WO2019131074A1 - 再結合ライフタイムの制御方法 - Google Patents

再結合ライフタイムの制御方法 Download PDF

Info

Publication number
WO2019131074A1
WO2019131074A1 PCT/JP2018/045201 JP2018045201W WO2019131074A1 WO 2019131074 A1 WO2019131074 A1 WO 2019131074A1 JP 2018045201 W JP2018045201 W JP 2018045201W WO 2019131074 A1 WO2019131074 A1 WO 2019131074A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon single
heat treatment
crystal substrate
nitrogen
Prior art date
Application number
PCT/JP2018/045201
Other languages
English (en)
French (fr)
Inventor
竹野 博
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201880084042.4A priority Critical patent/CN111512421B/zh
Priority to EP18895298.0A priority patent/EP3734644B1/en
Publication of WO2019131074A1 publication Critical patent/WO2019131074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation

Definitions

  • the present invention relates to a method of controlling carrier recombination lifetime in a silicon single crystal substrate.
  • IGBTs Insulated Gate Bipolar Transistors
  • diodes diodes
  • a defect serving as a carrier recombination center is intentionally introduced in the silicon substrate to shorten the carrier recombination lifetime.
  • techniques for increasing the switching speed by control and consequently reducing the switching loss have been used.
  • a method of diffusing heavy metal impurities such as gold and platinum into a substrate As a method of controlling the recombination lifetime, a method of diffusing heavy metal impurities such as gold and platinum into a substrate, and irradiation of charged particle beams (sometimes called particle beams) such as electron beams, protons, and helium ions There is a way.
  • charged particle beams sometimes called particle beams
  • charged particle beam irradiation has often been used because it is difficult to control the concentration, distribution in the depth direction, in-plane uniformity, and the like. 3).
  • a plurality of defects serving as recombination centers are introduced at around room temperature, and thermally unstable defect species are also present therein, so that after irradiation with charged particle beams, Heat treatment (sometimes called recovery heat treatment) is performed to eliminate thermally unstable defects or adjust the defect concentration so that the target value of recombination lifetime can be obtained.
  • Heat treatment sometimes called recovery heat treatment
  • Patent Document 3 in order to shorten the reverse recovery time of the diode, heat treatment is performed under heat treatment conditions that leave crystal defects due to electron beam irradiation, and carrier recombination lifetime is about 0.1 to 1 ( ⁇ sec) It is stated that it is good. Further, Patent Document 3 describes that the heat treatment conditions in this case may be, for example, a heat treatment temperature of 350 ° C. or more and less than 380 ° C., and a heat treatment time of about 0.5 hours to 2 hours. Further, in Patent Document 4, when the heat treatment temperature is 400 ° C. or higher, the lifetime of the wafer irradiated with protons is around 10 ⁇ s, and it is described that it is desirable from the viewpoint of control of forward voltage of diode and reverse recovery loss. ing.
  • the high-performance device contains FZ (which hardly contains oxygen).
  • FZ which hardly contains oxygen
  • nitrogen may be added during crystal growth to prevent discharge in the furnace during crystal growth, reduce crystal defects introduced during crystal growth, and improve wafer strength.
  • concentration of nitrogen introduced into the grown single crystal is controlled by adjusting the atmosphere gas at the time of crystal growth.
  • Non-Patent Documents 1 to 3 Since the variation in recombination lifetime directly affects the variation in device characteristics, it is an extremely important task to improve the variation in recombination lifetime. In particular, in recent years, as semiconductor devices have become more sophisticated, it is necessary to control the recombination lifetime with high precision and to minimize the variation thereof.
  • Non-Patent Document 1 points out the problem that the switching loss may be wafer-dependent even when the same recombination lifetime control is performed, and major defects (CsI, CiCs, etc.) generated by electron beam irradiation. Or, among CiOi, only CiOi has wafer dependency on activation energy, and when oxygen concentration is high, activation tends to be high, so it is considered that oxygen impurity is considered to be a factor depending on wafer (however, Cs: substituted carbon, Ci: interstitial carbon, Oi: interstitial oxygen, I: interstitial silicon). However, it is not actually clear whether or not these carbon and oxygen impurities are the main factor for variations in recombination lifetime.
  • Patent Document 6 as a method of controlling the recombination lifetime, the recombination lifetime can be controlled with high accuracy by adjusting the dopant concentration of the CZ silicon single crystal substrate or both the dopant concentration and the oxygen concentration. A control method is described which enables to obtain a recombination lifetime equal to that of the FZ silicon single crystal substrate.
  • Patent Document 6 there is a problem that variation factors and control method of recombination lifetime in a nitrogen-added FZ silicon single crystal substrate are not clear.
  • Patent Document 7 describes a method of selecting a silicon substrate which can reduce the variation in recombination lifetime due to a silicon substrate and can control the recombination lifetime with high accuracy.
  • this method when the ratio (LT1 / LT0) of the recombination lifetime LT0 after the particle beam irradiation step to the recombination lifetime LT1 after the recovery heat treatment is less than or equal to a reference value LT2, it is determined as a pass.
  • the present invention has been made in view of the problems as described above, and in the process of manufacturing a power device for controlling carrier recombination lifetime, variation of recombination lifetime due to nitrogen-doped FZ silicon single crystal substrate It is an object of the present invention to provide a control method of recombination lifetime which can be reliably reduced and which can control recombination lifetime with high accuracy.
  • the present invention provides a preparation step of preparing a silicon single crystal substrate from a nitrogen-added silicon single crystal grown by floating zone melting method (FZ method), and the prepared silicon single crystal substrate.
  • a recombination lifetime control method for controlling carrier recombination lifetime of a silicon single crystal substrate by performing According to the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step, in the heat treatment step A, the nitrogen in the silicon single crystal substrate is outdiffused by the heat treatment to obtain the silicon single crystal substrate
  • the present invention provides a method of controlling recombination lifetime characterized in that the particle beam irradiation step is performed on a silicon single crystal substrate whose nitrogen concentration Cn is adjusted and then the nitrogen concentration Cn is adjusted.
  • the particle beam irradiation step is performed in the heat treatment step A. If the recombination lifetime is controlled by adjusting the nitrogen concentration Cn of the silicon single crystal substrate in the previous step, the variation in the recombination lifetime due to the silicon substrate can be reliably reduced.
  • the nitrogen concentration Cn of the silicon single crystal substrate after the heat treatment step A is The heat treatment is carried out so that nitrogen is diffused to be less than 2 ⁇ 10 14 atoms / cm 3, and the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step is 0.1 ppma or more.
  • the heat treatment is performed so that nitrogen is outdiffused so that the nitrogen concentration Cn of the silicon single crystal substrate after the heat treatment step A is less than 2 ⁇ 10 15 atoms / cm 3 , and then the particles It is preferable to perform a line irradiation process.
  • the nitrogen concentration Cn of the silicon single crystal substrate is 2 ⁇ after the heat treatment step A (before the particle beam irradiation step) in the heat treatment step A. If it is adjusted to be less than 10 14 atoms / cm 3, and if the oxygen concentration Co of the silicon single crystal substrate is 0.1 ppma or more, after the heat treatment step A in the heat treatment step A (before the particle beam irradiation step) ) to be adjusted so the nitrogen concentration Cn of the silicon single crystal substrate is less than 2 ⁇ 10 15 atoms / cm 3 , it is possible to reduce variations in recombination lifetime caused by the silicon single crystal substrate more reliably .
  • the nitrogen concentration of the silicon single crystal substrate is adjusted according to the oxygen concentration Co of the nitrogen-added FZ silicon single crystal substrate before the particle beam irradiation step. Since the bonding lifetime can be controlled with high accuracy, variation in recombination lifetime due to the silicon single crystal substrate can be surely reduced. In addition, since the nitrogen concentration of the silicon single crystal substrate before the particle beam irradiation step is adjusted by the heat treatment process after preparing the silicon single crystal substrate, discharge prevention in the furnace and generation of crystal defects during silicon single crystal growth It is not necessary to reduce the concentration of nitrogen necessary for suppression etc., and deterioration of productivity and quality of silicon single crystal can be avoided.
  • the recombination lifetime of the nitrogen-added FZ silicon substrate when controlling the recombination lifetime of the nitrogen-added FZ silicon substrate, the recombination lifetime can be controlled with high accuracy even when the nitrogen concentration at the time of silicon single crystal growth is different, so especially nitrogen addition It is suitable when using FZ silicon substrate for power devices.
  • FIG. 1 The relationship between the recombination lifetime LT and the bulk nitrogen concentration after the heat treatment step A (before the particle beam irradiation step) when the oxygen concentration measured in the experimental example is 0.1 ppma or more (FZ-A, FZ-B) It is a graph shown.
  • the carrier recombination lifetime is controlled by adjusting the conditions of particle beam irradiation and the conditions of heat treatment after particle beam irradiation, and in this case, it is caused by the silicon single crystal substrate.
  • the recombination lifetime varies due to some factor.
  • the inventors of the present invention have conducted intensive studies, and even if the silicon single crystal substrate is subjected to particle beam irradiation and subsequent heat treatment, the recombination lifetime is considered to be the same as the carbon concentration which is considered to be the conventional variation factor.
  • the present invention has been accomplished by finding that the recombination lifetime varies and strongly depends on the nitrogen concentration of the silicon single crystal substrate.
  • silicon single crystals manufactured by the MCZ method do not need to be manufactured by adding nitrogen, there is no problem of variation in recombination lifetime due to nitrogen, but in the FZ method, nitrogen is added to manufacture silicon single crystals. It has been found that this causes dispersion of the recombination lifetime of the FZ silicon single crystal substrate, and further that the nitrogen concentration dependency of the recombination lifetime is different depending on the oxygen concentration. . And the present invention was completed by solving the problem peculiar to the silicon single crystal substrate manufactured by this FZ method.
  • FZ method floating zone melting method
  • a recombination lifetime control method for controlling carrier recombination lifetime of a single crystal substrate comprising: According to the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step, in the heat treatment step A, the nitrogen in the silicon single crystal substrate is outdiffused by the heat treatment to obtain the silicon single crystal substrate
  • a method of controlling a recombination lifetime is characterized in that the particle beam irradiation step is performed on a silicon single crystal substrate whose nitrogen concentration Cn is adjusted and then the nitrogen concentration Cn is adjusted.
  • a silicon single crystal substrate is prepared from a nitrogen-added silicon single crystal grown by the FZ method (S1 in FIG. 1).
  • the specifications (diameter, thickness, resistivity, etc.) of the silicon single crystal substrate prepared here are not particularly limited in the present invention. For example, specifications can be made in accordance with the requirements from the semiconductor device side.
  • a silicon single crystal substrate can be prepared by cutting a silicon wafer from a silicon single crystal, chemically etching the silicon wafer to remove cutting damage, and then performing chemical mechanical polishing.
  • a heat treatment step A of heat treatment to the silicon single crystal substrate is performed (S2 in FIG. 1).
  • the nitrogen in the silicon single crystal substrate is outdiffused according to the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step, whereby the silicon single crystal substrate is obtained prior to the particle beam irradiation step. Adjust the nitrogen concentration of
  • the conditions of the heat treatment step A are determined according to the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step, and when the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step is less than 0.1 ppma
  • the nitrogen concentration Cn after the heat treatment step A is determined to be less than 2 ⁇ 10 14 atoms / cm 3 .
  • the nitrogen concentration Cn after the heat treatment step A is determined to be less than 2 ⁇ 10 15 atoms / cm 3. Is preferred.
  • the upper limit of the oxygen concentration Co of the silicon single crystal substrate prepared from the nitrogen-added silicon single crystal grown by the FZ method is not particularly limited, but can be, for example, less than 1 ppma.
  • the lower limit of the nitrogen concentration Cn is not limited.
  • the nitrogen concentration after the heat treatment step A is the nitrogen concentration in the region where the recombination lifetime is adjusted.
  • the nitrogen concentration in the region where the recombination lifetime after thinning is adjusted.
  • the heat treatment step A is not limited to one heat treatment step, and a plurality of heat treatment steps may be performed. It may be performed before the manufacturing process of the semiconductor device, or may be performed during the manufacturing process of the semiconductor device. In addition, it may be performed by a combination of heat treatment processes before and during the manufacturing process of the semiconductor device.
  • the silicon single crystal before the particle beam irradiation step is made to diffuse nitrogen out of the silicon single crystal substrate according to the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step. Adjusting the nitrogen concentration Cn of the substrate, in particular, the relationship between the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step and the nitrogen concentration Cn of the silicon single crystal substrate before the particle beam irradiation step satisfies the above conditions It is to be done.
  • the variation in recombination lifetime due to the nitrogen-doped FZ silicon single crystal substrate can be reliably reduced, and the recombination lifetime can be controlled with high accuracy.
  • the recombination lifetime due to the nitrogen-added FZ silicon single crystal substrate In some cases, the variation of
  • the heat treatment step A can out-diffuse nitrogen in the silicon single crystal substrate, and under any conditions under the conditions determined according to the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step.
  • the heat treatment conditions are set such that the relationship between the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step and the nitrogen concentration Cn of the silicon single crystal substrate before the particle beam irradiation step satisfies the above condition. Is preferred.
  • the temperature can be determined according to the oxygen concentration Co of the silicon single crystal substrate by setting the temperature to 1050 ° C. or more and setting the time to 2 hours or more. The higher the temperature of the heat treatment in the heat treatment step A, the higher the diffusion rate of nitrogen, and hence the efficiency is. As the temperature of the heat treatment process A is higher and the time is longer, the nitrogen concentration of the silicon single crystal substrate is decreased.
  • the upper limit of the heat treatment temperature and time of the heat treatment step A is not limited. It can be determined in consideration of other qualities such as productivity, cost and prevention of slip dislocation.
  • the surface of the silicon single crystal substrate may be formed prior to the particle beam irradiation step.
  • an oxide film can be formed.
  • the oxide film can be formed by heat treatment in an oxidizing atmosphere, and the conditions for the oxide film formation heat treatment can be, for example, a temperature of 900 ° C. to 1100 ° C., and a time of 10 minutes to 60 minutes. It is stated that.
  • chemical passivation without heat treatment can be used without using oxide passivation.
  • the relationship between the oxygen concentration and the nitrogen concentration of the silicon single crystal substrate at the stage of performing particle beam irradiation is important.
  • the oxygen concentration Co of the silicon single crystal substrate prepared in the preparation step may be treated as the same as the oxygen concentration Co of the silicon single crystal substrate after the heat treatment step A (before the particle beam irradiation step).
  • a particle beam irradiation step (S3 in FIG. 1) of irradiating particle beams to the silicon single crystal substrate after the heat treatment step A and a heat treatment step B (S4 in FIG. 1) of performing heat treatment after the particle beam irradiation step I do.
  • the conditions of the particle beam irradiation step and the heat treatment step B performed here are not particularly limited in the present invention. It can be determined to meet the requirements from the semiconductor device side.
  • an electron beam as a particle beam is applied at a dose of 1 ⁇ 10 14 to 3 ⁇ 10 15 / cm 2 and 0.5 Irradiation can be performed at an acceleration voltage of 2 to 2 MeV. It can also be irradiated with protons or helium ions.
  • the heat treatment step B is a heat treatment step for eliminating part of the recombination centers generated in the particle beam irradiation step and recovering the recombination lifetime.
  • the temperature is 300 to 400 ° C.
  • the time is 10 to
  • the atmosphere can be nitrogen, oxygen or hydrogen for 60 minutes.
  • the recombination lifetime of the present invention can be controlled with high accuracy, and the variation of the recombination lifetime due to the silicon single crystal substrate can be surely reduced. can do.
  • the reason for using the above-mentioned control method of recombination lifetime in order to control the recombination lifetime with high precision and to surely reduce the variation in lifetime due to the silicon single crystal substrate is as follows: According to the findings obtained by the following experiments.
  • a silicon single crystal substrate (sometimes called an FZ substrate) was prepared from a plurality of nitrogen-added silicon single crystals grown by the FZ method. Further, for comparison, a silicon single crystal substrate (sometimes referred to as an MCZ substrate) was prepared from a nitrogen-free silicon single crystal grown by the MCZ method.
  • Each silicon single crystal substrate has a diameter of 200 mm, a crystal plane orientation of (100), a thickness of 720 to 730 ⁇ m, a conductivity type of n-type (phosphorus addition), and a resistivity of 63 to 71 ⁇ ⁇ cm.
  • the oxygen concentration, carbon concentration, and nitrogen concentration of each silicon single crystal substrate are as shown in the following table.
  • the oxygen concentration was measured by the infrared absorption method (conversion factor: JEIDA), and the carbon concentration and the nitrogen concentration were measured by secondary ion mass spectrometry (SIMS).
  • Each concentration shown in the table is the concentration at the stage of preparing the silicon single crystal substrate (before the heat treatment step A) (sometimes referred to as initial concentration).
  • FZ substrates (FZ-A, FZ-B) with an oxygen concentration of 0.1 ppma or more are manufactured from silicon single crystals grown by FZ method using silicon single crystal ingots grown by CZ method as raw materials is there. Further, FZ substrates (FZ-C, FZ-D) having an oxygen concentration of less than 0.1 ppma are produced from silicon single crystals grown by the FZ method using ordinary polycrystalline silicon ingots as raw materials.
  • heat treatment step A heat treatment was performed on the prepared silicon single crystal substrate (heat treatment step A).
  • the heat treatment conditions are: 1000 ° C./1 hour, 1050 ° C./1 hour, 1050 ° C./2 hours, 1050 ° C./4 hours, 1150 ° C./1 hour, 1150 ° C./2 hours, 1150 ° C./4 hours
  • the atmosphere was oxygen.
  • nitrogen 1000 ° C./1 hour
  • any heat treatment condition of heat treatment step A insert a silicon single crystal substrate into a furnace maintained at 900 ° C., raise the temperature from 900 ° C.
  • each temperature was lowered from each temperature to 900 ° C. at a rate of ⁇ 3 ° C./min, and the silicon single crystal substrate was taken out from the furnace.
  • the silicon single crystal substrate after the heat treatment step A was irradiated with an electron beam (particle beam irradiation step).
  • the irradiation dose of the electron beam was 1 ⁇ 10 15 / cm 2
  • the acceleration voltage of the electron beam was 2 MV.
  • Another silicon single crystal substrate subjected to the heat treatment step A simultaneously with the silicon single crystal substrate subjected to the electron beam irradiation is polished and removed to about a half thickness (about 360 ⁇ m) from the surface side, then SIMS
  • the bulk nitrogen concentration (nitrogen concentration near the center in the thickness direction of the substrate) after heat treatment step A (before the particle beam irradiation step) was determined by measuring the nitrogen concentration.
  • heat treatment step B a recovery heat treatment was performed on the silicon single crystal substrate irradiated with the electron beam.
  • the heat treatment temperature was 360 ° C.
  • the atmosphere was nitrogen
  • the time was in the range of 0 to 45 minutes.
  • the recombination lifetime (LT) was measured.
  • a microwave photoconductive decay method ( ⁇ -PCD method) was used to measure the recombination lifetime.
  • ⁇ -PCD method first, a light pulse with energy larger than the band gap of silicon single crystal is irradiated to generate excess carriers in the silicon single crystal substrate. Although the conductivity of the wafer increases due to the generated excess carriers, the conductivity decreases after the excess carriers disappear due to recombination over time. This change can be detected as a time change of reflected microwave power (excess carrier attenuation curve) and analyzed to determine the recombination lifetime.
  • the time (1 / e lifetime) until the reflected microwave power attenuates to 1 / e at the time of light pulse irradiation was determined as the recombination lifetime.
  • the measuring apparatus used what is marketed.
  • FIG. 2 The relationship between the recombination lifetime LT and the heat treatment time of the heat treatment step B is shown in FIG.
  • the conditions (temperature / hour) of the heat treatment step A are as shown in FIG. 2 (a) at 1000 ° C./1 hour, FIG. 2 (b) at 1050 ° C./1 hour, FIG. 2 (c) at 1050 ° C./2 hour, FIG. (D) is 1050 ° C./4 hours, FIG. 2 (e) is 1150 ° C./1 hour, FIG. 2 (f) is 1150 ° C./2 hours, and FIG. 2 (g) is 1150 ° C./4 hours.
  • the difference in symbols in FIG. 2 indicates the difference between silicon single crystal substrates, ⁇ indicates FZ-A, ⁇ indicates FZ-B, ⁇ indicates FZ-C, ⁇ indicates FZ-D, and * indicates MCZ. There is.
  • the relationship between the recombination lifetime LT and the bulk nitrogen concentration after the heat treatment step A (before the particle beam irradiation step) Is shown in FIG.
  • the conditions (temperature / hour) of heat treatment step B are as follows: (a) no heat treatment, (b) 360 ° C./15 minutes, (c) 360 ° C./30 minutes, (d) 360 ° C./45 minutes .
  • the difference in symbols in FIG. 3 indicates the difference in FZ substrate, ⁇ indicates FZ-A, and ⁇ indicates FZ-B.
  • FIG. 4 the relationship between the recombination lifetime LT and the bulk nitrogen concentration after the heat treatment step A (before the particle beam irradiation step) is shown in FIG. Shown in.
  • the conditions (temperature / hour) of heat treatment step B are as follows: (a) no heat treatment, (b) 360 ° C./15 minutes, (c) 360 ° C./30 minutes, (d) 360 ° C./45 minutes .
  • the symbol differences in FIG. 4 indicate the differences of the FZ substrate, and ⁇ indicates the case of FZ-C, and ⁇ indicates the case of FZ-D.
  • the bulk nitrogen concentration of the FZ substrate is 2 ⁇ 10 14 atoms / cm before the particle beam irradiation step in the heat treatment step A. If adjusted to 3 or less, regardless of the difference in raw materials and nitrogen concentration during crystal growth of FZ silicon single crystal, and also between the FZ method and the MCZ method without addition of nitrogen, the recombination lifetime is highly accurate. It can be seen that it can be controlled.
  • the nitrogen concentration of the silicon single crystal substrate is adjusted before the particle beam irradiation step according to the oxygen concentration of the silicon single crystal substrate which controls the recombination lifetime, the recombination lifetime is controlled with high accuracy. As a result, the variation in recombination lifetime due to the silicon single crystal substrate can be reliably reduced.
  • the nitrogen concentration of the silicon single crystal substrate before the particle beam irradiation step is adjusted by heat treatment step A after preparing the silicon single crystal substrate, discharge prevention in the furnace and generation of crystal defects during silicon single crystal growth. It is not necessary to reduce the concentration of nitrogen which is necessary for suppressing the growth of silicon single crystals, and the deterioration of productivity and quality of silicon single crystals can be avoided.
  • I and V interstitial silicon
  • I and V interstitial silicon
  • V vacancies
  • V and substitutional phosphorus Ps react to form VP (V + Ps ⁇ VP) as a defect associated with the vacancy V.
  • V may react with interstitial oxygen Oi to form VO (V + Oi ⁇ VO), and further, V may react with VO to form V 2 O (V + VO ⁇ V 2 O). Further, Vs react with each other to form VV (V + V ⁇ VV).
  • V and N react to form VN (V + N ⁇ VN). Since reactions of V and P, O, or N compete with each other, if VN is likely to be formed when the nitrogen concentration is high, other complexes related to V may be less likely to be formed.
  • I reacts with substitutional boron Bs to form interstitial boron Bi (I + Bs ⁇ Bi), and further Bi reacts with Oi to form BiOi ( It is known that Bi + Oi ⁇ BiOi).
  • I reacts with substitutional carbon Cs to form interstitial carbon Ci (I + Cs ⁇ Ci), and further, Ci and Oi, and Ci and Cs react to form CiOi and CiCs. (Ci + Oi ⁇ CiOi, Ci + Cs ⁇ CiCs).
  • I react with each other to form an I cluster (I + I + ... ⁇ In).
  • the reaction of V and N may suppress the recombination of V and I, and as a result, a complex in which I is associated may be likely to be formed.
  • the thermally unstable composite is easily formed by the high energy particle beam irradiation, so that the composite is formed by the subsequent heat treatment. Is likely to disappear and the recombination lifetime after heat treatment is considered to be high.
  • FZ substrates FZ-A, FZ-B, FZ-C, and FZ-D
  • the oxygen concentration is 0.3 ppma for FZ-A, 0.2 ppma for FZ-B, and less than 0.1 ppma for FZ-C and FZ-D
  • the nitrogen concentration is 3.9 ⁇ 10 14 atoms for FZ-A / Cm 3
  • FZ-B is 3.1 ⁇ 10 15 atoms / cm 3
  • FZ-C is 3.6 ⁇ 10 14 atoms / cm 3
  • FZ-D is 2.3 ⁇ 10 15 atoms / cm 3 .
  • heat treatment step A For FZ substrates (FZ-A, FZ-B) with an oxygen concentration of 0.1 ppma or more, heat treatment process A is performed prior to the particle beam irradiation process so that the bulk nitrogen concentration is 2 ⁇ 10 15 atoms / cm 3 or less. went.
  • the temperature of the heat treatment step A was 1050 ° C.
  • the time was 4 hours
  • the atmosphere was oxygen.
  • the FZ substrate is inserted into a furnace maintained at 900 ° C., the temperature is increased from 900 ° C. to 1050 ° C. at a rate of 5 ° C./min, and maintained at 1050 ° C. for 4 hours. The temperature was lowered at a rate of -3 ° C / min, and the FZ substrate was taken out of the furnace.
  • the heat treatment process is performed so that the bulk nitrogen concentration becomes 2 ⁇ 10 14 atoms / cm 3 or less before the particle beam irradiation process.
  • I did A the temperature of the heat treatment step A was 1150 ° C., the time was 4 hours, and the atmosphere was oxygen.
  • the FZ substrate is inserted into a furnace maintained at 900 ° C., the temperature is raised from 900 ° C. to 1150 ° C. at a rate of 5 ° C./min, and held at 1150 ° C. for 4 hours. The temperature was lowered at a rate of -3 ° C / min, and the FZ substrate was taken out of the furnace.
  • the FZ substrate after the heat treatment step A was irradiated with an electron beam (particle beam irradiation step).
  • the irradiation dose of the electron beam was 1 ⁇ 10 15 / cm 2
  • the acceleration voltage of the electron beam was 2 MV.
  • the bulk nitrogen concentration was measured by SIMS after polishing and removing about half (about 360 ⁇ m) of the thickness from the surface side of another FZ substrate subjected to the heat treatment step A simultaneously with the FZ substrate subjected to the electron beam irradiation. .
  • the bulk nitrogen concentration of the FZ substrate with an oxygen concentration of 0.1 ppma or more is lower than the lower limit of detection (4 ⁇ 10 13 atoms / cm 3 ) for FZ-A, and 9.1 ⁇ 10 14 atoms / cm for FZ-B. 3 next, it was confirmed that the bulk nitrogen concentration meets 2 ⁇ 10 15 atoms / cm 3 the following conditions.
  • the bulk nitrogen concentration of the FZ substrate with an oxygen concentration of less than 0.1 ppma is below the lower detection limit (4 ⁇ 10 13 atoms / cm 3 ) for both FZ-C and FZ-D, and the bulk nitrogen concentration is 2 ⁇ 10 14 atoms. It could be confirmed that the condition of / cm 3 or less was satisfied.
  • a recovery heat treatment was performed on the FZ substrate irradiated with the electron beam (heat treatment step B).
  • the temperature of the recovery heat treatment was 360 ° C., the time was 30 minutes, and the atmosphere was nitrogen.
  • the prepared FZ substrate was subjected to heat treatment (heat treatment step A ′).
  • heat treatment step A ′ without considering the adjustment of the nitrogen concentration before the particle beam irradiation step, all FZ substrates were heat treated under the same conditions, the temperature was 1000 ° C., the time was 1 hour, and the atmosphere was oxygen.
  • the FZ substrate is inserted into a furnace maintained at 900 ° C., the temperature is raised from 900 ° C. to 1000 ° C. at a rate of 5 ° C./min, and maintained at 1000 ° C. for 1 hour, then 1000 ° C. to 900 ° C. The temperature was lowered at a rate of -3 ° C / min, and the FZ substrate was taken out of the furnace.
  • electron beam irradiation step was performed under the same conditions as in the example, and a recovery heat treatment (heat treatment step B) was performed.
  • the bulk nitrogen concentration is measured by SIMS after polishing and removing about half (about 360 ⁇ m) of the thickness from the surface side of another FZ substrate subjected to the heat treatment step A ′ simultaneously with the FZ substrate subjected to the electron beam irradiation. did.
  • FZ-A is 3.1 ⁇ 10 14 atoms / cm 3
  • FZ-B is 3.1 ⁇ 10 15 atoms / cm 3
  • FZ-C is 3.6 ⁇ 10 14 atoms / cm 3
  • FZ ⁇ D is 2.3 ⁇ 10 15 atoms / cm 3
  • the above conditions in the present invention were not satisfied in FZ substrates other than FZ-A.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and it has substantially the same configuration as the technical idea described in the claims of the present invention, and any one having the same function and effect can be used. It is included in the technical scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本発明は、FZ法により育成された窒素添加のシリコン単結晶からシリコン単結晶基板を準備する準備工程と、熱処理を施す熱処理工程Aと、シリコン単結晶基板に粒子線を照射する粒子線照射工程と、シリコン単結晶基板を熱処理する熱処理工程Bとを行うことで、シリコン単結晶基板のキャリアの再結合ライフタイムを制御する再結合ライフタイムの制御方法であって、準備工程で準備されたシリコン単結晶基板の酸素濃度Coに応じて、熱処理工程Aにおいて、シリコン単結晶基板中の窒素を外方拡散させることによりシリコン単結晶基板の窒素濃度Cnを調整し、その後、粒子線照射工程を行うことを特徴とする再結合ライフタイムの制御方法である。これにより、窒素添加FZシリコン単結晶基板に起因した再結合ライフタイムのばらつきを確実に小さくでき、再結合ライフタイムを高精度で制御できる再結合ライフタイムの制御方法が提供される。

Description

再結合ライフタイムの制御方法
 本発明は、シリコン単結晶基板におけるキャリアの再結合ライフタイムの制御方法に関する。
 絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transister:IGBT)やダイオード等のパワーデバイスにおいては、シリコン基板中にキャリアの再結合中心となる欠陥を意図的に導入して、キャリアの再結合ライフタイムを短く制御することによって、スイッチング速度を高速化し、結果的にスイッチング損失を低減させる技術が従来から用いられている。
 再結合ライフタイムを制御する方法として、金や白金などの重金属不純物を基板中に拡散させる方法と、電子線、プロトン、ヘリウムイオンなどの荷電粒子線(粒子線と呼ぶ場合もある)を照射する方法がある。重金属不純物を拡散させる方法では、その濃度や深さ方向の分布、面内均一性などの制御が難しいことから、近年では、荷電粒子線照射が用いられることが多くなっている(特許文献1~3参照)。荷電粒子線を照射する場合は、複数種の、再結合中心となる欠陥が室温付近で導入され、その中には熱的に不安定な欠陥種も存在するため、荷電粒子線の照射後に更に熱処理(回復熱処理と呼ぶ場合もある)を施すことで、熱的に不安定な欠陥を消滅させたり、欠陥濃度を調整することにより、再結合ライフタイムの目標の値が得られるようにする。
 例えば、特許文献3では、ダイオードの逆回復時間を短縮するために、電子線照射による結晶欠陥を残留させる熱処理条件にて熱処理し、キャリアの再結合ライフタイムを0.1~1(μsec)程度としてもよいことが記載されている。また、特許文献3には、この場合の熱処理条件を、例えば、熱処理温度を350℃以上380℃未満、熱処理時間を0.5時間から2時間程度とするとよいことが記載されている。また、特許文献4では、熱処理温度が400℃以上であれば、プロトンを照射したウェーハのライフタイムは10μs前後であり、ダイオードの順電圧、逆回復損失等の制御の点から望ましいことが記載されている。
 パワーデバイスにおけるスイッチング損失と定常損失とはトレードオフの関係にあることから、全体の損失を低減するためには、再結合ライフタイムの厳密な制御が必要となる。
 また、パワーデバイスの耐圧特性には、シリコン基板の抵抗率ばらつきの原因となるシリコン単結晶基板中の酸素ドナーの形成が問題になるため、高性能のデバイスには、酸素をほとんど含まないFZ(Floating Zone)シリコン単結晶基板やCZ法に磁場を印加したMCZ法で極低酸素濃度としたシリコン単結晶基板が多く用いられる。
 このとき、FZシリコン単結晶基板では、結晶育成時の炉内での放電防止、結晶育成時に導入される結晶欠陥の低減、ウェーハ強度の向上のために、結晶育成時に窒素が添加される場合が多い(特許文献5)。育成された単結晶に導入される窒素の濃度は、結晶育成時の雰囲気ガスの調整により制御される。
特開平11-135509号公報 特開2000-200792号公報 国際公開第2013/100155号 国際公開第2007/055352号 特開2017-122033号公報 特開2015-198166号公報 特開2016-127192号公報
清井他,第61回応用物理学会春季学術講演会 講演予稿集,19p-F9-14. 湊他,第4回パワーデバイス用シリコンおよび関連半導体材料に関する研究会 p.77. K.Takano et al.,Proceeding of the 27th International Symposium on Power Semiconductor Devices & IC’s,2015,p.129. 杉山他,シリコンテクノロジーNo.87,p.6. 杉江他,シリコンテクノロジーNo.148,p.11. N.Inoue et al.,Physica B 401-402(2007),p.477.
 しかしながら、粒子線照射の条件や、粒子線照射後の熱処理の条件を同じにしても、デバイス特性がばらつくという問題があった(非特許文献1~3)。再結合ライフタイムのばらつきは、デバイス特性のばらつきに直接影響するので、再結合ライフタイムのばらつきを改善することが極めて重要な課題である。特に近年では、半導体デバイスの高性能化に伴い、再結合ライフタイムを高精度で制御し、そのばらつきをできる限り小さくする必要がある。
 再結合ライフタイムのばらつき要因として、シリコン基板自体に含まれる何らか物質が要因として疑われており、特に炭素や酸素の不純物の影響が懸念されている。
 特に、電子線やヘリウムイオンなどの粒子線をシリコン基板に照射することでキャリアの再結合ライフタイムを制御するパワーデバイスでは、0.05ppma以下の極微量の炭素がデバイス特性に悪影響を及ぼすことが指摘されている(非特許文献4~6参照)。このことから、シリコン単結晶基板に含まれる炭素をできる限り低減することが重要であると考えられている。
 また、非特許文献1では、同じ再結合ライフタイム制御を行った場合でも、スイッチング損失にウェーハ依存が発生することがある問題を指摘し、電子線照射により生成する主要な欠陥(CsI、CiCs、又はCiOi)のうち、CiOiのみ活性化エネルギーにウェーハ依存があり、酸素濃度が高い場合に活性化が高くなる傾向があるため、酸素不純物がウェーハ依存の要因になると考えられる、としている(但し、Cs:置換型炭素、Ci:格子間型炭素、Oi:格子間型酸素、I:格子間シリコンである)。
 しかしながら、再結合ライフタイムのばらつきに対しては、これらの炭素や酸素の不純物が主要因であるか否か、実際には明らかになっていない。
 特許文献6では、再結合ライフタイムの制御方法として、CZシリコン単結晶基板のドーパント濃度、或いは、ドーパント濃度と酸素濃度の両方を調整することにより、再結合ライフタイムを高精度で制御することができ、FZシリコン単結晶基板と同等の再結合ライフタイムを得ることが可能となる制御方法が記載されている。
 しかしながら、特許文献6では、窒素添加FZシリコン単結晶基板における再結合ライフタイムのばらつき要因や制御方法が明らかではないという問題があった。
 また、特許文献7では、シリコン基板に起因した再結合ライフタイムのばらつきを小さくでき、再結合ライフタイムを高精度で制御できるシリコン基板の選別方法が記載されている。この方法では、粒子線照射工程後の再結合ライフタイムLT0と回復熱処理後の再結合ライフタイムLT1の比(LT1/LT0)が基準値LT2以下の場合に合格と判定する。
 しかしながら、特許文献7に記載されたシリコン基板の選別方法では、特許文献7の図7に示されているように、酸素濃度が0.4ppma以下となるようなFZシリコン単結晶基板は、不合格となる確率が極めて高いという問題があった。また、酸素濃度が0.4ppma以下となるようなFZシリコン単結晶基板でも、再結合ライフタイムのばらつきを小さくできる有効な技術がなかった。
 本発明は、前述のような問題に鑑みてなされたもので、キャリアの再結合ライフタイムを制御するパワーデバイスの製造工程において、窒素添加FZシリコン単結晶基板に起因した再結合ライフタイムのばらつきを確実に小さくでき、再結合ライフタイムを高精度で制御できる再結合ライフタイムの制御方法を提供することを目的とする。
 上記課題を解決するために、本発明は、浮遊帯溶融法(FZ法)により育成された窒素添加のシリコン単結晶からシリコン単結晶基板を準備する準備工程と、該準備したシリコン単結晶基板に熱処理を施す熱処理工程Aと、該熱処理工程A後の前記シリコン単結晶基板に粒子線を照射する粒子線照射工程と、該粒子線照射工程後の前記シリコン単結晶基板を熱処理する熱処理工程Bとを行うことで、シリコン単結晶基板のキャリアの再結合ライフタイムを制御する再結合ライフタイムの制御方法であって、
 前記準備工程で準備された前記シリコン単結晶基板の酸素濃度Coに応じて、前記熱処理工程Aにおいて、前記熱処理によって前記シリコン単結晶基板中の窒素を外方拡散させることにより前記シリコン単結晶基板の窒素濃度Cnを調整し、その後、窒素濃度Cnが調整された前記シリコン単結晶基板に対し、前記粒子線照射工程を行うことを特徴とする再結合ライフタイムの制御方法を提供する。
 このように、FZ法により育成された窒素添加のシリコン単結晶から準備されたシリコン単結晶基板(窒素添加FZシリコン単結晶基板)の酸素濃度Coに応じて、熱処理工程Aにより、粒子線照射工程前の段階でシリコン単結晶基板の窒素濃度Cnを調整することにより再結合ライフタイムを制御すれば、シリコン基板に起因する再結合ライフタイムのばらつきを確実に小さくすることができる。
 またこのとき、前記準備工程で準備されたシリコン単結晶基板の酸素濃度Coが0.1ppma未満の場合は、前記熱処理工程Aにおいて、該熱処理工程A後の前記シリコン単結晶基板の窒素濃度Cnが2×1014atoms/cm未満となるように前記熱処理を施して窒素を外方拡散させ、前記準備工程で準備されたシリコン単結晶基板の酸素濃度Coが0.1ppma以上の場合は、前記熱処理工程Aにおいて、該熱処理工程A後の前記シリコン単結晶基板の窒素濃度Cnが2×1015atoms/cm未満となるように前記熱処理を施して窒素を外方拡散させ、その後、前記粒子線照射工程を行うことが好ましい。
 このように、シリコン単結晶基板の酸素濃度Coが0.1ppma未満の場合は、熱処理工程Aにおいて、熱処理工程A後(粒子線照射工程の前)にシリコン単結晶基板の窒素濃度Cnが2×1014atoms/cm未満となるように調整すれば、また、シリコン単結晶基板の酸素濃度Coが0.1ppma以上の場合は、熱処理工程Aにおいて、熱処理工程A後(粒子線照射工程の前)にシリコン単結晶基板の窒素濃度Cnが2×1015atoms/cm未満となるように調整すれば、シリコン単結晶基板に起因する再結合ライフタイムのばらつきをより確実に小さくすることができる。
 本発明の再結合ライフタイムの制御方法であれば、粒子線照射工程の前に、窒素添加FZシリコン単結晶基板の酸素濃度Coに応じてシリコン単結晶基板の窒素濃度を調整することにより、再結合ライフタイムを高精度で制御することができるので、シリコン単結晶基板に起因する再結合ライフタイムのばらつきを確実に小さくすることができる。また、シリコン単結晶基板を準備した後の熱処理工程により、粒子線照射工程前のシリコン単結晶基板の窒素濃度を調整するので、シリコン単結晶育成時において、炉内の放電防止や結晶欠陥発生の抑制などに必要な窒素の濃度を低減させる必要がなく、シリコン単結晶の生産性や品質の悪化を避けることができる。また本発明は、窒素添加FZシリコン基板の再結合ライフタイムを制御するにあたり、シリコン単結晶育成時の窒素濃度が異なる場合でも再結合ライフタイムを高精度で制御することができるので、特に窒素添加FZシリコン基板をパワーデバイス用に使用する際に好適である。
本発明のシリコン単結晶基板の再結合ライフタイムの制御方法を示すフロー図である。 実験例において測定した再結合ライフタイムLTと熱処理工程Bの熱処理時間との関係を示したグラフである。 実験例において測定した酸素濃度が0.1ppma以上の場合(FZ-A、FZ-B)の、再結合ライフタイムLTと熱処理工程A後(粒子線照射工程前)のバルク窒素濃度との関係を示したグラフである。 実験例において測定した酸素濃度が0.1ppma未満の場合(FZ-C、FZ-D)の、再結合ライフタイムLTと熱処理工程A後(粒子線照射工程前)のバルク窒素濃度との関係を示したグラフである。
 以下、本発明について実施の形態を詳細に説明するが、本発明はこれらに限定されるものではない。
 上記のように、従来技術では、粒子線照射の条件と粒子線照射後の熱処理の条件を調整することによってキャリアの再結合ライフタイムを制御しており、この場合、シリコン単結晶基板に起因する何らかの要因で、再結合ライフタイムのばらつきが生じるという問題があった。
 本発明者は鋭意検討を重ねたところ、シリコン単結晶基板に粒子線照射とその後の熱処理を施した場合の再結合ライフタイムは、従来のばらつき要因と考えられていた炭素濃度がほぼ同じ場合でも、再結合ライフタイムがばらつき、シリコン単結晶基板の窒素濃度に強く依存することを見出し、本発明を完成させた。
 すなわち、MCZ法で製造したシリコン単結晶は窒素を添加して製造する必要がないため、窒素による再結合ライフタイムのばらつきの問題はないが、FZ法では窒素を添加してシリコン単結晶を製造する必要があり、これがFZシリコン単結晶基板の再結合ライフタイムのばらつきの原因となっていること、更には、酸素濃度に応じて、再結合ライフタイムの窒素濃度依存性が異なることを見出した。そして、このFZ法で製造したシリコン単結晶基板特有の問題を解決することで本発明を完成させた。
 即ち、本発明は、浮遊帯溶融法(FZ法)により育成された窒素添加のシリコン単結晶からシリコン単結晶基板を準備する準備工程と、該準備したシリコン単結晶基板に熱処理を施す熱処理工程Aと、該熱処理工程A後の前記シリコン単結晶基板に粒子線を照射する粒子線照射工程と、該粒子線照射工程後の前記シリコン単結晶基板を熱処理する熱処理工程Bとを行うことで、シリコン単結晶基板のキャリアの再結合ライフタイムを制御する再結合ライフタイムの制御方法であって、
 前記準備工程で準備された前記シリコン単結晶基板の酸素濃度Coに応じて、前記熱処理工程Aにおいて、前記熱処理によって前記シリコン単結晶基板中の窒素を外方拡散させることにより前記シリコン単結晶基板の窒素濃度Cnを調整し、その後、窒素濃度Cnが調整された前記シリコン単結晶基板に対し、前記粒子線照射工程を行うことを特徴とする再結合ライフタイムの制御方法である。
 以下、図1を参照し、本発明の再結合ライフタイムの制御方法を説明する。
 まず、FZ法により育成された窒素添加のシリコン単結晶からシリコン単結晶基板を準備する(図1のS1)。ここで用意するシリコン単結晶基板の仕様(直径、厚み、抵抗率など)は、本発明において特に限定されない。例えば、半導体デバイス側からの要求に沿った仕様とすることができる。
 また、このシリコン単結晶基板を用意する方法は、本発明において特に限定されない。例えば、シリコン単結晶からシリコンウェーハを切り出し、切断ダメージを取り除くためにシリコンウェーハに化学的エッチング処理を行った後、化学的機械的研磨を行うことによりシリコン単結晶基板を用意できる。
 次に、シリコン単結晶基板に熱処理を施す熱処理工程Aを行う(図1のS2)。
 この熱処理工程Aにおいて、準備工程で準備されたシリコン単結晶基板の酸素濃度Coに応じて、シリコン単結晶基板中の窒素を外方拡散させることにより、粒子線照射工程の前にシリコン単結晶基板の窒素濃度を調整する。
 熱処理工程Aの条件は、準備工程で準備された前記シリコン単結晶基板の酸素濃度Coに応じて決定され、準備工程で準備したシリコン単結晶基板の酸素濃度Coが0.1ppma未満の場合には、熱処理工程A後の窒素濃度Cnが2×1014atoms/cm未満となるように決定することが好ましい。また、準備工程で準備したシリコン単結晶基板の酸素濃度Coが0.1ppma以上の場合には、熱処理工程A後の窒素濃度Cnが2×1015atoms/cm未満となるように決定することが好ましい。
 FZ法により育成された窒素添加のシリコン単結晶から準備されたシリコン単結晶基板の酸素濃度Coの上限は特に限定されないが、例えば1ppma未満とすることができる。
 何れの酸素濃度Coの場合も、窒素濃度Cnの下限は限定されない。ここで、熱処理工程A後の窒素濃度は、再結合ライフタイムを調整する領域における窒素濃度である。半導体デバイスの製造工程において、粒子線照射工程の前に、研削等によりシリコン単結晶基板を薄板化した場合には、薄板化された後の再結合ライフタイムを調整する領域における窒素濃度である。
 また、熱処理工程Aは、1回の熱処理工程に限定されるものではなく、複数回の熱処理工程を行っても良い。半導体デバイスの製造工程の前に行っても良いし、半導体デバイスの製造工程中に行っても良い。また、半導体デバイスの製造工程の前と製造工程中の熱処理工程の組合せにより行っても良い。
 熱処理工程Aにおいて重要なことは、準備工程で準備したシリコン単結晶基板の酸素濃度Coに応じて、シリコン単結晶基板中の窒素を外方拡散させることにより、粒子線照射工程前のシリコン単結晶基板の窒素濃度Cnを調整すること、特には、準備工程で準備したシリコン単結晶基板の酸素濃度Coと粒子線照射工程前のシリコン単結晶基板の窒素濃度Cnとの関係が前記の条件を満たすようにすることである。
 このようにすることで、窒素添加FZシリコン単結晶基板に起因した再結合ライフタイムのばらつきを確実に小さくでき、再結合ライフタイムを高精度で制御できる。一方、粒子線照射工程前の窒素濃度の調整を考えずに、シリコン単結晶基板の酸素濃度Coに関係なく同一条件で熱処理を施すと、窒素添加FZシリコン単結晶基板に起因した再結合ライフタイムのばらつきが大きくなる場合が生じる。
 熱処理工程Aは、シリコン単結晶基板中の窒素を外方拡散させることができ、かつ、準備工程で準備したシリコン単結晶基板の酸素濃度Coに応じて決められた条件であれば、如何なる条件でも構わないが、特に、準備工程で準備したシリコン単結晶基板の酸素濃度Coと粒子線照射工程前のシリコン単結晶基板の窒素濃度Cnとの関係が、前記の条件を満たすような熱処理条件とすることが好ましい。例えば、1回の熱処理で行う場合は、温度を1050℃以上として、時間を2時間以上として、シリコン単結晶基板の酸素濃度Coに応じて決定することができる。熱処理工程Aにおける熱処理の温度が高いほど窒素の拡散速度が速くなるので効率的である。熱処理工程Aの温度が高く時間が長いほど、シリコン単結晶基板の窒素濃度は減少する。
 本発明において、熱処理工程A後のシリコン単結晶基板の窒素濃度の下限は限定されないので、熱処理工程Aの熱処理温度および時間の上限は限定されない。生産性やコスト、スリップ転位発生の防止など他の品質を考慮して決めることができる。
 特許文献6や特許文献7では、再結合ライフタイムを測定する測定工程において、表面再結合を抑制するために酸化膜パシベーションを用いる場合は、粒子線照射工程の前にシリコン単結晶基板の表面に酸化膜を形成することができると記載されている。また、酸化膜は、酸化性雰囲気の熱処理により形成することができ、酸化膜形成熱処理の条件は、例えば、温度を900℃以上1100℃以下、時間を10分以上60分以下とすることができると記載されている。さらに、酸化膜パシベーションを用いず、熱処理を伴わないケミカルパシベーションを用いることができると記載されている。
 特許文献6や特許文献7に記載された酸化膜パシベーション用の酸化膜形成熱処理においても、シリコン単結晶基板中の窒素は外方拡散する。しかしながら、これらの熱処理条件は、シリコン単結晶基板の酸素濃度Coに応じて決定されたものではなく、特許文献6や特許文献7に記載された酸化膜形成熱処理の条件では、本発明における熱処理工程Aの目的を達成するには不十分な場合があり、結果的にシリコン単結晶基板に起因する再結合ライフタイムのばらつきを小さくできない場合が生じる。
 本来、再結合ライフタイムを厳密に制御するためには、粒子線照射を行う段階でのシリコン単結晶基板の酸素濃度と窒素濃度との関係が重要である。但し、シリコン単結晶基板中の酸素は拡散速度が遅いため、熱処理工程A後(粒子線照射工程前)のバルク酸素濃度は、準備工程で準備した段階での初期の酸素濃度とほとんど変わらない。そのことから、本発明では、準備工程で準備したシリコン単結晶基板の酸素濃度Coは熱処理工程A後(粒子線照射工程前)のシリコン単結晶基板の酸素濃度Coと同じとして扱ってよい。
 次に、熱処理工程A後のシリコン単結晶基板に対して、粒子線を照射する粒子線照射工程(図1のS3)と、粒子線照射工程後に熱処理を施す熱処理工程B(図1のS4)を行う。
 ここで行う粒子線照射工程と熱処理工程Bの条件は、本発明において特に限定されない。半導体デバイス側からの要求を満たすように決定することができ、例えば、粒子線照射工程では、粒子線として電子線を、1×1014~3×1015/cmの線量で、0.5~2MeVの加速電圧で照射することができる。また、プロトンやヘリウムイオンを照射することもできる。
 熱処理工程Bは、粒子線照射工程で生成された再結合中心の一部を消滅させ、再結合ライフタイムを回復させるための熱処理工程であり、例えば、温度を300~400℃、時間を10~60分、雰囲気を窒素、酸素、あるいは水素などとすることができる。
 以上のような、本発明の再結合ライフタイムの制御方法であれば、再結合ライフタイムを高精度で制御することができ、シリコン単結晶基板に起因した再結合ライフタイムのばらつきを確実に小さくすることができる。
 本発明において、再結合ライフタイムを高精度で制御し、シリコン単結晶基板に起因するライフタイムのばらつきを確実に小さくするために、上述のような再結合ライフタイムの制御方法を用いる理由は、以下のような実験により得られた知見による。
(実験例)
 FZ法により育成された、複数の窒素添加のシリコン単結晶からシリコン単結晶基板(FZ基板と呼ぶ場合もある)を用意した。また、比較のため、MCZ法により育成された窒素無添加のシリコン単結晶からシリコン単結晶基板(MCZ基板と呼ぶ場合もある)を用意した。何れのシリコン単結晶基板も、直径は200mm、結晶面方位は(100)、厚みは720~730μm、導電型はn型(リン添加)、抵抗率は63~71Ω・cmである。
 各々のシリコン単結晶基板の酸素濃度、炭素濃度、および窒素濃度は、下表の通りである。酸素濃度は赤外吸収法により測定し(換算係数:JEIDA)、炭素濃度および窒素濃度は二次イオン質量分析法(SIMS)により測定した。表に示した各々の濃度は、シリコン単結晶基板を用意した段階(熱処理工程Aの前)の濃度である(初期濃度と呼ぶ場合もある)。
Figure JPOXMLDOC01-appb-T000001
 酸素濃度が0.1ppma以上のFZ基板(FZ-A、FZ-B)は、CZ法により育成されたシリコン単結晶インゴットを原料として、FZ法により育成されたシリコン単結晶から製造されたものである。また、酸素濃度が0.1ppma未満のFZ基板(FZ-C、FZ-D)は、通常の多結晶シリコンインゴットを原料として、FZ法により育成されたシリコン単結晶から製造されたものである。
 次に、用意したシリコン単結晶基板に熱処理を施した(熱処理工程A)。熱処理条件(温度/時間)は、1000℃/1時間、1050℃/1時間、1050℃/2時間、1050℃/4時間、1150℃/1時間、1150℃/2時間、1150℃/4時間とし、雰囲気は酸素とした。但し、MCZ基板に関しては、窒素無添加であることから、1000℃/1時間の条件のみ行った。熱処理工程Aの何れの熱処理条件においても、900℃に保持された炉内にシリコン単結晶基板を挿入し、900℃から各温度まで5℃/分の速度で昇温し、各温度で各時間保持した後、各温度から900℃まで-3℃/分の速度で降温し、炉内からシリコン単結晶基板を取り出した。
 次に、熱処理工程A後のシリコン単結晶基板に電子線を照射した(粒子線照射工程)。このとき、電子線の照射線量は1×1015/cmとし、電子線の加速電圧は2MVとした。
 また、前記電子線照射を行ったシリコン単結晶基板と同時に熱処理工程Aを行った別のシリコン単結晶基板において、表面側から厚みのおよそ半分(約360μm)まで研磨して除去した後、SIMSにより窒素濃度を測定することで、熱処理工程A後(粒子線照射工程前)のバルク窒素濃度(基板の厚み方向中央付近の窒素濃度)を求めた。
 次に、電子線照射したシリコン単結晶基板に回復熱処理を施した(熱処理工程B)。熱処理の温度は360℃とし、雰囲気は窒素、時間は0~45分の範囲で振った。その後、再結合ライフタイム(LT)を測定した。
 再結合ライフタイムの測定には、マイクロ波光導電減衰法(Microwave Photo Conductive Decay method:μ-PCD法)を用いた。このμ―PCD法では、先ずシリコン単結晶のバンドギャップよりも大きなエネルギーの光パルスを照射し、シリコン単結晶基板中に過剰キャリアを発生させる。発生した過剰キャリアによりウェーハの導電率が増加するが、その後、時間経過に伴い過剰キャリアが再結合によって消滅することで導電率が減少する。この変化を反射マイクロ波パワーの時間変化(過剰キャリア減衰曲線)として検出し、解析することにより再結合ライフタイムを求めることができる。
 再結合ライフタイムは、過剰キャリアの濃度が、再結合により1/e(=0.368)に減衰するまでの時間として定義される(JEIDA-53-1997“シリコンウェーハの反射マイクロ波光導電減衰法による再結合ライフタイム測定方法”)。本実験では、反射マイクロ波パワーが光パルス照射時の1/eに減衰するまでの時間(1/eライフタイム)を再結合ライフタイムとして求めた。測定装置は市販されているものを用いた。
 再結合ライフタイムLTと熱処理工程Bの熱処理時間との関係を図2に示す。熱処理工程Aの条件(温度/時間)は、図2(a)が1000℃/1時間、図2(b)が1050℃/1時間、図2(c)が1050℃/2時間、図2(d)が1050℃/4時間、図2(e)が1150℃/1時間、図2(f)が1150℃/2時間、図2(g)が1150℃/4時間である。図2におけるシンボルの違いはシリコン単結晶基板の違いを示しており、○はFZ-A、△はFZ-B、□はFZ-C、◇はFZ-D、*はMCZの場合を示している。
 図2から、熱処理工程Aの条件が1000℃/1時間の場合[図2(a)]、熱処理工程Bの熱処理時間に対するLTの変化がシリコン単結晶基板の違いにより大きく異なることがわかる。これは、電子線照射とその後の回復熱処理の条件が同じでも、シリコン単結晶基板に起因してLTが大きくばらつくことを示している。また、熱処理工程Aの前のFZ基板の窒素濃度が高く酸素濃度が低いほど、熱処理工程Bの熱処理時間に対するLTの変化量が大きくなることがわかる。これは、FZ基板の炭素濃度がほぼ同じでも、窒素濃度や酸素濃度によってLTが大きくばらつくことを示しており、FZ基板においては、窒素濃度および酸素濃度がLTばらつきの主要因であることを示している。さらに、熱処理工程Aの熱処理温度が高く熱処理時間が長くなるに従って、熱処理工程Bの熱処理時間に対するLTの変化が小さくなり、FZ基板の違いによるLTのばらつきが極めて小さくなるとともに、FZ基板と窒素無添加のMCZ基板の違いによるLTの差も極めて小さくなることがわかる。
 次に、酸素濃度が0.1ppma以上のFZ基板(FZ-A、FZ-B)の場合について、再結合ライフタイムLTと熱処理工程A後(粒子線照射工程前)のバルク窒素濃度との関係を図3に示す。熱処理工程Bの条件(温度/時間)は、(a)が熱処理なし、(b)が360℃/15分、(c)が360℃/30分、(d)が360℃/45分である。図3におけるシンボルの違いはFZ基板の違いを示しており、○はFZ-A、△はFZ-Bの場合を示している。また、比較のため、窒素無添加MCZ基板の場合を*で示した。図3において、バルク窒素濃度が検出下限(4×1013atoms/cm)以下であった場合は、バルク窒素濃度を便宜上2×1013atoms/cmとしてプロットした。
 図3から、酸素濃度が0.1ppma以上の場合は、熱処理工程Bの熱処理時間が長くなると[図3(c)、図3(d)]、バルク窒素濃度とともにLTが長くなるが、バルク窒素濃度が2×1015atoms/cm以下であれば、LTはバルク窒素濃度に依存しないことがわかる。すなわち、酸素濃度が0.1ppma以上の場合は、熱処理工程Aにより、粒子線照射工程前にバルク窒素濃度を2×1015atoms/cm以下に調整することにより、FZ基板の違いによるLTのばらつきが極めて小さくなるとともに、FZ基板と窒素無添加のMCZ基板の違いによるLTの差も極めて小さくできることがわかる。
 次に、酸素濃度が0.1ppma未満の場合(FZ-C、FZ-D)について、再結合ライフタイムLTと熱処理工程A後(粒子線照射工程前)のバルク窒素濃度との関係を図4に示す。熱処理工程Bの条件(温度/時間)は、(a)が熱処理なし、(b)が360℃/15分、(c)が360℃/30分、(d)が360℃/45分である。図4におけるシンボルの違いはFZ基板の違いを示しており、□はFZ-C、◇はFZ-Dの場合を示している。また、比較のため、窒素無添加MCZ基板の場合を*で示した。図4において、バルク窒素濃度が検出下限(4×1013atoms/cm)以下であった場合は便宜上2×1013atoms/cmとしてプロットした。
 図4から、酸素濃度が0.1ppma未満の場合は、熱処理工程Bの熱処理時間が長くなるほどLTのバルク窒素濃度依存性が強くなるが、バルク窒素濃度が2×1014atoms/cm以下であれば、LTはバルク窒素濃度にほとんど依存しないことがわかる。すなわち、酸素濃度が0.1ppma未満の場合は、熱処理工程Aにより、粒子線照射工程前にバルク窒素濃度を2×1014atoms/cm以下に調整することにより、FZ基板の違いによるLTのばらつきが極めて小さくなるとともに、FZ基板と窒素無添加のMCZ基板の違いによるLTの差も極めて小さくできることがわかる。
 さらに、図3と図4の結果を併せると、酸素濃度が0.3ppma以下の場合、熱処理工程Aにより、粒子線照射工程前の段階でFZ基板のバルク窒素濃度を2×1014atoms/cm以下に調整すれば、FZシリコン単結晶の結晶育成時の原料の違いや窒素濃度の違い、さらにはFZ法と窒素無添加のMCZ法の違いにかかわらず、再結合ライフタイムを高精度で制御することができることがわかる。
 以上のように、再結合ライフタイムを制御するシリコン単結晶基板の酸素濃度に応じて、粒子線照射工程前にシリコン単結晶基板の窒素濃度を調整すれば、再結合ライフタイムを高精度で制御することができるので、シリコン単結晶基板に起因する再結合ライフタイムのばらつきを確実に小さくすることができる。また、シリコン単結晶基板を準備した後の熱処理工程Aにより、粒子線照射工程前のシリコン単結晶基板の窒素濃度を調整するので、シリコン単結晶育成時において、炉内の放電防止や結晶欠陥発生の抑制などに必要な窒素の濃度を低減させる必要がなく、シリコン単結晶の生産性や品質の悪化を避けることができる。
 上記のように、電子線照射とその後の熱処理を施した場合の再結合ライフタイムが窒素濃度に依存する理由は、以下のように考えられる。
 シリコン基板に対して、高エネルギーの粒子線を照射すると、格子位置のシリコン原子が弾き出されて、格子間シリコン(以下、Iと称する)とその抜け殻である空孔(以下、Vと称する)が生成される。過剰に生成されたIやVは、単体では不安定なため、再結合したり(V+I→0)、I同士やV同士がクラスタリングしたり、シリコン基板中に含まれる軽元素不純物と反応して複合体を形成する。そして、IやVのクラスターや、IやVと軽元素不純物の複合体は、シリコンのバンドギャップ中に深い準位を形成して、キャリアの再結合中心として働き、再結合ライフタイムを低下させる。
 空孔Vに関連する欠陥として、Vと置換型リンPsが反応してVPが形成される(V+Ps→VP)ことが知られている。また、Vと格子間酸素Oiが反応してVOが形成され(V+Oi→VO)、更に、VとVOが反応してVO(V+VO→VO)が形成される場合もある。また、V同士が反応してVVも形成される(V+V→VV)。窒素が存在する場合には、VとNが反応してVNも形成されることになる(V+N→VN)。VとP、O、あるいはNとの反応はそれぞれ競合するため、窒素濃度が高い場合にVNが形成されやすくなるとすると、Vが関連した他の複合体が形成されにくくなる可能性がある。
 一方、格子間シリコンIが関連する欠陥として、Iと置換型ボロンBsが反応して格子間ボロンBiが形成され(I+Bs→Bi)、更に、BiとOiが反応してBiOiが形成される(Bi+Oi→BiOi)ことが知られている。また、炭素が存在する場合、Iと置換型炭素Csが反応して格子間炭素Ciが形成され(I+Cs→Ci)、更に、CiとOi、CiとCsが反応してCiOi、CiCsが形成される(Ci+Oi→CiOi、Ci+Cs→CiCs)。また、I同士が反応してIクラスターも形成される(I+I+…→In)。窒素が存在する場合には、VとNが反応することにより、VとIの再結合が抑制され、その結果として、Iが関連した複合体が形成されやすくなる可能性がある。
 IやVと軽元素不純物との反応は、それぞれの絶対濃度と濃度バランスに依存するため、極めて複雑であり、どの複合体が優勢になるか推定することは難しい。更に熱処理が施された場合には、複合体の消滅や形態変化が起こるため、更に複雑になる。
 上述の実験例で示されたように、シリコン単結晶基板の窒素濃度が高くなると、高エネルギーの粒子線照射により熱的に不安定な複合体が形成されやすくなるため、その後の熱処理により複合体が消滅しやすくなり、熱処理後の再結合ライフタイムが高くなると考えられる。
以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図1に示すような、本発明の再結合ライフタイムの制御方法でシリコン単結晶基板の再結合ライフタイムの制御を行った。
 まず、準備工程において、酸素濃度と窒素濃度が異なる4水準のFZ基板(FZ-A、FZ-B、FZ-C、FZ-D)を用意した。酸素濃度は、FZ-Aが0.3ppma、FZ-Bが0.2ppma、FZ-C及びFZ-Dが0.1ppma未満であり、窒素濃度は、FZ-Aが3.9×1014atoms/cm、FZ-Bが3.1×1015atoms/cm、FZ-Cが3.6×1014atoms/cm、FZ-Dが2.3×1015atoms/cmである。
 次に、用意したFZ基板に熱処理を施した(熱処理工程A)。
 酸素濃度が0.1ppma以上のFZ基板(FZ-A、FZ-B)においては、粒子線照射工程前にバルク窒素濃度が2×1015atoms/cm以下となるように、熱処理工程Aを行った。この場合、熱処理工程Aの温度は1050℃、時間は4時間、雰囲気は酸素とした。この熱処理では、900℃に保持された炉内にFZ基板を挿入し、900℃から1050℃まで5℃/分の速度で昇温し、1050℃で4時間保持した後、1050℃から900℃まで-3℃/分の速度で降温し、炉内からFZ基板を取り出した。
 また、酸素濃度が0.1ppma未満のFZ基板(FZ-C、FZ-D)においては、粒子線照射工程前にバルク窒素濃度が2×1014atoms/cm以下となるように、熱処理工程Aを行った。この場合、熱処理工程Aの温度は1150℃、時間は4時間、雰囲気は酸素とした。この熱処理では、900℃に保持された炉内にFZ基板を挿入し、900℃から1150℃まで5℃/分の速度で昇温し、1150℃で4時間保持した後、1150℃から900℃まで-3℃/分の速度で降温し、炉内からFZ基板を取り出した。
 次に、熱処理工程A後のFZ基板に電子線を照射した(粒子線照射工程)。このとき、電子線の照射線量は1×1015/cmとし、電子線の加速電圧は2MVとした。
 前記電子線照射を行ったFZ基板と同時に熱処理工程Aを行った別のFZ基板において、表面側から厚みのおよそ半分(約360μm)まで研磨して除去した後、SIMSによりバルク窒素濃度を測定した。その結果、酸素濃度が0.1ppma以上のFZ基板のバルク窒素濃度は、FZ-Aが検出下限(4×1013atoms/cm)以下、FZ-Bは9.1×1014atoms/cmとなり、バルク窒素濃度が2×1015atoms/cm以下の条件を満たしていることが確認できた。また、酸素濃度が0.1ppma未満のFZ基板のバルク窒素濃度は、FZ-C、FZ-Dともに検出下限(4×1013atoms/cm)以下となり、バルク窒素濃度が2×1014atoms/cm以下の条件を満たしていることが確認できた。
 次に、電子線照射したFZ基板に回復熱処理を施した(熱処理工程B)。回復熱処理の温度は360℃、時間は30分、雰囲気は窒素とした。
 次に、熱処理工程B後の再結合ライフタイム(LT)をμ-PCD法により測定した。その結果、FZ-Aが0.5μsec、FZ-Bが0.5μsec、FZ-Cが0.6μsecと、FZ-Dが0.6μsecとなり、FZ基板の違いによるLTのばらつきが極めて小さくなることが確認できた。
(比較例)
 シリコン単結晶基板の酸素濃度に応じて粒子線照射工程前の窒素濃度を調整しなかったこと以外、実施例と同様の条件でシリコン単結晶基板の再結合ライフタイムを制御した。
 まず、準備工程において、実施例と同じ4水準のFZ基板(FZ-A、FZ-B、FZ-C、FZ-D)を用意した。
 次に、用意したFZ基板に熱処理を施した(熱処理工程A’)。
 この熱処理工程A’では、粒子線照射工程前の窒素濃度の調整を考えずに、何れのFZ基板も同じ条件で熱処理を施し、温度は1000℃、時間は1時間、雰囲気は酸素とした。この熱処理では、900℃に保持された炉内にFZ基板を挿入し、900℃から1000℃まで5℃/分の速度で昇温し、1000℃で1時間保持した後、1000℃から900℃まで-3℃/分の速度で降温し、炉内からFZ基板を取り出した。
 次に、実施例と同じ条件で、電子線照射(粒子線照射工程)を行い、回復熱処理(熱処理工程B)を行った。
 前記電子線照射を行ったFZ基板と同時に熱処理工程A’を行った別のFZ基板において、表面側から厚みのおよそ半分(約360μm)まで研磨して除去した後、SIMSによりバルク窒素濃度を測定した。その結果、FZ-Aが3.1×1014atoms/cm、FZ-Bは3.1×1015atoms/cm、FZ-Cが3.6×1014atoms/cm、FZ-Dは2.3×1015atoms/cmとなり、FZ-A以外のFZ基板では本発明における上記条件が満たされなかった。
 次に、熱処理工程B後の再結合ライフタイム(LT)をμ-PCD法により測定した。その結果、FZ-Aが0.6μsec、FZ-Bが0.8μsec、FZ-Cが1.1μsecと、FZ-Dが1.8μsecとなり、FZ基板の違いによるLTのばらつきが大きくなることが確認できた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 

Claims (2)

  1.  浮遊帯溶融法(FZ法)により育成された窒素添加のシリコン単結晶からシリコン単結晶基板を準備する準備工程と、
     該準備したシリコン単結晶基板に熱処理を施す熱処理工程Aと、
     該熱処理工程A後の前記シリコン単結晶基板に粒子線を照射する粒子線照射工程と、
     該粒子線照射工程後の前記シリコン単結晶基板を熱処理する熱処理工程Bと
    を行うことで、シリコン単結晶基板のキャリアの再結合ライフタイムを制御する再結合ライフタイムの制御方法であって、
     前記準備工程で準備された前記シリコン単結晶基板の酸素濃度Coに応じて、前記熱処理工程Aにおいて、前記熱処理によって前記シリコン単結晶基板中の窒素を外方拡散させることにより前記シリコン単結晶基板の窒素濃度Cnを調整し、その後、窒素濃度Cnが調整された前記シリコン単結晶基板に対し、前記粒子線照射工程を行うことを特徴とする再結合ライフタイムの制御方法。
  2.  前記準備工程で準備されたシリコン単結晶基板の酸素濃度Coが0.1ppma未満の場合は、前記熱処理工程Aにおいて、該熱処理工程A後の前記シリコン単結晶基板の窒素濃度Cnが2×1014atoms/cm未満となるように前記熱処理を施して窒素を外方拡散させ、前記準備工程で準備されたシリコン単結晶基板の酸素濃度Coが0.1ppma以上の場合は、前記熱処理工程Aにおいて、該熱処理工程A後の前記シリコン単結晶基板の窒素濃度Cnが2×1015atoms/cm未満となるように前記熱処理を施して窒素を外方拡散させ、
     その後、前記粒子線照射工程を行うことを特徴とする請求項1に記載の再結合ライフタイムの制御方法。
     
PCT/JP2018/045201 2017-12-28 2018-12-10 再結合ライフタイムの制御方法 WO2019131074A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880084042.4A CN111512421B (zh) 2017-12-28 2018-12-10 复合寿命的控制方法
EP18895298.0A EP3734644B1 (en) 2017-12-28 2018-12-10 Control method for recombination lifetimes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017254431A JP6881292B2 (ja) 2017-12-28 2017-12-28 再結合ライフタイムの制御方法
JP2017-254431 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131074A1 true WO2019131074A1 (ja) 2019-07-04

Family

ID=67063563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045201 WO2019131074A1 (ja) 2017-12-28 2018-12-10 再結合ライフタイムの制御方法

Country Status (4)

Country Link
EP (1) EP3734644B1 (ja)
JP (1) JP6881292B2 (ja)
CN (1) CN111512421B (ja)
WO (1) WO2019131074A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020007853T5 (de) * 2020-12-15 2023-10-12 Mitsubishi Electric Corporation Verfahren zur Herstellung einer Halbleitereinheit und Halbleitereinheit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135509A (ja) 1997-10-29 1999-05-21 Sanken Electric Co Ltd 半導体装置の製造方法
JP2000200792A (ja) 1998-11-05 2000-07-18 Denso Corp 半導体装置の製造方法
JP2002110687A (ja) * 2000-10-02 2002-04-12 Wacker Nsce Corp シリコン半導体基板
WO2007055352A1 (ja) 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2008103673A (ja) * 2006-09-20 2008-05-01 Siltronic Ag 半導体用シリコンウエハ、およびその製造方法
JP2010003899A (ja) * 2008-06-20 2010-01-07 Fuji Electric Device Technology Co Ltd シリコンウェハ、半導体装置、シリコンウェハの製造方法および半導体装置の製造方法
WO2013100155A1 (ja) 2011-12-28 2013-07-04 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2015198166A (ja) 2014-04-01 2015-11-09 信越半導体株式会社 再結合ライフタイムの制御方法及びシリコン基板
JP2016127192A (ja) 2015-01-07 2016-07-11 信越半導体株式会社 シリコン基板の選別方法及びシリコン基板
JP2017122033A (ja) 2016-01-08 2017-07-13 信越半導体株式会社 シリコン単結晶の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029243B2 (en) * 2012-10-08 2015-05-12 Infineon Technologies Ag Method for producing a semiconductor device and field-effect semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135509A (ja) 1997-10-29 1999-05-21 Sanken Electric Co Ltd 半導体装置の製造方法
JP2000200792A (ja) 1998-11-05 2000-07-18 Denso Corp 半導体装置の製造方法
JP2002110687A (ja) * 2000-10-02 2002-04-12 Wacker Nsce Corp シリコン半導体基板
WO2007055352A1 (ja) 2005-11-14 2007-05-18 Fuji Electric Device Technology Co., Ltd. 半導体装置およびその製造方法
JP2008103673A (ja) * 2006-09-20 2008-05-01 Siltronic Ag 半導体用シリコンウエハ、およびその製造方法
JP2010003899A (ja) * 2008-06-20 2010-01-07 Fuji Electric Device Technology Co Ltd シリコンウェハ、半導体装置、シリコンウェハの製造方法および半導体装置の製造方法
WO2013100155A1 (ja) 2011-12-28 2013-07-04 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2015198166A (ja) 2014-04-01 2015-11-09 信越半導体株式会社 再結合ライフタイムの制御方法及びシリコン基板
JP2016127192A (ja) 2015-01-07 2016-07-11 信越半導体株式会社 シリコン基板の選別方法及びシリコン基板
JP2017122033A (ja) 2016-01-08 2017-07-13 信越半導体株式会社 シリコン単結晶の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K. TAKANO ET AL., PROCEEDING OF THE 27TH INTERNATIONAL SYMPOSIUM ON POWER SEMICONDUCTOR DEVICES & IC'S, 2015, pages 129
KIYOI ET AL., THE 61ST JAPAN SOCIETY OF APPLIED PHYSICS SPRING MEETING, MEETING PROCEEDINGS, pages 19,F9 - 14
MINATO ET AL., THE 4TH WORKSHOP ON POWER DEVICE SILICON AND RELATED SEMICONDUCTOR MATERIALS, pages 77
N. INOUE ET AL., PHYSICA B, vol. 401-402, 2007, pages 477
See also references of EP3734644A4
SUGIYAMA ET AL., SILICON TECHNOLOGY, pages 11

Also Published As

Publication number Publication date
EP3734644B1 (en) 2024-05-22
EP3734644A1 (en) 2020-11-04
CN111512421A (zh) 2020-08-07
JP2019121657A (ja) 2019-07-22
EP3734644A4 (en) 2021-09-29
CN111512421B (zh) 2023-08-29
JP6881292B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
KR100745309B1 (ko) 이상적인 산소 침전 실리콘 웨이퍼에서 디누드 구역깊이를 조절하기 위한 방법
JP6292131B2 (ja) シリコン基板の選別方法
JP6083412B2 (ja) 再結合ライフタイムの制御方法及びシリコン基板の製造方法
US7560163B2 (en) Silicon wafer and method for producing same
US7919776B2 (en) High frequency diode and method for producing same
WO2019131074A1 (ja) 再結合ライフタイムの制御方法
WO2019239762A1 (ja) シリコン単結晶基板中の欠陥密度の制御方法
JP2007176725A (ja) 中性子照射シリコン単結晶の製造方法
KR20050015983A (ko) 실리콘 웨이퍼 및 그의 제조 방법
CN111033709B (zh) 复合寿命的控制方法
CN111279461B (zh) 由单晶硅组成的半导体晶片
WO2019102759A1 (ja) シリコン単結晶基板の選別方法及びシリコン単結晶基板
JP7264100B2 (ja) シリコン単結晶基板中のドナー濃度の制御方法
JP7103314B2 (ja) シリコン単結晶基板中の炭素濃度評価方法
CN107154354B (zh) 晶圆热处理的方法
WO2019208013A1 (ja) シリコン単結晶基板の選別方法及びシリコン単結晶基板
CN107154353B (zh) 晶圆热处理的方法
JP2020092169A (ja) シリコン単結晶基板中の窒素濃度評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018895298

Country of ref document: EP

Effective date: 20200728