studless tire having a tread manufactured using a rubber composition of the same composition except that it does not contain water soluble fine particles It is preferable to improve by 2 to 10%. That is, the reduction ratio of pattern noise which shows how much the pattern noise after the following running conditions was reduced compared with the pattern noise before running was produced using the rubber composition of the same composition except that it does not contain water-soluble fine particles. It is preferable to improve by 2 to 10% as compared with the reduction rate of pattern noise in a studless tire having a tread. (Running condition) It is mounted on all wheels of a vehicle (domestic FR 2000 cc), travels 100 km on a dry road surface at normal temperature, and then travels 4 km on a snow-ice surface at -1 to -10 ° C.
  • the pattern noise is obtained by mounting the studless tire on all the wheels of a vehicle (domestic FR 2000 cc) (rim: 7.5 J ⁇ 17, internal pressure: 220 kPa), and the road noise measurement path (ice surface) is speeded
  • the sound in the car at the driver's seat window side ear position when traveling at 60 km / h can be measured, and the sound pressure level of the narrow band peak value of the cavity resonance sound near 500 Hz can be measured.
  • polymer conjugated diene polymer
  • 200 g of a polymer solution is drawn out from the above polymer solution, and this polymer A methanol solution containing 1.5 g of 2,4-di-tert-butyl-p-cresol is added to the solution to terminate the polymerization reaction, and then the solvent is removed by steam stripping and drying on a roll at 110 ° C. The resulting dried product was used as a polymer.
  • the polymer was measured for various physical properties by the measurement methods shown below. As a result, the Mooney viscosity (ML 1 + 4 at 100 ° C.) is 12, the molecular weight distribution (Mw / Mn) is 1.6, and cis-1, The 4-binding amount was 99.2% by mass, and the 1,2-vinyl binding amount was 0.21% by mass.
  • the glass transition temperature is measured according to JIS K 7121 using a differential scanning calorimeter (Q200) manufactured by TA Instruments Japan Co., Ltd., while raising the temperature at a temperature rising rate of 10 ° C./min. , As the glass transition start temperature.
  • Modified conjugated diene-based polymer Modified conjugated diene-based polymer butadiene rubber (BR) synthesized in Production Example 1: BR 150B (cis 95% by mass or more) manufactured by Ube Industries, Ltd.
  • Carbon black Seat N 220 manufactured by Mitsubishi Chemical Corporation
  • Silica Uratosil VN3 (N 2 SA 172 m 2 / g) manufactured by Evonik Degussa
  • Silane coupling agent Si 266 manufactured by Evonik Degussa
  • Water-soluble fine particles (3) sodium lignin sulfonate (manufactured by Tokyo Chemical Industry Co., Ltd.) (median particle size (median diameter) 100 ⁇ m)
  • Wax Ozo Ace wax anti-aging agent manufactured by Nippon Seikei Co., Ltd. Noclack 6C manufactured by Ouchi Emerging Chemical Industry Co., Ltd.
  • Oil PS-32 (mineral oil) manufactured by Idemitsu Kosan Co., Ltd.
  • Stearic acid Zinc oxide from NOF Corporation: Zinc oxide from Mitsui Metal Mining Co., Ltd.
  • Sulfur Tsurumi Chemical Industry Co., Ltd.
  • Powdered sulfur vulcanization accelerator Ouchi Emerging Chemical Industry Co., Ltd. ) Noccellar NS made of
  • Natural rubber and silica, modified conjugated diene polymer or butadiene rubber and silica are added according to the formulation shown in Tables 1 and 2 using a 1.7 L Banbury mixer, and mixed for 3 minutes under conditions of 150 ° C. The mixture was kneaded to obtain a kneaded product (master batch). Next, materials other than sulfur and a vulcanization accelerator were added to the obtained masterbatch, and the mixture was kneaded at 150 ° C. for 2 minutes to obtain a kneaded product. Further, sulfur and a vulcanization accelerator were added, and the mixture was kneaded for 5 minutes at 80 ° C. using an open roll to obtain an unvulcanized rubber composition. The obtained unvulcanized rubber composition was press vulcanized with a 0.5 mm-thick mold at 170 ° C. for 12 minutes to obtain a vulcanized rubber composition.
  • each unvulcanized rubber composition thus obtained is molded into a cap tread shape, bonded together with other tire members, and vulcanized at 170 ° C. for 15 minutes, thereby the studless tire for testing (tire size: 195) / 65R15) was produced.
  • the vulcanized rubber composition thus obtained and the studless tire for test were stored for three months in the dark at room temperature, and then evaluated as follows. The results are shown in Tables 1 and 2.
  • ⁇ Abrasion resistance> Regarding the vulcanized rubber composition, using a Lambourn wear tester manufactured by Iwamoto Seisakusho Co., Ltd., under the conditions of surface rotation speed 50 m / min, additional load 3.0 kg, sand fall amount 15 g / min, and slip ratio 20% The amount of wear was measured, and the reciprocal of the amount of wear was calculated.
  • the inverse of the amount of wear of Comparative Example 1 was 100, and the inverse of the amount of wear of the other components was represented by an index. The larger the index, the better the wear resistance.
  • Comparative Example 7 no modified conjugated diene polymer, no water-soluble fine particles, small amount of oil
  • Comparative Example 2 large amount of oil
  • Comparative Example 3 having water-soluble fine particles
  • Comparative Example 6 modified conjugated diene-based weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

本発明は、温度に関わらず、氷上性能及び耐摩耗性をバランス良く改善できるスタッドレスタイヤ用ゴム組成物、及びこれを用いたスタッドレスタイヤを提供する。 本発明は、イソプレン系ゴムと変性共役ジエン系重合体とを含有するゴム成分、水溶性微粒子、シリカ、及び液体可塑剤を含み、ゴム成分100質量部に対するシリカの含有量が30質量部以上、液体可塑剤の含有量が30質量部を超えているスタッドレスタイヤ用トレッドゴム組成物に関する。

Description

スタッドレスタイヤ用トレッドゴム組成物
本発明は、スタッドレスタイヤ用トレッドゴム組成物及びこれを用いたスタッドレスタイヤに関する。
氷雪路面走行用としてスパイクタイヤの使用やタイヤへのチェーンの装着がされてきたが、粉塵問題等の環境問題が発生するため、これに代わるものとしてスタッドレスタイヤが提案されている。スタッドレスタイヤは、一般路面に比べて路面凹凸が大きい雪氷上路面で使用されるため、材料面及び設計面での工夫がなされており、低温特性に優れたジエン系ゴムを配合したゴム組成物、軟化効果を高めるために軟化剤を多量に配合したゴム組成物、等が開発されている(特許文献1等参照)。
例えば、スタッドレスタイヤの氷上性能を向上させる手段として、ブタジエンゴムの増量が考えられるが、増量し過ぎると、ゴム中のモビリティが高くなり、種々の薬品のブルーミングが発生するため、ブタジエンゴムの増量には限度がある。また、ブタジエンゴムを増量した場合、それに伴って天然ゴム比率が下がるため、ゴムの強度が不足し、耐摩耗性が悪化するという問題もある。
他の手法として、酸化亜鉛ウィスカ等のフィラーを添加する方法(特許文献2参照)や短繊維を添加する方法(特許文献3参照)なども提案されているが、耐摩耗性の低下が懸念され、未だ改善の余地を残している。このように、薬品のブルーミングを抑制しつつ、広い温度域で氷上性能及び耐摩耗性を両立することや、これに加えて、良好な低燃費性能も同時に得ることに関し、更なる改善が望まれている。
特開2009-091482号公報 特開2005-53977号公報 特開2002-249619号公報
本発明は、上記現状に鑑みてなされたものであり、温度に関わらず、氷上性能及び耐摩耗性をバランス良く改善できるスタッドレスタイヤ用ゴム組成物、及びこれを用いたスタッドレスタイヤを提供することを目的とする。
本発明は、イソプレン系ゴムと変性共役ジエン系重合体とを含有するゴム成分、水溶性微粒子、シリカ、及び液体可塑剤を含み、ゴム成分100質量部に対するシリカの含有量が30質量部以上、液体可塑剤の含有量が30質量部を超えているスタッドレスタイヤ用トレッドゴム組成物に関する。
前記ゴム組成物は、ゴム成分100質量%中のイソプレン系ゴムの含有量が20質量%以上、変性共役ジエン系重合体の含有量が20質量%以上であり、シリカ及びカーボンブラックの合計含有量100質量%中のシリカ含有率が50質量%以上であることが好ましい。
ゴム成分100質量部に対する水溶性微粒子の含有量は、25質量部以上であることが好ましい。
本発明はまた、前記ゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤに関する。
前記スタッドレスタイヤは、下記走行条件後、トレッドの路面接地面に平均径0.1~100μmの空隙が存在することが好ましい。
(走行条件)
車両(国産FR2000cc)の全輪に装着して、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。
前記スタッドレスタイヤは、水溶性微粒子を含まない以外同配合のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤに比して、走行前のパターンノイズに対する下記走行条件後のパターンノイズの低減率が2~10%向上することが好ましい。
(走行条件)
車両(国産FR2000cc)の全輪に装着して、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。
本発明は、イソプレン系ゴムと変性共役ジエン系重合体とを含有するゴム成分、水溶性微粒子、シリカ、及び液体可塑剤を含み、ゴム成分100質量部に対するシリカの含有量が30質量部以上、液体可塑剤の含有量が30質量部を超えているスタッドレスタイヤ用トレッドゴム組成物であるので、温度に関わらず、氷上性能及び耐摩耗性をバランス良く改善できる。
本発明のスタッドレスタイヤ用トレッドゴム組成物は、イソプレン系ゴムと変性共役ジエン系重合体とを含有するゴム成分、シリカ、水溶性微粒子、及び液体可塑剤を含み、かつ所定以上のシリカ量、該液体可塑剤量を有している。前記ゴム組成物は、低温(気温-10~-6℃)、高温(気温0~-5℃)のいずれにおいても、氷上性能及び耐摩耗性がバランス良く改善される。
このような作用効果が得られる理由は明らかではないが、以下のように推察される。
スタッドレスタイヤには、気温に依存しない氷上グリップ性能が求められるが、該性能を得るには、発泡ゴムなどの柔軟性の高いゴムを用いる必要がある。しかし、単にゴム中に空隙を作り柔軟性を高めただけでは、ブロック剛性が保てず操縦安定性が低下するほか、耐摩耗性の低下がみられるほか、接触面積が少なくなるため、水膜の少ない低温時の氷上グリップ性能を担保することが困難となる。したがって、それらの性能を両立させるためには、ゴムの内部は低温でしなやかにし、トレッド表面に空隙を作る必要がある。しかし、単に低温特性を高めた部材に空隙を作ったトレッドを張り付けただけでは、界面で剥離する危険性があるので、その剥離を回避する有効な方法は、トレッド内部及び表面の配合を同一とすることと考えられる。
そこで、トレッド内部及び表面の配合を、共に、水溶性微粒子を配合し、液体可塑剤量を増量し、変性共役ジエン系重合体を用いることにより、シリカの分散性を向上させることで、一定の剛性を持たせつつ、低温(気温-10~-6℃)でも柔軟性が保持されて氷上性能が向上し、高温(気温0~-5℃)の水膜存在下では水溶性微粒子が溶解することにより生じる穴により除水効果を発揮するため、気温の変化によらないロバスト性能向上を図ることが可能となる。これにより、高温・低温ともに氷上グリップ性能向上、耐摩耗性能向上を達成でき、低温氷上性能(気温-10~-6℃での氷上性能)、高温氷上性能(気温0~-5℃での氷上性能)及び耐摩耗性の性能バランスが相乗的に改善されるものと推察される。
加えて、前記ゴム組成物は、低燃費性能も優れており、低温氷上性能、高温氷上性能、耐摩耗性、及び低燃費性能の性能バランスも相乗的に改善されるという効果も得ることができる。
(ゴム成分)
前記ゴム組成物は、イソプレン系ゴムと変性共役ジエン系重合体とを含有するゴム成分を含む。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRは、SIR20、RSS♯3、TSR20等、IRは、IR2200等、タイヤ工業で一般的なものを使用できる。改質NRは、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRは、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRは、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
ゴム成分100質量%中のイソプレン系ゴムの含有量は、耐摩耗性や、低温氷上性能、高温氷上性能及び耐摩耗性の性能バランスの観点から、好ましくは20質量%以上、より好ましくは30質量%以上である。該含有量の上限は特に限定されないが、好ましくは80質量%以下、より好ましくは60質量%以下、更に好ましくは50質量%以下である。
変性共役ジエン系重合体としては、共役ジエン系重合体の主鎖及び/又は末端を変性させて得られるものであれば特に限定されないが、例えば、下記するものなどが挙げられる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
上記共役ジエン系重合体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン及びミルセンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を用いることができる。特に、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を好適に用いることができる。すなわち、上記変性共役ジエン系重合体を構成する共役ジエン化合物が、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種の共役ジエン化合物であることもまた、本発明の好適な実施形態の1つである。中でも、上記変性共役ジエン系重合体は、変性ブタジエンゴムであることが特に好ましい形態である。
上記変性共役ジエン系重合体のシス含量(シス-1,4-結合量)としては、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは97質量%以上である。これにより、より良好な低温氷上性能、高温氷上性能が得られる。
なお、本明細書において、シス含量(シス-1,4-結合量)は、NMR分析により測定されるシグナル強度から算出した値である。
ここで、上記変性共役ジエン系重合体としては、シス含量が80質量%以上(より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは97質量%以上)である変性共役ジエン系重合体を少なくとも1種類と、シス含量が50質量%以下(より好ましくは40質量%以下、更に好ましくは30質量%以下)である変性共役ジエン系重合体を少なくとも1種類とを併用することもできる。このように、高シス含量の変性共役ジエン系重合体と低シス含量の変性共役ジエン系重合体を併用する形態もまた、本発明の好適な実施形態の1つである。
上記変性共役ジエン系重合体としては、活性末端を有する共役ジエン系重合体を用い、この共役ジエン系重合体の活性末端に、アルコキシシリル基を含む2つ以上の反応基を有するアルコキシシラン化合物を導入させる変性反応を行う変性工程(A)と、周期律表の第4族、12族、13族、14族及び15族に含まれる元素からなる群より選択される少なくとも1種の元素を含有する縮合触媒の存在下で、前記活性末端に導入されたアルコキシシラン化合物の残基を縮合反応させる縮合工程(B)とを備え、前記共役ジエン系重合体として、下記(a)~(c)成分の混合物を主成分とする触媒組成物の存在下で重合した共役ジエン系重合体を用いる製造方法により得られるものであることが好ましい。
(a)成分:ランタノイドからなる群より選択される少なくとも1種の元素を含有するランタノイド含有化合物、又は、該ランタノイド含有化合物とルイス塩基との反応により得られる反応生成物
(b)成分:アルミノオキサン、及び、一般式(1);AlRで表される有機アルミニウム化合物(ただし、一般式(1)中、R及びRは、同一又は異なって、炭素数1~10の炭化水素基又は水素原子を表す。Rは、R及びRと同一又は異なって、炭素数1~10の炭化水素基を表す。)からなる群より選択される少なくとも1種の化合物
(c)成分:その分子構造中に少なくとも1個のヨウ素原子を含有するヨウ素含有化合物
すなわち、活性末端を有する共役ジエン系重合体(共役ジエン系重合体(I))の活性末端に、アルコキシシラン化合物を導入させる変性反応を行い、周期律表の第4族、12族、13族、14族及び15族に含有される元素のうちの少なくとも1種の元素を含む縮合触媒の存在下で、前記活性末端に導入されたアルコキシシラン化合物のアルコキシシラン化合物残基を縮合反応させることによって、変性共役ジエン系重合体(変性共役ジエン系重合体(I))を製造することができる。
上記変性共役ジエン系重合体としてこのような製造方法により製造されたものを用いることで、低温氷上性能、高温氷上性能、耐摩耗性、低燃費性能により優れたものとすることができる。
上記変性工程(A)は、活性末端を有する共役ジエン系重合体(共役ジエン系重合体(I))を用い、この共役ジエン系重合体の活性末端に、アルコキシシリル基を含む2つ以上の反応基を有するアルコキシシラン化合物を導入させる変性反応を行う工程である。
上記共役ジエン系重合体(I)としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン及びミルセンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を用いることができる。特に、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を好適に用いることができる。すなわち、上記変性共役ジエン系重合体(I)を構成する共役ジエン化合物が、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種の共役ジエン化合物であることもまた、本発明の好適な実施形態の1つである。
このような共役ジエン系重合体(I)を製造する際には、溶媒を用いて重合を行ってもよいし、無溶媒下で重合を行ってもよい。重合に用いる溶媒(重合溶媒)としては、不活性な有機溶媒を用いることができるが、具体的には、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4~10の飽和脂肪族炭化水素、シクロペンタン、シクロヘキサン等の炭素数6~20の飽和脂環式炭化水素、1-ブテン、2-ブテン等のモノオレフィン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、1,2-ジクロロエタン、クロロベンゼン、ブロムベンゼン、クロロトルエン等のハロゲン化炭化水素などが挙げられる。
上記共役ジエン系重合体(I)を製造する際の重合反応温度は、-30~200℃であることが好ましく、0~150℃であることがより好ましい。重合反応の形式としては特に制限されず、バッチ式反応器を用いて行ってもよいし、多段連続式反応器などの装置を用いて連続式で行ってもよい。なお、重合溶媒を用いる場合は、この溶媒中のモノマー濃度が5~50質量%であることが好ましく、7~35質量%であることがより好ましい。また、共役ジエン系重合体製造の効率性の観点、及び、活性末端を有する共役ジエン系重合体を失活させない観点から、重合系内に、酸素、水又は炭酸ガス等の失活作用のある化合物を極力混入させないようにすることが好ましい。
また、上記共役ジエン系重合体(I)としては、下記(a)~(c)成分の混合物を主成分とする触媒組成物(以下、「触媒」とも称する。)の存在下で重合した共役ジエン系重合体が用いられる。
(a)成分:ランタノイドからなる群より選択される少なくとも1種の元素を含有するランタノイド含有化合物、又は、該ランタノイド含有化合物とルイス塩基との反応により得られる反応生成物
(b)成分:アルミノオキサン、及び、一般式(1);AlRで表される有機アルミニウム化合物(ただし、一般式(1)中、R及びRは、同一又は異なって、炭素数1~10の炭化水素基又は水素原子を表す。Rは、R及びRと同一又は異なって、炭素数1~10の炭化水素基を表す。)からなる群より選択される少なくとも1種の化合物
(c)成分:その分子構造中に少なくとも1個のヨウ素原子を含有するヨウ素含有化合物
このような触媒を用いると、シス含量が94質量%以上である共役ジエン系重合体を得ることができ、また、上記触媒は、極低温で重合反応を行う必要がなく、操作が簡便であることから、工業的な生産を行う上で有用である。
上記(a)成分は、ランタノイドからなる群より選択される少なくとも1種の元素を含有するランタノイド含有化合物、又は、該ランタノイド含有化合物とルイス塩基との反応により得られる反応生成物である。ランタノイドの中でも、ネオジム、プラセオジム、セリウム、ランタン、ガドリニウム、サマリウムが好ましく、ネオジムが特に好ましい。なお、上記ランタノイドとしては、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。上記ランタノイド含有化合物の具体例としては、ランタノイドのカルボン酸塩、アルコキサイド、β-ジケトン錯体、リン酸塩、亜リン酸塩等が挙げられる。このうち、カルボン酸塩、またはリン酸塩が好ましく、カルボン酸塩がより好ましい。
上記ランタノイドのカルボン酸塩の具体例としては、一般式(2);(R-COO)Mで表されるカルボン酸の塩を挙げることができる(ただし、一般式(2)中、Mは、ランタノイドを表す。Rは、同一又は異なって、炭素数1~20の炭化水素基を表す。)。なお、上記一般式(2)中、Rは、飽和又は不飽和のアルキル基であることが好ましく、直鎖状、分岐状又は環状のアルキル基であることが好ましい。また、カルボキシル基は、一級、二級又は三級の炭素原子に結合している。具体的には、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、商品名「バーサチック酸」(シェル化学社製、カルボキシル基が三級炭素原子に結合しているカルボン酸)等の塩が挙げられる。これらのうち、バーサチック酸、2-エチルヘキサン酸、ナフテン酸の塩が好ましい。
上記ランタノイドのアルコキサイドの具体例としては、一般式(3);(RO)Mで表されるものを挙げることができる(ただし、一般式(3)中、Mは、ランタノイドを表す。)。なお、上記一般式(3)中、「RO」で表されるアルコキシ基の具体例としては、2-エチル-ヘキシルアルコキシ基、オレイルアルコキシ基、ステアリルアルコキシ基、フェノキシ基、ベンジルアルコキシ基等が挙げられる。これらのうち、2-エチル-ヘキシルアルコキシ基、ベンジルアルコキシ基が好ましい。
上記ランタノイドのβ-ジケトン錯体の具体例としては、アセチルアセトン錯体、ベンゾイルアセトン錯体、プロピオニトリルアセトン錯体、バレリルアセトン錯体、エチルアセチルアセトン錯体等が挙げられる。これらのうち、アセチルアセトン錯体、エチルアセチルアセトン錯体が好ましい。
上記ランタノイドのリン酸塩又は亜リン酸塩の具体例としては、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、(1-メチルヘプチル)(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸等の塩が挙げられる。これらのうち、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、ビス(2-エチルヘキシル)ホスフィン酸の塩が好ましい。
上記ランタノイド含有化合物としては、これらのなかでも、ネオジムのリン酸塩、又は、ネオジムのカルボン酸塩が特に好ましく、ネオジムのバーサチック酸塩、又は、ネオジムの2-エチルヘキサン酸塩が最も好ましい。
上記ランタノイド含有化合物を溶剤に可溶化させるため、若しくは、長期間安定に貯蔵するために、ランタノイド含有化合物とルイス塩基とを混合すること、又は、ランタノイド含有化合物とルイス塩基とを反応させて反応生成物とすることも好ましい。ルイス塩基の量は、ランタノイド1モルに対して、0~30モルとすることが好ましく、1~10モルとすることがより好ましい。ルイス塩基の具体例としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N-ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、一価又は二価のアルコール等が挙げられる。これまで述べてきた(a)成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記(b)成分は、アルミノオキサン、及び、一般式(1);AlRで表される有機アルミニウム化合物(ただし、一般式(1)中、R及びRは、同一又は異なって、炭素数1~10の炭化水素基又は水素原子を表す。Rは、R及びRと同一又は異なって、炭素数1~10の炭化水素基を表す。)からなる群より選択される少なくとも1種の化合物である。
上記アルミノオキサン(以下、「アルモキサン」とも称する。)は、その構造が、下記一般式(4)又は(5)で表される化合物である。なお、ファインケミカル,23,(9),5(1994)、J.Am.Chem.Soc.,115,4971(1993)、及びJ.Am.Chem.Soc.,117,6465(1995)で開示されている、アルモキサンの会合体であってもよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
上記一般式(4)及び(5)中、Rは、同一又は異なって、炭素数1~20の炭化水素基を表す。pは、2以上の整数である。
上記Rの具体例としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ヘキシル基、イソヘキシル基、オクチル基、イソオクチル基等が挙げられる。なかでも、メチル基、エチル基、イソブチル基、t-ブチル基が好ましく、メチル基が特に好ましい。
また、上記pは、4~100の整数であることが好ましい。
上記アルモキサンの具体例としては、メチルアルモキサン(以下、「MAO」とも称する。)、エチルアルモキサン、n-プロピルアルモキサン、n-ブチルアルモキサン、イソブチルアルモキサン、t-ブチルアルモキサン、ヘキシルアルモキサン、イソヘキシルアルモキサン等が挙げられる。これらの中でも、MAOが好ましい。上記アルモキサンは、公知の方法によって製造することができるが、例えば、ベンゼン、トルエン、キシレン等の有機溶媒中に、トリアルキルアルミニウム、又は、ジアルキルアルミニウムモノクロライドを加え、更に水、水蒸気、水蒸気含有窒素ガス、又は、硫酸銅5水塩や硫酸アルミニウム16水塩等の、結晶水を有する塩を加えて反応させることにより製造することができる。なお、上記アルモキサンは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記一般式(1)で表される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム、水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム、エチルアルミニウムジハイドライド、n-プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられる。これらの中でも、水素化ジイソブチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウムが好ましく、水素化ジイソブチルアルミニウムが特に好ましい。上記有機アルミニウム化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記(c)成分は、その分子構造中に少なくとも1個のヨウ素原子を含有するヨウ素含有化合物である。このようなヨウ素含有化合物を用いることで、シス含量が94質量%以上の共役ジエン系重合体を容易に製造することができる。上記ヨウ素含有化合物としては、その分子構造中に少なくとも1個のヨウ素原子を含有している限り特に制限されないが、例えば、ヨウ素、トリメチルシリルアイオダイド、ジエチルアルミニウムアイオダイド、メチルアイオダイド、ブチルアイオダイド、ヘキシルアイオダイド、オクチルアイオダイド、ヨードホルム、ジヨードメタン、ベンジリデンアイオダイド、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム、ヨウ化バリウム、ヨウ化亜鉛、ヨウ化カドミウム、ヨウ化水銀、ヨウ化マンガン、ヨウ化レニウム、ヨウ化銅、ヨウ化銀、ヨウ化金等が挙げられる。
なかでも、上記ヨウ素含有化合物としては、一般式(6):R SiI4-q(一般式(6)中、Rは、同一又は異なって、炭素数1~20の炭化水素基又は水素原子を表す。また、qは0~3の整数である。)で表されるヨウ化ケイ素化合物、一般式(7):R 4-r(一般式(7)中、Rは、同一又は異なって、炭素数1~20の炭化水素基を表す。また、rは1~3の整数である。)で表されるヨウ化炭化水素化合物又はヨウ素が好ましい。このようなヨウ化ケイ素化合物、ヨウ化炭化水素化合物、ヨウ素は有機溶剤への溶解性が良好であるため、操作が簡便になり、工業的な生産を行う上で有用である。すなわち、上記(c)成分が、ヨウ化ケイ素化合物、ヨウ化炭化水素化合物、及び、ヨウ素からなる群より選択される少なくとも1種のヨウ素含有化合物であることもまた、本発明の好適な実施形態の1つである。
上記ヨウ化ケイ素化合物(上記一般式(6)で示される化合物)の具体例としては、トリメチルシリルアイオダイド、トリエチルシリルアイオダイド、ジメチルシリルジヨード等が挙げられる。なかでも、トリメチルシリルアイオダイドが好ましい。
また、上記ヨウ化炭化水素化合物(上記一般式(7)で示される化合物)の具体例としては、メチルアイオダイド、ブチルアイオダイド、ヘキシルアイオダイド、オクチルアイオダイド、ヨードホルム、ジヨードメタン、ベンジリデンアイオダイド等が挙げられる。なかでも、メチルアイオダイド、ヨードホルム、ジヨードメタンが好ましい。
上記ヨウ素含有化合物としては、これらのなかでも、ヨウ素、トリメチルシリルアイオダイド、トリエチルシリルアイオダイド、ジメチルシリルジヨード、メチルアイオダイド、ヨードホルム、ジヨードメタンが特に好ましく、トリメチルシリルアイオダイドが最も好ましい。上記ヨウ素含有化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記各成分((a)~(c)成分)の配合割合は、必要に応じて適宜設定すればよい。(a)成分の配合量は、例えば、100gの共役ジエン系化合物に対して、0.00001~1.0ミリモルであることが好ましく、0.0001~0.5ミリモルであることがより好ましい。0.00001ミリモル未満とした場合には、重合活性が低下してしまうおそれがある。1.0ミリモルを超えて使用した場合には、触媒濃度が高くなり、脱灰工程が必要となることがある。
上記(b)成分がアルモキサンである場合、アルモキサンの配合量としては、(a)成分と、アルモキサンに含まれるアルミニウム(Al)とのモル比で表すことができ、「(a)成分」:「アルモキサンに含まれるアルミニウム(Al)」(モル比)が1:1~1:500であることが好ましく、1:3~1:250であることがより好ましく、1:5~1:200であることが更に好ましい。アルモキサンの配合量が上記範囲外であると、触媒活性が低下したり、又は、触媒残渣を除去する工程が必要となったりする場合がある。
また、上記(b)成分が有機アルミニウム化合物である場合、有機アルミニウム化合物の配合量としては、(a)成分と、有機アルミニウム化合物とのモル比で表すことができ、「(a)成分」:「有機アルミニウム化合物」(モル比)が1:1~1:700であることが好ましく、1:3~1:500であることがより好ましい。有機アルミニウム化合物の配合量が上記範囲外であると、触媒活性が低下したり、又は、触媒残渣を除去する工程が必要となったりする場合がある。
上記(c)成分の配合量としては、(c)成分に含有されるヨウ素原子と、(a)成分とのモル比で表すことができ、((c)成分に含有されるヨウ素原子)/((a)成分)(モル比)が0.5~3.0であることが好ましく、1.0~2.5であることがより好ましく、1.2~2.0であることが更に好ましい。((c)成分に含有されるヨウ素原子)/((a)成分)のモル比が0.5未満である場合には、重合触媒活性が低下するおそれがある。((c)成分に含有されるヨウ素原子)/((a)成分)のモル比が3.0を超える場合には、触媒毒となってしまうおそれがある。
上述した触媒には、(a)~(c)成分以外に、必要に応じて、共役ジエン系化合物及び非共役ジエン系化合物からなる群より選択される少なくとも1種の化合物を、(a)成分1モルに対して、1000モル以下含有させることが好ましく、3~1000モル含有させることがより好ましく、5~300モル含有させることが更に好ましい。触媒に共役ジエン系化合物及び非共役ジエン系化合物からなる群より選択される少なくとも1種の化合物を含有させると、触媒活性が一段と向上するために好ましい。このとき、用いられる共役ジエン系化合物としては、後述する重合用のモノマーと同じく、1,3-ブタジエン、イソプレン等が挙げられる。また、非共役ジエン系化合物としては、例えば、ジビニルベンゼン、ジイソプロペニルベンゼン、トリイソプロペニルベンゼン、1,4-ビニルヘキサジエン、エチリデンノルボルネン等が挙げられる。
上記(a)~(c)成分の混合物を主成分とする触媒組成物は、例えば、溶媒に溶解した(a)~(c)成分、更に必要に応じて添加される共役ジエン系化合物及び非共役ジエン系化合物からなる群より選択される少なくとも1種の化合物を反応させることにより、調製することができる。なお、調製の際の各成分の添加順序は任意であってよい。ただし、各成分を予め混合、反応させるとともに、熟成させておくことが、重合活性の向上及び重合開始誘導期間の短縮の観点から好ましい。熟成温度は0~100℃とすることが好ましく、20~80℃とすることがより好ましい。0℃未満であると、熟成が不十分となる傾向にある。一方、100℃を超えると、触媒活性の低下や、分子量分布の広がりが生じ易くなる傾向にある。なお、熟成時間は特に制限されない。また、重合反応槽に添加する前に、各成分どうしをライン中で接触させてもよいが、その場合の熟成時間は0.5分以上あれば充分である。なお、調製した触媒は、数日間は安定である。
上記変性共役ジエン系重合体(I)を製造する際に用いる共役ジエン系重合体(I)としては、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)との比、すなわち、分子量分布(Mw/Mn)が、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることが更に好ましい。分子量分布が3.5を超えるものであると、破壊特性、低発熱性を始めとするゴム物性が低下する傾向にある。一方、分子量分布の下限は、特に限定されない。
なお、本明細書において、分子量分布(Mw/Mn)は、重量平均分子量と数平均分子量との割合(重量平均分子量/数平均分子量)により算出される値を意味する。
ここで、共役ジエン系重合体の重量平均分子量は、GPC法(Gel Permeation Chromatography法)で測定されたポリスチレン換算の重量平均分子量である。
また、共役ジエン系重合体の数平均分子量は、GPC法で測定されたポリスチレン換算の数平均分子量である。
なお、上記共役ジエン系重合体(I)の、ビニル含量、シス含量は、重合温度をコントロールすることによって、容易に調整することができる。また、上記Mw/Mnは上記(a)~(c)成分のモル比をコントロールすることによって、容易に調整することができる。
また、上記共役ジエン系重合体(I)の100℃におけるムーニー粘度(ML1+4,100℃)は、5~50の範囲であることが好ましく、10~40であることがより好ましい。5未満では、加硫後の機械特性、耐摩耗性などが低下することがある、一方、50を超えると、変性反応を行った後の変性共役ジエン系重合体の混練り時の加工性が低下することがある。このムーニー粘度は、上記(a)~(c)成分のモル比をコントロールすることにより容易に調整することができる。
なお、ムーニー粘度(ML1+4、100℃)は後述の実施例に記載の測定方法により得られる値である。
更に、上記共役ジエン系重合体(I)の1,2-ビニル結合の含量(1,2-ビニル結合量、ビニル含量)は、0.5質量%以下であることが好ましく、0.4質量%以下であることがより好ましく、0.3質量%以下であることが更に好ましい。0.5質量%を超えるものであると、破壊特性などのゴム物性が低下する傾向にある。また、上記共役ジエン系重合体(I)の1,2-ビニル結合量としては、0.001質量%以上であることが好ましく、0.01質量%以上であることがより好ましい。
なお、本明細書において、1,2-ビニル結合量は、NMR分析により測定されるシグナル強度から算出した値である。
上記変性工程(A)に用いるアルコキシシラン化合物(以下、「変性剤」とも称する。)としては、アルコキシシリル基を含む2つ以上の反応基を有するものである。アルコキシシリル基以外の反応基としては、特にその種類は限定されないが、例えば、(f);エポキシ基、(g);イソシアネート基、(h);カルボニル基、及び(i);シアノ基からなる群より選択される少なくとも1種の官能基が好ましい。すなわち、上記アルコキシシラン化合物が、(f);エポキシ基、(g);イソシアネート基、(h);カルボニル基、及び(i);シアノ基からなる群より選択される少なくとも1種の官能基を含有することもまた、本発明の好適な実施形態の1つである。なお、上記アルコキシシラン化合物は、部分縮合物であってもよいし、該アルコキシシラン化合物と該部分縮合物の混合物であってもよい。
ここで、「部分縮合物」とは、アルコキシシラン化合物のSiOR(ORは、アルコキシ基を表す。)の一部(すなわち、全部ではない)が縮合によりSiOSi結合したものをいう。なお、上記変性反応に用いる共役ジエン系重合体は、少なくとも10%のポリマー鎖がリビング性を有するものが好ましい。
上記アルコキシシラン化合物の具体例としては、(f);エポキシ基を含有するアルコキシシラン化合物(以下、「エポキシ基含有アルコキシシラン化合物」とも称する。)として、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、(2-グリシドキシエチル)メチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチル(メチル)ジメトキシシランが好適なものとして挙げられるが、これらの中でも、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランがより好ましい。
また、(g);イソシアネート基を含有するアルコキシシラン化合物(以下、「イソシアネート基含有アルコキシシラン化合物」とも称する。)としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリイソプロポキシシランなどが挙げられるが、なかでも、3-イソシアネートプロピルトリメトキシシランが特に好ましい。
また、(h);カルボニル基を含有するアルコキシシラン化合物(以下、「カルボニル基含有アルコキシシラン化合物」とも称する。)としては、3-メタクリロイロキシプロピルトリエトキシシラン、3-メタクリロイロキシプロピルトリメトキシシラン、3-メタクリロイロキシプロピルメチルジエトキシシラン、3-メタクリロイロキシプロピルトリイソプロポキシシランなどが挙げられるが、なかでも、3-メタクリロイロキシプロピルトリメトキシシランが特に好ましい。
更に、(i);シアノ基を含有するアルコキシシラン化合物(以下、「シアノ基含有アルコキシシラン化合物」とも称する。)としては、3-シアノプロピルトリエトキシシラン、3-シアノプロピルトリメトキシシラン、3-シアノプロピルメチルジエトキシシラン、3-シアノプロピルトリイソプロポキシシランなどが挙げられるが、なかでも、3-シアノプロピルトリメトキシシランが特に好ましい。
上記変性剤としては、これらのなかでも、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-メタクリロイロキシプロピルトリメトキシシラン、3-シアノプロピルトリメトキシシランが特に好ましく、3-グリシドキシプロピルトリメトキシシランが最も好ましい。
これら変性剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、上述のアルコキシシラン化合物の部分縮合物を用いることもできる。
上記変性工程(A)の変性反応では、上記アルコキシシラン化合物の使用量は、上記(a)成分1モルに対して、0.01~200モルであることが好ましく、0.1~150モルであることがより好ましい。0.01モル未満では、変性反応の進行が充分とはならず、充填剤の分散性が充分に改良されないおそれがある。一方、200モルを超えて使用しても、変性反応は飽和している場合があり、その場合には使用した分のコストが余計にかかってしまう。なお、上記変性剤の添加方法は特に制限されないが、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられ、なかでも、一括して添加する方法が好ましい。
上記変性反応は、溶液中で行うことが好ましく、この溶液としては、重合時に使用した未反応モノマーを含んだ溶液をそのまま使用することができる。また、変性反応の形式については特に制限されず、バッチ式反応器を用いて行ってもよいし、多段連続式反応器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、この変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などの前に行うことが好ましい。
上記変性反応の温度は、共役ジエン系重合体を重合する際の重合温度と同様とすることができる。具体的には20~100℃が好ましく、30~90℃がより好ましい。温度が20℃より低くなると重合体の粘度が上昇する傾向があり、100℃を超えると、重合活性末端が失活するおそれがある。
また、上記変性反応における反応時間は、5分~5時間であることが好ましく、15分~1時間であることがより好ましい。なお、縮合工程(B)において、重合体の活性末端にアルコキシシラン化合物残基を導入した後、所望により、公知の老化防止剤や反応停止剤を添加してもよい。
上記変性工程(A)においては、上記変性剤の他に、縮合工程(B)において、活性末端に導入された変性剤であるアルコキシシラン化合物残基と縮合反応し、消費されるものを更に添加することが好ましい。具体的には、官能基導入剤を添加することが好ましい。この官能基導入剤により、変性共役ジエン系重合体の耐摩耗性を向上させることができる。
上記官能基導入剤は、活性末端との直接反応を実質的に起こさず、反応系に未反応物として残存するものであれば特に制限されないが、例えば、上記変性剤として用いるアルコキシシラン化合物とは異なるアルコキシシラン化合物、即ち、(j);アミノ基、(k);イミノ基、及び(l);メルカプト基からなる群より選択される少なくとも1種の官能基を含有するアルコキシシラン化合物であることが好ましい。なお、この官能基導入剤として用いられるアルコキシシラン化合物は、部分縮合物であってもよいし、官能基導入剤として用いるアルコキシシラン化合物の部分縮合物でないものと該部分縮合物との混合物であってもよい。
上記官能基導入剤の具体例としては、(j);アミノ基を含有するアルコキシシラン化合物(以下、「アミノ基含有アルコキシシラン化合物」とも称する。)として、3-ジメチルアミノプロピル(トリエトキシ)シラン、3-ジメチルアミノプロピル(トリメトキシ)シラン、3-ジエチルアミノプロピル(トリエトキシ)シラン、3-ジエチルアミノプロピル(トリメトキシ)シラン、2-ジメチルアミノエチル(トリエトキシ)シラン、2-ジメチルアミノエチル(トリメトキシ)シラン、3-ジメチルアミノプロピル(ジエトキシ)メチルシラン、3-ジブチルアミノプロピル(トリエトキシ)シラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェニルトリエトキシシラン、3-(N-メチルアミノ)プロピルトリメトキシシラン、3-(N-メチルアミノ)プロピルトリエトキシシラン、3-(1-ピロリジニル)プロピル(トリエトキシ)シラン、3-(1-ピロリジニル)プロピル(トリメトキシ)シランや、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルエチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミン、及び、これらのトリエトキシシリル化合物に対応するトリメトキシシリル化合物、メチルジエトキシシリル化合物、エチルジエトキシシリル化合物、メチルジメトキシシリル化合物又はエチルジメトキシシリル化合物などが挙げられるが、なかでも、3-ジエチルアミノプロピル(トリエトキシ)シラン、3-ジメチルアミノプロピル(トリエトキシ)シラン、3-アミノプロピルトリエトキシシラン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンが特に好ましい。
また、(k);イミノ基を含有するアルコキシシラン化合物(以下、「イミノ基含有アルコキシシラン化合物」とも称する。)として、3-(1-ヘキサメチレンイミノ)プロピル(トリエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(トリメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(トリメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(トリエトキシ)シラン、2-(1-ヘキサメチレンイミノ)エチル(トリエトキシ)シラン、2-(1-ヘキサメチレンイミノ)エチル(トリメトキシ)シラン、3-(1-ヘプタメチレンイミノ)プロピル(トリエトキシ)シラン、3-(1-ドデカメチレンイミノ)プロピル(トリエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(ジエトキシ)メチルシラン、3-(1-ヘキサメチレンイミノ)プロピル(ジエトキシ)エチルシラン、また、1-〔3-(トリエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(トリメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、3-〔10-(トリエトキシシリル)デシル〕-4-オキサゾリン、N-(3-イソプロポキシシリルプロピル)-4,5-ジヒドロイミダゾール、N-(3-メチルジエトキシシリルプロピル)-4,5-ジヒドロイミダゾールが好適なものとして挙げられるが、これらの中でも、3-(1-ヘキサメチレンイミノ)プロピル(トリエトキシ)シラン、3-(1-ヘキサメチレンイミノ)プロピル(トリメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(トリメトキシ)シラン、1-〔3-(トリエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(トリメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾールがより好ましい。
また、(l);メルカプト基を含有するアルコキシシラン化合物(以下、「メルカプト基含有アルコキシシラン化合物」とも称する。)として、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、3-メルカプトプロピル(ジエトキシ)メチルシラン、3-メルカプトプロピル(モノエトキシ)ジメチルシラン、メルカプトフェニルトリメトキシシラン、メルカプトフェニルトリエトキシシランなどが挙げられるが、なかでも、3-メルカプトプロピルトリエトキシシランが特に好ましい。
上記官能基導入剤としては、これらのなかでも、3-ジエチルアミノプロピル(トリエトキシ)シラン、3-ジメチルアミノプロピル(トリエトキシ)シラン、3-アミノプロピルトリエトキシシラン、3-(1-ヘキサメチレンイミノ)プロピル(トリエトキシ)シラン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、3-(1-ヘキサメチレンイミノ)プロピル(トリメトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(トリメトキシ)シラン、1-〔3-(トリエトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、1-〔3-(トリメトキシシリル)プロピル〕-4,5-ジヒドロイミダゾール、3-メルカプトプロピルトリエトキシシランが特に好ましく、3-アミノプロピルトリエトキシシランが最も好ましい。
これらの官能基導入剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
上記官能基導入剤としてアルコキシシラン化合物を用いる場合、その使用量は、上記(a)成分1モルに対して、0.01~200モルが好ましく、0.1~150モルがより好ましい。0.01モル未満では、縮合反応の進行が充分とはならず、充填剤の分散性が充分に改良されない場合がある。一方、200モルを超えて使用しても、縮合反応は飽和している場合があり、その場合には使用した分のコストが余計にかかってしまう。
上記官能基導入剤の添加時期としては、上記変性工程(A)において上記共役ジエン系重合体(I)の活性末端にアルコキシシラン化合物残基を導入した後であって、上記縮合工程(B)における縮合反応が開始される前が好ましい。縮合反応開始後に添加した場合、官能基導入剤が均一に分散せず触媒性能が低下する場合がある。官能基導入剤の添加時期としては、具体的には、変性反応開始5分~5時間後であることが好ましく、変性反応開始15分~1時間後であることがより好ましい。
なお、上記官能基導入剤として、上記官能基を有するアルコキシシラン化合物を用いる場合、活性末端を有する共役ジエン系重合体(I)と、反応系に加えられた実質上化学量論的量の変性剤とが変性反応を起こし、実質的に活性末端の全てにアルコキシシリル基が導入され、更に上記官能基導入剤を添加することにより、この共役ジエン系重合体の活性末端の当量より多くのアルコキシシラン化合物残基が導入されることになる。
アルコキシシリル基同士の縮合反応は、遊離のアルコキシシラン化合物と共役ジエン系重合体末端のアルコキシシリル基の間で起こること、また場合によっては共役ジエン系重合体末端のアルコキシシリル基同士で起こることが、反応効率の観点から好ましく、遊離のアルコキシシラン化合物同士の反応は好ましくない。したがって、官能基導入剤としてアルコキシシラン化合物を新たに加える場合には、そのアルコキシシリル基の加水分解性が、共役ジエン系重合体末端に導入したアルコキシシリル基の加水分解性に比べて低いことが好ましい。
例えば、共役ジエン系重合体(I)の活性末端との反応に用いられるアルコキシシラン化合物には加水分解性の高いトリメトキシシリル基を含有する化合物を用い、官能基導入剤として新たに添加するアルコキシシラン化合物には、該トリメトキシシリル基含有化合物より加水分解性が低いアルコキシシリル基(例えば、トリエトキシシリル基)を含有するものを用いる組み合わせが好ましい。逆に、例えば、共役ジエン系重合体(I)の活性末端との反応に用いられるアルコキシシラン化合物としてトリエトキシシリル基を含有する化合物を用い、官能基導入剤として新たに添加するアルコキシシラン化合物がトリメトキシシリル基を含有する化合物であると、反応効率が低下してしまうおそれがある。
上記縮合工程(B)は、周期律表の第4族、12族、13族、14族及び15族に含まれる元素からなる群より選択される少なくとも1種の元素を含有する縮合触媒の存在下で、前記活性末端に導入されたアルコキシシラン化合物の残基を縮合反応させる工程である。
上記縮合触媒は、周期律表の第4族、12族、13族、14族及び15族に含まれる元素からなる群より選択される少なくとも1種の元素を含有するものであれば、特に制限されないが、例えば、チタン(Ti)(第4族)、スズ(Sn)(第14族)、ジルコニウム(Zr)(第4族)、ビスマス(Bi)(第15族)及びアルミニウム(Al)(第13族)からなる群より選択される少なくとも1種の元素を含むものであることが好ましい。
上記縮合触媒の具体例としては、スズ(Sn)を含む縮合触媒として、例えば、ビス(n-オクタノエート)スズ、ビス(2-エチルヘキサノエート)スズ、ビス(ラウレート)スズ、ビス(ナフトエネート)スズ、ビス(ステアレート)スズ、ビス(オレエート)スズ、ジブチルスズジアセテート、ジブチルスズジn-オクタノエート、ジブチルスズジ2-エチルヘキサノエート、ジブチルスズジラウレート、ジブチルスズマレート、ジブチルスズビス(ベンジルマレート)、ジブチルスズビス(2-エチルヘキシルマレート)、ジn-オクチルスズジアセテート、ジn-オクチルスズジn-オクタノエート、ジn-オクチルスズジ2-エチルヘキサノエート、ジn-オクチルスズジラウレート、ジn-オクチルスズマレート、ジn-オクチルスズビス(ベンジルマレート)、ジn-オクチルスズビス(2-エチルヘキシルマレート)等が挙げられる。
ジルコニウム(Zr)を含む縮合触媒として、例えば、テトラエトキシジルコニウム、テトラn-プロポキシジルコニウム、テトラi-プロポキシジルコニウム、テトラn-ブトキシジルコニウム、テトラsec-ブトキシジルコニウム、テトラtert-ブトキシジルコニウム、テトラ(2-エチルヘキシルオキシド)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2-エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等が挙げられる。
ビスマス(Bi)を含む縮合触媒として、例えば、トリス(2-エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス等が挙げられる。
アルミニウム(Al)を含む縮合触媒として、例えば、トリエトキシアルミニウム、トリn-プロポキシアルミニウム、トリi-プロポキシアルミニウム、トリn-ブトキシアルミニウム、トリsec-ブトキシアルミニウム、トリtert-ブトキシアルミニウム、トリ(2-エチルヘキシルオキシド)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等が挙げられる。
チタン(Ti)を含む縮合触媒として、例えば、テトラメトキシチタニウム、テトラエトキシチタニウム、テトラn-プロポキシチタニウム、テトラi-プロポキシチタニウム、テトラn-ブトキシチタニウム、テトラn-ブトキシチタニウムオリゴマー、テトラsec-ブトキシチタニウム、テトラtert-ブトキシチタニウム、テトラ(2-エチルヘキシルオキシド)チタニウム、ビス(オクタンジオレート)ビス(2-エチルヘキシルオキシド)チタニウム、テトラ(オクタンジオレート)チタニウム、チタニウムラクテート、チタニウムジプロポキシビス(トリエタノールアミネート)、チタニウムジブトキシビス(トリエタノールアミネート)、チタニウムトリブトキシステアレート、チタニウムトリプロポキシステアレート、チタニウムトリプロポキシアセチルアセトネート、チタニウムジプロポキシビス(アセチルアセトネート)、チタニウムトリプロポキシエチルアセトアセテート、チタニウムプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムトリブトキシアセチルアセトネート、チタニウムジブトキシビス(アセチルアセトネート)、チタニウムトリブトキシエチルアセトアセテート、チタニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)チタニウムオキサイド、ビス(ラウレート)チタニウムオキサイド、ビス(ナフテート)チタニウムオキサイド、ビス(ステアレート)チタニウムオキサイド、ビス(オレエート)チタニウムオキサイド、ビス(リノレート)チタニウムオキサイド、テトラキス(2-エチルヘキサノエート)チタニウム、テトラキス(ラウレート)チタニウム、テトラキス(ナフテート)チタニウム、テトラキス(ステアレート)チタニウム、テトラキス(オレエート)チタニウム、テトラキス(リノレート)チタニウム等が挙げられる。
これらの中でも、上記縮合触媒としては、チタン(Ti)を含む縮合触媒がより好ましい。チタン(Ti)を含む縮合触媒の中でも、チタン(Ti)のアルコキシド、カルボン酸塩又はアセチルアセトナート錯塩であることが更に好ましい。特に好ましくは、テトラi-プロポキシチタニウム(テトライソプロピルチタネート)である。チタン(Ti)を含む縮合触媒を用いることにより、変性剤として用いる上記アルコキシシラン化合物の残基、及び官能基導入剤として用いる上記アルコキシシラン化合物の残基の縮合反応をより効果的に促進させることができる。このように、上記縮合触媒が、チタン(Ti)を含むこともまた、本発明の好適な実施形態の1つである。
上記縮合触媒の使用量としては、縮合触媒として用いることができる上記種々の化合物のモル数が、反応系内に存在するアルコキシシリル基総量1モルに対して、0.1~10モルとなることが好ましく、0.3~5モルが特に好ましい。0.1モル未満では、縮合反応が充分に進行しないおそれがある。一方、10モルを超えて使用しても、縮合触媒としての効果は飽和している場合があり、その場合には使用した分のコストが余計にかかってしまう。
上記縮合触媒は、上記変性反応前に添加することもできるが、変性反応後、かつ縮合反応開始前に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端にアルコキシシリル基が導入されない場合がある。また、縮合反応開始後に添加した場合、縮合触媒が均一に分散せず触媒性能が低下する場合がある。上記縮合触媒の添加時期としては、具体的には、変性反応開始5分~5時間後であることが好ましく、変性反応開始15分~1時間後であることがより好ましい。
上記縮合工程(B)の縮合反応は、水溶液中で行うことが好ましく、縮合反応時の温度は85~180℃であることが好ましく、100~170℃であることがより好ましく、110~150℃であることが特に好ましい。縮合反応時の温度が85℃未満であると、縮合反応の進行が充分とはならず、縮合反応を完結させることができない場合があり、その場合、得られる変性共役ジエン系重合体(I)に経時変化が発生し、品質上問題となるおそれがある。一方、180℃を超えると、ポリマーの老化反応が進行し、物性を低下させるおそれがある。
上記縮合反応が行われる水溶液のpHは9~14であることが好ましく、10~12であることがより好ましい。水溶液のpHをこのような範囲とすることにより、縮合反応が促進され、変性共役ジエン系重合体(I)の経時安定性を改善することができる。pHが9未満であると、縮合反応の進行が充分とはならず、縮合反応を完結させることができない場合があり、その場合、得られる変性共役ジエン系重合体(I)に経時変化が発生し、品質上問題となるおそれがある。一方、縮合反応が行われる水溶液のpHが14を超えると、単離後の変性共役ジエン系重合体中に多量のアルカリ由来成分が残留し、その除去が困難となるおそれがある。
上記縮合反応の反応時間は、5分~10時間であることが好ましく、15分~5時間程度であることがより好ましい。5分未満では、縮合反応が完結しないおそれがある。一方、10時間を超えても縮合反応が飽和しているおそれがある。また、縮合反応時の反応系内の圧力は、0.01~20MPaであることが好ましく、0.05~10MPaであることがより好ましい。
縮合反応の形式については特に制限されず、バッチ式反応器を用いて行ってもよいし、多段連続式反応器などの装置を用いて連続式で行ってもよい。また、この縮合反応と同時に脱溶媒を行ってもよい。
上述のように縮合反応を行った後、従来公知の後処理を行い、目的の変性共役ジエン系重合体を得ることができる。
上記変性共役ジエン系重合体(I)のムーニー粘度(ML1+4(125℃))は、10~150であることが好ましく、20~100であることがより好ましい。ムーニー粘度(ML1+4(125℃))が10未満であると、破壊特性を始めとするゴム物性が低下するおそれがある。一方、ムーニー粘度(ML1+4(125℃))が150を超えるものであると、作業性が悪くなり、配合剤とともに混練りすることが困難になるおそれがある。
なお、ムーニー粘度(ML1+4、125℃)は後述の実施例に記載の測定方法により得られる値である。
また、上記変性共役ジエン系重合体(I)の分子量分布(Mw/Mn)は、3.5以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることが更に好ましい。分子量分布が3.5を超えるものであると、破壊特性、低発熱性などのゴム物性が低下する傾向がある。
ここで、変性共役ジエン系重合体の重量平均分子量(Mw)は、GPC法(Gel Permeation Chromatography法)で測定されたポリスチレン換算の重量平均分子量である。
また、変性共役ジエン系重合体の数平均分子量(Mn)は、GPC法で測定されたポリスチレン換算の数平均分子量である。
また、上記変性共役ジエン系重合体(I)のコールドフロー値(mg/分)は、1.0以下であることが好ましく、0.8以下であることがより好ましい。コールドフロー値が1.0を超えるものであると、貯蔵時におけるポリマーの形状安定性が悪化するおそれがある。
なお、本明細書において、コールドフロー値(mg/分)は、後述する測定方法により算出される値である。
更に、上記変性共役ジエン系重合体(I)の経時安定性の評価値は、0~5であることが好ましく、0~2であることがより好ましい。この評価値が5を超えるものであると、貯蔵時にポリマーが経時変化するおそれがある。
なお、本明細書において、経時安定性は、後述する測定方法により算出される値である。
また、上記変性共役ジエン系重合体(I)のガラス転移温度は、-40℃以下であることが好ましい。より好ましくは-43℃以下であり、更に好ましくは-46℃以下であり、特に好ましくは-50℃以下である。ガラス転移温度が-40℃を超えると、スタッドレスタイヤに必要な低温特性を充分確保できないおそれがある。他方、該ガラス転移温度の下限は特に制限されない。
ここで、変性共役ジエン系重合体のガラス転移温度は、後述の実施例に記載の測定方法により測定することができる。
また、上記変性共役ジエン系重合体としては、シリカ等の充填剤と相互作用する官能基を有する共役ジエン系重合体(変性共役ジエン系重合体(II))を使用することもできる。例えば、共役ジエン系重合体の少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性共役ジエン系重合体(末端に上記官能基を有する末端変性共役ジエン系重合体)や、主鎖に上記官能基を有する主鎖変性共役ジエン系重合体や、主鎖及び末端に上記官能基を有する主鎖末端変性共役ジエン系重合体(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性共役ジエン系重合体)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性共役ジエン系重合体等が挙げられる。
上記共役ジエン系重合体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン及びミルセンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を用いることができる。特に、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を好適に用いることができる。すなわち、上記変性共役ジエン系重合体(II)を構成する共役ジエン化合物が、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種の共役ジエン化合物であることもまた、本発明の好適な実施形態の1つである。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
上記変性共役ジエン系重合体(II)として、下記式で表される化合物(変性剤)により変性された共役ジエン系重合体等を好適に使用できる。
Figure JPOXMLDOC01-appb-C000003
(式中、R11、R12及びR13は、同一又は異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)又はこれらの誘導体を表す。R14及びR15は、同一又は異なって、水素原子又はアルキル基を表す。R14及びR15は結合して窒素原子と共に環構造を形成してもよい。nは整数を表す。)
上記式で表される化合物(変性剤)により変性された変性共役ジエン系重合体としては、なかでも、溶液重合のブタジエンゴム(BR)の重合末端(活性末端)を上記式で表される化合物により変性されたBR等が好適に用いられる。
11、R12及びR13としてはアルコキシ基が好適である(好ましくは炭素数1~8、より好ましくは炭素数1~4のアルコキシ基)。R14及びR15としてはアルキル基(好ましくは炭素数1~3のアルキル基)が好適である。nは、好ましくは1~5、より好ましくは2~4、更に好ましくは3である。また、R14及びR15が結合して窒素原子と共に環構造を形成する場合、4~8員環であることが好ましい。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等)も含まれる。
上記変性剤の具体例としては、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、2-ジエチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、2-ジエチルアミノエチルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシランなどが挙げられる。なかでも、3-ジメチルアミノプロピルトリメトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、3-ジエチルアミノプロピルトリメトキシシランが好ましい。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記変性共役ジエン系重合体(II)としては、以下の化合物(変性剤)により変性された変性共役ジエン系重合体も好適に使用できる。変性剤としては、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;ジグリシジル化ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル;1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミン等のエポキシ基含有3級アミン;ジグリシジルアニリン、N,N’-ジグリシジル-4-グリシジルオキシアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物;
ビス-(1-メチルプロピル)カルバミン酸クロリド、4-モルホリンカルボニルクロリド、1-ピロリジンカルボニルクロリド、N,N-ジメチルカルバミド酸クロリド、N,N-ジエチルカルバミド酸クロリド等のアミノ基含有酸クロリド;1,3-ビス-(グリシジルオキシプロピル)-テトラメチルジシロキサン、(3-グリシジルオキシプロピル)-ペンタメチルジシロキサン等のエポキシ基含有シラン化合物;
(トリメチルシリル)[3-(トリメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリブトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジブトキシシリル)プロピル]スルフィド等のスルフィド基含有シラン化合物;
エチレンイミン、プロピレンイミン等のN-置換アジリジン化合物;メチルトリエトキシシラン等のアルコキシシラン;4-N,N-ジメチルアミノベンゾフェノン、4-N,N-ジ-t-ブチルアミノベンゾフェノン、4-N,N-ジフェニルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノン、N,N,N’,N’-ビス-(テトラエチルアミノ)ベンゾフェノン等のアミノ基及び/又は置換アミノ基を有する(チオ)ベンゾフェノン化合物;4-N,N-ジメチルアミノベンズアルデヒド、4-N,N-ジフェニルアミノベンズアルデヒド、4-N,N-ジビニルアミノベンズアルデヒド等のアミノ基及び/又は置換アミノ基を有するベンズアルデヒド化合物;N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン等のN-置換ピロリドンN-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドン等のN-置換ピペリドン;N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム等のN-置換ラクタム類;の他、
N,N-ビス-(2,3-エポキシプロポキシ)-アニリン、4,4-メチレン-ビス-(N,N-グリシジルアニリン)、トリス-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-トリオン類、N,N-ジエチルアセトアミド、N-メチルマレイミド、N,N-ジエチル尿素、1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、4-N,N-ジメチルアミノアセトフェン、4-N,N-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等を挙げることができる。なかでも、アルコキシシランにより変性された変性BRが好ましい。
なお、上記化合物(変性剤)による変性は公知の方法で実施可能である。
上記変性共役ジエン系重合体(II)の1,2-ビニル結合の含量(1,2-ビニル結合量、ビニル含量)は、35質量%以下であることが好ましく、30質量%以下であることがより好ましい。35質量%を超えると、低燃費性が低下するおそれがある。また、上記1,2-ビニル結合量の下限は特に限定されないが、1質量%以上であることが好ましく、20質量%以上であることがより好ましい。1質量%未満であると、耐熱性、耐劣化性が低下するおそれがある。
上記変性共役ジエン系重合体(II)の重量平均分子量(Mw)は、10万以上が好ましく、40万以上がより好ましい。10万未満であると、充分な破壊強度、耐屈曲疲労性が得られないおそれがある。また、200万以下が好ましく、80万以下がより好ましい。200万を超えると、加工性が低下して分散不良を引き起こし、充分な破壊強度が得られないおそれがある。
上記変性共役ジエン系重合体としてはまた、スズ変性共役ジエン系重合体(変性共役ジエン系重合体(III))を使用することもできる。
上記共役ジエン系重合体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン及びミルセンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を用いることができる。特に、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種のモノマーに由来する繰り返し単位を有する重合体を好適に用いることができる。すなわち、上記変性共役ジエン系重合体(III)を構成する共役ジエン化合物が、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンからなる群より選択される少なくとも1種の共役ジエン化合物であることもまた、本発明の好適な実施形態の1つである。
上記変性共役ジエン系重合体(III)としては特に限定されないが、リチウム開始剤により重合され、スズ原子の含有量が50~3000ppm、ビニル含量が5~50質量%、分子量分布が2以下のスズ変性ブタジエンゴム(BR)が好ましい。
上記スズ変性BRは、リチウム開始剤により1,3-ブタジエンの重合を行った後、スズ化合物を添加することにより得られ、更に該スズ変性BR分子の末端はスズ-炭素結合で結合されていることが好ましい。
上記リチウム開始剤としては、アルキルリチウム、アリールリチウムなどのリチウム系化合物が挙げられる。
また、上記スズ化合物としては、四塩化スズ、ブチルスズトリクロライドなどが挙げられる。
上記スズ変性BRのスズ原子の含有量は、50ppm以上であることが好ましい。50ppm未満では、tanδが増大する傾向がある。また、3000ppm以下であることが好ましく、300ppm以下であることがより好ましい。3000ppmを超えると、混練り物の加工性が悪化する傾向がある。
上記変性共役ジエン系重合体(III)の分子量分布(Mw/Mn)は、2以下であることが好ましい。Mw/Mnが2を超えると、tanδが増大する傾向がある。分子量分布の下限は特に限定されないが、1以上であることが好ましい。
上記変性共役ジエン系重合体(III)のビニル含量は5質量%以上であることが好ましい。5質量%未満では、スズ変性BRの製造が困難である。また、50質量%以下が好ましく、20質量%以下がより好ましい。50質量%を超えると、シリカの分散性が悪く、低燃費性、破断抗力、破断伸びが低下する傾向がある。
ゴム成分100質量%中の変性共役ジエン系重合体の含有量は、低温・高温氷上性能や、低温氷上性能、高温氷上性能及び耐摩耗性の性能バランスの観点から、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは50質量%以上である。また、該含有量の上限は特に限定されないが、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、特に好ましくは60質量%以下である。
前記ゴム組成物において、ゴム成分100質量%中のイソプレン系ゴム及び変性共役ジエン系重合体の合計含有量は、好ましくは30質量%以上、より好ましくは60質量%以上、更に好ましくは80質量%以上、特に好ましくは100質量%である。上記合計含有量が多いほど低温特性に優れており、必要な低温・高温氷上性能を発揮できる傾向がある。
前記ゴム組成物は、前記効果を阻害しない範囲で他のゴム成分を配合してもよい。他のゴム成分としては、上記変性共役ジエン系重合体に含まれない非変性のブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)等のジエン系ゴムが挙げられる。
中でも特に、非変性のBRを配合することができる。すなわち、ゴム成分として、イソプレン系ゴム及び変性共役ジエン系重合体と共に、非変性BRを配合する形態もまた、本発明の好適な実施形態の1つである。
上記非変性BRとしては変性されていないBRであれば特に限定されず、例えば、高シス含量のBR、1,2-シンジオタクチックポリブタジエン結晶を含有するBR(SPB含有BR)、希土類元素系触媒を用いて合成されたブタジエンゴム(希土類系BR)等、タイヤ工業において一般的なものが挙げられる。該非変性BRとしては、市販品として宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記非変性BRのシス含量は、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である。これにより、より良好な低温氷上性能、高温氷上性能が得られる。
(水溶性微粒子)
水溶性微粒子は、水への溶解性を有する微粒子であれば特に限定されることなく、使用可能である。例えば、常温(20℃)の水への溶解度が1g/100g水以上の材料を使用できる。
水溶性微粒子は、高温氷上性能及び耐摩耗性の性能バランスの観点から、中央値粒度(メジアン径、D50)が1μm~1mmであることが好ましい。より好ましくは2μm~800μm、更に好ましくは2μm~500μmである。
本明細書において、中央値粒度は、レーザー回折法にて測定できる。
水溶性微粒子の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは15質量部以上、より更に好ましくは20質量部以上、特に好ましくは25質量部以上である。下限以上にすることで、良好な高温氷上性能が得られる傾向がある。該含有量は、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは50質量部以下、特に好ましくは40質量部以下である。上限以下にすることで、良好な耐摩耗性等のゴム物性が得られる傾向がある。
水溶性微粒子としては、例えば、水溶性無機塩、水溶性有機物等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
水溶性無機塩としては、硫酸マグネシウム、硫酸カリウム等の金属硫酸塩;塩化カリウム、塩化ナトリウム、塩化カルシウム、塩化マグネシウム等の金属塩化物;水酸化カリウム、水酸化ナトリウム等の金属水酸化物;炭酸カリウム、炭酸ナトリウム等の炭酸塩;リン酸水素ナトリウム、リン酸二水素ナトリウム等のリン酸塩;等が挙げられる。
水溶性有機物としては、リグニン誘導体、糖類等が挙げられる。
リグニン誘導体としては、リグニンスルホン酸、リグニンスルホン酸塩、等が好適である。リグニン誘導体は、サルファイトパルプ法、クラフトパルプ法のいずれにより得られたものでもよい。
リグニンスルホン酸塩としては、リグニンスルホン酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アルコールアミン塩等が挙げられる。なかでも、リグニンスルホン酸のアルカリ金属塩(カリウム塩、ナトリウム塩等)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩、リチウム塩、バリウム塩等)が好ましい。
リグニン誘導体は、スルホン化度がスルホン化度1.5~8.0/OCHであることが好ましい。この場合、リグニン誘導体は、リグニン及び/又はその分解物の少なくとも一部がスルホ基(スルホン基)で置換されているリグニンスルホン酸及び/又はリグニンスルホン酸塩を含むものであり、リグニンスルホン酸のスルホ基は、電離していない状態でもよいし、スルホ基の水素が金属イオン等のイオンに置換されていてもよい。該スルホン化度は、より好ましくは3.0~6.0/OCHである。上記範囲内にすることで、良好な氷上性能が得られ、これと耐摩耗性の性能バランスが改善される傾向がある。
なお、リグニン誘導体粒子(該粒子を構成するリグニン誘導体)のスルホン化度は、スルホ基の導入率であり、下記式で求められる。
スルホン化度(/OCH)=
リグニン誘導体中のスルホン基中のS(モル)/リグニン誘導体中のメトキシル基(モル)
糖類は、構成する炭素数に特に制限はなく、単糖、少糖、多糖のいずれでもよい。単糖としては、アルドトリオース、ケトトリオースなどの三炭糖;エリトロース、トレオースなどの四炭糖;キシロース、リボースなどの五炭糖;マンノース、アロース、アルトロース、グルコースなどの六炭糖;セドヘプツロースなどの七炭糖などが挙げられる。少糖としては、スクロース、ラクトースなどの二糖;ラフィノース、メレジトースなどの三糖;アカルボース、スタキオースなどの四糖;キシロオリゴ糖、セロオリゴ糖などのオリゴ糖、等が挙げられる。多糖としては、グリコーゲン、でんぷん(アミロース、アミロペクチン)、セルロース、ヘミセルロース、デキストリン、グルカン等が挙げられる。
(シリカ)
シリカとしては、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。市販品としては、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シリカの含有量は、ゴム成分100質量部に対して、30質量部以上、好ましくは50質量部以上、より好ましくは55質量部以上、更に好ましくは60質量部以上である。下限以上にすることで、良好な耐摩耗性、操縦安定性が得られる傾向がある。該含有量の上限は特に限定されないが、好ましくは300質量部以下、より好ましくは200質量部以下、更に好ましくは170質量部以下、特に好ましくは100質量部以下、最も好ましくは80質量部以下である。上限以下にすることで、良好な分散性が得られる傾向がある。
シリカの窒素吸着比表面積(NSA)は、好ましくは70m/g以上、より好ましくは140m/g以上、更に好ましくは160m/g以上である。下限以上にすることで、良好な耐摩耗性、破壊強度が得られる傾向がある。また、シリカのNSAの上限は特に限定されないが、好ましくは500m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。上限以下にすることで、良好な分散性が得られる傾向がある。
なお、シリカのNSAは、ASTM D3037-93に準じてBET法で測定される値である。
前記ゴム組成物において、シリカ及びカーボンブラックの合計含有量100質量%中のシリカ含有率は、低温・高温氷上性能及び耐摩耗性の性能バランスの観点から、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。
(シランカップリング剤)
前記ゴム組成物がシリカを含む場合、更にシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。市販品としては、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤の含有量は、シリカ100質量部に対して、3質量部以上が好ましく、6質量部以上がより好ましい。3質量部以上であると、良好な破壊強度等が得られる傾向がある。また、上記含有量は、12質量部以下が好ましく、10質量部以下がより好ましい。12質量部以下であると、配合量に見合った効果が得られる傾向がある。
(カーボンブラック)
前記ゴム組成物は、前記性能バランスの観点から、充填剤としてカーボンブラックを含むことが好ましい。カーボンブラックとしては、特に限定されないが、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。下限以上にすることで、良好な耐摩耗性、低温・高温氷上性能(氷上グリップ性能)等が得られる傾向がある。また、上記含有量は、好ましくは10質量部以下、より好ましくは7質量部以下である。上限以下にすることで、ゴム組成物の良好な加工性が得られる傾向がある。
カーボンブラックの窒素吸着比表面積(NSA)は、50m/g以上が好ましく、80m/g以上がより好ましく、100m/g以上が更に好ましい。下限以上にすることで、良好な耐摩耗性能、低温・高温氷上グリップ性能が得られる傾向がある。また、上記NSAは、200m/g以下が好ましく、150m/g以下がより好ましく、130m/g以下が更に好ましい。上限以下にすることで、カーボンブラックの良好な分散が得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
(液体可塑剤)
前記ゴム組成物は、ゴム成分100質量部に対して、液体可塑剤の含有量が30質量部を超えている。これにより、優れた耐摩耗性、低温・高温氷上性能、低燃費性能が得られる。該含有量は、33質量部以上が好ましく、35質量部以上がより好ましい。上限は特に限定されないが、耐摩耗性等の点から、100質量部以下が好ましく、70質量部以下がより好ましく、55質量部以下が更に好ましい。
液体可塑剤としては、25℃で液体状態の可塑剤であれば特に限定されず、オイル、液状樹脂、液状ジエン系ポリマー等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。市販品としては、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。なかでも、プロセスオイルが好ましい。
液状樹脂としては、25℃で液状のテルペン系樹脂(テルペンフェノール樹脂、芳香族変性テルペン樹脂を含む)、ロジン樹脂、スチレン系樹脂、C5系樹脂、C5/C9系樹脂、クマロンインデン系樹脂(クマロン、インデン単体樹脂を含む)、オレフィン系樹脂、ポリウレタン樹脂、アクリル樹脂等が挙げられる。
液状ジエン系ポリマーとしては、25℃で液状の液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)、液状スチレンブタジエンスチレンブロック共重合体(液状SBSブロックポリマー)、液状スチレンイソプレンスチレンブロック共重合体(液状SISブロックポリマー)等が挙げられる。これらは、末端や主鎖が極性基で変性されていても構わない。
前記ゴム組成物は、レジン(固体レジン:常温(25℃)で固体状態のレジン)を含んでもよい。
レジン(固体レジン)としては、例えば、芳香族ビニル重合体、クマロンインデン樹脂、インデン樹脂、ロジン樹脂、テルペン系樹脂、アクリル系樹脂などが挙げられる。市販品としては、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)、東亞合成(株)等の製品を使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、芳香族ビニル重合体、クマロンインデン樹脂、テルペン系樹脂、ロジン樹脂が好ましい。
上記芳香族ビニル重合体とは、α-メチルスチレン及び/又はスチレンを重合して得られる樹脂であり、スチレンの単独重合体、α-メチルスチレンの単独重合体、α-メチルスチレンとスチレンとの共重合体、スチレンと他のモノマーの共重合体などが挙げられる。
上記クマロンインデン樹脂とは、樹脂の骨格(主鎖)を構成する主なモノマー成分として、クマロン及びインデンを含む樹脂であり、クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。
上記インデン樹脂とは、樹脂の骨格(主鎖)を構成する主なモノマー成分として、インデンを含む樹脂である。
上記ロジン樹脂としては、天然ロジン、重合ロジン、変性ロジン、これらのエステル化合物、これらの水素添加物に代表されるロジン系樹脂等が挙げられる。
上記テルペン系樹脂としては、テルペン化合物を重合して得られるポリテルペン樹脂や、テルペン化合物と芳香族化合物とを重合して得られる芳香族変性テルペン樹脂などを使用できる。また、これらの水素添加物を使用することもできる。
上記ポリテルペン樹脂は、テルペン化合物を重合して得られる樹脂である。該テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
上記ポリテルペン樹脂としては、上述したテルペン化合物を原料とするピネン樹脂、リモネン樹脂、ジペンテン樹脂、ピネン/リモネン樹脂などが挙げられる。なかでも、重合反応が容易である点、天然松脂が原料のため、安価であるという点から、ピネン樹脂が好ましい。ピネン樹脂は、通常、異性体の関係にあるα-ピネン及びβ-ピネンの両方を含んでいるが、含有する成分の違いにより、β-ピネンを主成分とするβ-ピネン樹脂と、α-ピネンを主成分とするα-ピネン樹脂とに分類される。
上記芳香族変性テルペン樹脂としては、上記テルペン化合物及びフェノール系化合物を原料とするテルペンフェノール樹脂や、上記テルペン化合物及びスチレン系化合物を原料とするテルペンスチレン樹脂などが挙げられる。また、上記テルペン化合物、フェノール系化合物及びスチレン系化合物を原料とするテルペンフェノールスチレン樹脂を使用することもできる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。また、スチレン系化合物としては、スチレン、α-メチルスチレンなどが挙げられる。
上記アクリル系樹脂としては、カルボキシル基を有し、芳香族ビニルモノマー成分とアクリル系モノマー成分とを共重合して得られる、スチレンアクリル樹脂等のスチレンアクリル系樹脂などを使用できる。なかでも、無溶剤型カルボキシル基含有スチレンアクリル系樹脂を好適に使用できる。
上記無溶剤型カルボキシル基含有スチレンアクリル系樹脂とは、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4414370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5010166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)である。なお、本明細書において、(メタ)アクリルは、メタクリル及びアクリルを意味する。
上記アクリル系樹脂を構成するアクリル系モノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(2エチルヘキシルアクリレート等のアルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。なお、(メタ)アクリル酸は、アクリル酸及びメタクリル酸の総称である。
上記アクリル系樹脂を構成する芳香族ビニルモノマー成分としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルが挙げられる。
また、上記アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体、芳香族ビニルと共に、他のモノマー成分を使用してもよい。
前記ゴム組成物において、レジン(固体レジン)及び液体可塑剤の合計含有量は、ゴム成分100質量部に対して、低温氷上性能、高温氷上性能及び耐摩耗性の性能バランスの観点から、33質量部以上が好ましく、35質量部以上がより好ましい。上限は特に限定されないが、耐摩耗性等の点から、100質量部以下が好ましく、70質量部以下がより好ましく、55質量部以下が更に好ましい。
(他の材料)
前記ゴム組成物は、耐クラック性、耐オゾン性等の観点から、老化防止剤を含有することが好ましい。
老化防止剤としては特に限定されないが、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4’-ビス(α,α’-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物がより好ましい。市販品としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは0.2質量部以上、より好ましくは0.5質量部以上である。下限以上にすることで、充分な耐オゾン性が得られる傾向がある。該含有量は、好ましくは7.0質量部以下、より好ましくは4.0質量部以下である。上限以下にすることで、良好なタイヤの外観が得られる傾向がある。
前記ゴム組成物は、ステアリン酸を含むことが好ましい。ステアリン酸の含有量は、前記性能バランスの観点から、ゴム成分100質量部に対して、好ましくは0.5~10質量部、より好ましくは0.5~5質量部である。
なお、ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
前記ゴム組成物は、酸化亜鉛を含むことが好ましい。酸化亜鉛の含有量は、前記性能バランスの観点から、ゴム成分100質量部に対して、好ましくは0.5~10質量部、より好ましくは1~5質量部である。
なお、酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
前記ゴム組成物には、ワックスを配合してもよい。ワックスとしては特に限定されず、石油系ワックス、天然系ワックスなどが挙げられ、また、複数のワックスを精製又は化学処理した合成ワックスも使用可能である。これらのワックスは、単独で使用しても、2種類以上を併用してもよい。
石油系ワックスとしては、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。天然系ワックスとしては、石油外資源由来のワックスであれば特に限定されず、例えば、キャンデリラワックス、カルナバワックス、木ろう、ライスワックス、ホホバろうなどの植物系ワックス;ミツロウ、ラノリン、鯨ろうなどの動物系ワックス;オゾケライト、セレシン、ペトロラクタムなどの鉱物系ワックス;及びこれらの精製物などが挙げられる。市販品としては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。なお、ワックスの含有量は、耐オゾン性、コストの点から、適宜設定すれば良い。
前記ゴム組成物には、ポリマー鎖に適度な架橋鎖を形成し、良好な前記性能バランスを付与するという点で、硫黄を配合することが好ましい。
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは0.7質量部以上である。該含有量は、好ましくは6.0質量部以下、より好ましくは4.0質量部以下、更に好ましくは3.0質量部以下である。上記範囲内にすることで、良好な前記性能バランスが得られる傾向がある。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。市販品としては、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
前記ゴム組成物は、加硫促進剤を含むことが好ましい。
加硫促進剤の含有量は特に制限はなく、要望する加硫速度や架橋密度に合わせて自由に決定すれば良いが、ゴム成分100質量部に対して、通常、0.3~10質量部、好ましくは0.5~7質量部である。
加硫促進剤の種類は特に制限はなく、通常用いられているものを使用可能である。加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、前記性能バランスの観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましい。
前記ゴム組成物には、前記成分以外にも、タイヤ工業において一般的に用いられている配合剤、例えば、離型剤等の材料を適宜配合してもよい。
前記ゴム組成物の製造方法としては、公知の方法を用いることができ、例えば、前記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法などにより製造できる。
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常50~200℃、好ましくは80~190℃であり、混練時間は、通常30秒~30分、好ましくは1分~30分である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常100℃以下、好ましくは室温~80℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常120~200℃、好ましくは140~180℃である。
上記ゴム組成物は、一般的な方法で製造される。すなわち、バンバリーミキサーやニーダー、オープンロールなどで前記各成分を混練りし、その後加硫する方法等により製造できる。上記ゴム組成物は、スタッドレスタイヤのトレッド(単層トレッド、多層トレッドのキャップトレッド)として用いられる。
(スタッドレスタイヤ)
本発明のスタッドレスタイヤは、上記ゴム組成物を用いて通常の方法により製造される。すなわち、上記成分を配合したゴム組成物を、未加硫の段階でトレッド(キャップトレッドなど)の形状に合わせて押し出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することで、スタッドレスタイヤが得られる。本発明のスタッドレスタイヤは、乗用車用スタッドレスタイヤとして好適に使用できる。
上記スタッドレスタイヤは、下記走行条件後、トレッドの路面接地面に平均径0.1~100μmの空隙が存在することが好ましい。本発明のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤをこのようなものとすることで、操縦安定性を維持しながら、氷上性能を向上でき、ノイズを低減することができる。
(走行条件)
車両(国産FR2000cc)の全輪に装着して、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。
上記空隙は、平均径が0.1~100μmであることが好ましいが、操縦安定性、氷上性能、ノイズ低減性の観点から、1μm以上であることがより好ましく、10μm以上であることが更に好ましい。また、80μm以下であることがより好ましく、70μm以下であることが更に好ましい。
なお、本明細書において、空隙の平均径は、走査型電子顕微鏡(SEM)観察にて測定できる。具体的には、走査型電子顕微鏡で写真撮影し、空隙の形状が球形の場合は球の直径、針状又は棒状の場合は短径、不定形の場合は中心部からの平均径を径とし、100個の空隙の径の平均値を平均径とする。
上記スタッドレスタイヤは、水溶性微粒子を含まない以外同配合のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤに比して、走行前のパターンノイズに対する下記走行条件後のパターンノイズの低減率が2~10%向上することが好ましい。すなわち、下記走行条件後のパターンノイズが走行前のパターンノイズに比べてどれだけ低減したかを表すパターンノイズの低減率が、水溶性微粒子を含まない以外同配合のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤにおけるパターンノイズの低減率と比較して2~10%向上することが好ましい。
(走行条件)
車両(国産FR2000cc)の全輪に装着して、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。
なお、本明細書において、パターンノイズは、スタッドレスタイヤを車両(国産FR2000cc)の全輪に装着して(リム:7.5J×17、内圧:220kPa)、ロードノイズ計測路(氷上路面)を時速60km/hで走行したときの運転席窓側耳位置における車内音を測定し、500Hz付近の空洞共鳴音の狭帯域ピーク値の音圧レベルを測定することで測定できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
<合成例1(共役ジエン系重合体の合成)>
あらかじめ、0.18ミリモルのバーサチック酸ネオジムを含有するシクロヘキサン溶液、3.6ミリモルのメチルアルモキサンを含有するトルエン溶液、6.7ミリモルの水素化ジイソブチルアルミニウムを含有するトルエン溶液、及び、0.36ミリモルのトリメチルシリルアイオダイドを含有するトルエン溶液と1,3-ブタジエン0.90ミリモルを30℃で60分間反応熟成させて得られる触媒組成物(ヨウ素原子/ランタノイド含有化合物(モル比)=2.0)を得た。続いて、シクロヘキサン2.4kg、1,3-ブタジエン300gを窒素置換された5Lオートクレーブに投入した。そして、上記触媒組成物を上記オートクレーブに投入し、30℃で2時間、重合反応させて、重合体溶液を得た。なお、投入した1,3-ブタジエンの反応転化率は、ほぼ100%であった。
ここで、共役ジエン系重合体(以下、「重合体」とも称する。)、すなわち、変性前のものの各種物性値を測定するため、上記重合体溶液から200gの重合体溶液を抜き取り、この重合体溶液に2,4-ジ-tert-ブチル-p-クレゾールを1.5g含むメタノール溶液を添加し、重合反応を停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、得られた乾燥物を重合体とした。
重合体について、以下に示す測定方法によって各種物性値を測定したところ、ムーニー粘度(ML1+4,100℃)が12であり、分子量分布(Mw/Mn)が1.6であり、シス-1,4-結合量が99.2質量%であり、1,2-ビニル結合量が0.21質量%であった。
[ムーニー粘度(ML1+4,100℃)]
JIS K 6300に準じて、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。
[分子量分布(Mw/Mn)]
ゲルパーミエーションクロマトグラフ(商品名;HLC-8120GPC、東ソー社製)を使用し、検知器として、示差屈折計を用いて、以下の条件で測定し、標準ポリスチレン換算値として算出した。
カラム ;商品名「GMHHXL」、(東ソー社製)2本、
カラム温度 ;40℃、
移動相 ;テトラヒドロフラン、流速 ;1.0ml/分、
サンプル濃度;10mg/20ml
[シス-1,4-結合量、1,2-ビニル結合量]
シス-1,4-結合の含量、及び1,2-ビニル結合の含量は、H-NMR分析及び13C-NMR分析により測定を行った。NMR分析には、日本電子社製の商品名「EX-270」を使用した。具体的には、H-NMR分析としては、5.30~5.50ppm(1,4-結合)、及び4.80-5.01ppm(1,2-結合)におけるシグナル強度から、重合体中の1,4-結合と1,2-結合の比を算出した。更に、13C-NMR分析としては、27.5ppm(シス-1,4-結合)、及び32.8ppm(トランス-1,4-結合)におけるシグナル強度から、重合体中のシス-1,4-結合とトランス-1,4-結合の比を算出した。これらの算出した値の比率を算出し、シス-1,4-結合量(質量%)及び1,2-ビニル結合量(質量%)とした。
<製造例1(変性共役ジエン系重合体の合成)>
変性共役ジエン系重合体(以下、「変性重合体」とも称する。)を得るために、合成例1の共役ジエン系重合体の重合体溶液に次の処理を行った。温度30℃に保持した重合体溶液に、1.71ミリモルの3-グリシドキシプロピルトリメトキシシランを含有するトルエン溶液を添加し、30分間反応させて反応溶液を得た。それから、この反応溶液に1.71ミリモルの3-アミノプロピルトリエトキシシランを含有するトルエン溶液を添加し、30分間撹拌した。続いて、この反応溶液に1.28ミリモルのテトライソプロピルチタネートを含有するトルエン溶液を添加し、30分間撹拌した。その後、重合反応を停止させるため、2,4-ジ-tert-ブチル-p-クレゾールを1.5g含むメタノール溶液を添加して、この溶液を変性重合体溶液とした。収量は2.5kgであった。続いて、この変性重合体溶液に、水酸化ナトリウムによりpH10に調整した水溶液20Lを添加し、110℃で2時間、脱溶媒とともに縮合反応させた。その後、110℃のロールで乾燥して、得られた乾燥物を変性重合体とした。
変性重合体については、以下に示す測定方法によって各種物性値を測定したところ(ただし、分子量分布(Mw/Mn)の測定は、上記重合体と同様の条件で行った。)、ムーニー粘度(ML1+4,125℃)が46であり、分子量分布(Mw/Mn)が2.4であり、コールドフロー値が0.3mg/分であり、経時安定性が2であり、ガラス転移温度が-106℃であった。
[ムーニー粘度(ML1+4,125℃)]
JIS K 6300に準じて、Lローターを使用して、予熱1分、ローター作動時間4分、温度125℃の条件で測定した。
[コールドフロー値]
圧力3.5lb/in、温度50℃で重合体を1/4インチオリフィスに通して押し出すことにより測定した。定常状態にするため、10分間放置後、押し出し速度を測定し、その測定値を毎分のミリグラム数(mg/分)で表示した。
[経時安定性]
90℃の恒温槽で2日間保存した後のムーニー粘度(ML1+4,125℃)を測定し、下記式により算出した値である。なお、値が小さいほど経時安定性が良好である。
式:[90℃の恒温槽で2日間保存した後のムーニー粘度(ML1+4,125℃)]-[合成直後に測定したムーニー粘度(ML1+4,125℃)]
[ガラス転移温度]
ガラス転移温度は、JIS K 7121に準じて、ティー・エイ・インスツルメント・ジャパン社製の示差走査熱量計(Q200)を用いて昇温速度10℃/分で昇温しながら測定することにより、ガラス転移開始温度として求めた。
以下に、実施例及び比較例で用いた各種薬品について説明する。
天然ゴム(NR):RSS#3
変性共役ジエン系重合体:製造例1で合成した変性共役ジエン系重合体
ブタジエンゴム(BR):宇部興産(株)製のBR150B(シス95質量%以上)
カーボンブラック:三菱ケミカル(株)製のシーストN220
シリカ:エボニックデグッサ社製のウラトシルVN3(NSA172m/g)
シランカップリング剤:エボニックデグッサ社製のSi266
水溶性微粒子(1):馬居化成工業(株)製のMN-00(硫酸マグネシウム、中央値粒度(メジアン径)75μm)
水溶性微粒子(2):馬居化成工業(株)のUSN-00(超微細硫酸マグネシウム、中央値粒度(メジアン径)3μm)
水溶性微粒子(3):東京化成工業(株)製のリグニンスルホン酸ナトリウム(中央値粒度(メジアン径)100μm)
ワックス:日本精鑞(株)製のオゾエースワックス
老化防止剤:大内新興化学工業(株)製のノクラック6C
オイル:出光興産(株)製のPS-32(ミネラルオイル)
ステアリン酸:日油(株)製の桐
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤:大内新興化学工業(株)製のノクセラーNS
〔水溶性微粒子の中央値粒度(メジアン径)の測定〕
(株)島津製作所製SALD-2000J型を用い、レーザー回折法(測定操作は下記のとおり)により測定した。
<測定操作>
水溶性微粒子を、分散溶媒(トルエン)と分散剤(10質量%スルホこはく酸ジー2-エチルヘキシルナトリウム/トルエン溶液)との混合溶液に室温で分散させ、得られた分散液に超音波を照射しながら、該分散液を5分間撹拌して試験液を得た。該試験液を回分セルに移し、1分後に測定した。(屈折率:1.70-0.20i)
<実施例及び比較例>
表1及び表2に示す配合処方に従い、1.7Lバンバリーミキサーを用いて、天然ゴムとシリカ、変性共役ジエン系重合体又はブタジエンゴムとシリカを添加し、それぞれ150℃の条件下で3分間混練りし、混練り物(マスターバッチ)を得た。次に、得られたマスターバッチに、硫黄及び加硫促進剤以外の材料を添加し、150℃の条件下で2分間混練りし、混練り物を得た。更に、硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を170℃で12分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
また、得られた各未加硫ゴム組成物をそれぞれキャップトレッドの形状に成型し、他のタイヤ部材とともに貼り合わせて170℃で15分間加硫することにより、試験用スタッドレスタイヤ(タイヤサイズ:195/65R15)を製造した。
得られた加硫ゴム組成物、試験用スタッドレスタイヤについて、室温暗所で三ヶ月保管した後、下記の評価を行った。結果を表1及び表2に示した。
<耐摩耗性>
加硫ゴム組成物について、(株)岩本製作所製のランボーン摩耗試験機を用い、表面回転速度50m/分、付加荷重3.0kg、落砂量15g/分でスリップ率20%の条件下にて、摩耗量を測定し、該摩耗量の逆数を算出した。比較例1の摩耗量の逆数を100とし、他の配合の摩耗量の逆数を指数で表した。指数が大きいほど、耐摩耗性に優れることを示す。
<低温氷上グリップ性能>
各試験用スタッドレスタイヤを用いて、下記の条件で氷上での実車性能を評価した。試験場所は、住友ゴム工業株式会社の北海道名寄テストコースで行い、気温は-10~-6℃であった。試験用タイヤを国産2000ccのFR車に装着し、時速30km/hでロックブレーキを踏み停止させるまでに要した氷上の停止距離を測定した。比較例1をリファレンスとして、下記式から指数表示した。指数が大きいほど、低温氷上性能に優れることを示す。
(低温氷上グリップ性能)=(比較例1の制動停止距離)/(各配合の停止距離)×100
<高温氷上グリップ性能>
各試験用スタッドレスタイヤを用いて、下記の条件で氷上での実車性能を評価した。試験場所は、住友ゴム工業株式会社の北海道名寄テストコースで行い、気温は0~-5℃であった。試験用タイヤを国産2000ccのFR車に装着し、時速30km/hでロックブレーキを踏み停止させるまでに要した氷上の停止距離を測定した。比較例1をリファレンスとして、下記式から指数表示した。指数が大きいほど、高温氷上性能に優れることを示す。
(高温氷上グリップ性能)=(比較例1の制動停止距離)/(各配合の停止距離)×100
<転がり抵抗(低燃費性能)>
転がり抵抗試験機を用い、試験用スタッドレスタイヤを、リム(15×6JJ)、内圧(230kPa)、荷重(3.43kN)、速度(80km/h)で走行させたときの転がり抵抗を測定し、比較例1を100としたときの指数で表示した。指数が大きいほど転がり抵抗が小さく、低燃費性に優れることを示している。
<氷上性能>
各試験用スタッドレスタイヤを用いて、下記の条件で氷上での実車性能を評価した。試験場所は、住友ゴム工業株式会社の北海道名寄テストコースで行い、気温は0~-5℃であった。試験用タイヤを国産2000ccのFR車に装着し、時速30km/hでロックブレーキを踏み停止させるまでに要した氷上の停止距離を測定した。比較例11をリファレンスとして、下記式から指数表示した。指数が大きいほど、氷上性能に優れることを示す。
(氷上性能)=(比較例11の制動停止距離)/(各配合の停止距離)×100
<パターンノイズ低減性>
下記走行条件後のパターンノイズが走行前のパターンノイズに比べてどれだけ低減したかを算出した。そして、算出値(パターンノイズの低減率)を比較例11をリファレンスとして、下記式から指数表示した。指数が大きいほどパターンノイズ低減性に優れることを示す。
(パターンノイズ低減性)=(各配合におけるパターンノイズの低減率)/(比較例11におけるパターンノイズの低減率)×100
(走行条件)
各試験用スタッドレスタイヤを車両(国産FR2000cc)の全輪に装着して(リム:7.5J×17、内圧:220kPa)、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。試験場所は、岡山テストコース(ドライ路面)。
なお、パターンノイズは、時速60km/hで走行したときの運転席窓側耳位置における車内音を測定し、500Hz付近の空洞共鳴音の狭帯域ピーク値の音圧レベルを測定することで測定した。
<操縦安定性>
路面温度が25℃のドライアスファルト路面のテストコースにて、各試験用スタッドレスタイヤを排気量2000ccの国産FR車に装着して実車走行した。その際、テストドライバーが比較例11の結果を100として、微小操舵角変更時のハンドル応答性、急なレーンチェンジの応答性を総合的に評価した。なお、数値が大きいほど操縦安定性に優れていることを示す。
Figure JPOXMLDOC01-appb-T000004
表1より、イソプレン系ゴム、変性共役ジエン系重合体、シリカ、水溶性微粒子を含み、かつ多量の液体可塑剤を含む実施例では、低温氷上グリップ性能、高温氷上グリップ性能及び耐摩耗性の性能バランス、更に低燃費性能も加えた性能バランスが優れていた。
特に、比較例7(変性共役ジエン系重合体無、水溶性微粒子無、オイル少量)、比較例2(オイル多量)、比較例3(水溶性微粒子有)、比較例6(変性共役ジエン系重合体有)、及び実施例1(変性共役ジエン系重合体有、水溶性微粒子有、オイル多量)から、液体可塑剤量30質量部超、変性共役ジエン系重合体添加、水溶性微粒子添加を組み合わせることで、低温氷上性能、高温氷上性能及び耐摩耗性の性能バランスや、更に低燃費性能も加えた性能バランスが相乗的に改善されるという効果を奏することが明らかとなった。
Figure JPOXMLDOC01-appb-T000005

Claims (6)

  1. イソプレン系ゴムと変性共役ジエン系重合体とを含有するゴム成分、水溶性微粒子、シリカ、及び液体可塑剤を含み、
    ゴム成分100質量部に対するシリカの含有量が30質量部以上、液体可塑剤の含有量が30質量部を超えているスタッドレスタイヤ用トレッドゴム組成物。
  2. ゴム成分100質量%中のイソプレン系ゴムの含有量が20質量%以上、変性共役ジエン系重合体の含有量が20質量%以上であり、
    シリカ及びカーボンブラックの合計含有量100質量%中のシリカ含有率が50質量%以上である請求項1記載のスタッドレスタイヤ用トレッドゴム組成物。
  3. ゴム成分100質量部に対する水溶性微粒子の含有量が25質量部以上である請求項1又は2記載のスタッドレスタイヤ用トレッドゴム組成物。
  4. 請求項1~3のいずれかに記載のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤ。
  5. 前記スタッドレスタイヤは、下記走行条件後、トレッドの路面接地面に平均径0.1~100μmの空隙が存在する請求項4に記載のスタッドレスタイヤ。
    (走行条件)
    車両(国産FR2000cc)の全輪に装着して、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。
  6. 前記スタッドレスタイヤは、水溶性微粒子を含まない以外同配合のゴム組成物を用いて作製したトレッドを有するスタッドレスタイヤに比して、走行前のパターンノイズに対する下記走行条件後のパターンノイズの低減率が2~10%向上する請求項4又は5記載のスタッドレスタイヤ。
    (走行条件)
    車両(国産FR2000cc)の全輪に装着して、常温のドライ路面を100km走行し、その後、-1~-10℃の雪氷上路面を4km走行する。
PCT/JP2018/046865 2017-12-26 2018-12-19 スタッドレスタイヤ用トレッドゴム組成物 WO2019131403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018567768A JP6544496B1 (ja) 2017-12-26 2018-12-19 スタッドレスタイヤ用トレッドゴム組成物
EP18893803.9A EP3733756A4 (en) 2017-12-26 2018-12-19 TREAD RUBBER COMPOSITION FOR SPICLESS WINTER TIRES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017249413 2017-12-26
JP2017-249413 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019131403A1 true WO2019131403A1 (ja) 2019-07-04

Family

ID=67063647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046865 WO2019131403A1 (ja) 2017-12-26 2018-12-19 スタッドレスタイヤ用トレッドゴム組成物

Country Status (3)

Country Link
EP (1) EP3733756A4 (ja)
JP (1) JP6544496B1 (ja)
WO (1) WO2019131403A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485971B2 (ja) 2022-04-12 2024-05-17 横浜ゴム株式会社 ゴム組成物およびそれを用いたスタッドレスタイヤ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
JPS596207A (ja) 1982-06-15 1984-01-13 エス・シ−・ジヨンソン・アンド・サン・インコ−ポレ−テツド バルク重合方法とポリマ−生成物
JPH01313522A (ja) 1988-04-26 1989-12-19 S C Johnson & Son Inc 環状エステル修飾アクリル系ポリマーの触媒塊状製造方法
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JPH0558005B2 (ja) 1984-02-29 1993-08-25 Johnson & Son Inc S C
JP2002249619A (ja) 2001-02-26 2002-09-06 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ゴム組成物
JP2005053977A (ja) 2003-08-06 2005-03-03 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2009091482A (ja) 2007-10-10 2009-04-30 Sumitomo Rubber Ind Ltd スタッドレスタイヤに用いるトレッド用ゴム組成物およびそれを用いたトレッドを有するスタッドレスタイヤ
JP2009263530A (ja) * 2008-04-25 2009-11-12 Bridgestone Corp 冬用タイヤ
JP2013514399A (ja) * 2009-12-18 2013-04-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン 氷上でのグリップが向上した冬季タイヤ
JP2016044271A (ja) * 2014-08-25 2016-04-04 住友ゴム工業株式会社 ゴム組成物およびそれを用いたスタッドレスタイヤ
JP2017088042A (ja) * 2015-11-12 2017-05-25 住友ゴム工業株式会社 タイヤ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3224315B1 (en) * 2014-11-28 2021-10-27 Compagnie Générale des Etablissements Michelin A rubber composition
EP3390072B1 (en) * 2015-12-17 2020-07-01 Compagnie Générale des Etablissements Michelin A tire comprising a tread
JP6240731B1 (ja) * 2016-09-30 2017-11-29 住友ゴム工業株式会社 スタッドレスタイヤ用キャップトレッドゴム組成物

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
JPS596207A (ja) 1982-06-15 1984-01-13 エス・シ−・ジヨンソン・アンド・サン・インコ−ポレ−テツド バルク重合方法とポリマ−生成物
JPH0558005B2 (ja) 1984-02-29 1993-08-25 Johnson & Son Inc S C
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JPH01313522A (ja) 1988-04-26 1989-12-19 S C Johnson & Son Inc 環状エステル修飾アクリル系ポリマーの触媒塊状製造方法
JP2002249619A (ja) 2001-02-26 2002-09-06 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ゴム組成物
JP2005053977A (ja) 2003-08-06 2005-03-03 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP2009091482A (ja) 2007-10-10 2009-04-30 Sumitomo Rubber Ind Ltd スタッドレスタイヤに用いるトレッド用ゴム組成物およびそれを用いたトレッドを有するスタッドレスタイヤ
JP2009263530A (ja) * 2008-04-25 2009-11-12 Bridgestone Corp 冬用タイヤ
JP2013514399A (ja) * 2009-12-18 2013-04-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン 氷上でのグリップが向上した冬季タイヤ
JP2016044271A (ja) * 2014-08-25 2016-04-04 住友ゴム工業株式会社 ゴム組成物およびそれを用いたスタッドレスタイヤ
JP2017088042A (ja) * 2015-11-12 2017-05-25 住友ゴム工業株式会社 タイヤ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"annual research report TREND", vol. 3, 2000, TOAGOSEI CO., LTD., pages: 42 - 45
FINE CHEMICAL, vol. 23, no. 9, 1994, pages 5
J. AM. CHEM. SOC., vol. 115, 1993, pages 4971
J. AM. CHEM. SOC., vol. 117, 1995, pages 6465
See also references of EP3733756A4

Also Published As

Publication number Publication date
EP3733756A4 (en) 2021-05-12
EP3733756A1 (en) 2020-11-04
JP6544496B1 (ja) 2019-07-17
JPWO2019131403A1 (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
EP3181630B1 (en) Pneumatic tire
EP2952525B1 (en) Studless winter tire
JP7147272B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
EP3178879B1 (en) Pneumatic tire
EP3575107B1 (en) Rubber composition for tires and pneumatic tire
JP6544495B1 (ja) スタッドレスタイヤ用トレッドゴム組成物
JP6614369B2 (ja) スタッドレスタイヤ用トレッドゴム組成物
JP7159799B2 (ja) 空気入りタイヤ
JP6544496B1 (ja) スタッドレスタイヤ用トレッドゴム組成物
JP2023153228A (ja) 空気入りタイヤ
JP6540923B1 (ja) スタッドレスタイヤ用トレッドゴム組成物
JP5912934B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7444166B2 (ja) 空気入りタイヤ
US20240132706A1 (en) Rubber composition for tires and tire
JP2021004309A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567768

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018893803

Country of ref document: EP

Effective date: 20200727