WO2019131000A1 - キャリア付銅箔 - Google Patents

キャリア付銅箔 Download PDF

Info

Publication number
WO2019131000A1
WO2019131000A1 PCT/JP2018/044391 JP2018044391W WO2019131000A1 WO 2019131000 A1 WO2019131000 A1 WO 2019131000A1 JP 2018044391 W JP2018044391 W JP 2018044391W WO 2019131000 A1 WO2019131000 A1 WO 2019131000A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier
copper foil
copper
metal oxide
Prior art date
Application number
PCT/JP2018/044391
Other languages
English (en)
French (fr)
Inventor
林太郎 石井
威範 柳井
宜範 松浦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202310435041.2A priority Critical patent/CN116583006A/zh
Priority to JP2019562900A priority patent/JP7201621B2/ja
Priority to KR1020207013946A priority patent/KR102613885B1/ko
Priority to CN201880070531.4A priority patent/CN111278644B/zh
Priority to KR1020237042770A priority patent/KR20230172617A/ko
Priority to US16/957,508 priority patent/US11765840B2/en
Publication of WO2019131000A1 publication Critical patent/WO2019131000A1/ja
Priority to JP2022204558A priority patent/JP7412523B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2313/00Elements other than metals
    • B32B2313/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0147Carriers and holders
    • H05K2203/016Temporary inorganic, non-metallic carrier, e.g. for processing or transferring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/088Using a vapour or mist, e.g. cleaning using water vapor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12188All metal or with adjacent metals having marginal feature for indexing or weakened portion for severing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12229Intermediate article [e.g., blank, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12451Macroscopically anomalous interface between layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12597Noncrystalline silica or noncrystalline plural-oxide component [e.g., glass, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12625Free carbon containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12882Cu-base component alternative to Ag-, Au-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • Y10T428/12924Fe-base has 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a copper foil with a carrier.
  • multilayering of printed wiring boards has been widely performed.
  • Such multilayer printed wiring boards are used in many portable electronic devices for the purpose of weight reduction and size reduction.
  • the multilayer printed wiring board is required to further reduce the thickness of the interlayer insulating layer and to further reduce the weight of the wiring board.
  • the coreless build-up method is a method in which insulating layers and wiring layers are alternately stacked (built up) without using a so-called core substrate.
  • the coreless build-up method it has been proposed to use a copper foil with a carrier so that the support and the multilayer printed wiring board can be easily peeled off.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-101137
  • an insulating resin layer is attached to a carrier surface of a copper foil with carrier to form a support, and a photoresist is processed on the ultrathin copper layer side of the copper foil with carrier.
  • the heat pressing is performed each time the insulating material is laminated, the copper foil with carrier is heated at a high temperature for a long time. Further, since the heating temperature of this heat pressing process depends on the curing temperature of the insulating material to be laminated, the temperature varies depending on the type of the insulating material, and is, for example, as wide as 160 to 400.degree. In this respect, it is known that the peel strength is increased and the peelability is lost as the heating temperature of the hot-pressing process becomes higher.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-307767 discloses a copper foil with a carrier provided with a carrier, a carbon layer as a bonding interface layer, and a copper foil in this order. Even after heating, it is said that the carrier foil and the copper foil can be easily peeled off.
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-22406
  • a peeling layer such as a chromium layer, a diffusion preventing layer such as a nickel layer, and an electroplated copper layer are laminated in this order on the surface of the carrier.
  • a copper foil with a carrier is disclosed, and it is believed that the carrier foil can be easily peeled off from a copper-clad laminate produced by casting or thermocompression bonding at high temperature.
  • Patent Document 4 International Publication No. 2017/150283 discloses a copper foil with a carrier provided with a carrier, a peeling layer, an antireflection layer, and an ultrathin copper layer in this order, and the peeling layer, the antireflection layer And forming an ultra-thin copper layer by sputtering.
  • Patent Document 5 discloses a carrier-attached copper foil provided with a carrier, an intermediate layer (for example, an adhesion metal layer and a peeling auxiliary layer), a peeling layer and an ultrathin copper layer. It is described that the intermediate layer, the peeling layer and the ultrathin copper layer are formed by sputtering. In any of Patent Documents 3 and 4, it is considered that the release layer is preferably a carbon layer.
  • a copper foil with a carrier including a carbon layer as a bonding interface layer or peeling layer as disclosed in Patent Documents 2, 4 and 5 is stable at a low level of peeling strength at a high temperature of about 180 ° C. After heating at (for example, 350 ° C.), there is a problem that the peel strength is excessively increased.
  • the peel strength is greatly influenced by the adhesion amount of chromium, and it is difficult to stably control the peel strength.
  • the conventional copper foil with a carrier can not hold
  • a highly reliable insulating material for example, polyimide resin
  • a copper foil with a carrier capable of forming a circuit for a package requiring higher reliability. It is possible to expand the application. Therefore, even after being heated at a high temperature of 350 ° C. or more for a long time, a copper foil with a carrier which maintains stable peelability is desired.
  • the inventor of the present invention after providing a metal oxide layer and a carbon layer as an exfoliation layer between the intermediate layer of copper foil with carrier and a very thin copper layer, has been heated for a long time at a high temperature of 350.degree. Also in the above, it has been found that it is possible to provide an ultrathin copper foil with a carrier capable of maintaining stable peelability.
  • an object of the present invention is to provide a carrier-attached ultrathin copper foil capable of maintaining stable peelability even after being heated at a high temperature of 350 ° C. or more for a long time.
  • a carrier made of glass or ceramic; At least one metal provided on the carrier and selected from the group consisting of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga and Mo
  • An intermediate layer composed of A release layer provided on the intermediate layer, comprising a carbon layer and a metal oxide layer, or comprising a metal oxide and carbon; An extremely thin copper layer provided on the release layer; A copper foil with a carrier is provided.
  • the intermediate layer, the carbon layer, the metal oxide layer, the etching stopper layer if present, and the ultrathin copper layer are all physically formed on the carrier.
  • a method of producing the copper foil with a carrier characterized by being produced by a vapor deposition (PVD) method.
  • FIG. 1 It is a schematic cross section which shows the one aspect
  • FIG. It is a graph which shows the peeling strength after heating at various temperature for 1 hour in copper foil with a carrier in a prior art.
  • the copper foil with carrier 10 of the present invention comprises a carrier 12, an intermediate layer 14, a peeling layer 16 and an ultrathin copper layer 18 in this order.
  • the carrier 12 is made of glass or ceramics.
  • the intermediate layer 14 is provided on the carrier 12 and is at least selected from the group consisting of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga and Mo. It is a layer composed of one kind of metal.
  • the release layer 16 is a layer provided on the intermediate layer 14 (or containing metal oxide and carbon) including the metal oxide layer 16 a and the carbon layer 16 b.
  • the ultrathin copper layer 18 is a layer made of copper provided on the release layer 16.
  • the copper foil with carrier 10 of the present invention may further have an etching stopper layer 17 between the peeling layer 16 and the ultrathin copper layer 18.
  • the above-described various layers may be sequentially provided on both sides of the carrier 12 so as to be vertically symmetrical.
  • the copper foil with carrier 10 is not particularly limited as long as it has a known layer configuration except that the above-described intermediate layer 14 and release layer 16 are provided.
  • the copper foil with carrier of the present invention is preferably used at 350 ° C. or higher.
  • the conventional copper foil with carrier can not maintain stable peelability because the peel strength is excessively increased when heated at a high temperature of 350 ° C. or more.
  • the mechanism by which peeling strength rises by heating is not necessarily clear, it is presumed as follows. That is, since the intermediate layer 14 and the ultrathin copper layer 18 (if present, the etching stopper layer 17) are both made of metal, they are heated by the copper foil with carrier 10 at a high temperature by hot pressing or the like. The diffusion of metal elements derived from these layers can occur. In this respect, the carbon layer 16 b can contribute to the stable peeling of the carrier while allowing the diffusion of the metal element.
  • FIG. 3 shows a graph of peel strength after heating for 1 hour at various temperatures in the copper foil with carrier in the case where the peel layer 16 is constituted only by the carbon layer 16 b. As shown in FIG.
  • the peeling layer 16 is configured to include not only the carbon layer 16 b (or carbon) but also the metal oxide layer 16 a (or metal oxide). It becomes possible to suppress the excessive rise of the exfoliation strength accompanying with it, and can maintain the stable exfoliation nature.
  • the metal oxide layer 16 a exhibits an excellent diffusion preventing effect of the metal element, the metal element passes through the peeling layer 16 and diffuses to the intermediate layer 14 even when heated at a high temperature of 350 ° C. or more for a long time Can be suppressed. As a result, it is possible to effectively suppress the additional formation of metal-metal bond in the region between the intermediate layer 14 and the ultrathin copper layer 18 (etching stopper layer 17 if present). Thus, it is considered that the copper foil with carrier 10 of the present invention can maintain stable releasability even after being heated at a high temperature of 350 ° C. or more for a long time.
  • the carrier 12 is made of glass or ceramics.
  • the form of the carrier 12 may be any of a sheet, a film and a plate.
  • the carrier 12 may be a stack of these sheets, films, plates and the like.
  • the carrier 12 can function as a rigid support such as a glass plate or a ceramic plate.
  • the ceramics which comprise the carrier 12 an alumina, a zirconia, a silicon nitride, aluminum nitride, other various fine ceramics etc. are mentioned.
  • a material having a thermal expansion coefficient (CTE) of less than 25 ppm / K typically 1.0 to 23 ppm / K
  • CTE thermal expansion coefficient
  • Examples of such materials include ceramics and glasses as described above.
  • the carrier 12 preferably has a Vickers hardness of 100 HV or more, more preferably 150 to 2500 HV, from the viewpoint of handling property and securing flatness at the time of chip mounting.
  • the carrier 12 is particularly preferably made of glass, such as a glass plate or a glass sheet.
  • the carrier 12 When glass is used as the carrier 12, there are advantages such as being able to make the surface of the extremely thin copper layer 18 extremely smooth since it is lightweight, has a low thermal expansion coefficient, is highly insulating, is rigid and has a flat surface.
  • the carrier 12 when the carrier 12 is glass, after forming the wiring layer, it has a point excellent in visibility contrast with copper plating when performing an image inspection, and surface flatness (coplanarity) advantageous when mounting an electronic element.
  • Advantages such as desmear in printed wiring board manufacturing process and chemical resistance in various plating processes, and that chemical separation method can be adopted when peeling carrier 12 from copper foil with carrier 10 is there.
  • Preferred examples of the glass constituting the carrier 12 include quartz glass, borosilicate glass, alkali-free glass, soda lime glass, aminosilicate glass, and a combination thereof, more preferably alkali-free glass, soda lime glass, And combinations thereof, particularly preferably alkali-free glass.
  • An alkali-free glass is a glass which contains silicon dioxide, aluminum oxide, boron oxide, and an alkaline earth metal oxide such as calcium oxide and barium oxide as a main component, and further contains boric acid and which contains substantially no alkali metal. It is.
  • the alkali-free glass has a low thermal expansion coefficient in the range of 3 to 5 ppm / K and is stable in a wide temperature range from 0 ° C.
  • the thickness of the carrier 12 is preferably 100 to 2000 ⁇ m, more preferably 300 to 1800 ⁇ m, and still more preferably 400 to 1100 ⁇ m. If the thickness is in such a range, it is possible to realize thinning of the printed wiring board and reduction of warpage that occurs when the electronic component is mounted, while securing appropriate strength that does not affect handling.
  • the surface of the carrier 12 on the side of the intermediate layer 14 preferably has an arithmetic average roughness Ra of 0.1 to 70 nm, more preferably 0.5 to 60 nm, measured according to JIS B 0601-2001. More preferably, it is 1.0 to 50 nm, particularly preferably 1.5 to 40 nm, and most preferably 2.0 to 30 nm.
  • the line / space (L / S) is highly refined to an extent such as 13 ⁇ m or less / 13 ⁇ m or less (eg 12 ⁇ m / 12 ⁇ m to 2 ⁇ m / 2 ⁇ m) It becomes suitable for forming the formed wiring pattern.
  • the intermediate layer 14 is a layer that is interposed between the carrier 12 and the release layer 16 and contributes to securing the adhesion between the carrier 12 and the release layer 16.
  • the metal constituting the intermediate layer 14 is Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, Mo and a combination thereof (hereinafter referred to as metal M) And preferably Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, Mo and combinations thereof, more preferably Cu, Ti, Zr, Al, Cr, W, Ni, Mo and their combinations, more preferably Cu, Ti, Al, Cr, Ni, Mo and their combinations, particularly preferably Cu, Ti, Al, Ni and their combinations.
  • the intermediate layer 14 may be a pure metal or an alloy.
  • middle layer 14 may contain the unavoidable impurity resulting from a raw material component, a film-forming process, etc. Moreover, although it does not restrict
  • the upper limit of the content of the metal is not particularly limited, and may be 100 at%.
  • the intermediate layer 14 is preferably a layer formed by physical vapor deposition (PVD), more preferably a layer formed by sputtering.
  • PVD physical vapor deposition
  • the intermediate layer 14 is preferably a layer formed by a magnetron sputtering method using a metal target from the viewpoint of improving the uniformity of the film thickness distribution.
  • the thickness of the intermediate layer 14 is preferably 10 to 1000 nm, more preferably 30 to 800 nm, still more preferably 60 to 600 nm, and particularly preferably 100 to 400 nm. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the intermediate layer 14 may have a single-layer structure or a structure of two or more layers.
  • the intermediate layer 14 preferably comprises a metal-containing layer composed of Cu, Al, Ti, Ni, or a combination thereof (for example, an alloy or an intermetallic compound). It is preferably Al, Ti, or a combination thereof (for example, an alloy or an intermetallic compound), and more preferably an Al-containing layer or a Ti-containing layer.
  • a metal or an alloy whose adhesion to the carrier 12 is not sufficiently high is adopted for the intermediate layer 14, it is preferable to form the intermediate layer 14 in a two-layer structure.
  • a layer made of a metal (for example, Ti) or alloy excellent in adhesion to the carrier 12 is provided adjacent to the carrier 12 and made of a metal (for example Cu) or alloy inferior in adhesion to the carrier 12
  • a metal for example, Cu
  • the adhesion to the carrier 12 can be improved. Therefore, as an example of a preferable two-layer configuration of the intermediate layer 14, a laminated structure including a Ti-containing layer adjacent to the carrier 12 and a Cu-containing layer adjacent to the release layer 16 can be mentioned.
  • the peel strength is also changed. Therefore, it is preferable to appropriately adjust the constituent element and thickness of each layer.
  • the intermediate layer 14 can also be referred to as a layer mainly containing the metal M. From the above point, the content of metal M in the intermediate layer 14 is preferably 50 to 100 at%, more preferably 60 to 100 at%, still more preferably 70 to 100 at%, particularly preferably 80 to 100 At%, most preferably 90 to 100 at%.
  • the release layer 16 is a layer that enables the release of the carrier 12 (which is accompanied by the intermediate layer 14), and includes the metal oxide layer 16a and the carbon layer 16b, or contains the metal oxide and carbon.
  • the carbon layer 16 b contributes to the stable peeling of the carrier 12
  • the metal oxide layer 16 a is a metal derived from the intermediate layer 14 and the ultrathin copper layer 18 (the etching stopper layer 17, if present).
  • the diffusion accompanying heating of the element can be suppressed, and as a result, stable releasability can be maintained even after heating at high temperature (for example, 350 ° C. or more).
  • the order in which the metal oxide layer 16a and the carbon layer 16b are stacked is not particularly limited, and the metal oxide layer 16a is adjacent to the intermediate layer 14 and the carbon layer 16b is close to the ultrathin copper layer 18 (Ie, adjacent to the etching stopper layer 17 or the ultrathin copper layer 18).
  • the carbon layer 16 b is adjacent to the intermediate layer 14, and the metal oxide layer 16 a is provided on the side closer to the ultrathin copper layer 18 (that is, adjacent to the etching stopper layer 17 or the ultrathin copper layer 18). It may be.
  • the exfoliation layer 16 may be present in the form of a mixed phase (ie, a layer containing metal oxide and carbon) in which the boundary between the metal oxide layer 16a and the carbon layer 16b is not clearly identified.
  • the metal oxide layer 16 a is an oxide of a metal composed of Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn, Ga, Mo, and a combination thereof
  • a layer containing a metal oxide MO is preferable, and more preferably Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, Mo and combinations thereof can be mentioned.
  • the metal oxide layer 16a is preferably a layer formed by physical vapor deposition (PVD), more preferably a layer formed by sputtering.
  • the metal oxide layer 16a is a layer formed by a reactive sputtering method in which sputtering is performed in an oxidizing atmosphere using a metal target, from the viewpoint that the film thickness can be easily controlled by adjusting the film formation time. preferable.
  • the thickness of the metal oxide layer 16a is preferably 100 nm or less, more preferably 60 nm or less, still more preferably 30 nm or less, and particularly preferably 10 nm or less. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the metal oxide layer 16 a is preferably a layer containing an oxide of a metal constituting the intermediate layer 14 from the viewpoint of easiness of production.
  • Preferred examples of the combination of the intermediate layer 14 and the metal oxide layer 16 a include: (i) the intermediate layer 14 includes a Ti-containing layer adjacent to the carrier 12 and a Cu-containing layer adjacent to the release layer 16
  • the oxide layer 16a is a copper oxide layer
  • the intermediate layer 14 is a Ti-containing layer
  • the metal oxide layer 16a is a titanium oxide layer
  • the intermediate layer 14 is Al-containing.
  • the metal oxide layer 16a is an aluminum oxide layer.
  • the metal oxide layer 16a of such an embodiment can be produced not only by the reactive sputtering method described above, but also by oxidation treatment of the surface of the intermediate layer 14, and this oxidation treatment is formed in vacuum. This may be performed by exposing the intermediate layer 14 to an oxidizing atmosphere (for example, the atmosphere).
  • an oxidizing atmosphere for example, the atmosphere.
  • an element other than the metal oxide MO is also included as long as the releasability of the carrier is not impaired. Therefore, the metal oxide layer 16a can also be referred to as a layer mainly containing the metal oxide MO.
  • the carbon layer 16 b is preferably a layer mainly made of carbon or hydrocarbon, and more preferably made of amorphous carbon which is a hard carbon film.
  • the carbon layer 16b preferably has a carbon concentration measured by XPS of 60 at% or more, more preferably 70 at% or more, still more preferably 80 at% or more, particularly preferably 85 at% or more .
  • the upper limit of the carbon concentration is not particularly limited and may be 100 at%, but 98 at% or less is realistic.
  • the carbon layer 16 b may contain unavoidable impurities (eg, oxygen, carbon, hydrogen and the like derived from the surrounding environment such as the atmosphere).
  • metal atoms may be mixed into the carbon layer 16 b due to the film formation method of the etching stopper layer 17 or the ultrathin copper layer 18.
  • Carbon has low mutual diffusion and reactivity with the carrier 12, and even if it is subjected to pressing at a relatively high temperature (for example, 180 ° C.), formation of metal bonds by heating between the copper foil layer and the bonding interface To prevent the carrier 12 from being easily removed by peeling.
  • This carbon layer 16b is also a layer formed by physical vapor deposition (PVD) from the point of suppressing excessive impurities in amorphous carbon, the point of continuous productivity of film formation of the above-mentioned intermediate layer 14, etc.
  • PVD physical vapor deposition
  • it is a layer formed by sputtering.
  • the thickness of the carbon layer 16b is preferably 1 to 20 nm, more preferably 1 to 10 nm. This thickness is a value measured by analyzing the cross section of the layer with an energy dispersive X-ray spectrometer (TEM-EDX) of a transmission electron microscope.
  • TEM-EDX energy dispersive X-ray spectrometer
  • the etching stopper layer 17 which is optionally provided between the peeling layer 16 and the ultrathin copper layer 18 is a layer which is less likely to be etched by the copper flash etchant than the ultrathin copper layer 18.
  • Preferred examples of the metal constituting the etching stopper layer 17 include Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, Mo and combinations thereof, and more preferably Ti, Zr, Al, Cr, W, Ni, Mo and combinations thereof, more preferably Ti, Al, Cr, Ni, Mo and combinations thereof, particularly preferably Ti, Mo and combinations thereof. These elements have the property of not dissolving in the copper flash etching solution, and as a result, can exhibit excellent chemical resistance to the copper flash etching solution.
  • the copper foil with carrier 10 of the present invention even after being heated at a high temperature of 350 ° C. for a long time, in order for the peeling layer 16 to effectively suppress the diffusion of the metal element derived from the etching stopper layer 17.
  • the desired chemical resistance can be maintained without deterioration of the etching stopper layer 17.
  • the etching stopper layer 17 may be a pure metal or an alloy.
  • the metal which comprises the etching stopper layer 17 may contain the unavoidable impurity resulting from a raw material component, a film-forming process, etc.
  • the upper limit of the content rate of the said metal is not specifically limited, 100 atomic% may be sufficient.
  • the etching stopper layer 17 is preferably a layer formed by physical vapor deposition (PVD), more preferably a layer formed by sputtering.
  • the thickness of the etching stopper layer 17 is preferably 1 to 500 nm, more preferably 10 to 400 nm, still more preferably 30 to 300 nm, and particularly preferably 50 to 200 nm.
  • the standard electrode potential of the metal forming the intermediate layer 14 is preferably equal to or higher than the standard electrode potential of the metal forming the etching stopper layer 17.
  • the ionization tendency of the metal constituting the etching stopper layer 17 be the same as or higher than the ionization tendency of the metal constituting the intermediate layer 14.
  • the ultrathin copper layer 18 is a layer composed of copper.
  • the copper constituting the ultrathin copper layer 18 may contain unavoidable impurities resulting from the raw material components and the film forming process.
  • the ultra thin copper layer 18 may be manufactured by any method, for example, wet film forming method such as electroless copper plating method and electrolytic copper plating method, physical vapor deposition (PVD) method such as sputtering and vacuum deposition. It may be a copper foil formed by chemical vapor deposition, or a combination thereof.
  • a particularly preferable ultrathin copper layer is a copper layer formed by physical vapor deposition (PVD) such as sputtering or vacuum evaporation from the viewpoint of easily coping with fine pitch formation by ultrathin, and is most preferably sputtering. It is a copper layer manufactured by the method.
  • the ultrathin copper layer 18 is preferably a non-roughened copper layer, but preliminary roughening, soft etching, and cleaning as long as the wiring pattern formation at the time of printed wiring board production is not adversely affected.
  • the secondary roughening may be caused by the oxidation-reduction treatment.
  • the thickness of the ultrathin copper layer 18 is not particularly limited, but is preferably 10 to 1000 nm, more preferably 20 to 900 nm, still more preferably 30 to 700 nm, in particular, in order to cope with the fine pitch as described above. Is 50 to 600 nm, particularly preferably 70 to 500 nm, most preferably 100 to 400 nm.
  • the extremely thin copper layer having a thickness within such a range is preferably produced by sputtering from the viewpoint of in-plane uniformity of the film thickness and productivity in the form of a sheet or a roll.
  • Arithmetic mean roughness Ra of 1.0 to 100 nm, measured in accordance with JIS B 0601-2001, of the surface of the ultrathin copper layer 18 opposite to the release layer 16 (the outer surface of the ultrathin copper layer 18) Is more preferably 2.0 to 40 nm, still more preferably 3.0 to 35 nm, particularly preferably 4.0 to 30 nm, and most preferably 5.0 to 15 nm.
  • the line / space (L / S) is 13 ⁇ m or less / 13 ⁇ m or less (eg 12 ⁇ m / 12 ⁇ m to 2 ⁇ m / 2 ⁇ m) And so on) to form a highly miniaturized wiring pattern.
  • metal oxide layer 16a, carbon layer 16b, etching stopper layer 17 (if present) and ultrathin copper layer 18 are all physical vapor deposition (PVD) films, ie physical vapor deposition (PVD) It is preferable that the film be formed by the above method, more preferably a sputtered film, that is, a film formed by the sputtering method.
  • PVD physical vapor deposition
  • the carrier attached copper foil 10 prepares the carrier 12 described above, and on the carrier 12, the intermediate layer 14, the peeling layer 16 (ie, the metal oxide layer 16a and the carbon layer 16b in random order). ), If desired, by forming the etching stopper layer 17 and the ultrathin copper layer 18.
  • the formation of each of the intermediate layer 14, the peeling layer 16, the etching stopper layer 17 (if present) and the ultrathin copper layer 18 is physical vapor deposition (PVD) from the viewpoint of facilitating fine pitching by ultra-thinning. Preferably it is carried out by law.
  • PVD physical vapor deposition
  • PVD physical vapor deposition
  • Examples of physical vapor deposition (PVD) include sputtering, vacuum evaporation, and ion plating, but the film thickness can be controlled in a wide range of 0.05 nm to 5000 nm, and over a wide width or area.
  • the sputtering method is most preferable in terms of ensuring film thickness uniformity and the like.
  • the film formation by the physical vapor deposition (PVD) method may be carried out according to known conditions using a known vapor phase film forming apparatus, and is not particularly limited.
  • the sputtering method may be various known methods such as magnetron sputtering, two-pole sputtering method, facing target sputtering method, etc.
  • magnetron sputtering has a high deposition rate and productivity It is preferable at high points.
  • Sputtering may be performed with any of DC (direct current) and RF (high frequency) power sources.
  • DC direct current
  • RF high frequency
  • PVD physical vapor deposition
  • the film formation by the physical vapor deposition (PVD) method (preferably sputtering method) of the intermediate layer 14 is Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn, Zn
  • PVD physical vapor deposition
  • a target composed of at least one metal selected from the group consisting of Ga and Mo by magnetron sputtering in a non-oxidizing atmosphere from the viewpoint of improving film thickness distribution uniformity.
  • the purity of the target is preferably 99.9% or more.
  • As a gas used for sputtering it is preferable to use an inert gas such as argon gas.
  • the flow rate of the argon gas may be appropriately determined depending on the size of the sputtering chamber and the film forming conditions, and is not particularly limited. Further, from the viewpoint of continuously forming a film without malfunction such as abnormal discharge, it is preferable to carry out the pressure at the time of film formation in the range of 0.1 to 20 Pa. This pressure range may be set by adjusting the film forming power and the flow rate of the argon gas according to the apparatus structure, the capacity, the exhaust capacity of the vacuum pump, the rated capacity of the film forming power supply, and the like.
  • the sputtering power may be appropriately set in the range of 0.05 to 10.0 W / cm 2 per unit area of the target in consideration of film thickness uniformity of film formation, productivity and the like.
  • the film formation of the metal oxide layer 16a by physical vapor deposition (PVD) (preferably sputtering) is Cu, Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni, In, Sn ,
  • PVD physical vapor deposition
  • a target composed of at least one metal selected from the group consisting of Zn, Ga and Mo by reactive sputtering under an oxidizing atmosphere, in that the film thickness can be easily controlled preferable.
  • the purity of the target is preferably 99.9% or more.
  • a gas used for sputtering it is preferable to use a mixed gas of an inert gas (for example, argon gas) and an oxidizing gas (for example, oxygen gas).
  • the flow rates of the inert gas and the oxidizing gas may be appropriately determined according to the size of the sputtering chamber and the film forming conditions, and are not particularly limited. Further, from the viewpoint of continuously forming a film without malfunction such as abnormal discharge, it is preferable to carry out the pressure at the time of film formation in the range of 0.1 to 1.0 Pa. This pressure range may be set by adjusting the flow rates of the film forming power, the inert gas and the oxidizing gas according to the apparatus structure, the capacity, the exhaust capacity of the vacuum pump, the rated capacity of the film forming power supply, and the like.
  • the sputtering power may be appropriately set in the range of 0.05 to 15.0 W / cm 2 per unit area of the target in consideration of film thickness uniformity of film formation, productivity, and the like.
  • the film formation of the carbon layer 16b by physical vapor deposition (PVD) is preferably performed using a carbon target under an inert atmosphere such as argon.
  • the carbon target is preferably made of graphite, but may contain unavoidable impurities (e.g., oxygen or carbon derived from the surrounding environment such as the atmosphere).
  • the purity of the carbon target is preferably 99.99% or more, more preferably 99.999% or more. Further, from the viewpoint of continuously forming a film without malfunction such as abnormal discharge, it is preferable to carry out the pressure at the time of film formation in the range of 0.1 to 2.0 Pa.
  • This pressure range may be set by adjusting the film forming power and the flow rate of the argon gas according to the apparatus structure, the capacity, the exhaust capacity of the vacuum pump, the rated capacity of the film forming power supply, and the like.
  • the sputtering power may be appropriately set in the range of 0.05 to 10.0 W / cm 2 per unit area of the target in consideration of film thickness uniformity of film formation, productivity and the like.
  • the deposition of the etching stopper layer 17 by physical vapor deposition (PVD) (preferably sputtering) is selected from the group consisting of Ti, Al, Nb, Zr, Cr, W, Ta, Co, Ag, Ni and Mo.
  • the sputtering is performed by magnetron sputtering using a target composed of at least one metal.
  • the purity of the target is preferably 99.9% or more.
  • the film formation by the magnetron sputtering method of the etching stopper layer 17 is preferably performed at a pressure of 0.1 to 20 Pa in an inert gas atmosphere such as argon.
  • the sputtering pressure is more preferably 0.2 to 15 Pa, further preferably 0.3 to 10 Pa.
  • the control of the pressure range may be performed by adjusting the flow rate of the deposition power and the argon gas according to the apparatus structure, the capacity, the exhaust capacity of the vacuum pump, the rated capacity of the film forming power supply, and the like.
  • the flow rate of the argon gas may be appropriately determined depending on the size of the sputtering chamber and the film forming conditions, and is not particularly limited.
  • the sputtering power may be appropriately set in the range of 1.0 to 15.0 W / cm 2 per unit area of the target in consideration of film thickness uniformity of film formation, productivity, and the like.
  • the carrier temperature during film formation is preferably adjusted in the range of 25 to 300 ° C., more preferably 40 to 200 ° C., and still more preferably 50 to 150 ° C.
  • the deposition of the ultrathin copper layer 18 by physical vapor deposition (PVD) is preferably performed using a copper target under an inert atmosphere such as argon.
  • the copper target is preferably comprised of metallic copper but may contain unavoidable impurities.
  • the purity of the copper target is preferably 99.9% or more, more preferably 99.99%, still more preferably 99.999% or more.
  • a stage cooling mechanism may be provided during sputtering. Further, from the viewpoint of stably forming a film without malfunction such as abnormal discharge, it is preferable to carry out the pressure at the time of film formation in the range of 0.1 to 2.0 Pa.
  • This pressure range may be set by adjusting the film forming power and the flow rate of the argon gas according to the apparatus structure, the capacity, the exhaust capacity of the vacuum pump, the rated capacity of the film forming power supply, and the like.
  • the sputtering power may be appropriately set in the range of 0.05 to 10.0 W / cm 2 per unit area of the target in consideration of film thickness uniformity of film formation, productivity and the like.
  • Example 1 As shown in FIG. 1, on a glass sheet as a carrier 12, an intermediate layer 14 (Ti-containing layer and Cu-containing layer), a metal oxide layer 16a, a carbon layer 16b, an etching stopper layer 17, and an ultrathin copper layer 18 were formed in this order to produce a copper foil with carrier 10.
  • the specific procedure is as follows.
  • Carrier A glass sheet (material: soda lime glass, arithmetic average roughness Ra: 0.6 nm, manufactured by Central Glass Co., Ltd.) having a thickness of 1.1 mm was prepared.
  • Ti-Containing Layer A titanium layer having a thickness of 100 nm was formed as a Ti-containing layer on the surface of the carrier 12 by sputtering under the following apparatus and conditions.
  • -Device Single wafer type magneroton sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target Ti target (purity 99.999%) with a diameter of 8 inches (203.2 mm)
  • Ultimate vacuum less than 1 x 10-4
  • Pa-Carrier gas Ar (flow rate: 100 sccm) -Sputtering pressure: 0.35 Pa -Sputtering power: 1000 W (3.1 W / cm 2 ) -Deposition temperature: 40 ° C
  • a copper layer having a thickness of 100 nm was formed as a Cu-containing layer by sputtering on the Ti-containing layer in the following apparatus and conditions.
  • -Device Single wafer type DC sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target 8 inch (203.2 mm) diameter copper target (purity 99.98%)
  • -Ultimate vacuum less than 1 x 10-4
  • Pa-Gas Argon gas (flow rate: 100 sccm) -Sputtering pressure: 0.35 Pa -Sputtering power: 1000 W (6.2 W / cm 2 )
  • -Deposition temperature 40 ° C
  • an amorphous carbon layer having a thickness of 6 nm was formed as a carbon layer 16b by sputtering under the following apparatus and conditions.
  • -Device Single wafer type DC sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target 8 inch (203.2 mm) diameter carbon target (purity 99.999%)
  • -Ultimate vacuum less than 1 x 10-4
  • -Deposition temperature 40 ° C
  • Etching Stopper Layer A titanium layer having a thickness of 100 nm was formed as a etching stopper layer 17 on the surface of the carbon layer 16b by sputtering under the following apparatus and conditions.
  • -Device Single wafer type DC sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target Titanium target with a diameter of 8 inches (203.2 mm) (purity 99.999%)
  • Carrier gas Ar (flow rate: 100 sccm)
  • -Ultimate vacuum less than 1 x 10-4
  • Pa-Sputtering pressure 0.35 Pa
  • -Sputtering power 1000 W (3.1 W / cm 2 )
  • Example 2 Copper with carrier was prepared in the same manner as Example 1, except that the copper oxide layer was formed by reactive sputtering as follows instead of performing surface oxidation treatment of the Cu-containing layer by air exposure as the metal oxide layer 16a.
  • the foil was prepared.
  • a copper oxide layer with a target thickness of about 1 nm was formed by reactive sputtering in the following apparatus and conditions.
  • -Device Single wafer type DC sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target 8 inch (203.2 mm) diameter copper target (purity 99.98%)
  • -Ultimate vacuum less than 1 x 10-4
  • Pa-Gas Argon gas (flow: 90 sccm) and oxygen gas (flow: 10 sccm)
  • -Sputtering pressure 0.35 Pa
  • -Sputtering power 100 W (0.3 W / cm 2 )
  • -Deposition temperature 40 ° C
  • Example 3 A copper foil with carrier was produced in the same manner as Example 2, except that the targeted thickness of the metal oxide layer 16a (copper oxide layer) was about 2 nm.
  • Example 4 (comparison) A copper foil with carrier was produced in the same manner as in Example 1 except that the metal oxide layer 16a was not formed (that is, the surface oxidation treatment of the Cu-containing layer was not performed by exposure to the air).
  • Example 5 instead of the Ti-containing layer and the Cu-containing layer as the intermediate layer 14, a single layer of an Al-containing layer was formed as follows, and an aluminum oxide layer instead of a copper oxide layer as the metal oxide layer 16a.
  • a copper foil with a carrier was produced in the same manner as in Example 1 except that it was formed as follows.
  • Al-containing layer On the surface of the carrier 12, an aluminum layer having a thickness of 200 nm was formed as an Al-containing layer by sputtering in the following apparatus and conditions.
  • -Device Single wafer type DC sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target Al target 8 inches in diameter (203.2 mm) (purity 99.9% or more)
  • -Ultimate vacuum less than 1 x 10-4
  • Example 6 Copper with carrier was prepared in the same manner as Example 5, except that the aluminum oxide layer was formed by reactive sputtering as follows instead of performing surface oxidation treatment of the Al-containing layer by exposure to air as the metal oxide layer 16a.
  • the foil was prepared.
  • an aluminum oxide layer with a target thickness of about 1 nm was formed by reactive sputtering as the metal oxide layer 16a in the following apparatus and conditions.
  • -Device Single wafer type DC sputtering device (manufactured by Canon Tokki, MLS 464)
  • -Target Al target of 8 inches (203.2 mm) in diameter (purity 99.99%)
  • -Ultimate vacuum less than 1 x 10-4
  • Pa-Gas Argon gas (flow: 90 sccm) and oxygen gas (flow: 10 sccm)
  • -Sputtering pressure 0.35 Pa -Sputtering power: 100 W -Deposition temperature: 40 ° C
  • Example 7 A copper foil with carrier was produced in the same manner as in Example 6 except that the targeted thickness of the metal oxide layer 16a (aluminum oxide layer) was about 2 nm.
  • Example 8 (comparison) A copper foil with carrier was prepared in the same manner as in Example 5 except that the aluminum oxide layer was not formed as the metal oxide layer 16a (that is, the surface oxidation treatment of the Al-containing layer was not performed by air exposure). .
  • Table 1 also shows the compositions of the intermediate layer 14 and the peeling layer 16 and the conditions for forming the metal oxide layer 16 a.
  • ⁇ Evaluation 1 Semi-quantitative analysis of exfoliated layer>
  • the depth direction elemental analysis of the copper foil with a carrier produced in Examples 3 and 4 was performed by XPS based on the following measurement conditions and analysis conditions. This analysis was conducted while digging the copper foil with a carrier from the surface of the ultrathin copper layer in the depth direction by Ar ion etching under the following conditions.
  • Example 3 in which the copper oxide layer was formed by reactive sputtering, the Cu-containing layer (a part of the intermediate layer 14) compared to Example 4 in which neither the copper oxide layer formation nor the oxidation treatment was performed.
  • the amount of oxygen at the interface between the peeling layer 16 and the peeling layer 16 was increased, and it was confirmed that a copper oxide layer was formed as the metal oxide layer 16a.
  • about 2 Atom% of oxygen is also confirmed on average in Example 4, but this is considered to detect oxygen mixed as an impurity at the initial stage of film formation of the carbon layer 16b and the etching stopper layer 17.
  • the numerical value of the horizontal axis (depth) in FIG. 2 makes the ultrathin copper layer surface of copper foil with a carrier the analysis start position (0 nm),
  • the depth to the carrier side direction of an analysis position is SiO 2 conversion. It is a value obtained from the etching rate.
  • the peel strength (average value) thus obtained was rated according to the following criteria. Evaluation A: No spontaneous peeling and peeling strength of 50 gf / cm or less Evaluation B: Peeling strength of 50 gf / cm or more and 150 gf / cm or less Evaluation C: Natural peeling occurs or 150 gf / cm or more (including peeling failure)
  • ⁇ Evaluation 3 Chemical resistance of etching stopper layer>
  • the development was performed by a shower method at 25 ° C. for 2 minutes using a 1.0 wt% aqueous solution of sodium carbonate as a developer.
  • the coreless support with wiring layer thus obtained (with the ultrathin copper layer 18 exposed between the patterned wiring) is showered at 23 ° C. for 5 minutes in an etching solution containing a sulfuric acid-hydrogen peroxide mixture. Copper flash etching was performed by immersion at a pressure of 0.1 MPa. Thus, the exposed ultrathin copper layer 18 between the patterned wires was removed.
  • the chemical resistance of the etching stopper layer 17 was evaluated by observing the coreless support with a wiring layer after the flash etching. The obtained evaluation results were rated according to the following criteria. Evaluation A: The etching stopper layer remained without any dissolution. Evaluation B: The etching stopper layer may be slightly dissolved, which may adversely affect the subsequent steps. Evaluation C: There is a high possibility that the etching stopper layer partially dissolves and adversely affects the subsequent steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

350℃以上の高温で長時間加熱された後においても、安定した剥離性を保持することが可能な、キャリア付極薄銅箔が提供される。このキャリア付極薄銅箔は、ガラス又はセラミックスで構成されるキャリアと、キャリア上に設けられ、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属で構成される中間層と、中間層上に設けられ、炭素層及び金属酸化物層を含む、又は金属酸化物及び炭素を含む、剥離層と、剥離層上に設けられる極薄銅層とを備えたものである。

Description

キャリア付銅箔
 本発明は、キャリア付銅箔に関する。
 近年、プリント配線板の実装密度を上げて小型化するために、プリント配線板の多層化が広く行われるようになってきている。このような多層プリント配線板は、携帯用電子機器の多くで、軽量化や小型化を目的として利用されている。そして、この多層プリント配線板には、層間絶縁層の更なる厚みの低減、及び配線板としてのより一層の軽量化が要求されている。
 このような要求を満たす技術として、コアレスビルドアップ法を用いた多層プリント配線板の製造方法が採用されている。コアレスビルドアップ法とは、いわゆるコア基板を用いることなく、絶縁層と配線層とを交互に積層(ビルドアップ)して多層化する方法である。コアレスビルドアップ法においては、支持体と多層プリント配線板との剥離を容易に行えるように、キャリア付銅箔を使用することが提案されている。例えば、特許文献1(特開2005-101137号公報)には、キャリア付銅箔のキャリア面に絶縁樹脂層を貼り付けて支持体とし、キャリア付銅箔の極薄銅層側にフォトレジスト加工、パターン電解銅めっき、レジスト除去等の工程により第一の配線導体を形成した後、絶縁材料を積層して熱プレス加工を行う等してビルドアップ配線層を形成し、キャリア付支持基板を剥離し、極薄銅層を除去することを含む、半導体素子搭載用パッケージ基板の製造方法が開示されている。
 このような多層プリント配線板の製造工程においては、絶縁材料を積層するたびに熱プレス加工を行うため、キャリア付銅箔には高温で長時間加熱されることになる。また、この熱プレス加工の加熱温度は積層する絶縁材料の硬化温度に依存するため、その温度は絶縁材料の種類によって異なり、例えば160~400℃と幅広い。この点、熱プレス加工の加熱温度が高温になるほど、剥離強度が上昇して剥離性が失われることが知られている。
 加熱に伴う剥離強度の上昇に対処可能なキャリア付銅箔が幾つか提案されている。例えば、特許文献2(特開2007-307767号公報)には、キャリア、接合界面層としての炭素層、及び銅箔を順に備えたキャリア付銅箔が開示されており、180℃を超える高温で加熱された後でも容易にキャリア箔と銅箔との引き剥がしが可能になるとされている。また、特許文献3(特開2006-22406号公報)には、キャリアの表面に、クロム層等の剥離層と、ニッケル層等の拡散防止層と、電気銅メッキ層とをこの順序に積層してなるキャリア付銅箔が開示されており、高温でキャスティング又は熱圧着して製造される銅張積層板からキャリア箔を容易に剥離できるとされている。
 ところで、キャリア付銅箔における極薄銅層の厚さの更なる低減を実現するため、スパッタリング等の物理気相堆積(PVD)法により極薄銅層を形成することも最近提案されている。例えば、特許文献4(国際公開第2017/150283号)には、キャリア、剥離層、反射防止層、極薄銅層を順に備えたキャリア付銅箔が開示されており、剥離層、反射防止層及び極薄銅層をスパッタリングで形成することが記載されている。また、特許文献5(国際公開第2017/150284号)には、キャリア、中間層(例えば密着金属層及び剥離補助層)、剥離層及び極薄銅層を備えたキャリア付銅箔が開示されており、中間層、剥離層及び極薄銅層をスパッタリングで形成することが記載されている。特許文献3及び4のいずれにおいても、剥離層は炭素層であることが好ましいとされている。
特開2005-101137号公報 特開2007-307767号公報 特開2006-22406号公報 国際公開第2017/150283号 国際公開第2017/150284号
 しかしながら、特許文献2、4及び5に開示されるような接合界面層ないし剥離層として炭素層を含むキャリア付銅箔は、180℃程度の高温では剥離強度が低いレベルで安定するものの、さらなる高温(例えば350℃)で加熱された後においては剥離強度が過度に増加するという問題がある。また、特許文献3に開示されるキャリア付銅箔は、剥離強度がクロムの付着量に大きく影響されることが明示されており、剥離強度を安定して制御することは困難である。このように、従来のキャリア付銅箔は、350℃以上の高温で加熱された際に、安定した剥離性を保持できるものではない。
 一方、硬化温度は高いが信頼性の高い絶縁材料(例えばポリイミド樹脂)を絶縁層の材料として使用することができれば、より高い信頼性が求められるパッケージ向けの回路形成が可能なキャリア付銅箔として用途を広げることが可能となる。したがって、350℃以上の高温で長時間加熱された後においても、安定した剥離性を保持するキャリア付銅箔が望まれる。
 本発明者は、今般、キャリア付銅箔の中間層と極薄銅層の間に、金属酸化物層及び炭素層を剥離層として設けることで、350℃以上の高温で長時間加熱された後においても、安定した剥離性を保持することが可能なキャリア付極薄銅箔を提供できるとの知見を得た。
 したがって、本発明の目的は、350℃以上の高温で長時間加熱された後においても、安定した剥離性を保持することが可能なキャリア付極薄銅箔を提供することにある。
 本発明の一態様によれば、
 ガラス又はセラミックスで構成されるキャリアと、
 前記キャリア上に設けられ、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属で構成される中間層と、
 前記中間層上に設けられ、炭素層及び金属酸化物層を含む、又は金属酸化物及び炭素を含む、剥離層と、
 前記剥離層上に設けられる極薄銅層と、
を備えた、キャリア付銅箔が提供される。
 本発明の他の一態様によれば、前記キャリア上に、前記中間層、前記炭素層、前記金属酸化物層、存在する場合には前記エッチングストッパー層、及び前記極薄銅層をいずれも物理気相堆積(PVD)法によって作製することを特徴とする、前記キャリア付銅箔の製造方法が提供される。
本発明のキャリア付銅箔の一態様を示す模式断面図である。 例3及び4で作製された剥離層のXPSによる半定量分析の結果を示す図である。 従来技術のキャリア付銅箔における、各種温度で1時間加熱した後の剥離強度を示すグラフである。
 キャリア付銅箔
 本発明のキャリア付銅箔の一例が図1に模式的に示される。図1に示されるように、本発明のキャリア付銅箔10は、キャリア12と、中間層14と、剥離層16と、極薄銅層18とをこの順に備えたものである。キャリア12はガラス又はセラミックスで構成される。中間層14はキャリア12上に設けられ、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属で構成される層である。剥離層16は、中間層14上に設けられる、金属酸化物層16a及び炭素層16bを含む(あるいは金属酸化物及び炭素を含む)層である。極薄銅層18は、剥離層16上に設けられる、銅からなる層である。所望により、本発明のキャリア付銅箔10は、剥離層16と極薄銅層18の間にエッチングストッパー層17をさらに有していてもよい。また、キャリア12の両面に上下対称となるように上述の各種層を順に備えてなる構成としてもよい。キャリア付銅箔10は、上述した中間層14及び剥離層16を備えること以外は、公知の層構成を採用すればよく特に限定されない。このように、キャリア付銅箔10の中間層14と極薄銅層18の間に、金属酸化物層16a及び炭素層16bを剥離層16として設けることで、350℃以上の高温で長時間(例えば2時間以上)加熱された後においても、安定した剥離性を保持することが可能となる。したがって、本発明のキャリア付銅箔は350℃以上で使用されるのが好ましい。
 前述のとおり、従来のキャリア付銅箔は、350℃以上の高温で加熱した際に、剥離強度が過度に増加する等の理由から、安定した剥離性を保持できるものではなかった。加熱によって剥離強度が上昇するメカニズムは必ずしも定かではないが、以下のようなものと推察される。すなわち、中間層14及び極薄銅層18(存在する場合はエッチングストッパー層17)は、いずれも金属で構成されているため、熱プレス加工等によりキャリア付銅箔10に高温で加熱されると、これらの層に由来する金属元素の拡散が生じうる。この点、炭素層16bはキャリアの安定的な剥離に寄与する一方、金属元素の拡散を許容しうる。したがって、特許文献1、3及び4のように、剥離層16を炭素層16bのみで構成した場合、金属元素は剥離層16を通り抜けて中間層14へと拡散しうる。その結果、中間層14及び極薄銅層18(存在する場合はエッチングストッパー層17)間の領域で追加的な金属-金属結合が生じ、この追加的な金属-金属結合に起因して剥離強度が上昇するものと考えられる。一例として、剥離層16を炭素層16bのみで構成した場合のキャリア付銅箔における、各種温度で1時間加熱した後の剥離強度のグラフが図3に示される。図3に示されるように、剥離層16が炭素層16bのみで構成されたキャリア付銅箔では、300℃以上の加熱によって剥離強度が大きく上昇し、350℃では剥離不可となることが分かる。これに対し、本発明のキャリア付銅箔10は、剥離層16を炭素層16b(あるいは炭素)のみならず、金属酸化物層16a(あるいは金属酸化物)も含む構成とすることで、加熱に伴う剥離強度の過度な上昇を抑えることが可能となり、安定した剥離性を保持することができる。すなわち、金属酸化物層16aが優れた金属元素の拡散防止効果を呈するため、350℃以上の高温で長時間加熱された場合においても、金属元素が剥離層16を通り抜けて中間層14へと拡散するのを抑制することができる。その結果、中間層14及び極薄銅層18(存在する場合はエッチングストッパー層17)間の領域における金属-金属結合の追加的形成を効果的に抑制することが可能となる。こうして、本発明のキャリア付銅箔10は、350℃以上の高温で長時間加熱された後においても、安定した剥離性を保持できるものと考えられる。
 キャリア12はガラス又はセラミックスで構成される。キャリア12の形態はシート、フィルム及び板のいずれであってもよい。また、キャリア12はこれらのシート、フィルム及び板等が積層されたものであってもよい。例えば、キャリア12はガラス板、セラミックス板等といった剛性を有する支持体として機能し得るものであることが好ましい。キャリア12を構成するセラミックスの好ましい例としては、アルミナ、ジルコニア、窒化ケイ素、窒化アルミニウム、その他各種ファインセラミックス等が挙げられる。より好ましくは、加熱を伴うプロセスにおけるキャリア付銅箔10の反り防止の観点から、熱膨張係数(CTE)が25ppm/K未満(典型的には1.0~23ppm/K)の材料であり、そのような材料の例としては上述したようなセラミックス及びガラスが挙げられる。また、ハンドリング性やチップ実装時の平坦性確保の観点から、キャリア12はビッカース硬度が100HV以上であるのが好ましく、より好ましくは150~2500HVである。これらの特性を満たす材料として、キャリア12はガラスで構成されるのが特に好ましく、例えばガラス板やガラスシート等である。ガラスをキャリア12として用いた場合、軽量で、熱膨脹係数が低く、絶縁性が高く、剛直で表面が平坦なため、極薄銅層18の表面を極度に平滑にできる等の利点がある。また、キャリア12がガラスである場合、配線層を形成した後、画像検査を行う際に銅めっきとの視認性コントラストに優れる点、電子素子搭載時に有利な表面平坦性(コプラナリティ)を有している点、プリント配線板製造工程におけるデスミアや各種めっき工程において耐薬品性を有している点、キャリア付銅箔10からキャリア12を剥離する際に化学的分離法が採用できる点等の利点がある。キャリア12を構成するガラスの好ましい例としては、石英ガラス、ホウケイ酸ガラス、無アルカリガラス、ソーダライムガラス、アミノシリケートガラス、及びそれらの組合せが挙げられ、より好ましくは無アルカリガラス、ソーダライムガラス、及びそれらの組合せであり、特に好ましくは無アルカリガラスである。無アルカリガラスは、二酸化ケイ素、酸化アルミニウム、酸化ホウ素、及び酸化カルシウムや酸化バリウム等のアルカリ土類金属酸化物を主成分とし、更にホウ酸を含有する、アルカリ金属を実質的に含有しないガラスのことである。この無アルカリガラスは、0℃から350℃までの広い温度帯域において熱膨脹係数が3~5ppm/Kの範囲で低く安定しているため、加熱を伴うプロセスにおけるガラスの反りを最小限にできるとの利点がある。キャリア12の厚さは100~2000μmが好ましく、より好ましくは300~1800μm、さらに好ましくは400~1100μmである。このような範囲内の厚さであると、ハンドリングに支障を来さない適切な強度を確保しながらプリント配線板の薄型化、及び電子部品搭載時に生じる反りの低減を実現することができる。
 キャリア12の中間層14側の表面は、JIS B 0601-2001に準拠して測定される、0.1~70nmの算術平均粗さRaを有するのが好ましく、より好ましくは0.5~60nm、さらに好ましくは1.0~50nm、特に好ましくは1.5~40nm、最も好ましくは2.0~30nmである。このように算術平均粗さが小さいほど、極薄銅層18の剥離層16と反対側の表面(極薄銅層18の外側表面)において望ましく低い算術平均粗さRaをもたらすことができ、それにより、キャリア付銅箔10を用いて製造されるプリント配線板において、ライン/スペース(L/S)が13μm以下/13μm以下(例えば12μm/12μm~2μm/2μm)といった程度にまで高度に微細化された配線パターンを形成するのに適したものとなる。
 中間層14は、キャリア12と剥離層16の間に介在して、キャリア12と剥離層16との密着性の確保に寄与する層である。中間層14を構成する金属はCu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga、Mo及びそれらの組合せ(以下、金属Mという)であり、好ましくはCu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、Mo及びそれらの組合せ、より好ましくはCu、Ti、Zr、Al、Cr、W、Ni、Mo及びそれらの組合せ、さらに好ましくはCu、Ti、Al、Cr、Ni、Mo及びそれらの組合せ、特に好ましくはCu、Ti、Al、Ni及びそれらの組合せである。中間層14は、純金属であってもよいし、合金であってもよい。中間層14を構成する金属は原料成分や成膜工程等に起因する不可避不純物を含んでいてもよい。また、特に制限されるものではないが、中間層14の成膜後に大気に暴露される場合、それに起因して混入する酸素の存在は許容される。上記金属の含有率の上限は特に限定されず、100原子%であってもよい。中間層14は物理気相堆積(PVD)法により形成された層であるのが好ましく、より好ましくはスパッタリングにより形成された層である。中間層14は金属ターゲットを用いたマグネトロンスパッタリング法により形成された層であるのが膜厚分布の均一性を向上できる点で特に好ましい。中間層14の厚さは10~1000nmであるのが好ましく、より好ましくは30~800nm、さらに好ましくは60~600nm、特に好ましくは100~400nmである。この厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。
 中間層14は、1層構成であってもよいし、2層以上の構成であってもよい。中間層14が1層構成である場合、中間層14はCu、Al、Ti、Ni又はそれらの組合せ(例えば合金や金属間化合物)で構成される金属を含有する層からなるのが好ましく、より好ましくはAl、Ti、又はそれらの組合せ(例えば合金や金属間化合物)であり、さらに好ましくはAl含有層又はTi含有層である。一方、キャリア12との密着性が十分高いとはいえない金属又は合金を中間層14に採用する場合は、中間層14を2層構成とすることが好ましい。すなわち、キャリア12との密着性に優れる金属(例えばTi)又は合金で構成した層をキャリア12に隣接させて設け、かつ、キャリア12との密着性に劣る金属(例えばCu)又は合金で構成した層を剥離層16に隣接させて設けることで、キャリア12との密着性を向上することができる。したがって、中間層14の好ましい2層構成の例としては、キャリア12に隣接するTi含有層と、剥離層16に隣接するCu含有層とからなる積層構造が挙げられる。また、2層構成の各層の構成元素や厚みのバランスを変えると、剥離強度も変わるため、各層の構成元素や厚みを適宜調整するのが好ましい。なお、本明細書において「金属M含有層」の範疇には、キャリアの剥離性を損なわない範囲において、金属M以外の元素を含む合金も含まれるものとする。したがって、中間層14は主として金属Mを含む層ともいうことができる。上記の点から、中間層14における金属Mの含有率は50~100原子%であることが好ましく、より好ましくは60~100原子%、さらに好ましくは70~100原子%、特に好ましくは80~100原子%、最も好ましくは90~100原子%である。
 剥離層16は、キャリア12(これは中間層14を伴う)の剥離を可能とする層であり、金属酸化物層16a及び炭素層16bを含むか、又は金属酸化物及び炭素を含む。こうすることで、炭素層16bがキャリア12の安定的な剥離に寄与するとともに、金属酸化物層16aが中間層14及び極薄銅層18(存在する場合はエッチングストッパー層17)に由来する金属元素の加熱に伴う拡散を抑制することができ、結果として高温(例えば350℃以上)で加熱された後においても、安定した剥離性を保持することが可能となる。金属酸化物層16a及び炭素層16bが積層される順は特に限定されるものではなく、金属酸化物層16aが中間層14に隣接し、かつ、炭素層16bが極薄銅層18に近い側に設けられる(すなわちエッチングストッパー層17又は極薄銅層18に隣接する)ものであってよい。あるいは、炭素層16bが中間層14に隣接し、かつ、金属酸化物層16aが極薄銅層18に近い側に設けられる(すなわちエッチングストッパー層17又は極薄銅層18に隣接する)ものであってもよい。さらに、剥離層16は、金属酸化物層16a及び炭素層16bの境界が明瞭には特定されない混相(すなわち金属酸化物及び炭素を含む層)の状態で存在していてもよい。
 金属酸化物層16aはCu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga、Mo及びそれらの組合せで構成される金属の酸化物(以下、金属酸化物MOという)を含む層であるのが好ましく、より好ましくはCu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、Mo及びそれらの組合せが挙げられ、さらに好ましくはCu、Ti、Zr、Al、Cr、W、Ni、Mo及びそれらの組合せ、特に好ましくはCu、Ti、Al、Cr、Ni、Mo及びそれらの組合せ、最も好ましくはCu、Ti、Al、Ni及びそれらの組合せである。金属酸化物層16aは物理気相堆積(PVD)法により形成された層であるのが好ましく、より好ましくはスパッタリングにより形成された層である。金属酸化物層16aは金属ターゲットを用い、酸化性雰囲気下でスパッタリングを行う反応性スパッタリング法により形成された層であるのが、成膜時間の調整によって膜厚を容易に制御可能な点から特に好ましい。金属酸化物層16aの厚さは100nm以下であるのが好ましく、より好ましくは60nm以下、さらに好ましくは30nm以下、特に好ましくは10nm以下である。この厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。
 金属酸化物層16aは、中間層14を構成する金属の酸化物を含む層であるのが、製造の容易性の観点から好ましい。中間層14及び金属酸化物層16aの組合せの好ましい例としては、(i)中間層14がキャリア12に隣接するTi含有層と、剥離層16に隣接するCu含有層とを含み、かつ、金属酸化物層16aが酸化銅層であるもの、(ii)中間層14がTi含有層であり、かつ、金属酸化物層16aが酸化チタン層であるもの、及び(iii)中間層14がAl含有層であり、かつ、金属酸化物層16aが酸化アルミニウム層であるものが挙げられる。このような態様の金属酸化物層16aは、上述した反応性スパッタリング法のみならず、中間層14の表面を酸化処理することによっても作製することが可能であり、この酸化処理は真空中で形成した中間層14を酸化性雰囲気(例えば大気)に暴露することにより行うことにより行ってもよい。なお、本明細書において「金属酸化物MO含有層」の範疇には、キャリアの剥離性を損なわない範囲において、金属酸化物MO以外の元素も含まれるものとする。したがって、金属酸化物層16aは主として金属酸化物MOを含む層ともいうことができる。
 炭素層16bは、主として炭素又は炭化水素からなる層であるのが好ましく、さらに好ましくは硬質炭素膜であるアモルファスカーボンからなる。この場合、炭素層16bはXPSにより測定される炭素濃度が60原子%以上であるのが好ましく、より好ましくは70原子%以上、さらに好ましくは80原子%以上、特に好ましくは85原子%以上である。炭素濃度の上限値は特に限定されず100原子%であってもよいが、98原子%以下が現実的である。炭素層16bは不可避不純物(例えば雰囲気等の周囲環境に由来する酸素、炭素、水素等)を含みうる。また、炭素層16bにはエッチングストッパー層17又は極薄銅層18の成膜手法に起因して金属原子が混入しうる。炭素はキャリア12との相互拡散性及び反応性が小さく、比較的高温(例えば180℃)でのプレス加工等を受けても、銅箔層と接合界面との間での加熱による金属結合の形成を防止して、キャリア12の引き剥がし除去が容易な状態を維持することができる。この炭素層16bも物理気相堆積(PVD)法により形成された層であるのがアモルファスカーボン中の過度な不純物を抑制する点、前述の中間層14の成膜の連続生産性の点などから好ましく、より好ましくはスパッタリングにより形成された層である。炭素層16bの厚さは1~20nmが好ましく、より好ましくは1~10nmである。この厚さは、層断面を透過型電子顕微鏡のエネルギー分散型X線分光分析器(TEM-EDX)で分析することにより測定される値とする。
 所望により剥離層16と極薄銅層18の間に設けられるエッチングストッパー層17は、極薄銅層18よりも銅フラッシュエッチング液によってエッチングされにくい層である。エッチングストッパー層17を構成する金属の好ましい例としては、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、Mo及びそれらの組合せが挙げられ、より好ましくはTi、Zr、Al、Cr、W、Ni、Mo及びそれらの組合せ、さらに好ましくはTi、Al、Cr、Ni、Mo及びそれらの組合せ、特に好ましくはTi、Mo及びそれらの組合せである。これらの元素は、銅フラッシュエッチング液に対して溶解しないという性質を有し、その結果、銅フラッシュエッチング液に対して優れた耐薬品性を呈することができる。その上、本発明のキャリア付銅箔10は、剥離層16がエッチングストッパー層17に由来する金属元素の拡散を効果的に抑制するため、350℃以上の高温で長時間加熱された後においても、エッチングストッパー層17が劣化することなく所望の耐薬品性を保持することができる。エッチングストッパー層17は、純金属であってもよいし、合金であってもよい。エッチングストッパー層17を構成する金属は原料成分や成膜工程等に起因する不可避不純物を含んでいてもよい。また、上記金属の含有率の上限は特に限定されず、100原子%であってもよい。エッチングストッパー層17は物理気相堆積(PVD)法により形成された層であるのが好ましく、より好ましくはスパッタリングにより形成された層である。エッチングストッパー層17の厚さは1~500nmであるのが好ましく、より好ましくは10~400nm、さらに好ましくは30~300nm、特に好ましくは50~200nmである。
 中間層14を構成する金属の標準電極電位は、エッチングストッパー層17を構成する金属の標準電極電位以上であることが好ましい。換言すれば、エッチングストッパー層17を構成する金属のイオン化傾向が、中間層14を構成する金属のイオン化傾向と同じか、又はそれより高いことが好ましい。こうすることで、350℃以上の高温で長時間加熱された後におけるキャリア付銅箔10の剥離性をより一層向上させることができる。すなわち、上記態様とすることで、エッチングストッパー層17に由来する金属元素が金属酸化物層16aとの接合界面に拡散してきた際に、この金属元素の酸化が促進され、積極的に金属酸化物となる。その結果、中間層14及びエッチングストッパー層17間の領域における金属-金属結合の追加的形成がさらに抑制されることになり、加熱に伴う剥離強度の過度な上昇をより一層抑制できる。
 極薄銅層18は銅で構成される層である。極薄銅層18を構成する銅は原料成分や成膜工程等に起因する不可避不純物を含んでいてもよい。極薄銅層18は、いかなる方法で製造されたものでよく、例えば、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び真空蒸着等の物理気相堆積(PVD)法、化学気相成膜、又はそれらの組合せにより形成した銅箔であってよい。特に好ましい極薄銅層は、極薄化によるファインピッチ化に対応しやすい観点から、スパッタリング法や真空蒸着等の物理気相堆積(PVD)法により形成された銅層であり、最も好ましくはスパッタリング法により製造された銅層である。また、極薄銅層18は、無粗化の銅層であるのが好ましいが、プリント配線板製造時の配線パターン形成に支障を来さないかぎり予備的粗化やソフトエッチング処理や洗浄処理、酸化還元処理により二次的な粗化が生じたものであってもよい。極薄銅層18の厚さは特に限定されないが、上述したようなファインピッチ化に対応するためには、10~1000nmが好ましく、より好ましくは20~900nm、さらに好ましくは30~700nm、特に好ましくは50~600nm、特により好ましくは70~500nm、最も好ましくは100~400nmである。このような範囲内の厚さの極薄銅層はスパッタリング法により製造されるのが成膜厚さの面内均一性や、シート状やロール状での生産性の観点で好ましい。
 極薄銅層18の剥離層16と反対側の表面(極薄銅層18の外側表面)が、JIS B 0601-2001に準拠して測定される、1.0~100nmの算術平均粗さRaを有するのが好ましく、より好ましくは2.0~40nm、さらに好ましくは3.0~35nm、特に好ましくは4.0~30nm、最も好ましくは5.0~15nmである。このように算術平均粗さが小さいほど、キャリア付銅箔10を用いて製造されるプリント配線板において、ライン/スペース(L/S)が13μm以下/13μm以下(例えば12μm/12μm~2μm/2μm)といった程度にまで高度に微細化された配線パターンの形成を形成するのに適したものとなる。
 中間層14、金属酸化物層16a、炭素層16b、エッチングストッパー層17(存在する場合)及び極薄銅層18はいずれも物理気相堆積(PVD)膜、すなわち物理気相堆積(PVD)法により形成された膜であるのが好ましく、より好ましくはスパッタ膜、すなわちスパッタリング法により形成された膜である。
 キャリア付銅箔の製造方法
 本発明によるキャリア付銅箔10は、上述したキャリア12を用意し、キャリア12上に、中間層14、剥離層16(すなわち順不同で金属酸化物層16a及び炭素層16b)、所望によりエッチングストッパー層17、及び極薄銅層18を形成することにより製造することができる。中間層14、剥離層16、エッチングストッパー層17(存在する場合)及び極薄銅層18の各層の形成は、極薄化によるファインピッチ化に対応しやすい観点から、物理気相堆積(PVD)法により行われるのが好ましい。物理気相堆積(PVD)法の例としては、スパッタリング法、真空蒸着法、及びイオンプレーティング法が挙げられるが、0.05nm~5000nmといった幅広い範囲で膜厚制御できる点、広い幅ないし面積にわたって膜厚均一性を確保できる点等から、最も好ましくはスパッタリング法である。特に、中間層14、剥離層16、エッチングストッパー層17(存在する場合)及び極薄銅層18の全ての層をスパッタリング法により形成することで、製造効率が格段に高くなる。物理気相堆積(PVD)法による成膜は公知の気相成膜装置を用いて公知の条件に従って行えばよく特に限定されない。例えば、スパッタリング法を採用する場合、スパッタリング方式は、マグネトロンスパッタリング、2極スパッタリング法、対向ターゲットスパッタリング法等、公知の種々の方法であってよいが、マグネトロンスパッタリングが、成膜速度が速く生産性が高い点で好ましい。スパッタリングはDC(直流)及びRF(高周波)のいずれの電源で行ってもよい。また、ターゲット形状も広く知られているプレート型ターゲットを使用することができるが、ターゲット使用効率の観点から円筒形ターゲットを用いることが望ましい。以下、中間層14、剥離層16(すなわち順不同で金属酸化物層16a及び炭素層16b)、エッチングストッパー層17(存在する場合)及び極薄銅層18の各層の物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜について説明する。
 中間層14の物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜は、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属で構成されるターゲットを用い、非酸化性雰囲気下でマグネトロンスパッタリングにより行われるのが膜厚分布均一性を向上できる点で好ましい。ターゲットの純度は99.9%以上が好ましい。スパッタリングに用いるガスとしては、アルゴンガス等の不活性ガスを用いるのが好ましい。アルゴンガスの流量はスパッタリングチャンバーサイズ及び成膜条件に応じて適宜決定すればよく特に限定されない。また、異常放電などの稼働不良なく、連続的に成膜する観点から成膜時の圧力は0.1~20Paの範囲で行うことが好ましい。この圧力範囲は、装置構造、容量、真空ポンプの排気容量、成膜電源の定格容量等に応じ、成膜電力、アルゴンガスの流量を調整することで設定すればよい。また、スパッタリング電力は成膜の膜厚均一性、生産性等を考慮してターゲットの単位面積あたり0.05~10.0W/cmの範囲内で適宜設定すればよい。
 金属酸化物層16aの物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜は、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属で構成されるターゲットを用い、酸化性雰囲気下で反応性スパッタリング法により行われるのが膜厚を容易に制御可能な点で好ましい。ターゲットの純度は99.9%以上が好ましい。スパッタリングに用いるガスとしては不活性ガス(例えばアルゴンガス)及び酸化性ガス(例えば酸素ガス)の混合ガスを用いるのが好ましい。不活性ガス及び酸化性ガスの流量はスパッタリングチャンバーサイズ及び成膜条件に応じて適宜決定すればよく特に限定されない。また、異常放電などの稼働不良なく、連続的に成膜する観点から成膜時の圧力は0.1~1.0Paの範囲で行うことが好ましい。この圧力範囲は、装置構造、容量、真空ポンプの排気容量、成膜電源の定格容量等に応じ、成膜電力、不活性ガス及び酸化性ガスの流量を調整することで設定すればよい。また、スパッタリング電力は成膜の膜厚均一性、生産性等を考慮してターゲットの単位面積あたり0.05~15.0W/cmの範囲内で適宜設定すればよい。
 炭素層16bの物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜は、カーボンターゲットを用いてアルゴン等の不活性雰囲気下で行われるのが好ましい。カーボンターゲットはグラファイトで構成されるのが好ましいが、不可避不純物(例えば雰囲気等の周囲環境に由来する酸素や炭素)を含みうる。カーボンターゲットの純度は99.99%以上が好ましく、より好ましくは99.999%以上である。また、異常放電などの稼働不良なく、連続的に成膜する観点から成膜時の圧力は0.1~2.0Paの範囲で行うことが好ましい。この圧力範囲は、装置構造、容量、真空ポンプの排気容量、成膜電源の定格容量等に応じ、成膜電力、アルゴンガスの流量を調整することで設定すればよい。また、スパッタリング電力は成膜の膜厚均一性、生産性等を考慮してターゲットの単位面積あたり0.05~10.0W/cmの範囲内で適宜設定すればよい。
 エッチングストッパー層17の物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜は、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni及びMoからなる群から選択される少なくとも1種の金属で構成されるターゲットを用いて、マグネトロンスパッタ法により行われるのが好ましい。ターゲットの純度は99.9%以上が好ましい。特に、エッチングストッパー層17のマグネトロンスパッタ法による成膜は、アルゴン等の不活性ガス雰囲気下、圧力0.1~20Paで行われるのが好ましい。スパッタリング圧力は、より好ましくは0.2~15Pa、さらに好ましくは0.3~10Paである。なお、上記圧力範囲の制御は、装置構造、容量、真空ポンプの排気容量、成膜電源の定格容量等に応じ、成膜電力、アルゴンガスの流量を調整することにより行えばよい。アルゴンガスの流量はスパッタリングチャンバーサイズ及び成膜条件に応じて適宜決定すればよく特に限定されない。また、スパッタリング電力は成膜の膜厚均一性、生産性等を考慮してターゲットの単位面積あたり1.0~15.0W/cmの範囲内で適宜設定すればよい。また、製膜時にキャリア温度を一定に保持するのが、安定した膜特性(例えば膜抵抗や結晶サイズ)を得やすい点で好ましい。成膜時のキャリア温度は25~300℃の範囲内で調整することが好ましく、より好ましくは40~200℃、さらに好ましくは50~150℃の範囲内である。
 極薄銅層18の物理気相堆積(PVD)法(好ましくはスパッタリング法)による成膜は、銅ターゲットを用いてアルゴン等の不活性雰囲気下で行われるのが好ましい。銅ターゲットは金属銅で構成されるのが好ましいが、不可避不純物を含みうる。銅ターゲットの純度は99.9%以上が好ましく、より好ましくは99.99%、さらに好ましくは99.999%以上である。極薄銅層18の気相成膜時の温度上昇を避けるため、スパッタリングの際、ステージの冷却機構を設けてもよい。また、異常放電などの稼働不良なく、安定的に成膜する観点から成膜時の圧力は0.1~2.0Paの範囲で行うことが好ましい。この圧力範囲は、装置構造、容量、真空ポンプの排気容量、成膜電源の定格容量等に応じ、成膜電力、アルゴンガスの流量を調整することで設定すればよい。また、スパッタリング電力は成膜の膜厚均一性、生産性等を考慮してターゲットの単位面積あたり0.05~10.0W/cmの範囲内で適宜設定すればよい。
 本発明を以下の例によってさらに具体的に説明する。
 例1
 図1に示されるように、キャリア12としてのガラスシート上に、中間層14(Ti含有層及びCu含有層)、金属酸化物層16a、炭素層16b、エッチングストッパー層17、及び極薄銅層18をこの順に成膜してキャリア付銅箔10を作製した。具体的な手順は以下のとおりである。
(1)キャリアの準備
 厚さ1.1mmのガラスシート(材質:ソーダライムガラス、算術平均粗さRa:0.6nm、セントラル硝子株式会社製)を用意した。
(2)Ti含有層の形成
 キャリア12の表面に、Ti含有層として厚さ100nmのチタン層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式マグネロトンスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)のTiターゲット(純度99.999%)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(3.1W/cm
‐ 成膜時温度:40℃
(3)Cu含有層の形成
 Ti含有層の上に、Cu含有層として厚さ100nmの銅層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の銅ターゲット(純度99.98%)
‐ 到達真空度:1×10-4Pa未満
‐ ガス:アルゴンガス(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(6.2W/cm
‐ 成膜時温度:40℃
(4)金属酸化物層の形成
 Ti含有層及びCu含有層が形成された試料を真空中から取り出し、1分間大気暴露することで、Cu含有層の表面酸化処理(自然酸化)を行った。この表面酸化処理により、金属酸化物層16aとして酸化銅層を形成した。これまでの経験によれば酸化銅層の厚さは約0.5~1.0nmと推定される。
(5)炭素層の形成
 金属酸化物層16a上に、炭素層16bとして厚さ6nmのアモルファスカーボン層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の炭素ターゲット(純度99.999%)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:250W(0.7W/cm
‐ 成膜時温度:40℃
(6)エッチングストッパー層の形成
 炭素層16bの表面に、エッチングストッパー層17として厚さ100nmのチタン層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)のチタンターゲット(純度99.999%)
‐ キャリアガス:Ar(流量:100sccm)
‐ 到達真空度:1×10-4Pa未満
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(3.1W/cm
(7)極薄銅層の形成
 エッチングストッパー層17の上に、膜厚300nmの極薄銅層18を以下の装置及び条件でスパッタリングにより形成して、キャリア付銅箔10を得た。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の銅ターゲット(純度99.98%)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:1000W(3.1W/cm
‐ 成膜時温度:40℃
 例2
 金属酸化物層16aとして、大気暴露によるCu含有層の表面酸化処理を行う代わりに、酸化銅層を以下のようにして反応性スパッタリングにより形成したこと以外は、例1と同様にしてキャリア付銅箔の作製を行った。
(酸化銅層の形成)
 Cu含有層の表面に、狙いの厚さが約1nmの酸化銅層を以下の装置及び条件で反応性スパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)の銅ターゲット(純度99.98%)
‐ 到達真空度:1×10-4Pa未満
‐ ガス:アルゴンガス(流量:90sccm)及び酸素ガス(流量:10sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:100W(0.3W/cm
‐ 成膜時温度:40℃
 例3
 金属酸化物層16a(酸化銅層)の狙いの厚さを約2nmとしたこと以外は、例2と同様にしてキャリア付銅箔の作製を行った。
 例4(比較)
 金属酸化物層16aを形成しなかった(すなわち大気暴露によるCu含有層の表面酸化処理を行わなかった)こと以外は、例1と同様にしてキャリア付銅箔の作製を行った。
 例5
 中間層14としてTi含有層及びCu含有層の2層の代わりにAl含有層の単層を以下のようにして形成したこと、及び金属酸化物層16aとして酸化銅層の代わりに酸化アルミニウム層を以下のようにして形成したこと以外は、例1と同様にしてキャリア付銅箔の作製を行った。
(Al含有層の形成)
 キャリア12の表面に、Al含有層として厚さ200nmのアルミニウム層を以下の装置及び条件でスパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)のAlターゲット(純度99.9%以上)
‐ 到達真空度:1×10-4Pa未満
‐ キャリアガス:Ar(流量:100sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:100W
‐ 成膜時温度:40℃
(酸化アルミニウム層の形成)
 Al含有層を形成した試料を真空中から取り出し、1分間大気暴露することで、Al含有層の表面酸化処理(自然酸化)を行った。この表面酸化処理により、金属酸化物層16aとして酸化アルミニウム層を形成した。
 例6
 金属酸化物層16aとして、大気暴露によるAl含有層の表面酸化処理を行う代わりに、酸化アルミニウム層を以下のようにして反応性スパッタリングにより形成したこと以外は、例5と同様にしてキャリア付銅箔の作製を行った。
(酸化アルミニウム層の形成)
 Al含有層の表面に、金属酸化物層16aとして狙いの厚さが約1nmの酸化アルミニウム層を以下の装置及び条件で反応性スパッタリングにより形成した。
‐ 装置:枚葉式DCスパッタリング装置(キヤノントッキ株式会社製、MLS464)
‐ ターゲット:直径8インチ(203.2mm)のAlターゲット(純度99.99%)
‐ 到達真空度:1×10-4Pa未満
‐ ガス:アルゴンガス(流量:90sccm)及び酸素ガス(流量:10sccm)
‐ スパッタリング圧:0.35Pa
‐ スパッタリング電力:100W
‐ 成膜時温度:40℃
 例7
 金属酸化物層16a(酸化アルミニウム層)の狙いの厚さを約2nmとしたこと以外は、例6と同様にしてキャリア付銅箔の作製を行った。
 例8(比較)
 金属酸化物層16aとして酸化アルミニウム層を形成しなかった(すなわち大気暴露によるAl含有層の表面酸化処理を行わなかった)こと以外は、例5と同様にしてキャリア付銅箔の作製を行った。
 評価
 例1~8のキャリア付銅箔について、以下に示されるとおり、各種評価を行った。評価結果は表1に示されるとおりであった。また、表1には中間層14及び剥離層16の組成、並びに金属酸化物層16aの形成条件も併せて示してある。
<評価1:剥離層の半定量分析>
 例3及び4につき、作製したキャリア付銅箔の深さ方向元素分析を以下の測定条件及び解析条件に基づきXPSにより行った。この分析は、キャリア付銅箔を極薄銅層表面から深さ方向に向かって、以下の条件でArイオンエッチングによって掘り下げながら行った。
(Arイオンエッチング条件)
‐ 加速電圧:500V
‐ エッチングエリア:2mm×2mm
‐ エッチング速度:SiO換算で1.4nm/min
(測定条件)
‐ 装置:X線光電子分光装置(アルバック・ファイ株式会社製、Quantum2000)
‐ 励起X線:単色化Al-Kα線(1486.6eV)
‐ 出力:100W
‐ 加速電圧:15kV
‐ X線照射径:直径100μm
‐ 測定面積:直径100μm×1mm
‐ パスエネルギー:23.5eV
‐ エネルギーステップ:0.1eV
‐ 中和銃:有
‐ 測定元素及び軌道:(sweep数:Ratio:Cycle数)
  O 1s:(5:6:1)
  Cu 2p3:(2:6:1)
  C 1s:(3:6:1)
  Ti 2p:(2:6:1)
  Si 2p:(1:6:1)
(解析条件)
 データ解析ソフト(アルバック・ファイ株式会社製「マルチパックVer9.4.0.7」)を用いてXPSデータの解析を行った。スムージングは9点で行い、バックグラウンドモードはShirleyを使用した。なお、半定量算出における各元素のバックグラウンド範囲は以下のとおりである。
‐ O 1s:528.0~540.0eV
‐ Cu 2p3:927.0~939.0eV
‐ C1 s:280.0~292.0eV
‐ Ti 2p:451.2~464.5eV
‐ Si 2p:ピークが検出下限以下であったため、0とした。
 剥離層16における、深さ方向の酸素半定量値の結果は図2に示されるとおりであった。図2から明らかなように、反応性スパッタリングによる酸化銅層形成を行った例3では、酸化銅層形成も酸化処理も行わなかった例4に比べて、Cu含有層(中間層14の一部)と剥離層16との界面における酸素量が増加しており、金属酸化物層16aとして酸化銅層が形成されていることが確認された。ここで、例4についても平均して約2Atom%の酸素が確認されているが、これは炭素層16bやエッチングストッパー層17の成膜初期に不純物として混入する酸素を検出しているものと考えられる。なお、図2における横軸(深さ)の数値は、キャリア付銅箔の極薄銅層表面を分析開始位置(0nm)とし、分析位置のキャリア側方向への深さを、SiO換算のエッチング速度から求めた値である。
<評価2:キャリア-極薄銅層の剥離性>
 キャリア付銅箔10における熱履歴としての真空熱プレスを行った後の剥離強度の測定を以下のように行った。キャリア付銅箔10の極薄銅層18側に、厚さ18μmのパネル電解銅めっきを施した後、熱履歴として350℃で2時間30kgf/cmの圧力でプレスした。得られた銅張積層板に対して、JIS C 6481-1996に準拠して、極薄銅層18と一体となった電気銅めっき層を剥離した時の剥離強度(gf/cm)を測定した。このとき、測定幅は50mmとし、測定長さは20mmとした。こうして得られた剥離強度(平均値)を以下の基準で格付けした。
 評価A:自然剥離せず、かつ、剥離強度が50gf/cm以下
 評価B:剥離強度が50gf/cm超150gf/cm以下
 評価C:自然剥離が起こるか又は150gf/cm超(剥離不可を含む)
 なお、参考のために、i)真空熱プレスを行わなかった場合(すなわち加熱無しの場合)、ii)熱履歴として250℃で2時間30kgf/cmの圧力でプレスした場合、及びiii)熱履歴として300℃で2時間30kgf/cmの圧力でプレスした場合の剥離強度(gf/cm)も上記同様の手法で測定し、それらの結果も表1に併せて示した。
<評価3:エッチングストッパー層の耐薬品性>
 各キャリア付銅箔10の極薄銅層18の表面を1.8mol/Lの希硫酸で処理して表面の酸化膜の除去を行い、その後、水洗及び乾燥を行った。その後、極薄銅層18の表面に感光性ドライフィルムを貼り付け、ライン/スペース(L/S)=5μm/5μmのパターンを与えるように露光及び現像を行った。現像は、現像液として1.0重量%炭酸ナトリウム水溶液を用いて、25℃で2分間、シャワー方式により行った。こうして得られた配線層付コアレス支持体(パターン形成された配線間に極薄銅層18が露出した状態のもの)を硫酸-過酸化水素混合液を含むエッチング液に23℃で5分間、シャワー圧力0.1MPaにて浸漬することにより銅フラッシュエッチングを行った。こうして、パターン形成された配線間に露出した極薄銅層18を除去した。フラッシュエッチング後の配線層付コアレス支持体を観察することによりエッチングストッパー層17の耐薬品性を評価した。得られた評価結果を以下の基準で格付けした。
 評価A:エッチングストッパー層が一切溶解することなく残留していた。
 評価B:エッチングストッパー層がわずかに溶解し、後工程に悪影響を及ぼす可能性がある。
 評価C:エッチングストッパー層が一部溶解し、後工程に悪影響を及ぼす可能性が高い。

Figure JPOXMLDOC01-appb-T000001

Claims (16)

  1.  ガラス又はセラミックスで構成されるキャリアと、
     前記キャリア上に設けられ、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属で構成される中間層と、
     前記中間層上に設けられ、金属酸化物層及び炭素層を含む、又は金属酸化物及び炭素を含む、剥離層と、
     前記剥離層上に設けられる極薄銅層と、
    を備えた、キャリア付銅箔。
  2.  前記剥離層と前記極薄銅層の間に、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni及びMoからなる群から選択される少なくとも1種の金属で構成されるエッチングストッパー層をさらに備えた、請求項1に記載のキャリア付銅箔。
  3.  前記金属酸化物層が前記中間層に隣接し、かつ、前記炭素層が前記極薄銅層に近い側に設けられる、請求項1又は2に記載のキャリア付銅箔。
  4.  前記炭素層が前記中間層に隣接し、かつ、前記金属酸化物層が前記極薄銅層に近い側に設けられる、請求項1又は2に記載のキャリア付銅箔。
  5.  前記中間層を構成する金属の標準電極電位が、前記エッチングストッパー層を構成する金属の標準電極電位以上である、請求項2~4のいずれか一項に記載のキャリア付銅箔。
  6.  前記中間層が、前記キャリアに隣接するTi含有層と、前記剥離層に隣接するCu含有層とからなる2層構成であるか、又はAl、Ti及びNiからなる群から選択される少なくとも1種の金属を含有する層からなる1層構成である、請求項1~5のいずれか一項に記載のキャリア付銅箔。
  7.  前記中間層の厚さが10~1000nmである、請求項1~6のいずれか一項に記載のキャリア付銅箔。
  8.  前記金属酸化物層が、Cu、Ti、Al、Nb、Zr、Cr、W、Ta、Co、Ag、Ni、In、Sn、Zn、Ga及びMoからなる群から選択される少なくとも1種の金属の酸化物を含む、請求項1~7のいずれか一項に記載のキャリア付銅箔。
  9.  前記中間層が、前記キャリアに隣接するTi含有層と、前記剥離層に隣接するCu含有層とを含み、かつ、前記金属酸化物層が酸化銅層である、又は
     前記中間層がTi含有層であり、かつ、前記金属酸化物層が酸化チタン層である、又は
     前記中間層がAl含有層であり、かつ、前記金属酸化物層が酸化アルミニウム層である、請求項1~8のいずれか一項に記載のキャリア付銅箔。
  10.  前記金属酸化物層の厚さが100nm以下である、請求項1~9のいずれか一項に記載のキャリア付銅箔。
  11.  前記炭素層の厚さが1~20nmである、請求項1~10のいずれか一項に記載のキャリア付銅箔。
  12.  前記エッチングストッパー層の厚さが1~500nmである、請求項2~11のいずれか一項に記載のキャリア付銅箔。
  13.  前記極薄銅層の厚さが10~1000nmである、請求項1~12のいずれか一項に記載のキャリア付銅箔。
  14.  前記中間層、前記炭素層、前記金属酸化物層、存在する場合には前記エッチングストッパー層、及び前記極薄銅層はいずれも物理気相堆積(PVD)膜である、請求項1~13のいずれか一項に記載のキャリア付銅箔。
  15.  350℃以上で使用される、請求項1~14のいずれか一項に記載のキャリア付銅箔。
  16.  前記キャリア上に、前記中間層、前記炭素層、前記金属酸化物層、存在する場合には前記エッチングストッパー層、及び前記極薄銅層をいずれも物理気相堆積(PVD)法によって作製することを特徴とする、請求項1~15のいずれか一項に記載のキャリア付銅箔の製造方法。
     

     
PCT/JP2018/044391 2017-12-27 2018-12-03 キャリア付銅箔 WO2019131000A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202310435041.2A CN116583006A (zh) 2017-12-27 2018-12-03 带载体的铜箔
JP2019562900A JP7201621B2 (ja) 2017-12-27 2018-12-03 キャリア付銅箔
KR1020207013946A KR102613885B1 (ko) 2017-12-27 2018-12-03 캐리어를 구비한 구리박
CN201880070531.4A CN111278644B (zh) 2017-12-27 2018-12-03 带载体的铜箔
KR1020237042770A KR20230172617A (ko) 2017-12-27 2018-12-03 캐리어를 구비한 구리박
US16/957,508 US11765840B2 (en) 2017-12-27 2018-12-03 Copper foil with carrier
JP2022204558A JP7412523B2 (ja) 2017-12-27 2022-12-21 キャリア付銅箔

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017251237 2017-12-27
JP2017-251237 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019131000A1 true WO2019131000A1 (ja) 2019-07-04

Family

ID=67067183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044391 WO2019131000A1 (ja) 2017-12-27 2018-12-03 キャリア付銅箔

Country Status (6)

Country Link
US (1) US11765840B2 (ja)
JP (2) JP7201621B2 (ja)
KR (2) KR20230172617A (ja)
CN (2) CN111278644B (ja)
TW (1) TWI724351B (ja)
WO (1) WO2019131000A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090558A (ko) 2020-02-04 2022-06-29 미쓰이금속광업주식회사 캐리어 구비 금속박

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196920B (zh) * 2021-12-22 2022-10-21 安徽铜冠铜箔集团股份有限公司 一种铜箔制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024444A1 (fr) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Feuille de cuivre pour carte de connexions ultrafine haute densite
JP2008255462A (ja) * 2006-05-19 2008-10-23 Mitsui Mining & Smelting Co Ltd キャリアシート付銅箔、キャリアシート付銅箔の製造方法、キャリアシート付表面処理銅箔及びそのキャリアシート付表面処理銅箔を用いた銅張積層板
WO2016043058A1 (ja) * 2014-09-19 2016-03-24 三井金属鉱業株式会社 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
WO2016174970A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
WO2017149811A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法
WO2017150283A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273895B2 (ja) 2003-09-24 2009-06-03 日立化成工業株式会社 半導体素子搭載用パッケージ基板の製造方法
JP2006130724A (ja) 2004-11-04 2006-05-25 Murata Mfg Co Ltd セラミックグリーンシート用キャリアフィルムおよびそれを用いたセラミックグリーンシートの加工方法、電子部品の製造方法
JP4754402B2 (ja) 2006-05-17 2011-08-24 三井金属鉱業株式会社 キャリア箔付銅箔、キャリア箔付銅箔の製造方法、キャリア箔付表面処理銅箔及びそのキャリア箔付表面処理銅箔を用いた銅張積層板
US7977798B2 (en) * 2007-07-26 2011-07-12 Infineon Technologies Ag Integrated circuit having a semiconductor substrate with a barrier layer
KR101063454B1 (ko) * 2008-12-08 2011-09-08 삼성전기주식회사 인쇄회로기판 제조 방법
WO2017015084A1 (en) 2015-07-17 2017-01-26 Corning Optical Communications LLC Systems and methods for traceable cables

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024444A1 (fr) * 2000-09-22 2002-03-28 Circuit Foil Japan Co., Ltd. Feuille de cuivre pour carte de connexions ultrafine haute densite
JP2008255462A (ja) * 2006-05-19 2008-10-23 Mitsui Mining & Smelting Co Ltd キャリアシート付銅箔、キャリアシート付銅箔の製造方法、キャリアシート付表面処理銅箔及びそのキャリアシート付表面処理銅箔を用いた銅張積層板
WO2016043058A1 (ja) * 2014-09-19 2016-03-24 三井金属鉱業株式会社 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
WO2016174970A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
WO2017149811A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 キャリア付銅箔、並びに配線層付コアレス支持体及びプリント配線板の製造方法
WO2017150283A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090558A (ko) 2020-02-04 2022-06-29 미쓰이금속광업주식회사 캐리어 구비 금속박

Also Published As

Publication number Publication date
KR20230172617A (ko) 2023-12-22
TWI724351B (zh) 2021-04-11
CN111278644B (zh) 2023-05-12
CN111278644A (zh) 2020-06-12
CN116583006A (zh) 2023-08-11
JP2023033313A (ja) 2023-03-10
KR20200102987A (ko) 2020-09-01
JP7412523B2 (ja) 2024-01-12
JP7201621B2 (ja) 2023-01-10
TW201934781A (zh) 2019-09-01
JPWO2019131000A1 (ja) 2021-01-21
US11765840B2 (en) 2023-09-19
US20210059057A1 (en) 2021-02-25
KR102613885B1 (ko) 2023-12-15

Similar Documents

Publication Publication Date Title
CN108699673B (zh) 带载体的铜箔、以及带布线层的无芯支撑体和印刷电路板的制造方法
CN108701656B (zh) 带载体的铜箔和其制造方法、以及带布线层的无芯支撑体和印刷电路板的制造方法
JP7412523B2 (ja) キャリア付銅箔
JP7090176B2 (ja) 積層体
JP7336559B2 (ja) 積層体
JP7389052B2 (ja) 積層体
WO2021157373A1 (ja) キャリア付金属箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896371

Country of ref document: EP

Kind code of ref document: A1