WO2019130919A1 - 交通流制御装置、走行シナリオのデータ構造 - Google Patents

交通流制御装置、走行シナリオのデータ構造 Download PDF

Info

Publication number
WO2019130919A1
WO2019130919A1 PCT/JP2018/043055 JP2018043055W WO2019130919A1 WO 2019130919 A1 WO2019130919 A1 WO 2019130919A1 JP 2018043055 W JP2018043055 W JP 2018043055W WO 2019130919 A1 WO2019130919 A1 WO 2019130919A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
traveling
state
scenario
target
Prior art date
Application number
PCT/JP2018/043055
Other languages
English (en)
French (fr)
Inventor
章彦 兵頭
勝 康夫
深野 善信
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/957,613 priority Critical patent/US20210056838A1/en
Publication of WO2019130919A1 publication Critical patent/WO2019130919A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/091Traffic information broadcasting
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • G09B9/05Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles the view from a vehicle being simulated

Definitions

  • the present invention relates to a traffic flow control device and a data structure of a traveling scenario.
  • the simulated traveling road or the simulated traveling road based on the vehicle position information updating means for sequentially updating the first position information representing the position on the simulated traveling route coordinates of the virtual vehicle itself, and the sequentially updated first position information.
  • Mobile object information updating means for sequentially updating second position information representing the position of the mobile object on the simulated traveling route coordinates such that movement of the mobile object existing in the vicinity is synchronized with the movement of the host vehicle; Based on the position of the host vehicle represented by the position information of 1 and the position of the moving body represented by the second position information, information representing a simulated field of view image simulating a field of vision from the driver's seat of the host vehicle is sequentially generated.
  • the simulated visual field image is displayed on the display means
  • a simulated view generating means, automotive simulated driving device comprising a disclosed that.
  • a traffic flow control apparatus includes a reference vehicle operation input unit into which a traveling state of a reference vehicle is input, and target traveling states of a plurality of controlled vehicles using the traveling state of the reference vehicle.
  • a scenario input unit that reads a traveling scenario including a definition, and a target setting unit that calculates the target traveling state of the controlled vehicle based on the traveling state and the traveling scenario.
  • the data structure of the traveling scenario according to the second aspect of the present invention is a data structure of the traveling scenario used to determine the operation of the plurality of controlled vehicles, and is based on a reference vehicle not included in the controlled vehicle.
  • the control target vehicle initial state defining the initial state of the control target vehicle and the operation definition defining the operation after the initial state for each of the control target vehicle.
  • FIG. 4 (a) shows an example of the initial state 43
  • FIG. 4 (b) is a schematic view showing the initial state corresponding to FIG. 4 (a).
  • 5 (a) shows an example of the operation definition 44
  • FIG. 5 (b) is a schematic view showing the operation of the other vehicle D1 corresponding to FIG. 5 (a).
  • Flow chart showing the operation of the target setting unit 31 Flowchart representing the operation of the operation amount determination unit 32
  • Diagram showing the target speed of the other vehicle D1 in the operation example
  • FIG. 10B shows an example of the operation definition 44 in the seventh modification.
  • Hardware configuration diagram of another vehicle control device 30 in the second embodiment A diagram showing an example of the operation definition 44 in the second embodiment
  • FIG. 1 is a diagram showing a hardware configuration of the driving simulation system S.
  • the driving simulation system S includes a connection device 10, a simulation device 20, another vehicle control device 30, a database device 40, and an autonomous driving ECU 90.
  • the present system is configured around a simulation device 20.
  • the simulation device 20 is connected to the connection device 10 and the other vehicle control device 30 by signal lines
  • the connection device 10 is connected to the simulation device 20 and the autonomous driving ECU 90 by signal wires
  • the other vehicle control device 30 is the simulation device 20 and the database device 40 and the signal line.
  • the connection device 10 includes a CPU 10A, which is a central processing unit, a ROM 10B, which is a read-only storage device, a RAM 10C, which is a readable / writable storage device, a first communication unit 10D, and a second communication unit 10E.
  • the CPU 10A realizes functions to be described later by expanding a program stored in the ROM 10B into the RAM 10C and executing the program.
  • the first communication unit 10D is a communication interface that communicates with the autonomous driving ECU 90, and corresponds to, for example, CAN (Controller Area Network; registered trademark).
  • the second communication unit 10E is a communication interface that communicates with the simulation apparatus 20, and supports, for example, IEEE 802.3.
  • connection device 10 may be provided with any one of first communication unit 10D and second communication unit 10E.
  • the simulation apparatus 20 includes a CPU 20A which is a central processing unit, a ROM 20B which is a read-only storage device, a RAM 20C which is a readable / writable storage device, and a third communication unit 20D.
  • the CPU 20A realizes a function to be described later by expanding a program stored in the ROM 20B into the RAM 20C and executing the program.
  • the third communication unit 20D is a communication interface that communicates with the connection device 10 and the other-vehicle control device 30, and corresponds to, for example, IEEE 802.3.
  • the other vehicle control device 30 includes a CPU 30A, which is a central processing unit, a ROM 30B, which is a read-only storage device, a RAM 30C, which is a read / write storage device, a fourth communication unit 30D, and a scenario selection unit 30E.
  • the CPU 30A realizes a function to be described later by expanding a program stored in the ROM 30B into the RAM 30C and executing the program.
  • the fourth communication unit 30D is a communication interface that communicates with the simulation device 20 and the database device 40, and corresponds to, for example, IEEE 802.3.
  • the scenario selection unit 30E includes, for example, a plurality of buttons, and the operator selects one of the traveling scenarios described later.
  • the database device 40 includes a CPU 40A that is a central processing unit, a ROM 40B that is a read-only storage device, a RAM 40C that is a readable / writable storage device, a fifth communication unit 40D, and a storage unit 40F.
  • the CPU 40A realizes a function to be described later by expanding a program stored in the ROM 40B into the RAM 40C and executing the program.
  • the storage unit 40F is a non-volatile storage device, for example, a hard disk drive.
  • a traveling scenario database (hereinafter, traveling scenario DB) 41 is stored in the storage unit 40F. The configuration of the traveling scenario DB 41 will be described later.
  • the autonomous driving ECU 90 is an electronic control unit developed and created in consideration of being mounted on a vehicle. However, in the present embodiment, the autonomous driving ECU 90 is not mounted on the vehicle, and is connected to the connection device 10.
  • the autonomous driving ECU 90 includes a CPU 90A which is a central processing unit, a ROM 90B which is a read-only storage device, a RAM 90C which is a readable / writable storage device, and a sixth communication unit 90D.
  • the CPU 90A realizes a function to be described later by expanding a program stored in the ROM 90B into the RAM 90C and executing it.
  • the sixth communication unit 90D is a communication interface that communicates with the connection device 10, and corresponds to, for example, CAN.
  • FIG. 2 is a diagram showing a functional configuration of the driving simulation system S.
  • the driving simulation system S is a system for confirming the behavior of the autonomous driving ECU 90 in various situations by simulation.
  • the vehicle operated by the autonomous driving ECU 90 will be referred to as the “own vehicle” or the “reference vehicle”.
  • vehicles other than the self-vehicles in driving simulation system S are called “other vehicles” or “controlled vehicles.”
  • a person who uses the driving simulation system S is called a "user” or an "operator”.
  • the simulation apparatus 20 includes a host vehicle model 21 and a plurality of other vehicle models 22.
  • the host vehicle model 21 and the plurality of other vehicle models 22 are realized by the above-described program.
  • the simulation apparatus 20 calculates the behavior of the own vehicle and the other vehicle every unit time in the simulation, for example, every 10 ms, and outputs it as the traveling state 25.
  • the traveling state 25 includes the position, speed, acceleration, and attitude angle of each vehicle.
  • the attitude angles are yaw angle, roll angle, and pitch angle.
  • the timing for each unit time in the simulation for calculating the behavior of the vehicle is referred to as a “frame”.
  • the simulation apparatus 20 may perform the calculation without considering the passage of time in the real world, and may output the traveling state 25. Also, the delay of communication between devices, ie, the passage of time in the real world may be ignored.
  • the operation amount of the host vehicle model 21 is input from the automatic driving ECU 90 to the simulation device 20 via the connection device 10, and the operation amount of the other vehicle model 22 is input from the other vehicle control device 30 to the simulation device 20.
  • the operation amount of the own vehicle model 21 is also referred to as the own vehicle operation amount 96
  • the operation amount of the other vehicle model 22 is also referred to as the other vehicle operation amount 36.
  • the host vehicle model 21 calculates the position, the speed, the acceleration, and the number of rotations of the engine in the next frame based on the state of the host vehicle in a certain frame and the operation amount input from the outside.
  • the operation amount includes the depression amount of the accelerator pedal, the depression amount of the brake pedal, and the operation angle of the steering wheel.
  • the other vehicle model 22 calculates the position, the speed, the acceleration, and the number of rotations of the engine in the next frame based on the state of the other vehicle in a certain frame and the operation amount input from the outside.
  • the specifications of each vehicle that is, the mass of the vehicle, the characteristics of the engine, the characteristics of the brake, and the like are set in advance in the host vehicle model 21 and the other vehicle models 22 respectively.
  • the own vehicle operation amount 96 is input from the automatic driving ECU 90 via the connection device 10, and the other vehicle operation amount 36 is input from the other vehicle control device 30.
  • the simulation device 20 outputs the traveling state 25 to the connection device 10 and the other vehicle control device 30. That is, the simulation device 20 transmits the states of the own vehicle and the other vehicle to both the autonomous driving ECU 90 and the other vehicle control device 30.
  • the autonomous driving ECU 90 includes an autonomous driving unit 91 realized by the program described above.
  • the automatic driving unit 91 operates in accordance with a motion algorithm created in advance, calculates an optimal operation amount of the vehicle of the next frame based on the traveling state 25 of a certain frame input, and outputs it as the vehicle operation amount 96 Do.
  • the host vehicle operation amount 96 is transmitted to the simulation device 20 via the connection device 10.
  • the connection device 10 includes the relay unit 11 realized by the above-described program.
  • the relay unit 11 transmits the host vehicle operation amount 96 input from the automatic driving ECU 90 to the simulation device 20, and transmits the traveling state 25 input from the simulation device 20 to the connection device 10.
  • the other vehicle control device 30 includes a target setting unit 31 and an operation amount determination unit 32 which are realized by the aforementioned program.
  • the other-vehicle control device 30 transmits the selection to the database device 40 and receives the traveling scenario 42 from the database device 40.
  • the target setting unit 31 outputs the target state 35 of the other vehicle based on the traveling state 25 received from the simulation device 20 and the traveling scenario 42 received from the database device 40.
  • the operation amount determination unit 32 determines the operation amount of each other vehicle based on the target state 35 of the other vehicle output from the target setting unit 31 and outputs the operation amount as the other vehicle operation amount 36 to the simulation device 20. Details of operations of the target setting unit 31 and the operation amount determination unit 32 will be described later.
  • the other-vehicle control device 30 controls many controlled vehicles other than the reference vehicle in the simulation. Therefore, it can be said that the other-vehicle control device 30 controls the traffic flow in the simulation by a large number of controlled vehicles. Therefore, the other vehicle control device 30 can also be called a "traffic flow control device”. Since the traveling state 25 is input to the fourth communication unit 30D, and the traveling state 25 includes the traveling state of the reference vehicle and the controlled vehicle, the fourth communication unit 30D is configured as the “reference vehicle operation input unit” or the “controlled vehicle It can also be called an operation input unit. Further, since the traveling scenario 42 is input to the fourth communication unit 30D, the fourth communication unit 30D can also be called a "scenario input unit".
  • the database device 40 includes a scenario selection unit 46 realized by the program described above.
  • the scenario selection unit 46 reads the traveling scenario 42 requested by the other vehicle control device 30 from the traveling scenario DB 41 and transmits the same to the other vehicle control device 30.
  • FIG. 3 is a conceptual view of the traveling scenario DB 41.
  • a plurality of traveling scenarios 42 are stored in the traveling scenario DB 41.
  • Each traveling scenario 42 includes an initial state 43 and a plurality of operation definitions 44.
  • the initial state 43 stores information at the start of simulation of the own vehicle and all other vehicles.
  • operation definition 44 the definition of the operation of one other vehicle is described. Each will be described with a specific example.
  • FIG. 4A shows an example of the initial state 43.
  • the initial state 43 is represented, for example, in the form of a table having a plurality of records as shown in FIG. 4A, and each record has fields of a vehicle, an initial position, an initial speed, and a traveling lane.
  • identification information of the vehicle targeted by the corresponding record is stored.
  • the host vehicle is represented as "EGO”
  • the other vehicles are represented as D1 to D3.
  • the field of the initial position stores the position of each vehicle at the start of the simulation.
  • the initial position of the host vehicle EGO is 100 m away from the reference position previously defined in the simulation.
  • the initial positions “D1” to “D3” are all represented by relative positions based on the position of the host vehicle EGO.
  • the field of initial velocity stores the velocity of each vehicle at the start of the simulation.
  • the unit of the velocity may be, for example, "km / hour” or "mile / minute”.
  • the initial velocity of "D1" and "D2" is "relative 0". This indicates that the relative velocity with the host vehicle EGO is zero, that is, the velocity is the same as the host vehicle EGO.
  • an identifier of the traveling lane in which each vehicle exists at the start of the simulation is stored.
  • the initial positions of the other vehicles and the initial speeds are all relative positions and relative speeds based on the host vehicle EGO.
  • some other vehicles may have an absolute position and / or an absolute velocity, like the host vehicle EGO.
  • FIG.4 (b) is a schematic diagram which shows the initial state corresponding to Fig.4 (a).
  • the left end in the drawing is the reference position, that is, the position at which the distance is zero.
  • the own vehicle EGO is at a position of 100 m
  • the other vehicle D1 is at a position of 180 m since the relative position is +80 m.
  • the relative position of the other vehicle D2 is -80 m
  • the other vehicle D2 is at a position of 20 m
  • the relative vehicle D3 is at a position of 60 m since the relative position is -40 m.
  • the speed of the own vehicle EGO in the initial state is 50, and since the relative speed of the other vehicle D1 and the other vehicle D2 is zero, the speed is 50 as in the case of the own vehicle EGO.
  • the other vehicle D3 has a relative velocity of "+20", so the velocity is 70.
  • FIG. 5A shows an example of the operation definition 44.
  • the operation definition 44 is represented, for example, in the form of a table having a plurality of records as shown in FIG. 5A, and each record has fields of state, summary, target speed, next state, and transition condition. Also, independently of these fields, identifiers of other vehicles to which the action definition 44 is applied are described at the top of the action definition 44.
  • the state field stores an identifier indicating the state. In the example shown in FIG. 5A, the identifier of the state is represented by a serial number of “S” and a 2-digit number, but the format of the identifier is arbitrary.
  • the outline field describes the outline of the operation in each state.
  • the state "S-00" which is the first record, has an outline "initial state", so the other vehicle to which the operation definition 44 shown in FIG. 5A is applied starts the operation from S-00.
  • the target speed field stores the target speeds of other vehicles in each state.
  • the target speed may be a relative speed based on the host vehicle EGO or an absolute speed.
  • the field of the next state and the field of the transition condition are determined in combination, and transition to the state described in the field of the next state is performed when the conditions described in the field of the transition condition are satisfied. If the conditions described in the transition condition field are not satisfied, the current state is maintained.
  • the meanings of the symbols used in the conditional expression described in the transition condition field are as follows. That is, Tsim is an elapsed time from the start of the simulation in the simulation, and Vego is the speed of the host vehicle.
  • one state may have a plurality of sets of a next state and a transition condition, in which case the state transitions to the next state corresponding to the previously satisfied transition condition.
  • S-00 has two sets of the next state and the transition condition, which have the following meanings. That is, first, when the elapsed time from the start of the simulation is longer than 10 seconds and the speed of the host vehicle EGO is faster than 50 km / hr, the process transitions to S-01. Second, when the elapsed time from the start of simulation is longer than 50 seconds, the transition to END, that is, the simulation is ended.
  • the other vehicle travels the lane while traveling with the target velocity as the relative velocity of zero, that is, the same velocity as the host vehicle EGO, and transitions to S-02 when the lane travel is completed.
  • the lane movement is separately defined in detail, and is performed as follows, for example. That is, according to the speed of the other vehicle itself when starting the lane movement, a virtual trajectory for lane movement is generated, and movement is performed so as to trace the generated trajectory.
  • the other vehicle travels for 1 second with a target speed that is 10 km / h slower than the host vehicle EGO, and transits to the state S-03.
  • the other vehicle sets the target speed to zero, and ends the transition to the state END, ie, the simulation, when the speed of the other vehicle becomes zero.
  • FIG. 5 (b) is a schematic view showing the operation of the other vehicle D1 corresponding to FIG. 5 (a).
  • FIG. 3B shows how the state END is reached from the left end through the state S-00, the state S-01, the state S-02, and the state S-03.
  • the other vehicle D1 shown in FIG. 5 (b) makes the target speed the same as that of the host vehicle EGO in the state S-00, and the speed is higher than 50 km / h and continued for more than 10 seconds, so transition to state S-01 And move lanes.
  • the other vehicle D1 transitions to the state S-02, travels for 1 second as the target speed 10 km / h slower than the host vehicle, and then transitions to the state S-03.
  • the other vehicle D1 sets the target speed to zero, and ends the simulation when the speed becomes zero.
  • FIG. 6 is a flowchart showing the operation of the target setting unit 31.
  • the execution subject of each step of the flowchart described below is the CPU 30A of the other vehicle control device 30.
  • the target setting unit 31 performs the same process on a plurality of other vehicles.
  • the target setting unit 31 specifies and reads a record representing an initial state from the traveling scenario 42 received from the database device 40.
  • the target setting unit 31 determines the target state 35 based on the description of the read record, and transmits the target state 35 to the operation amount determination unit 32. For example, in the case of the state S-00 which is the initial state in the example shown in FIG. 5, the target state 35 is set to "zero speed difference with reference vehicle".
  • the target setting unit 31 determines whether the transition condition in the read record is met. If the target setting unit 31 determines that the transition condition is met, the process proceeds to S604, and if the target setting unit 31 determines that the transition condition is not met, the process returns to S602. When a plurality of transition conditions are included in the read record, when it is determined that one of the transition conditions is met, an affirmative determination is made in S602.
  • the target setting unit 31 determines whether the transition destination corresponding to the transition condition determined to match in S603 is END. If the target setting unit 31 determines that the transition destination is END, the processing of this flowchart ends, and if it is determined that the transition destination is not END, the process proceeds to S605. In S605, the target setting unit 31 reads the record of the transition destination and returns to S602.
  • FIG. 7 is a flowchart showing the operation of the operation amount determination unit 32.
  • the execution subject of each step of the flowchart described below is the CPU 30A of the other vehicle control device 30. However, in the flowchart shown in FIG. 7, only one other vehicle is described. In practice, the operation amount determination unit 32 performs the same process on a plurality of other vehicles. The other vehicle for which the operation amount is to be determined in FIG. 7 will be referred to as “control target other vehicle” herein.
  • the operation amount determination unit 32 performs the operation illustrated in FIG. 7 each time the target state 35 is input from the target setting unit 31.
  • step S651 which is the first step, the operation amount determination unit 32 reads the target state 35 received from the target setting unit 31.
  • the operation amount determination unit 32 reads the traveling state 25 received from the simulation device 20. However, it is not necessary to read all of the traveling states 25 at this time, and only the information related to the target state 35 read in S651 may be read. For example, when the target state 35 is "zero speed difference with reference vehicle", only the speed of the reference vehicle and the speed of the other vehicle to be controlled may be read.
  • the operation amount determination unit 32 calculates the difference between the target state 35 and the current state, that is, the traveling state 25. For example, when the target state 35 is "zero speed difference with reference vehicle", the difference between the speed of the reference vehicle and the speed of the other vehicle to be controlled in the immediately preceding frame is calculated.
  • the operation amount determination part 32 determines the operation amount based on the difference calculated in S653, and outputs the determined operation amount to the simulation apparatus 20 as the other vehicle operation amount 36.
  • the relationship between the difference and the amount of operation may be represented, for example, by a previously created look-up table, or may be represented by a previously defined relationship between the two.
  • the operation of the operation amount determination unit 32 ends.
  • FIG. 8 is a diagram showing the target speed of the other vehicle D1 in the operation example.
  • the description of the unit of the target speed of the other vehicle D1 is omitted.
  • three simulations of test 1 to test 3 were performed using the initial state 43 shown in FIG. 4A and the operation definition 44 shown in FIG. 5A.
  • the autonomous driving ECU 90 outputs the operation amount so that the speed of the reference vehicle is 80 km / hr in Test 1, 100 km / hr in Test 2, and 150 km / hr in Test 3.
  • the target speed of the other vehicle D1 changes in accordance with the speed of the reference vehicle as shown in FIG.
  • the other-vehicle control device 30 a plurality of simulations can be performed without changing the traveling scenario 42.
  • the other vehicle control device 30, which can also be called a traffic flow control device, uses the fourth communication unit 30D (reference vehicle operation input unit) to which the traveling state 25 of the reference vehicle and the other vehicle is input and the traveling state of the reference vehicle. Calculates the target state 35 of the controlled vehicle based on the fourth communication unit 30D (scenario input unit) that reads the traveling scenario 42 including the definition of the target traveling state of the plurality of controlled vehicles and the traveling state 25 and the traveling scenario 42 And a target setting unit 31. Therefore, even if the traveling scenario 42 is not rewritten, it is possible to simulate different situations simply by changing the traveling state of the reference vehicle, for example, the speed. Assuming that the speed of the vehicle is changed in 10 ways, simulations in 10 different situations are possible. That is, by using the other-vehicle control device 30, it is easy to realize simulations having various variations.
  • fourth communication unit 30D reference vehicle operation input unit
  • the other vehicle control device 30 includes the operation amount determination unit 32 that determines the operation amount of the controlled vehicle based on the target state 35 calculated by the target setting unit 31. Since the other-vehicle control device 30 determines the operation amount of the controlled vehicle, the simulation device 20 operating in combination with the other-vehicle control device 30 does not have to calculate the operation amount.
  • the operation amount is the operation amount of the accelerator, the brake, and the steering wheel.
  • the traveling scenario 42 includes the initial states 43 of the plurality of controlled vehicles and the operation definition 44 of each controlled vehicle, and the operation definition 44 includes a plurality of operations defining the operation of the controlled vehicle.
  • a state and a transition condition that is a condition for transitioning to the state are included.
  • the target setting unit 31 manages state transition from the initial state for each of the controlled vehicles. Therefore, the target setting unit 31 can set a target state defined for each of the other vehicles. That is, it is possible to set different target states by performing complicated cases for individual other vehicles.
  • the data structure of the traveling scenario 42 used to determine the operation of the plurality of controlled vehicles defines the initial state of the controlled vehicle based on the reference vehicle not included in the controlled vehicle. It includes a state and an operation definition that defines an operation after the initial state for each of the controlled vehicles. Therefore, by changing the operation after the initial state of the reference vehicle, it is possible to realize a simulation having various variations without rewriting the traveling scenario 42.
  • the operation definition 44 includes a plurality of states defining the operation of the controlled vehicle, and transition conditions which are conditions for transition to the state.
  • the target control state of the controlled vehicle is set for each state.
  • the target control state set in at least one state indicates the relative relationship with the operation of the reference vehicle. Therefore, complicated operation of the controlled vehicle can be realized by defining the operation of the controlled vehicle for each state. Furthermore, since the operation of the controlled vehicle is described in a relative relationship with the reference vehicle, it is possible to realize a simulation having various variations without rewriting the traveling scenario 42.
  • the operation amount determination unit 32 is included in the other vehicle control device 30.
  • the operation amount determination unit 32 may be included in the simulation device 20.
  • the other-vehicle control device 30 transmits the target state 35 to the simulation device 20.
  • FIG. 9 is a diagram showing a functional configuration of the driving simulation system S in the first modification.
  • the operation amount determination unit 32 is provided in the simulation device 20.
  • the other vehicle control device 30 does not include the operation amount determination unit 32, so the amount of calculation can be reduced.
  • the relay unit 11 may simulate an output of a sensor provided in a vehicle on which the automatic driving ECU 90 is mounted, instead of transmitting the traveling state 25 input from the simulation device 20 to the automatic driving ECU 90 as it is.
  • the relay unit 11 may generate an output simulated to the laser range finder or the camera based on the traveling state 25 input from the simulation device 20, and may output the generated output to the automatic driving ECU 90.
  • the specifications of the reference vehicle and the controlled vehicle may not be preset in the simulation apparatus 20. In that case, specifications of each vehicle are included in the traveling scenario 42, and the simulation device 20 receives the traveling scenario 42 from the database device 40. The simulation apparatus 20 then operates the host vehicle model 21 and the other vehicle model 22 using the specifications of each vehicle included in the traveling scenario 42.
  • connection device 10 The connection device 10, the simulation device 20, the other vehicle control device 30, and the database device 40 may be integrally configured with two or more devices.
  • scenario selection unit 30E may be provided in an apparatus other than the other-vehicle control apparatus 30.
  • the host vehicle model 21 and the other vehicle model 22 may be executed by different devices, or the plurality of other vehicle models 22 may be executed by different devices.
  • the target setting unit 31 and the operation amount determination unit 32 may be executed by different devices.
  • connection device 10 and the autonomous driving ECU 90 need to be installed in the same place, but the connection device 10, the simulation device 20, the other vehicle control device 30, and the database device 40 are installed in physically separated places It is also good. That is, these devices may be installed at different places and connected via long distance communication, for example, the Internet.
  • Company A developing the autonomous driving ECU 90 borrows the connection device 10 from Company B providing the simulation service, installs it in the company A together with the autonomous driving ECU 90, and via the simulation apparatus 20 installed in Company B and the Internet It may communicate.
  • company C that provides the traveling scenario 41 to the company B, and the database device 40 installed in the company C may connect to another vehicle control apparatus 30 installed in the company B via the Internet. .
  • the initial state 43 constituting the traveling scenario 42 includes the initial states of the own vehicle and the other vehicle. However, the initial state 43 may include the initial state of another vehicle, and may not include the initial state of the own vehicle. In this case, the initial state of the host vehicle is separately provided to the simulation apparatus 20.
  • Modification 7 In the first embodiment described above, the initial state 43 and the operation definition 44 of the traveling scenario 42 have been described relative to the operation state of the reference vehicle. However, the relative description criteria are not limited to the reference vehicle. That is, the initial state or target state of a certain other vehicle may be described with reference to another different vehicle.
  • FIG. 10A shows an example of the initial state 43 in the seventh modification
  • FIG. 10B shows an example of the operation definition 44 in the seventh modification.
  • the initial position of the other vehicle D1 in the initial state 43 is "EGO relative +80 m", and +80 m with reference to the reference vehicle EGO.
  • the initial position of the other vehicle D3 is "D2 relative +40 m", and is +40 m with respect to the other vehicle D2.
  • the traveling scenario 42 includes the definition of the target traveling state of another controlled vehicle using the traveling state of a controlled vehicle.
  • the other vehicle control device 30 includes a fourth communication unit 30D (a controlled vehicle operation input unit) to which the traveling state of the controlled vehicle is input.
  • the target setting unit 31 calculates a target traveling state of another controlled vehicle by using the traveling state of a controlled vehicle. Therefore, the other-vehicle control device 30 can set the target state of the controlled vehicle using the traveling scenario 42 in which the relative relationship between the controlled vehicles is described.
  • the operation definition 44 of the traveling scenario 42 includes a plurality of states defining the operation of the controlled vehicle, and transition conditions which are conditions for transition to the state.
  • a target control state of the controlled vehicle is set for each state.
  • the target control state set in at least one state of the operation definition 44 indicates the relative relationship with the operation of the other controlled vehicle. Therefore, when a certain traveling scenario 42 is edited into another traveling scenario 42, when the relative relationship between the controlled vehicles does not change, there is no need to change the description, and the editing is simple.
  • the database device 40 may not include the CPU 40A, the ROM 40B, and the RAM 40C, and may have a storage interface 40F and a communication interface with the other vehicle control device 30.
  • the other-vehicle control device 30 searches the traveling scenario DB 41 and reads the traveling scenario 42 selected by the operator from the scenario selecting unit 30E.
  • connection device 10 may include a display unit, and may display the traveling state 25 input from the simulation device 20.
  • the other vehicle control device 30 may cause the display unit provided in the connection device 10 to display the operation definition 44 and the current state of each other vehicle.
  • the target setting unit 31 may calculate a specific target amount and output it to the operation amount determination unit 32.
  • the target state 35 may be set as "zero speed difference with reference vehicle".
  • the target setting unit 31 may refer to the speed of the reference vehicle included in the traveling state 25. Specifically, for example, when the speed of the reference vehicle is 55 km / hr, the target state 35 may be "target speed: 55 km / hr".
  • the motion definition 44 defines the target state of another vehicle in relation to the speed of the reference vehicle.
  • the physical quantity of the reference vehicle that defines the target state of the other vehicle is not limited to the speed.
  • acceleration, yaw rate, or position may be used.
  • the target state of another vehicle is defined in relation to the yaw rate of the reference vehicle, when the reference vehicle changes lanes, the other vehicles also change lanes in the same manner.
  • FIG. 11 to 12 A second embodiment of the other vehicle control device which is a traffic flow control device will be described with reference to FIGS. 11 to 12.
  • FIG. 11 to 12 the same components as in the first embodiment will be assigned the same reference numerals and differences will be mainly described. The points that are not particularly described are the same as in the first embodiment.
  • the present embodiment is different from the first embodiment mainly in that the other-vehicle control device 30 includes an input unit that affects a scenario. Further, the operation definition 44 of the traveling scenario 42 is also different from that of the first embodiment.
  • FIG. 11 is a hardware block diagram of another vehicle control device 30 in the second embodiment.
  • the other-vehicle control device 30 in the second embodiment further includes a scenario event generation unit 30G in addition to the configuration in the first embodiment.
  • the scenario event generation unit 30G is, for example, one or more buttons.
  • the scenario event generation unit 30G is operated by the operator, and when one of the buttons is pressed, the CPU 30A is notified that the button has been pressed.
  • scenario event generation unit 30G includes two switches SW1 and SW2. Also, the default state of these switches is off, and turned on by the operator's operation.
  • FIG. 12 is a diagram showing an example of the operation definition 44 in the second embodiment.
  • the traveling scenario 42 is used to simulate the operation of a plurality of vehicles executed in a device connected to the scenario event generation unit 30G which allows an input at any timing by the user, that is, the operator.
  • the transition conditions included in the operation definition 44 of the traveling scenario 42 include an input to the scenario event generation unit 30G. Therefore, by changing the operation timing of the scenario event generation unit 30G by the operator, it is easy to realize a simulation having various variations without rewriting the traveling scenario 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

交通流制御装置は、基準車両の走行状態が入力される基準車両動作入力部と、基準車両の走行状態を用いた複数の被制御車両の目標走行状態の定義が含まれる走行シナリオを読み込むシナリオ入力部と、走行状態および走行シナリオに基づき被制御車両の目標走行状態を算出する目標設定部とを備える。

Description

交通流制御装置、走行シナリオのデータ構造
 本発明は、交通流制御装置、および走行シナリオのデータ構造に関する。
 近年、自動車の自動運転技術の開発が盛んである。開発した自動運転装置の性能を検証するために、シミュレーションが用いられることが多い。このシミュレーションでは、現実に発生する可能性がある様々な状況を作り出し、自動運転装置の性能を検証する。具体的にはシミュレーションでは、自動運転装置が制御対象とする車両だけでなく、周囲の車両のパラメータを様々に変化させて膨大なパターンを用意する必要がある。
 特許文献1には、模擬運転席に着座する運転者に対して模擬視界画像を表示するための表示手段と、前記運転者の運転操作に基づいて、該運転操作に応じて模擬走行路上を走行する仮想的な自車両の模擬走行路座標上における位置を表す第1の位置情報を順次更新する自車両情報更新手段と、前記順次更新される第1の位置情報に基づいて、模擬走行路上又はその近傍に存在する移動体の移動が自車両の移動に同期するように、模擬走行路座標上の移動体の位置を表す第2の位置情報を順次更新する移動体情報更新手段と、前記第1の位置情報が表す自車両の位置と前記第2の位置情報が表す移動体の位置とに基づいて、自車両の運転席からの視界を模擬した模擬視界画像を表す情報を順次生成し、前記模擬視界画像を前記表示手段に表示させる模擬視界生成手段と、を含む自動車模擬運転装置が開示されている。
日本国特開平8-248871号公報
 特許文献1に記載されている発明では、様々なバリエーションを有するシミュレーションの実現が非常に煩雑である。
 本発明の第1の態様による交通流制御装置は、基準車両の走行状態が入力される基準車両動作入力部と、前記基準車両の前記走行状態を用いた複数の被制御車両の目標走行状態の定義が含まれる走行シナリオを読み込むシナリオ入力部と、前記走行状態および前記走行シナリオに基づき前記被制御車両の前記目標走行状態を算出する目標設定部とを備える。
 本発明の第2の態様による走行シナリオのデータ構造は、複数の被制御車両の動作を決定するために用いられる走行シナリオのデータ構造であって、前記被制御車両に含まれない基準車両を基準として前記被制御車両の初期状態を定義する被制御車両初期状態と、前記被制御車両のそれぞれについて前記初期状態以後の動作を定義する動作定義とを含む。
 本発明によれば、様々なバリエーションを有するシミュレーションの実現が容易である。
運転シミュレーションシステムSのハードウエア構成図 第1の実施の形態における運転シミュレーションシステムSの機能構成図 走行シナリオDB41の概念図 図4(a)は、初期状態43の一例を示す図、図4(b)は図4(a)に対応する初期状態を示す模式図 図5(a)は、動作定義44の一例を示す図、図5(b)は、図5(a)に対応する他車両D1の動作を示す概要図 目標設定部31の動作を表すフローチャート 操作量決定部32の動作を表すフローチャート 動作例における他車両D1の目標速度を示す図 変形例1における運転シミュレーションシステムSの機能構成図 図10(a)は変形例7における初期状態43の一例を示す図、図10(b)は変形例7における動作定義44の一例を示す図 第2の実施の形態における他車両制御装置30のハードウエア構成図 第2の実施の形態における動作定義44の一例を示す図
―第1の実施の形態―
 以下、図1~図8を参照して、交通流制御装置である他車両制御装置の第1の実施の形態を説明する。
(ハードウエア構成)
 図1は、運転シミュレーションシステムSのハードウエア構成を示す図である。運転シミュレーションシステムSは、接続装置10と、シミュレーション装置20と、他車両制御装置30と、データベース装置40と、自動運転ECU90とを備える。本システムはシミュレーション装置20を中心として構成される。シミュレーション装置20は接続装置10および他車両制御装置30と信号線により接続され、接続装置10はシミュレーション装置20および自動運転ECU90と信号線により接続され、他車両制御装置30はシミュレーション装置20およびデータベース装置40と信号線により接続される。
 接続装置10は、中央演算装置であるCPU10Aと、読み込み専用の記憶装置であるROM10Bと、読み書き可能な記憶装置であるRAM10Cと、第1通信部10Dと、第2通信部10Eとを備える。CPU10Aは、ROM10Bに格納されるプログラムをRAM10Cに展開して実行することにより後述する機能を実現する。第1通信部10Dは、自動運転ECU90と通信を行う通信インタフェースであり、たとえばCAN(Controller Area Network;登録商標)に対応する。第2通信部10Eはシミュレーション装置20と通信を行う通信インタフェースであり、たとえばIEEE802.3に対応する。なお自動運転ECU90とシミュレーション装置20が同一の通信方式に対応する場合は、接続装置10は第1通信部10Dおよび第2通信部10Eのいずれか一方を備えればよい。
 シミュレーション装置20は、中央演算装置であるCPU20Aと、読み込み専用の記憶装置であるROM20Bと、読み書き可能な記憶装置であるRAM20Cと、第3通信部20Dとを備える。CPU20Aは、ROM20Bに格納されるプログラムをRAM20Cに展開して実行することにより、後述する機能を実現する。第3通信部20Dは接続装置10および他車両制御装置30と通信を行う通信インタフェースであり、たとえばIEEE802.3に対応する。
 他車両制御装置30は、中央演算装置であるCPU30Aと、読み込み専用の記憶装置であるROM30Bと、読み書き可能な記憶装置であるRAM30Cと、第4通信部30Dと、シナリオ選択部30Eとを備える。CPU30Aは、ROM30Bに格納されるプログラムをRAM30Cに展開して実行することにより、後述する機能を実現する。第4通信部30Dはシミュレーション装置20およびデータベース装置40と通信を行う通信インタフェースであり、たとえばIEEE802.3に対応する。シナリオ選択部30Eは、たとえば複数のボタンから構成されオペレータにより後述するいずれかの走行シナリオが選択される。
 データベース装置40は、中央演算装置であるCPU40Aと、読み込み専用の記憶装置であるROM40Bと、読み書き可能な記憶装置であるRAM40Cと、第5通信部40Dと、記憶部40Fとを備える。CPU40Aは、ROM40Bに格納されるプログラムをRAM40Cに展開して実行することにより、後述する機能を実現する。記憶部40Fは不揮発性の記憶装置、たとえばハードディスクドライブである。記憶部40Fには走行シナリオデータベース(以下、走行シナリオDB)41が格納される。走行シナリオDB41の構成は後述する。
 自動運転ECU90は、車両に搭載されることを念頭に開発、作成された電子制御装置(Electronic Control Unit)である。ただし本実施の形態では自動運転ECU90は車両には搭載されず、接続装置10に接続される。自動運転ECU90は、中央演算装置であるCPU90Aと、読み込み専用の記憶装置であるROM90Bと、読み書き可能な記憶装置であるRAM90Cと、第6通信部90Dとを備える。CPU90Aは、ROM90Bに格納されるプログラムをRAM90Cに展開して実行することにより、後述する機能を実現する。第6通信部90Dは、接続装置10と通信を行う通信インタフェースであり、たとえばCANに対応する。
(機能構成)
 図2は、運転シミュレーションシステムSの機能構成を示す図である。運転シミュレーションシステムSは、様々な状況における自動運転ECU90の挙動をシミュレーションにより確認するシステムである。以下では、自動運転ECU90が動作させる車両を「自車両」または「基準車両」と呼ぶ。そして運転シミュレーションシステムSにおける自車両以外の車両を「他車両」または「被制御車両」と呼ぶ。また運転シミュレーションシステムSを利用する者を「ユーザ」や「オペレータ」と呼ぶ。
 シミュレーション装置20は、自車両モデル21および複数の他車両モデル22を備える。自車両モデル21および複数の他車両モデル22は、前述のプログラムにより実現される。シミュレーション装置20は、シミュレーション内での単位時間ごと、たとえば10msごとに自車両および他車両の挙動を算出して走行状態25として出力する。走行状態25には、各車両の位置、速度、加速度、および姿勢角が含まれる。姿勢角とは、ヨー角、ロール角、およびピッチ角である。本実施の形態では、車両の挙動を算出するシミュレーション内での単位時間ごとのタイミングを「フレーム」と呼ぶ。
 なおシミュレーション内における時間の経過と、実世界での時間の経過は一致しなくてもよい。たとえばシミュレーション装置20は実世界での時間の経過を考慮せずに演算を行い、走行状態25を出力してもよい。また装置間の通信の遅延、すなわち実世界での時間の経過を無視してよい。
 自車両モデル21の操作量は接続装置10を介して自動運転ECU90からシミュレーション装置20に入力され、他車両モデル22の操作量は他車両制御装置30からシミュレーション装置20に入力される。ただし以下では、自車両モデル21の操作量を自車両操作量96とも呼び、他車両モデル22の操作量を他車両操作量36とも呼ぶ。
 自車両モデル21は、あるフレームにおける自車両の状態と外部から入力される操作量とに基づき、次のフレームにおける自車両の位置、速度、加速度、およびエンジンの回転数を算出する。操作量には、アクセルペダルの踏込量、ブレーキペダルの踏込量、およびステアリングホイールの操作角度が含まれる。他車両モデル22は、あるフレームにおける他車両の状態と外部から入力される操作量とに基づき、次のフレームにおける他車両の位置、速度、加速度、およびエンジンの回転数を算出する。自車両モデル21およびそれぞれの他車両モデル22には、あらかじめ各車両の諸元、すなわち車両の質量、エンジンの特性、およびブレーキの特性などが設定されている。
 シミュレーション装置20には、接続装置10を介して自動運転ECU90から自車両操作量96が入力され、他車両制御装置30から他車両操作量36が入力される。シミュレーション装置20は、接続装置10および他車両制御装置30に走行状態25を出力する。すなわちシミュレーション装置20は、自動運転ECU90および他車両制御装置30の両方に、自車両および他車両の状態を送信する。
 自動運転ECU90は、前述したプログラムにより実現される自動運転部91を備える。自動運転部91はあらかじめ作成された動作アルゴリズムにしたがって動作し、入力されるあるフレームの走行状態25に基づき、次のフレームの自車両の最適な操作量を算出し、自車両操作量96として出力する。自車両操作量96は、接続装置10を介してシミュレーション装置20に送信される。
 接続装置10は、前述したプログラムにより実現される中継部11を備える。中継部11は、自動運転ECU90から入力される自車両操作量96をシミュレーション装置20に送信し、シミュレーション装置20から入力される走行状態25を接続装置10に送信する。
 他車両制御装置30は、前述したプログラムにより実現される目標設定部31および操作量決定部32を備える。他車両制御装置30は、オペレータがシナリオ選択部30Eを操作していずれかのシナリオを選択すると、その選択をデータベース装置40に伝達してデータベース装置40から走行シナリオ42を受信する。目標設定部31は、シミュレーション装置20から受信する走行状態25およびデータベース装置40から受信した走行シナリオ42に基づき他車両の目標状態35を出力する。操作量決定部32は、目標設定部31が出力する他車両の目標状態35に基づき、それぞれの他車両の操作量を決定して他車両操作量36としてシミュレーション装置20に出力する。目標設定部31および操作量決定部32の動作の詳細は後述する。
 他車両制御装置30は、シミュレーションにおける基準車両以外の多数の被制御車両を制御する。そのため他車両制御装置30は、多数の被制御車両によりシミュレーション内で交通流を制御しているとも言える。したがって他車両制御装置30は、「交通流制御装置」と呼ぶこともできる。第4通信部30Dには走行状態25が入力され、この走行状態25は基準車両や被制御車両の走行状態を含むので、第4通信部30Dは「基準車両動作入力部」や「被制御車両動作入力部」と呼ぶこともできる。また第4通信部30Dには走行シナリオ42が入力されるので、第4通信部30Dは「シナリオ入力部」と呼ぶこともできる。
 データベース装置40は、前述したプログラムにより実現されるシナリオ選択部46を備える。シナリオ選択部46は、他車両制御装置30から要求された走行シナリオ42を走行シナリオDB41から読み取り、他車両制御装置30に送信する。
(走行シナリオDB41)
 図3は走行シナリオDB41の概念図である。走行シナリオDB41には複数の走行シナリオ42が格納される。それぞれの走行シナリオ42は、初期状態43と、複数の動作定義44とから構成される。初期状態43には、自車両および全ての他車両のシミュレーション開始時の情報が格納される。それぞれの動作定義44には、ある1台分の他車両の動作の規定が記述される。それぞれ具体例とともに説明する。
(初期状態43)
 図4(a)は、初期状態43の一例を示す図である。初期状態43はたとえば図4(a)に示すように複数のレコードを有する表形式で表され、各レコードは、車両、初期位置、初期速度、および走行レーンのフィールドを有する。車両のフィールドには、該当するレコードが対象とする車両の識別情報が格納される。図4(a)に示す例では自車両は「EGO」と表され、他車両はD1~D3で表される。初期位置のフィールドには、シミュレーション開始時の各車両の位置が格納される。たとえば図4(a)に示す例では自車両EGOの初期位置は、シミュレーションにおいてあらかじめ定義された基準位置から100m離れた位置である。また図4(a)に示す例では「D1」~「D3」の初期位置は全て、自車両EGOの位置を基準とする相対位置で表されている。
 初期速度のフィールドには、シミュレーション開始時の各車両の速度が格納される。図4(a)に示す例では単位を記載していないが、速度の単位はたとえば「km/時」でもよいし「マイル/分」でもよい。図4(a)に示す例では「D1」および「D2」は初期速度が「相対0」である。これは自車両EGOとの相対速度がゼロ、すなわち速度が自車両EGOと同一であることを示している。走行レーンのフィールドには、シミュレーション開始時に各車両が存在する走行レーンの識別子が格納される。
 なお図4(a)に示す例では他車両の初期位置、および初期速度は全て自車両EGOを基準とする相対位置や相対速度であった。しかしいくつかの他車両は自車両EGOのように絶対位置や絶対速度が規定されてもよい。
 図4(b)は図4(a)に対応する初期状態を示す模式図である。図4(b)では図示左端が基準位置、すなわち距離ゼロの位置である。そして自車両EGOは100mの位置にあり、他車両D1は相対位置が+80mなので180mの位置にある。他車両D2は相対位置が-80mなので20mの位置にあり、他車両D3は相対位置が-40mなので60mの位置にある。また自車両EGOの初期状態での速度は50であり、他車両D1および他車両D2は相対速度がゼロなので自車両EGOと同じく速度は50である。一方で他車両D3は相対速度が「+20」なので速度は70である。
(動作定義44)
 図5(a)は、動作定義44の一例を示す図である。動作定義44はたとえば図5(a)に示すように複数のレコードを有する表形式で表され、各レコードは、状態、概要、目標速度、次状態、および遷移条件のフィールドを有する。またこれらのフィールドとは独立して、動作定義44が適用される対象の他車両の識別子が動作定義44の上部に記載される。状態のフィールドには、状態を示す識別子が格納される。図5(a)に示す例では状態の識別子は「S」と2桁の数字の連番で表されるが、識別子のフォーマットは任意である。
 概要のフィールドには、各状態における動作の概要が記載される。たとえば1つ目のレコードである状態「S-00」は、概要が「初期状態」なので、図5(a)に示す動作定義44が適用される他車両は、S-00から動作を開始する。目標速度のフィールドには、それぞれの状態における他車両の目標速度が格納される。目標速度は、自車両EGOを基準とする相対速度でもよいし、絶対速度でもよい。
 次状態のフィールド、および遷移条件のフィールドは組み合わせて判断され、遷移条件のフィールドに記載された条件を満たすと、次状態のフィールドに記載された状態に遷移する。遷移条件のフィールドに記載された条件を満たさない場合は、現在の状態に留まる。なお遷移条件のフィールドに記載される条件式で用いられている記号の意味は以下のとおりである。すなわちTsimはシミュレーション内におけるシミュレーション開始からの経過時間であり、Vegoは自車両の速度である。
 動作定義44において、1つの状態は次状態と遷移条件を複数組有する場合があり、その場合は先に満たされた遷移条件に対応する次状態に遷移する。たとえば図5(a)に示す例ではS-00は次状態と遷移条件を2組有しており、それぞれ次の意味である。すなわち第1には、シミュレーション開始からの経過時間が10秒よりも長い時間が経過し、かつ自車両EGOの速度が時速50kmよりも速い場合はS-01に遷移する。第2には、シミュレーション開始からの経過時間が50秒よりも長い時間が経過すると、ENDへの遷移、すなわちシミュレーションを終了する。
 図5(a)の状態S-01以下を説明する。状態S-01では、他車両は目標速度を相対速度ゼロ、すなわち自車両EGOと同じ速度を目標として走行しながらレーン移動を行い、レーン移動が完了するとS-02に遷移する。レーン移動は別途詳細が定められており、たとえば次のように行われる。すなわち、レーン移動を開始する際の他車両自身の速度に応じて、レーン移動のための仮想的な軌跡を生成し、生成した軌跡をなぞるように移動する。
 状態S-02では他車両は、自車両EGOよりも時速10km遅い速度を目標速度として1秒間走行して、状態S-03に遷移する。状態S-03では他車両は、目標速度をゼロとし、他車両の速度がゼロになると状態ENDへの遷移、すなわちシミュレーションを終了する。
 図5(b)は、図5(a)に対応する他車両D1の動作を示す概要図である。図3(b)では左端から状態S-00、状態S-01、状態S-02、状態S-03を経て状態ENDに至る様子を示している。図5(b)に示す他車両D1は、状態S-00では目標速度を自車両EGOと同じとし、その速度が時速50kmより速く、かつ10秒よりも長く継続したので状態S-01に遷移してレーン移動を行う。レーン移動が完了すると他車両D1は状態S-02に遷移して目標速度を自車両よりも時速10km遅い速度として1秒間走行し、その後に状態S-03に遷移する。状態S-03では他車両D1は目標速度をゼロとし、速度がゼロになるとシミュレーションを終了する。
(目標設定部31)
 図6は目標設定部31の動作を表すフローチャートである。以下に説明するフローチャートの各ステップの実行主体は他車両制御装置30のCPU30Aである。ただし図6に示すフローチャートではある1つの他車両についてのみ記載している。実際には目標設定部31は複数の他車両について同様の処理を行う。
 最初のステップであるS601では目標設定部31は、データベース装置40から受信した走行シナリオ42から初期状態を表すレコードを特定して読み込む。続くS602では目標設定部31は、読み込んだレコードの記載に基づき目標状態35を決定し、操作量決定部32に送信する。たとえば図5に示す例において初期状態である状態S-00の場合は、目標状態35を「基準車両との速度差ゼロ」とする。続くS603では目標設定部31は、読み込んだレコードにおける遷移条件に合致するか否かを判断する。目標設定部31は遷移条件に合致すると判断する場合はS604に進み、遷移条件に合致しないと判断する場合はS602に戻る。なお読み込んだレコードに複数の遷移条件が含まれる場合は、いずれかの遷移条件に合致すると判断する場合にS602を肯定判断する。
 S604では目標設定部31は、S603において合致すると判断した遷移条件に対応する遷移先がENDであるか否かを判断する。目標設定部31は遷移先がENDであると判断する場合は本フローチャートの処理を終了し、遷移先がENDではないと判断する場合はS605に進む。S605では目標設定部31は、遷移先のレコードを読み込みS602に戻る。
(操作量決定部32)
 図7は操作量決定部32の動作を表すフローチャートである。以下に説明するフローチャートの各ステップの実行主体は他車両制御装置30のCPU30Aである。ただし図7に示すフローチャートではある1つの他車両についてのみ記載している。実際には操作量決定部32は複数の他車両について同様の処理を行う。図7において操作量を決定する対象としている他車両を、ここでは「制御対象他車両」と呼ぶ。操作量決定部32は目標設定部31から目標状態35が入力されるたびに図7に示す動作を行う。
 最初のステップであるS651では操作量決定部32は、目標設定部31から受信した目標状態35を読み込む。続くS652では操作量決定部32は、シミュレーション装置20から受信した走行状態25を読み込む。ただしこのとき走行状態25の全てを読み込まなくてもよく、S651において読み込んだ目標状態35に関連する情報のみを読み込んでもよい。たとえば目標状態35が「基準車両との速度差ゼロ」である場合は、基準車両の速度と制御対象他車両の速度だけを読み込んでもよい。続くS653では操作量決定部32は、目標状態35と現在の状態、すなわち走行状態25との差分を算出する。たとえば目標状態35が「基準車両との速度差ゼロ」である場合は、直前のフレームにおける基準車両の速度と制御対象他車両の速度の差分を算出する。
 続くS654では操作量決定部32は、S653において算出した差分に基づき操作量を決定し、決定した操作量を他車両操作量36としてシミュレーション装置20に出力する。差分と操作量の関係はたとえばあらかじめ作成されたルックアップテーブルで表されてもよいし、あらかじめ定義された両者の関係式で表されてもよい。以上で操作量決定部32の動作が終了する。
(動作例)
 他車両制御装置30の動作例として、他車両制御装置30が図4(a)に示した初期状態43および図5(a)に示した動作定義44を読み込んだ場合の他車両D1の状態遷移および目標速度が、基準車両の速度によりどのように変化するかを説明する。基準車両の操作量は自動運転ECU90から入力されるので、基準車両の速度は走行シナリオ42を変更することなく変化させることができる。
 図8は、動作例における他車両D1の目標速度を示す図である。ただし図8では他車両D1の目標速度の単位の記載を省略している。この動作例では図4(a)に示した初期状態43および図5(a)に示した動作定義44を用いてテスト1~テスト3の3回のシミュレーションを行った。自動運転ECU90は、基準車両の速度が、テスト1では時速80km、テスト2では時速100km、テスト3では時速150kmとなるように操作量を出力した。この場合に他車両D1の目標速度は図8に示すように、基準車両の速度に応じて変化している。このように、他車両制御装置30を用いることで走行シナリオ42を変更することなく複数のシミュレーションを行うことができる。
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)交通流制御装置とも呼べる他車両制御装置30は、基準車両および他車両の走行状態25が入力される第4通信部30D(基準車両動作入力部)と、基準車両の走行状態を用いた複数の被制御車両の目標走行状態の定義が含まれる走行シナリオ42を読み込む第4通信部30D(シナリオ入力部)と、走行状態25および走行シナリオ42に基づき被制御車両の目標状態35を算出する目標設定部31とを備える。そのため走行シナリオ42を書き換えなくても、基準車両の走行状態、たとえば速度を変化させるだけで異なる状況のシミュレーションが可能となる。仮に自車両の速度を10とおりに変化させると、異なる10の状況でのシミュレーションが可能となる。すなわち他車両制御装置30を用いることで様々なバリエーションを有するシミュレーションの実現が容易になる。
(2)他車両制御装置30は、目標設定部31が算出した目標状態35に基づき、被制御車両の操作量を決定する操作量決定部32を備える。他車両制御装置30が被制御車両の操作量を決定するので、他車両制御装置30と組み合わされて動作するシミュレーション装置20は操作量を算出する必要がない。
(3)操作量は、アクセル、ブレーキ、およびステアリングホイールの操作量である。車両の動作に直接影響する操作量を決定することにより被制御車両の動作を現実に近いものとすることができる。
(4)走行シナリオ42には、複数の被制御車両の初期状態43、およびそれぞれの被制御車両の動作定義44とが含まれ、動作定義44には、被制御車両の動作を規定する複数の状態と、状態に遷移する条件である遷移条件とが含まれる。目標設定部31は、被制御車両のそれぞれについて初期状態からの状態の遷移を管理する。そのため目標設定部31は、それぞれの他車両について状態ごとに定義された目標状態を設定できる。すなわち個別の他車両に複雑な場合分けを行い、様々な目標状態を設定できる。
(5)複数の被制御車両の動作を決定するために用いられる走行シナリオ42のデータ構造は、被制御車両に含まれない基準車両を基準として被制御車両の初期状態を定義する被制御車両初期状態と、被制御車両のそれぞれについて初期状態以後の動作を定義する動作定義とを含む。そのため基準車両の初期状態以後の動作を異ならせることで、走行シナリオ42を書き換えることなく様々なバリエーションを有するシミュレーションを実現できる。
(6)動作定義44には、被制御車両の動作を規定する複数の状態と、状態に遷移する条件である遷移条件とが含まれる。状態ごとに被制御車両の目標制御状態が設定される。少なくとも1つの状態に設定される目標制御状態は、基準車両の動作との相対関係を示す。そのため被制御車両の動作を状態ごとに定義することで、被制御車両の複雑な動作を実現できる。さらに被制御車両の動作が基準車両との相対関係で記述されるので、走行シナリオ42を書き換えることなく様々なバリエーションを有するシミュレーションを実現できる。
(変形例1)
 第1の実施の形態では操作量決定部32は他車両制御装置30に備えられた。しかし操作量決定部32は、シミュレーション装置20に備えられてもよい。この場合に他車両制御装置30は、目標状態35をシミュレーション装置20に送信する。
 図9は変形例1における運転シミュレーションシステムSの機能構成を示す図である。前述のとおり、本変形例では操作量決定部32はシミュレーション装置20に備えられる。この変形例1によれば、他車両制御装置30は操作量決定部32を備えないので計算量を削減できる。
(変形例2)
 中継部11は、シミュレーション装置20から入力される走行状態25をそのまま自動運転ECU90に送信する代わりに、自動運転ECU90が搭載される車両が備えるセンサの出力を模擬してもよい。たとえば中継部11は、シミュレーション装置20から入力される走行状態25に基づきレーザーレンジファインダやカメラに模擬した出力を生成して自動運転ECU90に出力してもよい。
(変形例3)
 基準車両および被制御車両の諸元がシミュレーション装置20に予め設定されていなくてもよい。その場合は走行シナリオ42にそれぞれの車両の諸元が含まれ、シミュレーション装置20はデータベース装置40から走行シナリオ42を受信する。そしてシミュレーション装置20は走行シナリオ42に含まれるそれぞれの車両の諸元を用いて自車両モデル21および他車両モデル22を動作させる。
(変形例4)
 接続装置10、シミュレーション装置20、他車両制御装置30、およびデータベース装置40は2つ以上の装置が一体に構成されてもよい。またシナリオ選択部30Eは、他車両制御装置30以外の装置に備えられてもよい。なお自車両モデル21と他車両モデル22は異なる装置で実行されてもよいし、複数の他車両モデル22がそれぞれ異なる装置で実行されてもよい。また目標設定部31と操作量決定部32とが異なる装置で実行されてもよい。
(変形例5)
 接続装置10と自動運転ECU90は同一箇所に設置される必要があるが、接続装置10、シミュレーション装置20、他車両制御装置30、およびデータベース装置40は、物理的に隔てられた場所に設置されてもよい。すなわちこれらの装置がそれぞれ異なる場所に設置され、長距離の通信、たとえばインターネットを経由して接続されてもよい。たとえば自動運転ECU90を開発するA社が、シミュレーションサービスを提供するB社から接続装置10を借り受けて自動運転ECU90とともにA社内に設置し、B社に設置されたシミュレーション装置20とインターネットを経由して通信してもよい。さらにB社に対して走行シナリオ41を提供するC社が存在し、C社内に設置されたデータベース装置40からB社内に設置された他車両制御装置30にインターネットを経由して接続してもよい。
(変形例6)
 走行シナリオ42を構成する初期状態43には、自車両および他車両の初期状態が含まれた。しかし初期状態43は他車両の初期状態が含まれればよく、自車両の初期状態は含まれなくてもよい。この場合は自車両の初期状態はシミュレーション装置20に別途提供される。
(変形例7)
 上述した第1の実施の形態では、走行シナリオ42の初期状態43および動作定義44には、基準車両の動作状態を基準とする相対的な記載がされた。しかし相対的な記載の基準は基準車両に限定されない。すなわちある他車両の初期状態や目標状態を別の他車両を基準として記載してもよい。
 図10(a)は変形例7における初期状態43の一例を示す図、図10(b)は変形例7における動作定義44の一例を示す図である。図10に示す例では、初期状態や目標状態における相対関係の基準が複数ありえるので、いずれを基準にするかを明記している。たとえば初期状態43の他車両D1の初期位置は「EGO相対+80m」とし、基準車両EGOを基準として+80mとしている。また他車両D3の初期位置は「D2相対+40m」とし、他車両D2を基準として+40mとしている。
 この変形例7によれば、次の作用効果が得られる。
(7)走行シナリオ42には、ある被制御車両の走行状態を用いた別のある被制御車両の目標走行状態の定義が含まれる。他車両制御装置30は被制御車両の走行状態が入力される第4通信部30D(被制御車両動作入力部)を備える。目標設定部31は、ある被制御車両の走行状態を用いて別のある被制御車両の目標走行状態を算出する。そのため他車両制御装置30は被制御車両同士の相対関係が記載された走行シナリオ42を用いて被制御車両の目標状態を設定できる。
(8)走行シナリオ42の動作定義44には、被制御車両の動作を規定する複数の状態と、状態に遷移する条件である遷移条件とが含まれる。動作定義44には、状態ごとに被制御車両の目標制御状態が設定される。動作定義44の少なくとも1つの状態に設定される目標制御状態は、他の被制御車両の動作との相対関係を示す。そのためある走行シナリオ42を編集して別の走行シナリオ42とする場合に、被制御車両同士の相対関係が変化しない場合はその記載を変更する必要がなく、編集が簡便である。
(変形例8)
 データベース装置40は、CPU40A、ROM40B、およびRAM40Cを備えなくてもよく、記憶部40Fおよび他車両制御装置30との通信インタフェースを備えればよい。この場合に他車両制御装置30は、走行シナリオDB41を検索してオペレータがシナリオ選択部30Eから選択した走行シナリオ42を読み取る。
(変形例9)
 接続装置10は表示部を備え、シミュレーション装置20から入力される走行状態25を表示してもよい。また他車両制御装置30は、接続装置10に備えられる表示部に、それぞれの他車両の動作定義44および現在の状態を表示させてもよい。
(変形例10)
 目標設定部31は具体的な目標量を算出して操作量決定部32に出力してもよい。たとえば第1の実施の形態では、目標状態35が「基準車両との速度差ゼロ」と設定される場合があった。しかし目標設定部31が走行状態25に含まれる基準車両の速度を参照し、具体的にたとえば基準車両の速度が時速55kmの場合は目標状態35を「目標速度:時速55km」としてもよい。
(変形例11)
 上述した第1の実施の形態では動作定義44は他車両の目標状態は基準車両の速度との相対関係で規定された。しかし他車両の目標状態を規定する基準車両の物理量は速度に限定されない。たとえば、加速度、ヨーレイト、または位置を用いてもよい。たとえば他車両の目標状態を基準車両のヨーレイトとの相対関係で規定すると、基準車両が車線変更を行った際に、その他車両も同様に車線変更を行うことになる。
―第2の実施の形態―
 図11~図12を参照して、交通流制御装置である他車両制御装置の第2の実施の形態を説明する。以下の説明では、第1の実施の形態と同じ構成要素には同じ符号を付して相違点を主に説明する。特に説明しない点については、第1の実施の形態と同じである。本実施の形態では、主に、他車両制御装置30がシナリオに影響を与える入力部を備える点で、第1の実施の形態と異なる。また走行シナリオ42の動作定義44も第1の実施の形態と異なる。
 図11は、第2の実施の形態における他車両制御装置30のハードウエア構成図である。第2の実施の形態における他車両制御装置30は、第1の実施の形態における構成に加えてシナリオイベント発生部30Gをさらに備える。シナリオイベント発生部30Gはたとえば1または複数のボタンである。シナリオイベント発生部30Gはオペレータにより操作され、いずれかのボタンが押されるとCPU30Aにボタンが押された旨が伝達される。本実施の形態ではシナリオイベント発生部30GはSW1とSW2の2つのスイッチを含む。またこれらスイッチのデフォルトの状態はオフであり、オペレータが操作することによりオン状態に切り替わる。
 図12は、第2の実施の形態における動作定義44の一例を示す図である。図12に示す動作定義44は、第1の実施の形態において図5(a)に示した動作定義44とは、遷移条件の欄の最上段、および下から2段目の記載が異なる。すなわち最上段は「SW1=”ON”」であり、下から2行目は「SW2=”ON”」である。そのため目標設定部31は、他車両D1が状態S-00の場合にSW1がオペレータによりオンにされると、状態S-01に遷移させる。また他車両D1が状態S-02の場合にSW2がオペレータによりオンにされると、状態S-03に遷移させる。
 上述した第2の実施の形態によれば、次の作用効果が得られる。
(9)走行シナリオ42は、ユーザ、すなわちオペレータによる任意のタイミングでの入力が可能なシナリオイベント発生部30Gと接続される装置において実行される複数の車両の動作のシミュレーションに用いられる。走行シナリオ42の動作定義44に含まれる遷移条件には、シナリオイベント発生部30Gへの入力が含まれる。そのためオペレータによるシナリオイベント発生部30Gの操作タイミングを異ならせることで、走行シナリオ42を書き換えることなく様々なバリエーションを有するシミュレーションの実現が容易である。
 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2017-251850(2017年12月27日出願)
10…接続装置
11…中継部
20…シミュレーション装置
21…自車両モデル
22…他車両モデル
25…走行状態
30…他車両制御装置
30G…シナリオイベント発生部
31…目標設定部
32…操作量決定部
35…目標状態
36…他車両操作量
40…データベース装置
40F…記憶部
41…走行シナリオデータベース
42…走行シナリオ
43…初期状態
44…動作定義
46…シナリオ選択部
91…自動運転部
96…自車両操作量

Claims (11)

  1.  基準車両の走行状態が入力される基準車両動作入力部と、
     前記基準車両の前記走行状態を用いた複数の被制御車両の目標走行状態の定義が含まれる走行シナリオを読み込むシナリオ入力部と、
     前記走行状態および前記走行シナリオに基づき前記被制御車両の前記目標走行状態を算出する目標設定部とを備える交通流制御装置。
  2.  請求項1に記載の交通流制御装置において、
     前記目標設定部が算出した前記目標走行状態に基づき、前記被制御車両の操作量を決定する操作量決定部をさらに備える交通流制御装置。
  3.  請求項2に記載の交通流制御装置において、
     前記操作量は、アクセル、ブレーキ、およびステアリングホイールの操作量を含む交通流制御装置。
  4.  請求項1に記載の交通流制御装置において、
     前記走行シナリオには、複数の前記被制御車両の初期状態、およびそれぞれの前記被制御車両の動作定義が含まれ、前記動作定義には、前記被制御車両の動作を規定する複数の状態、および前記状態に遷移する条件である遷移条件とが含まれ、
     前記目標設定部は、前記被制御車両のそれぞれについて前記初期状態からの前記状態の遷移を管理する交通流制御装置。
  5.  請求項1に記載の交通流制御装置において、
     前記走行シナリオには、第1の前記被制御車両の走行状態を用いた第2の前記被制御車両の目標走行状態の定義が含まれ、
     前記被制御車両の走行状態が入力される被制御車両動作入力部をさらに備え、
     前記目標設定部は、第1の前記被制御車両の走行状態を用いて第2の前記被制御車両の目標走行状態を算出する交通流制御装置。
  6.  複数の被制御車両の動作を決定するために用いられる走行シナリオのデータ構造であって、
     少なくとも1つの前記被制御車両について前記被制御車両に含まれない基準車両を基準として初期状態を定義する被制御車両初期状態と、
     前記被制御車両のそれぞれについて前記初期状態以後の動作を定義する動作定義とを含む走行シナリオのデータ構造。
  7.  請求項6に記載の走行シナリオのデータ構造において、
     前記動作定義には、前記被制御車両の動作を規定する複数の状態と、前記状態に遷移する条件である遷移条件とが含まれ、
     前記状態ごとに前記被制御車両の目標制御状態が設定され、
     少なくとも1つの前記状態に設定される前記目標制御状態は、前記基準車両の動作との相対関係を示す走行シナリオのデータ構造。
  8.  請求項7に記載の走行シナリオのデータ構造において、
     前記相対関係は、相対速度、相対加速度、相対ヨーレイト、および相対位置の少なくとも1つを含む走行シナリオのデータ構造。
  9.  請求項6に記載の走行シナリオのデータ構造において、
     前記動作定義には、前記被制御車両の動作を規定する複数の状態と、前記状態に遷移する条件である遷移条件とが含まれ、
     前記状態ごとに前記被制御車両の目標制御状態が設定され、
     少なくとも1つの前記状態に設定される前記目標制御状態は、他の前記被制御車両の動作との相対関係を示す走行シナリオのデータ構造。
  10.  請求項9に記載の走行シナリオのデータ構造において、
     前記相対関係は、相対速度、相対加速度、相対ヨーレイト、および相対位置の少なくとも1つを含む走行シナリオのデータ構造。
  11.  請求項6に記載の走行シナリオのデータ構造において、
     前記動作定義には、前記被制御車両の動作を規定する複数の状態と、前記状態に遷移する条件である遷移条件とが含まれ、
     前記走行シナリオは、ユーザによる任意のタイミングでの入力が可能なシナリオイベント発生部と接続される装置において実行される複数の車両の動作のシミュレーションに用いられ、
     前記遷移条件には、前記シナリオイベント発生部への前記入力が含まれる走行シナリオのデータ構造。
PCT/JP2018/043055 2017-12-27 2018-11-21 交通流制御装置、走行シナリオのデータ構造 WO2019130919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/957,613 US20210056838A1 (en) 2017-12-27 2018-11-21 Traffic-flow control device and data structure of traveling scenario

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-251850 2017-12-27
JP2017251850A JP7007183B2 (ja) 2017-12-27 2017-12-27 交通流制御装置、走行シナリオのデータ構造

Publications (1)

Publication Number Publication Date
WO2019130919A1 true WO2019130919A1 (ja) 2019-07-04

Family

ID=67067013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043055 WO2019130919A1 (ja) 2017-12-27 2018-11-21 交通流制御装置、走行シナリオのデータ構造

Country Status (3)

Country Link
US (1) US20210056838A1 (ja)
JP (1) JP7007183B2 (ja)
WO (1) WO2019130919A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112020000222T5 (de) * 2019-12-17 2021-10-14 Foretellix Ltd. System und verfahren davon zur überwachung des ordnungsgemässen verhaltens eines autonomen fahrzeugs
CN114694449B (zh) * 2020-12-25 2023-04-18 华为技术有限公司 一种生成车辆交通场景的方法和装置、训练方法和装置
DE112021006082T5 (de) * 2021-02-24 2023-10-12 Hitachi Astemo, Ltd. Simulationsverfahren und -vorrichtung
US12071158B2 (en) * 2022-03-04 2024-08-27 Woven By Toyota, Inc. Apparatus and method of creating scenario for autonomous driving simulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248871A (ja) * 1995-03-08 1996-09-27 Toyota Motor Corp 自動車模擬運転装置
JP2002163747A (ja) * 2000-11-24 2002-06-07 Natl Inst For Land & Infrastructure Management Mlit 交通シミュレーション方法
WO2010097943A1 (ja) * 2009-02-27 2010-09-02 トヨタ自動車株式会社 車両相対位置推定装置及び車両相対位置推定方法
US20170031361A1 (en) * 2015-07-31 2017-02-02 Ford Global Technologies, Llc Vehicle trajectory determination
JP2017170947A (ja) * 2016-03-18 2017-09-28 三菱電機株式会社 シミュレーション制御装置およびシミュレーション制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110190972A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Grid unlock
US9630619B1 (en) * 2015-11-04 2017-04-25 Zoox, Inc. Robotic vehicle active safety systems and methods
JP6528699B2 (ja) * 2016-02-16 2019-06-12 アイシン・エィ・ダブリュ株式会社 動作シミュレータシステム、動作シミュレータ方法及びコンピュータプログラム
JP6380766B2 (ja) * 2016-03-14 2018-08-29 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
MX2019009397A (es) * 2017-02-10 2019-12-05 Nissan North America Inc Gestion operacional de vehiculo autonomo que incluye operar una instancia de modelo de proceso de decision de markov parcialmente observable.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248871A (ja) * 1995-03-08 1996-09-27 Toyota Motor Corp 自動車模擬運転装置
JP2002163747A (ja) * 2000-11-24 2002-06-07 Natl Inst For Land & Infrastructure Management Mlit 交通シミュレーション方法
WO2010097943A1 (ja) * 2009-02-27 2010-09-02 トヨタ自動車株式会社 車両相対位置推定装置及び車両相対位置推定方法
US20170031361A1 (en) * 2015-07-31 2017-02-02 Ford Global Technologies, Llc Vehicle trajectory determination
JP2017170947A (ja) * 2016-03-18 2017-09-28 三菱電機株式会社 シミュレーション制御装置およびシミュレーション制御方法

Also Published As

Publication number Publication date
US20210056838A1 (en) 2021-02-25
JP7007183B2 (ja) 2022-01-24
JP2019117329A (ja) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2019130919A1 (ja) 交通流制御装置、走行シナリオのデータ構造
JP7000638B2 (ja) 車両制御方法、装置、コンピュータ機器及び記憶媒体
JP3885716B2 (ja) 車両用推奨操作量生成装置
JP4361389B2 (ja) 道路交通シミュレーション装置
CN108319249B (zh) 基于驾驶模拟器的无人驾驶算法综合测评系统及方法
US11167770B2 (en) Autonomous vehicle actuation dynamics and latency identification
CN111665738A (zh) 在环仿真系统及其中的信息处理方法及装置
JP5919243B2 (ja) 運転訓練装置及び運転訓練方法
JP2018149915A (ja) 走行制御装置
US20200294414A1 (en) Driving simulator
US20220236063A1 (en) Vehicle position detection device and parameter set creation device for vehicle position detection
US11738771B2 (en) Dynamic model with actuation latency
JP2019026103A (ja) 自動運転のポリシー生成装置及び車両
CN109791736B (zh) 车辆控制装置
CN115761686A (zh) 用于检测自动驾驶系统中的意外控制状态的方法和装置
Isermann Fahrerassistenzsysteme 2017: Von der Assistenz zum automatisierten Fahren-3. Internationale ATZ-Fachtagung Automatisiertes Fahren
WO2020246089A1 (ja) 情報提示制御装置
JPH08248871A (ja) 自動車模擬運転装置
JP5827660B2 (ja) 運転訓練装置及び運転訓練方法
JP2020175799A (ja) 表示装置および表示制御装置
JP2018185669A (ja) 車両制御装置および運転支援システム
JP2019039678A5 (ja)
JP2011203663A (ja) 自動移動制御機能を備えた模擬運転装置及び自動移動制御方法
JP6818118B1 (ja) 演算装置、車載装置、自動運転システム
KR20170129478A (ko) 모의 주행으로 나타나는 실제 운전 성향을 이용한 전기자동차 에너지 효율 시뮬레이션 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893936

Country of ref document: EP

Kind code of ref document: A1