WO2019128807A1 - Mems芯片结构 - Google Patents

Mems芯片结构 Download PDF

Info

Publication number
WO2019128807A1
WO2019128807A1 PCT/CN2018/122100 CN2018122100W WO2019128807A1 WO 2019128807 A1 WO2019128807 A1 WO 2019128807A1 CN 2018122100 W CN2018122100 W CN 2018122100W WO 2019128807 A1 WO2019128807 A1 WO 2019128807A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
mems
grid
chip structure
micromirror
Prior art date
Application number
PCT/CN2018/122100
Other languages
English (en)
French (fr)
Inventor
陈奕文
黄兆兴
姚丹阳
汤红
蒋臣迪
谢会开
Original Assignee
华为技术有限公司
无锡微奥科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 无锡微奥科技有限公司 filed Critical 华为技术有限公司
Priority to EP18896353.2A priority Critical patent/EP3699139A4/en
Publication of WO2019128807A1 publication Critical patent/WO2019128807A1/zh
Priority to US16/915,601 priority patent/US11713239B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0081Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0083Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00317Packaging optical devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/045Optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0163Spring holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0866Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by thermal means

Definitions

  • the present application relates to the field of MEMS chips, and in particular to a structure of an electrothermal MEMS chip.
  • Micro Electro Mechanical System (MEMS) micromirrors are concerned with optical imaging, medical detection, microdisplay, and optical communication due to their large scanning angle, low driving voltage, low manufacturing cost, and simple control.
  • large-angle electrothermal MEMS micromirror array chips are suitable for assembling large-scale optical cross-connect (OXC) modules.
  • the electrothermal MEMS micromirror has a thermal crosstalk problem; when one or more micromirrors adjacent to the working micromirror start to be powered on, the generated heat changes the ambient temperature distribution around the working micromirror, so that The working micromirror drives the arm to heat up, causing the deflection angle of the working micromirror to change.
  • the severity of the thermal crosstalk is also related to the mirror elevation of the micromirror, which is particularly pronounced when the mirror is raised outside the frame. This causes the control of the micromirror to be extremely complicated and the performance to be degraded.
  • the purpose of the present application is to provide a MEMS chip structure that solves the problem of thermal crosstalk of an electrothermal MEMS micromirror.
  • a MEMS chip structure including: a substrate, a sidewall, a dielectric plate, a MEMS micromirror array, and a grid array, wherein the sidewall is an annular structure, and the substrate covers one of the sidewalls a side opening, the dielectric plate covers the other side opening of the side wall, the side wall, the substrate and the dielectric plate constitute a hollow structure; the MEMS micro mirror array and the grid array are located Inside the hollow structure; the MEMS micromirror array is located above the substrate, the MEMS micro mirror array includes a plurality of grooves and a plurality of MEMS micromirrors, wherein the plurality of MEMS micromirrors and the plurality of concaves One-to-one correspondence, the plurality of MEMS micromirrors are located in corresponding grooves or above corresponding grooves; the grid array is located above the MEMS micro-mirror array, and the lower surface of the grid array is The upper surface of the side wall of at least a portion
  • the MEMS chip structure provided by the embodiment of the present application suppresses the heat between the adjacent MEMS micromirrors in the MEMS micromirror array through the gas above the MEMS micromirror array through the introduced grid array, thereby ensuring the MEMS micro.
  • the control between the mirrors is relatively independent, reducing the effects of thermal crosstalk.
  • an upper surface of the grid array is connected to the dielectric plate.
  • Each of the MEMS chips is separated from each other by a plurality of hollow structures formed by a grid array, a plurality of grooves, and a dielectric plate to further reduce the influence of thermal crosstalk.
  • the height of the grid array is not less than one tenth of a distance from an upper surface of one of the plurality of grooves to the dielectric plate.
  • a distance from an upper surface of the grid array to the substrate is not less than a farthest distance from any one of the plurality of MEMS micromirrors to the substrate.
  • the space required for the rotation of the MEMS micromirror can be ensured, and the switching angle of the MEMS micromirror is not affected.
  • the grid array includes a plurality of grid units, and the grid unit is a ring structure, wherein the plurality of grid units and the plurality of grooves are in one-to-one correspondence,
  • the width of the frame of the grid unit is not greater than the width of the side wall of the corresponding groove.
  • the geometric center of the grid unit and the corresponding geometric center of the groove are perpendicular to the corresponding groove bottom surface.
  • the dielectric plate has a light transmitting property. It is also possible to plate an anti-reflection film on the dielectric plate to increase the light transmission property, and reduce the loss of the optical signal when passing through the dielectric plate on the basis of protecting the MEMS micromirror from external dust.
  • the MEMS chip structure further includes a solder ball layer, the solder ball layer is located in the hollow structure, between the substrate and the MEMS micro mirror array, for using an electrode Lead out.
  • the MEMS chip structure further includes a thin film layer, the thin film layer is located in the hollow structure, and a lower surface of the grid array and upper surfaces of the plurality of groove sidewalls
  • the thermal conductivity of the film layer is greater than the thermal conductivity of the grid array.
  • the material of the grid array comprises any one of silicon, glass, resin, and metal, and the grid array is prepared by a semiconductor etching process.
  • a MEMS chip structure comprising: a substrate, a MEMS micro mirror array, a grid array, and a dielectric plate, the MEMS micro mirror array being located above the substrate, the MEMS micro
  • the mirror array includes a plurality of grooves and a plurality of MEMS micromirrors, wherein the plurality of MEMS micromirrors are in one-to-one correspondence with the plurality of grooves, and the plurality of MEMS micromirrors are located in corresponding grooves or corresponding to each other Above the groove;
  • the grid array is located above the MEMS micromirror array, the lower surface of the grid array is connected to the upper surface of the sidewall of at least a portion of the plurality of grooves; the medium A plate is positioned above the array of grids and coupled to the upper surface of the array of grids.
  • the MEMS chip structure provided by the embodiment of the present application suppresses thermal crosstalk between adjacent MEMS micromirrors in the MEMS micromirror array through the introduced grid array, thereby ensuring relatively independent control between the MEMS micromirrors and reducing
  • the effect of thermal crosstalk, and with respect to the MEMS chip structure provided by the first aspect, has the advantage of being smaller in size.
  • the dielectric plate has a light transmitting property.
  • the dielectric plate has a light transmitting property.
  • the MEMS chip structure further includes a solder ball layer, the solder ball layer being located between the substrate and the MEMS micro mirror array for extracting electrodes.
  • the MEMS chip structure further includes a thin film layer
  • the MEMS chip structure further includes a thin film layer, the thin film layer being located on a lower surface of the grid array and the plurality of grooves Between the upper surfaces of the sidewalls, the thermal conductivity of the film layer is greater than the thermal conductivity of the grid array.
  • the material of the grid array comprises any one of silicon, glass, resin, and metal, and the grid array is prepared by a semiconductor etching process.
  • an optical switch including: an input port array, an input micromirror array, an output micromirror array, and an output port array; the input port array is configured to receive an optical signal; a mirror array for reflecting an optical signal output by the input port array to the output micromirror array; the output micromirror array for reflecting an optical signal reflected by the input micromirror array to the mirror An output port array for transmitting the received optical signal; wherein the input micromirror array and the output micromirror array comprise any one of claims 1-10 or The MEMS chip structure of any of claims 11-16, wherein the input micromirror array and the deflection of the MEMS micromirror included in the output micromirror array are input from one of the input port arrays The optical signals input by the port are switched to different output ports of the output port array to implement optical path switching.
  • the MEMS chip structure provided by the embodiment of the present application suppresses thermal crosstalk between adjacent MEMS micromirrors in the MEMS micromirror array through the introduced grid array, thereby ensuring relatively independent control between the MEMS micromirrors and reducing The effect of hot crosstalk.
  • 1 is a schematic block diagram of a MEMS optical switch
  • FIG. 2 is a side view of a MEMS chip structure according to an embodiment of the present application.
  • FIG. 3 is a side view showing the structure of a MESM chip according to another embodiment of the present application.
  • FIG. 4(a) is a side view showing the structure of a MEMS chip according to another embodiment of the present application.
  • 4(b) is a side view showing the structure of a MEMS chip according to another embodiment of the present application.
  • FIG. 5 is a simulation diagram of the effect of suppressing thermal crosstalk by a grid array without adding a grid array and adding grid arrays of different heights;
  • Figure 6 (a) is a perspective structural view of each of a MEMS micro mirror array and a grid array
  • 6(b) is a perspective structural view of the MEMS micromirror array and the grid array after being connected;
  • FIG. 7 is a side view of a MEMS chip structure according to another embodiment of the present application.
  • FIG. 8 is a side view of a MEMS chip structure according to another embodiment of the present application.
  • the present application relates to a MEMS chip structure, which is a core device constituting an optical switch in the field of optical switching.
  • 1 shows a schematic block diagram of a MEMS optical switch, including an input port array, an input micromirror array, an output micromirror array, and an output port array, wherein the input port array is configured to receive an optical signal;
  • the input micromirror array reflects the received optical signal to the output micromirror array;
  • the output micromirror array reflects the optical signal reflected by the input micromirror array to the output port array, thereby transmitting; wherein the input micromirror
  • the micromirror included in the array or the output micromirror array can be deflected in two directions perpendicular to each other, and the optical signal input from one input port can be exchanged to different output ports, thereby realizing the switching function of the optical switch.
  • MEMS optical switches typically include an input collimator array and an output collimator array for collimating and expanding the received optical signal
  • the electrothermal MEMS micromirror chip is suitable for assembling a large-scale optical switch structure because of a large scanning angle and a low driving voltage.
  • the MEMS chip structure involved in the present application is an electrothermal MEMS chip structure, which can be used as shown in FIG. 1 .
  • the input micromirror array or the output micromirror array of the MEMS optical switch is used in the field of optical switching.
  • 2 shows a side view of a MEMS chip structure according to an embodiment of the present application.
  • the MEMS chip structure includes a substrate 210, sidewalls 220, a dielectric plate 230, a MEMS micromirror array 240, and a grid array 250.
  • the substrate 210 covers one side opening of the side wall 220
  • the dielectric plate 230 covers the other side opening of the side wall 220
  • the side wall 220, the substrate 210 and the dielectric plate 230 constitute a hollow structure; specifically, the side wall 220 can
  • the side wall 220 includes a support ring 221 and a seal ring 222 .
  • the support ring 221 is located above the base 210
  • the seal ring 222 is located on the support ring 221 and the dielectric plate 230 .
  • airtight bonding is performed between the support ring 221 and the dielectric plate 230.
  • the substrate 210 may be made of a printed circuit board (PCB) or ceramics;
  • the dielectric plate 230 has a light transmitting property and may be made of a material such as quartz or sapphire, and further, may be in a medium.
  • the plate 230 is coated with an anti-reflection film to increase the light transmission property of the dielectric plate 230.
  • the sealing ring 222 can be soldered to bond the support ring 221 and the dielectric plate 230.
  • the support ring 221 can be made of Kovar, copper. , steel and other materials.
  • the MEMS micromirror array 240 and the grid array 250 are both located within the hollow structure; the MEMS micromirror array 240 is located above the substrate 210, and the MEMS micromirror array 240 includes a plurality of grooves 241 and a plurality of MEMS micromirrors 242, wherein The plurality of MEMS micromirrors 242 and the plurality of grooves 241 are in one-to-one correspondence, and the plurality of MEMS micromirrors 242 are located in the corresponding grooves 241 or corresponding to the grooves 241; the grid array 250 is located above the MEMS micromirror array 240 The lower surface of the grid array 250 is connected to the upper surface of the sidewall of at least a portion of the plurality of grooves 241.
  • the lower surface of the grid array 250 is connected to the upper surface of the sidewall of all the grooves 241 of the plurality of grooves 241, and the heat insulation effect is better.
  • the MEMS micromirror array 240 further includes a driving arm 243 that connects the MEMS micro mirror 242 to the sidewall of the corresponding groove 241, and the driving arm 243 is movable, or can be deformed, by loading The change in voltage or current on the drive arm 243 causes the drive arm 243 to move or deform, thereby driving the rotation of the MEMS micromirror 242.
  • the MEMS chip structure further includes a solder ball layer 260.
  • the solder ball layer 260 is located in the hollow structure between the substrate 210 and the MEMS micro mirror array 240 for extracting the electrodes to the MEMS micro mirror array 240.
  • the drive arm 243 is powered.
  • the electrically driven MEMS micromirror has a thermal crosstalk problem; when it is in the working state, the MEMS micromirror unit (referred to as the MEMS chip unit 1, wherein the MEMS micromirror in the MEMS micromirror array and its corresponding concave The slot and the driving arm are collectively referred to as a MEMS chip unit.
  • the generated heat changes the ambient temperature distribution around the MEMS chip unit 1, so that the driving arm of the MEMS chip unit 1 The temperature rises, resulting in a change in the deflection angle of the MEMS micromirror of the MEMS chip unit 1.
  • the MEMS chip structure provided by the embodiment of the present application suppresses the crosstalk between the adjacent MEMS chip units through the gas above the chip through the introduced grid array, thereby ensuring the relative independence between the MEMS chip units. Reduce the effects of thermal crosstalk.
  • the height of the grid array 250 is not less than one tenth of the distance from the upper surface of the sidewalls of the plurality of grooves 241 to the dielectric plate 230.
  • the upper surface of the grid array 250 is connected to the dielectric plate 230, and each MEMS chip unit is divided into mutually independent closed cells by the grid array 250 and the dielectric plate 230, minimizing the influence of thermal crosstalk.
  • the grid array 250 may be connected to the dielectric plate 230, not to the MEMS.
  • the micromirror array 240 contacts, as shown in FIG.
  • heat is introduced into the dielectric plate 230 through the grid array 250 to reduce thermal crosstalk; or the grid array 250 is passed through the support structure 252 and the sidewalls. 220 is connected and is not in contact with the MEMS micromirror array 240. As shown in FIG. 4(b), heat is introduced into the sidewall 220 through the grid array 250 and the support structure 252, which can also play a role in suppressing heat crosstalk. . It is worth noting that (1) the upper surface of the grid array is connected to the dielectric plate, (2) the grid array is connected to the side wall through the support structure, and (3) the lower surface of the grid array is connected to the upper surface of the groove Each of the three features may be arbitrarily satisfied. The embodiment of the present application is not limited herein.
  • the distance from the upper surface of the grid array 250 to the substrate 210 is not less than the furthest distance from any of the plurality of MEMS micromirrors 242 to the substrate 210. Since the MEMS micromirror 242 is rotated at different angles with the driving arm 243 in the working state, the distance from the MEMS micromirror 242 to the substrate 210 is variable, and the farthest distance from the MEMS micromirror 242 to the substrate 210 is The highest position of the MEMS micromirror 242 can be moved (ie, closest to the dielectric plate 230), and the upper surface of the grid array is not lower than the highest position to which the MEMS micromirror 242 can move, which can more effectively suppress the influence of thermal crosstalk. .
  • Figure 5 shows the suppression of thermal crosstalk by grid arrays without grids and grid arrays of different heights (the ordinate indicates the normalized value of the amount of thermal crosstalk), where the grid array is made of silicon; optional
  • the material of the grid array may be any one of silicon, glass, resin and metal, and the thermal conductivity is higher than the gas (for example, air, helium, argon, etc.) filled in the hollow structure. It can be seen from FIG.
  • the MEMS chip structure further includes a film layer 270 located in the hollow structure between the lower surface of the grid array and the upper surface of the sidewall of the plurality of grooves 241, as shown in FIG.
  • the thermal conductivity of the thin film layer 270 is greater than the thermal conductivity of the grid array 250.
  • the film layer 270 can be made of a high thermal conductivity material such as graphite or graphene.
  • the heat radiated by the driving arm 243 can be transmitted to the groove 241 side of the MEMS micromirror array 240 through the grid array 250 and the film layer 270.
  • the wall which in turn is transferred into the substrate 210, reduces the heat transfer to the adjacent MEMS chip unit by the gas filled in the hollow structure, further reducing the effects of thermal crosstalk.
  • FIG. 6(a) shows a perspective view of a MEMS micromirror array 610 and a grid array 620
  • FIG. 6(b) shows a MEMS micromirror array 610 and a grid in the MEMS chip structure provided by the embodiment of the present application.
  • the grid array 620 in FIG. 6(b) is partially vacant in the lower left corner for the convenience of the connection relationship between the MEMS micromirror array 610 and the grid array 620.
  • the gate array 620 structure may be free of vacancies.
  • the MEMS micromirror array 610 includes 9 grooves 611, 9 MEMS micromirrors 612, and 9 sets of driving arms 613, each of which corresponds to a groove. 611 and a set of driving arms 613, and each MEMS micro mirror 612 is located in the corresponding groove 611 or corresponding to the groove 611, and is connected to the side wall of the groove 611 through the corresponding driving arm 613.
  • the grid array 620 in the figure also includes nine grid units 621, each of which is a grid unit 621. It can be understood that the grid unit can also be a circular ring, a hexagonal ring, etc. The embodiment of the present application is not limited. As can be seen from FIG.
  • the plurality of grid units 621 are in one-to-one correspondence with the plurality of grooves 611, and the frame of each of the grid units 621 and the upper surface of the side wall of the corresponding groove 611
  • the connection is such that the isolation between the adjacent two MEMS micromirrors 612 is higher and the heat conduction is more difficult.
  • the width of the frame of the grid unit 621 is not greater than the width of the sidewall of the groove 611, and does not block the MEMS micromirror 612, and does not affect the optical path switching function of the MEMS micromirror 612.
  • the line connecting the geometric center of the grid unit 621 and the geometric center of the corresponding groove 611 is perpendicular to the bottom surface of the corresponding groove 611.
  • the grid array disclosed in the embodiment of the present application may be prepared by a semiconductor etching process, such as photolithography, development, etching, etc., due to limitations of the etching process, the thickness of the grid array may not be too large, in the MEMS When the distance between the micromirror array and the dielectric plate is relatively large, the thickness of the grid array can be satisfied by the superposition of the plurality of grid arrays, thereby effectively suppressing the thermal crosstalk; in addition, the grid array can be independently fabricated. The fabricated grid array is then packaged over the MEMS micromirror array, and the packaging process is simple and easy.
  • a semiconductor etching process such as photolithography, development, etching, etc.
  • FIG. 7 Another embodiment of the present application provides a MEMS chip structure, which is shown in FIG. 7 and includes a substrate 710, a MEMS micro mirror array 720, a grid array 730, and a dielectric plate 740.
  • the MEMS micro mirror array 720 is located on the substrate 710.
  • the MEMS micromirror array 720 includes a plurality of grooves 721 and a plurality of MEMS micromirrors 722, wherein the plurality of MEMS micromirrors 722 are in one-to-one correspondence with the plurality of grooves 721, the plurality of MEMS micromirrors 722 Located in the corresponding recess 721 or corresponding to the recess 721; the grid array 730 is located above the MEMS micromirror array 720, the lower surface of the grid array 730 and the side of at least a portion of the plurality of recesses 721 The upper surface of the wall is connected; the dielectric plate 740 is located above the grid array 730 and is connected to the upper surface of the grid array 730.
  • the substrate 710 may be made of a material such as a PCB or a ceramic; the dielectric plate 740 has a light transmitting property and may be made of a material such as quartz or sapphire. Further, an antireflection film may be plated on the dielectric plate 740.
  • the light transmission performance of the dielectric plate 740 is increased; the material of the grid array may be any one of silicon, glass, resin, and metal, and the thermal conductivity thereof is higher than that of the dielectric plate 740, the grid array 730, and the groove.
  • a gas for example, air, helium, argon, etc. in the hollow structure constituted by 721.
  • the MEMS micromirror array 720 further includes a driving arm 723 that connects the MEMS micro mirror 722 to the sidewall of the corresponding recess 721, and the driving arm 723 is movable, or can be deformed, by loading The change in voltage or current on the drive arm 723 causes the drive arm 723 to move or deform, thereby driving the rotation of the MEMS micromirror 722.
  • the MEMS chip structure further includes a solder ball layer 750 between the substrate 710 and the MEMS micro mirror array 720 for extracting the electrodes to supply power to the driving arm 723 of the MEMS micro mirror array 720. The structure is shown in Figure 8.
  • the MEMS chip structure provided by the embodiment of the present application suppresses adjacent MEMS chip units by introducing a grid array with high thermal conductivity (the MEMS micromirrors in the MEMS micromirror array and their corresponding grooves and driving arms are collectively referred to as
  • the heat crosstalk between the MEMS chip units ensures that the control between the individual MEMS chip units is relatively independent, reducing the effects of thermal crosstalk.
  • the sidewalls of the recesses in the MEMS micromirror array are difficult to etch deeply, and by connecting the grid array on the upper surface of the sidewalls of the recesses, the recesses, The hollow array space formed by the grid array and the dielectric plate is sufficiently large to ensure that the rotation of the MEMS micromirror is not affected.
  • the MEMS chip structure further includes a thin film layer between the lower surface of the grid array 730 and the upper surface of the sidewalls of the plurality of recesses 721, and the thermal conductivity of the thin film layer is greater than that of the grid array 730 Thermal conductivity.
  • the film layer can be made of a high thermal conductivity material such as graphite or graphene. Through the introduction of the high thermal conductivity film layer, the heat radiated by the driving arm 723 can be transmitted to the sidewalls of the recess 721 of the MEMS micro mirror array 720 through the grid array 730 and the film layer, and then transferred to the substrate 710. Medium to further reduce the effects of thermal crosstalk.
  • the grid array 730 includes a plurality of grid units 731.
  • the grid unit 731 is an annular structure, and may be a square ring, a ring, or the like.
  • the plurality of grid units 731 and the plurality of grooves 721 One-to-one correspondence, the width of the frame of the grid unit 731 is not greater than the width of the side wall of the groove 721, and does not block the MEMS micromirror, and does not affect the optical path switching function of the MEMS micromirror.
  • the line connecting the geometric center of the grid unit 731 and the geometric center of the corresponding groove 721 is perpendicular to the bottom surface of the corresponding groove 721.
  • the grid array disclosed in the embodiment of the present application may be prepared by a semiconductor etching process, such as photolithography, development, etching, etc., due to limitations of the etching process, the thickness of the grid array may not be too large, in the MEMS When the distance between the micromirror array and the dielectric plate is relatively large, the thickness of the grid array can be satisfied by the superposition of the plurality of grid arrays, thereby effectively suppressing the thermal crosstalk; in addition, the grid array can be independently fabricated. The fabricated grid array is then packaged over the MEMS micromirror array, and the packaging process is simple and easy.
  • a semiconductor etching process such as photolithography, development, etching, etc.

Abstract

一种MEMS芯片结构,包括:基底(210),侧壁(220),介质板(230),MEMS微镜阵列(240)以及格栅阵列(250),侧壁(220)为环形结构,基底(210)覆盖侧壁(220)的一侧开口,介质板(230)覆盖侧壁(220)的另一侧开口,侧壁(220),基底(210)和介质板(230)构成中空结构;MEMS微镜阵列(240)和格栅阵列(250)均位于中空结构内;MEMS微镜阵列(240)位于基底(210)的上方,MEMS微镜阵列(240)包括多个凹槽(241)和多个MEMS微镜(242),其中,多个MEMS微镜(242)和多个凹槽(241)一一对应,多个MEMS微镜(242)位于对应的凹槽(241)内或凹槽(241)上方;格栅阵列(250)位于MEMS微镜阵列(240)的上方,格栅阵列(250)的下表面与多个凹槽(241)中的至少部分凹槽(241)的侧壁上表面连接。

Description

MEMS芯片结构
本申请要求于2017年12月29日提交国家知识产权局、申请号为201711481331.1、申请名称为“MEMS芯片结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及MEMS芯片领域,尤其涉及一种电热式MEMS芯片的结构。
背景技术
电热微机电系统(Micro Electro mechanical System,MEMS)微镜由于扫描角度大、驱动电压低、制造成本低、控制简易等优点而备受光学影像、医疗检测、微显示、光通信等领域的关注。特别是在光通信领域,大转角的电热式MEMS微镜阵列芯片适用于组装大规模的光交叉连接(optical cross-connect,OXC)模块。
但电热式MEMS微镜在阵列集成后,存在热串扰问题;当工作微镜相邻的一个或多个微镜开始上电工作时,产生的热量会改变工作微镜周围的环境温度分布,使工作微镜驱动臂升温,从而导致工作微镜的偏转角度发生变化。该热串扰严重程度还与微镜镜面抬升高度有关,镜面抬升至镜框外时表现得尤为显著。这会导致微镜的控制异常复杂,性能降低。
发明内容
本申请的目的在于提供一种MEMS芯片结构,解决电热式MEMS微镜的热串扰问题。
第一方面,提供一种MEMS芯片结构,包括:包括:基底,侧壁,介质板,MEMS微镜阵列以及格栅阵列,所述侧壁为环形结构,所述基底覆盖所述侧壁的一侧开口,所述介质板覆盖所述侧壁的另一侧开口,所述侧壁,所述基底和所述介质板构成中空结构;所述MEMS微镜阵列和所述格栅阵列位于所述中空结构内;所述MEMS微镜阵列位于所述基底的上方,所述MEMS微镜阵列包括多个凹槽和多个MEMS微镜,其中,所述多个MEMS微镜和所述多个凹槽一一对应,所述多个MEMS微镜位于对应的凹槽内或位于对应的凹槽上方;所述格栅阵列位于所述MEMS微镜阵列的上方,所述格栅阵列的下表面与所述多个凹槽中的至少部分凹槽的侧壁上表面连接。
本申请实施例提供的MEMS芯片结构,通过引入的格栅阵列,抑制了MEMS微镜阵列中相邻的MEMS微镜之间的热量通过MEMS微镜阵列上方的气体进行串扰,保证了各个MEMS微镜之间的控制相对独立,降低了热串扰的影响。
在一种可能的实现方式中,所述格栅阵列的上表面与所述介质板连接。通过格栅阵列、多个凹槽以及介质板构成多个中空结构,将每个MEMS芯片彼此分隔开,进一步降低热串扰的影响。
在一种可能的实现方式中,所述格栅阵列的高度不小于所述多个凹槽中任一凹槽侧壁 的上表面到所述介质板的距离的十分之一。满足这个要求之后,才会得到比较明显的热串扰降低效果。
在一种可能的实现方式中,所述格栅阵列的上表面到所述基底的距离不小于所述多个MEMS微镜中任一MEMS微镜到所述基底的最远距离。本申请实施例在起到降低热串扰功能的基础上,还能保证MEMS微镜转动所需要的空间,不会影响MEMS微镜的切换角度。
在一种可能的实现方式中,所述格栅阵列包括多个格栅单元,格栅单元为环形结构,其中,所述多个格栅单元和所述多个凹槽一一对应,所述格栅单元的边框宽度不大于对应的凹槽的侧壁宽度。本申请实施例保证了在MEMS微镜的上方没有遮挡,不会影响MEMS微镜的光路切换功能。
在一种可能的实现方式中,所述格栅单元的几何中心与对应的所述凹槽的几何中心的连线与对应的所述凹槽底面垂直。
在一种可能的实现方式中,所述介质板具备透光的特性。还可以在介质板上镀增透膜,增加透光特性,在保护MEMS微镜不受外界灰尘沾染的基础上,降低光信号经过介质板时候的损耗。
在一种可能的实现方式中,所述MEMS芯片结构还包括焊球层,所述焊球层位于所述中空结构内,在所述基底和所述MEMS微镜阵列之间,用于将电极引出。
在一种可能的实现方式中,所述MEMS芯片结构还包括薄膜层,所述薄膜层位于所述中空结构内,在所述格栅阵列的下表面和所述多个凹槽侧壁上表面之间,所述薄膜层的热导率大于所述格栅阵列的热导率。本申请实施例可以让热量更多地通过格栅单元的边框以及薄膜层向下传导给对应的凹槽侧壁,进而传导到基底,进一步降低热串扰的影响。
在一种可能的实现方式中,所述格栅阵列的材料包括硅、玻璃、树脂以及金属中的任意一种,所述格栅阵列由半导体刻蚀工艺制备而成。
第二方面,提供一种MEMS芯片结构,其特征在于,包括:包括:基底,MEMS微镜阵列,格栅阵列以及介质板,所述MEMS微镜阵列位于所述基底的上方,所述MEMS微镜阵列包括多个凹槽和多个MEMS微镜,其中,所述多个MEMS微镜与所述多个凹槽一一对应,所述多个MEMS微镜位于对应的凹槽内或位于对应的凹槽上方;所述格栅阵列位于所述MEMS微镜阵列上方,所述格栅阵列的下表面与所述多个凹槽中的至少部分凹槽的侧壁上表面连接;所述介质板位于所述格栅阵列的上方,与所述格栅阵列的上表面连接。
本申请实施例提供的MEMS芯片结构,通过引入的格栅阵列,抑制了MEMS微镜阵列中相邻的MEMS微镜之间的热量串扰,保证了各个MEMS微镜之间的控制相对独立,降低了热串扰的影响,且相对于第一方面提供的MEMS芯片结构,具有体积更小的优势。
在一种可能的实现方式中,所述介质板具备透光的特性。
在一种可能的实现方式中,所述介质板具备透光的特性。
13、根据权利要求11或12所述的MEMS芯片结构,其特征在于,所述格栅阵列包括多个格栅单元,所述格栅单元为环形结构,其中,所述多个格栅单元与所述多个凹槽一一对应,所述格栅单元的边框宽度不大于对应的凹槽的侧壁宽度。
在一种可能的实现方式中,所述MEMS芯片结构还包括焊球层,所述焊球层位于所述基底和所述MEMS微镜阵列之间,用于将电极引出。
在一种可能的实现方式中,所述MEMS芯片结构还包括薄膜层,所述MEMS芯片结构还 包括薄膜层,所述薄膜层位于在所述格栅阵列下表面和所述多个凹槽的侧壁上表面之间,所述薄膜层的热导率大于所述格栅阵列的热导率。
在一种可能的实现方式中,所述格栅阵列的材料包括硅、玻璃、树脂以及金属中的任意一种,所述格栅阵列由半导体刻蚀工艺制备而成。
上述可能的实现方式的有益效果均在第一方面提供的MEMS芯片结构中详细描述过,在此不再赘述。
第三方面,提供一种光开关,包括:输入端口阵列、输入端微镜阵列、输出端微镜阵列、输出端口阵列;所述输入端口阵列,用于将接收光信号;所述输入端微镜阵列,用于将所述输入端口阵列输出的光信号反射到所述输出端微镜阵列;所述输出端微镜阵列,用于将所述输入端微镜阵列反射的光信号反射到所述输出端口阵列;所述输出端口阵列,用于将接收到的光信号发送出去;其中,所述输入端微镜阵列和所述输出端微镜阵列包括如权利要求1-10任一项或权利要求11-16任一项所述的MEMS芯片结构,通过所述输入端微镜阵列和所述输出端微镜阵列包括的MEMS微镜的偏转,将从所述输入端口阵列中的一个输入端口输入的光信号交换到所述输出端口阵列的不同输出端口上去,实现光路交换。
本申请实施例提供的MEMS芯片结构,通过引入的格栅阵列,抑制了MEMS微镜阵列中相邻的MEMS微镜之间的热量串扰,保证了各个MEMS微镜之间的控制相对独立,降低了热串扰的影响。
附图说明
图1为MEMS光开关的示意性框图;
图2为本申请一实施例提供的MEMS芯片结构的侧视图;
图3为本申请另一实施例提供的MESM芯片结构的侧视图;
图4(a)为本申请另一实施例提供的MEMS芯片结构的侧视图;
图4(b)为本申请另一实施例提供的MEMS芯片结构的侧视图;
图5为不加格栅阵列以及加不同高度的格栅阵列对热串扰的抑制效果的仿真图;
图6(a)为MEMS微镜阵列和格栅阵列各自的立体结构图;
图6(b)为MEMS微镜阵列和格栅阵列连接之后的立体结构图;
图7为本申请另一实施例提供的MEMS芯片结构的侧视图;
图8为本申请另一实施例提供的MEMS芯片结构的侧视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请涉及一种MEMS芯片结构,为光交换领域中构成光开关的核心器件。图1示出了一种MEMS光开关的示意性框图,包括输入端口阵列、输入端微镜阵列、输出端微镜阵列、输出端口阵列,其中,该输入端口阵列,用于将接收光信号;该输入端微镜阵列将接收的光信号反射到输出端微镜阵列;输出端微镜阵列将输入端微镜阵列反射的光信号反射到输出端口阵列,从而发送出去;其中,输入端微镜阵列或输出端微镜阵列包括的微镜在相互垂直的两个方向上能够偏转,可以将从某一个输入端口输入的光信号交换到不同的输出端口上去,从而实现光开关的交换功能。另外,MEMS光开关通常还包括输入端准直器阵 列和输出端准直器阵列,用于对接收到的光信号进行准直和扩束。
具体的,电热式MEMS微镜芯片由于扫描角度大、驱动电压低,适用于组装大规模的光开关结构,本申请涉及的MEMS芯片结构即为电热式MEMS芯片结构,可以作为图1所示的MEMS光开关的输入端微镜阵列或输出端微镜阵列,应用于光交换领域中。图2显示了本申请一实施例提供的MEMS芯片结构的侧视图,该MEMS芯片结构包括:基底210,侧壁220,介质板230,MEMS微镜阵列240以及格栅阵列250;其中,侧壁220为环形结构,基底210覆盖侧壁220的一侧开口,介质板230覆盖侧壁220的另一侧开口,侧壁220,基底210和介质板230构成中空结构;具体的,侧壁220可以为方环、圆环等任意的环形结构,如图3所示,该侧壁220包括支撑环221和密封环222,支撑环221位于基底210上方,密封环222位于支撑环221和介质板230之间,用于将支撑环221和介质板230进行贴合,例如,进行气密贴合。
可选地,基底210可以采用印刷电路板(Printed Circuit Board,PCB)或陶瓷等来制做;介质板230具有透光特性,可以采用石英或蓝宝石等材料制成,进一步地,还可以在介质板230上镀增透膜,增加介质板230的透光性能;密封环222可以采用焊料,通过焊接的方式将支撑环221和介质板230贴合起来;支撑环221可以采用可伐合金、铜、钢等材料制作。
MEMS微镜阵列240和格栅阵列250均位于该中空结构内;MEMS微镜阵列240位于基底210的上方,MEMS微镜阵列240包括多个凹槽241和多个MEMS微镜242,其中,该多个MEMS微镜242和该多个凹槽241一一对应,多个MEMS微镜242位于对应的凹槽241内或对应的凹槽241上方;格栅阵列250位于MEMS微镜阵列240的上方,该格栅阵列250的下表面与该多个凹槽241中的至少部分凹槽241的侧壁上表面连接。
具体的,该格栅阵列250的下表面与该多个凹槽241中的所有凹槽241的侧壁上表面连接,隔热效果更好。
进一步地,MEMS微镜阵列240还包括驱动臂243,该驱动臂243将MEMS微镜242连接到对应的凹槽241的侧壁上,且驱动臂243可动,或者说可以发生形变,通过加载在驱动臂243上的电压或电流的改变,让驱动臂243运动或发生形变,从而带动MEMS微镜242的转动。可选地,该MEMS芯片结构还包括焊球层260,焊球层260位于该中空结构内,在基底210和MEMS微镜阵列240之间,用于将电极引出,给MEMS微镜阵列240的驱动臂243供电。
但电驱动的MEMS微镜在阵列集成后,存在热串扰问题;当处于工作状态的MEMS微镜单元(记为MEMS芯片单元1,其中,MEMS微镜阵列中的MEMS微镜及其对应的凹槽和驱动臂合称为MEMS芯片单元)相邻的一个或多个MEMS芯片单元开始上电工作时,产生的热量会改变MEMS芯片单元1周围的环境温度分布,使MEMS芯片单元1的驱动臂升温,从而导致MEMS芯片单元1的MEMS微镜的偏转角度发生变化。本申请实施例提供的MEMS芯片结构,通过引入的格栅阵列,抑制了相邻的MEMS芯片单元之间的热量通过芯片上方的气体进行串扰,保证了各个MEMS芯片单元之间的控制相对独立,降低了热串扰的影响。
可选地,格栅阵列250的高度不小于该多个凹槽241侧壁的上表面到介质板230的距离的十分之一。进一步地,格栅阵列250的上表面与介质板230连接,通过格栅阵列250和介质板230将每个MEMS芯片单元分割成彼此独立的封闭单元,最大程度地降低热串扰 的影响。另外,在某些特殊情况下,例如,在MEMS微镜阵列240的凹槽边框上不允许连接格栅阵列250的情况下,也可以将格栅阵列250与介质板230相连,并不与MEMS微镜阵列240接触,如图4(a)所示,将热量通过格栅阵列250导入到介质板230中,起到降低热串扰的作用;或者将格栅阵列250通过支撑结构252与侧壁220相连,并不与MEMS微镜阵列240接触,如图4(b)所示,将热量通过格栅阵列250以及支撑结构252导入侧壁220中,也可以对抑制热串扰起到一定的作用。值得注意的是,(1)格栅阵列的上表面与介质板连接,(2)将格栅阵列通过支撑结构与侧壁相连,以及(3)格栅阵列的下表面与凹槽上表面相连这三个特征,可以任意满足其中一个或多个,本申请实施例在此不做限定。
可选地,格栅阵列250的上表面到基底210的距离不小于多个MEMS微镜242中任意MEMS微镜242到基底210的最远距离。由于在工作状态下,MEMS微镜242会随着驱动臂243的带动转动不同的角度,故MEMS微镜242到基底210的距离是可变的,MEMS微镜242到基底210的最远距离就是MEMS微镜242能移动到的最高位置(即离介质板230最近),格栅阵列的上表面的位置不低于MEMS微镜242能移动到的最高位置,可以更有效地抑制热串扰的影响。
图5示出了不加格栅阵列以及加不同高度的格栅阵列对热串扰的抑制效果(纵坐标表示热串扰量的归一化取值),这里的格栅阵列采用硅材料;可选地,格栅阵列的材料可以为硅、玻璃、树脂以及金属中的任意一种,其热导率均高于填充在该中空结构内的气体(例如,空气、氪气、氩气等)。从图5中可以看出,通过格栅阵列的引入,对热串扰的抑制效果明显增强,随着格栅阵列高度的增加,对热串扰的抑制效果也逐渐增强,当格栅阵列的高度与凹槽侧壁的上表面到介质板的距离之间的比值接近于1时,热串扰仅仅为不加格栅阵列时的三分之一左右,效果非常明显。
可选地,该MEMS芯片结构还包括薄膜层270,该薄膜层270位于该中空结构内,在格栅阵列的下表面和该多个凹槽241的侧壁上表面之间,如图3所示,其中,薄膜层270的热导率大于格栅阵列250的热导率。该薄膜层270可以采用例如石墨或石墨烯等高热导率材料制作。以一个处于工作状态的MEMS芯片单元为例,在上电之后,可以将驱动臂243散发的热量,更多地通过格栅阵列250以及薄膜层270传递到MEMS微镜阵列240的凹槽241侧壁上,进而传递到基底210中,使得通过填充在中空结构中的气体传递到相邻的MEMS芯片单元的热量减少,进一步降低热串扰的影响。
图6(a)示出了MEMS微镜阵列610和格栅阵列620各自的立体结构图,图6(b)示出了本申请实施例提供的MEMS芯片结构中的MEMS微镜阵列610和格栅阵列620的连接关系,需要注意的是,图6(b)中格栅阵列620在左下角空缺一部分,是为了方便看出MEMS微镜阵列610和格栅阵列620的连接关系,实际的格栅阵列620结构可以不存在空缺。在图6(a)和图6(b)中,MEMS微镜阵列610包括9个凹槽611,9个MEMS微镜612以及9组驱动臂613,每个MEMS微镜612都对应一个凹槽611和一组驱动臂613,且每个MEMS微镜612位于对应的凹槽611内或对应的凹槽611上方,通过对应的驱动臂613与凹槽611的侧壁相连。图中的格栅阵列620也包括9个格栅单元621,每个环形框即为一个格栅单元621,可以理解的是,格栅单元还可以是圆环形、六边环形等结构,只需与凹槽对应即可,本申请实施例不做限定。从图6(b)中可以看出,多个格栅单元621与多个凹槽611 是一一对应的,且每个格栅单元621的边框都与对应的凹槽611的侧壁上表面连接,使得相邻两个MEMS微镜612之间隔离度更高,热传导更困难。
可选地,格栅单元621的边框宽度不大于凹槽611的侧壁宽度,不会对MEMS微镜612造成遮挡,不会影响MEMS微镜612的光路切换功能。可选地,格栅单元621的几何中心与对应的凹槽611的几何中心的连线与对应的凹槽611底面垂直。
本申请实施例公开的格栅阵列可以由半导体刻蚀工艺制备而成,例如光刻、显影、腐蚀等刻蚀工艺,由于刻蚀工艺的限制,格栅阵列的厚度不可能太大,在MEMS微镜阵列到介质板的距离比较大的情况下,可以通过多个格栅阵列的叠加来满足对格栅阵列的厚度要求,实现对热串扰的有效抑制;另外,格栅阵列可以独立制作,然后再将制作好的格栅阵列封装到MEMS微镜阵列上方,封装工艺简单易行。
本申请另一实施例提供一种MEMS芯片结构,其侧视图如图7所示,包括:基底710,MEMS微镜阵列720,格栅阵列730以及介质板740,MEMS微镜阵列720位于基底710的上方,且MEMS微镜阵列720包括多个凹槽721和多个MEMS微镜722,其中,该多个MEMS微镜722与该多个凹槽721一一对应,该多个MEMS微镜722位于对应的凹槽721内或对应的凹槽721上方;格栅阵列730位于MEMS微镜阵列720上方,格栅阵列730的下表面与该多个凹槽721中的至少部分凹槽721的侧壁上表面连接;介质板740位于格栅阵列730的上方,与格栅阵列730的上表面连接。
可选地,基底710可以采用PCB或陶瓷等材料来制做;介质板740具有透光特性,可以采用石英或蓝宝石等材料制成,进一步地,还可以在介质板740上镀增透膜,增加介质板740的透光性能;格栅阵列的材料可以为硅、玻璃、树脂以及金属中的任意一种,其热导率均高于填充在由介质板740、格栅阵列730以及凹槽721构成的中空结构内的气体(例如,空气、氪气、氩气等)。
进一步地,MEMS微镜阵列720还包括驱动臂723,该驱动臂723将MEMS微镜722连接到对应的凹槽721的侧壁上,且驱动臂723可动,或者说可以发生形变,通过加载在驱动臂723上的电压或电流的改变,让驱动臂723运动或发生形变,从而带动MEMS微镜722的转动。可选地,该MEMS芯片结构还包括焊球层750,焊球层750位于基底710和MEMS微镜阵列720之间,用于将电极引出,给MEMS微镜阵列720的驱动臂723供电,其结构如图8所示。
同样地,电驱动MEMS微镜在阵列集成后,均存在热串扰问题,存在的原因在上一个实施例中有详细描述,本实施例在此不再赘述。本申请实施例提供的MEMS芯片结构,通过引入高热导率的格栅阵列,抑制了相邻的MEMS芯片单元(MEMS微镜阵列中的MEMS微镜及其对应的凹槽和驱动臂合称为MEMS芯片单元)之间的热量串扰,保证了各个MEMS芯片单元之间的控制相对独立,降低了热串扰的影响。另外,由于刻蚀工艺的限制,MEMS微镜阵列中的凹槽侧壁是很难刻蚀地很深的,而通过在凹槽侧壁上表面连接格栅阵列的方式,可以使凹槽、格栅阵列以及介质板构成的中空结构空间足够大,进而保证不影响MEMS微镜的转动。
可选地,该MEMS芯片结构还包括薄膜层,该薄膜层在格栅阵列730下表面和该多个凹槽721的侧壁上表面之间,薄膜层的热导率大于格栅阵列730的热导率。该薄膜层可以采用例如石墨或石墨烯等高热导率材料制作。通过高热导率的薄膜层的引入,可以将驱动 臂723散发的热量,更多地通过格栅阵列730以及薄膜层传递到MEMS微镜阵列720的凹槽721侧壁上,进而传递到基底710中,进一步降低热串扰的影响。
可选地,格栅阵列730包括多个格栅单元731,格栅单元731为环形结构,可以为方环、圆环等等;其中,该多个格栅单元731与该多个凹槽721一一对应,格栅单元731的边框宽度不大于凹槽721的侧壁宽度,不会对MEMS微镜造成遮挡,不会影响MEMS微镜的光路切换功能。可选地,格栅单元731的几何中心与对应的凹槽721的几何中心的连线与对应的凹槽721底面垂直。
本申请实施例公开的格栅阵列可以由半导体刻蚀工艺制备而成,例如光刻、显影、腐蚀等刻蚀工艺,由于刻蚀工艺的限制,格栅阵列的厚度不可能太大,在MEMS微镜阵列到介质板的距离比较大的情况下,可以通过多个格栅阵列的叠加来满足对格栅阵列的厚度要求,实现对热串扰的有效抑制;另外,格栅阵列可以独立制作,然后再将制作好的格栅阵列封装到MEMS微镜阵列上方,封装工艺简单易行。
需要说明的是,尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也包含这些改动和变型在内。

Claims (17)

  1. 一种MEMS芯片结构,其特征在于,包括:基底,侧壁,介质板,MEMS微镜阵列以及格栅阵列,
    所述侧壁为环形结构,所述基底覆盖所述侧壁的一侧开口,所述介质板覆盖所述侧壁的另一侧开口,所述侧壁,所述基底和所述介质板构成中空结构;
    所述MEMS微镜阵列和所述格栅阵列位于所述中空结构内;
    所述MEMS微镜阵列位于所述基底的上方,所述MEMS微镜阵列包括多个凹槽和多个MEMS微镜,其中,所述多个MEMS微镜和所述多个凹槽一一对应,所述多个MEMS微镜位于对应的凹槽内或位于对应的凹槽上方;
    所述格栅阵列位于所述MEMS微镜阵列的上方,所述格栅阵列的下表面与所述多个凹槽中的至少部分凹槽的侧壁上表面连接。
  2. 根据权利要求1所述的MEMS芯片结构,其特征在于,所述格栅阵列的上表面与所述介质板连接。
  3. 根据权利要求1所述的MEMS芯片结构,其特征在于,所述格栅阵列的高度不小于所述多个凹槽中任一凹槽侧壁的上表面到所述介质板的距离的十分之一。
  4. 根据权利要求1所述的MEMS芯片结构,其特征在于,所述格栅阵列的上表面到所述基底的距离不小于所述多个MEMS微镜中任一MEMS微镜到所述基底的最远距离。
  5. 根据权利要求1-4任一项所述的MEMS芯片结构,其特征在于,所述格栅阵列包括多个格栅单元,格栅单元为环形结构,其中,所述多个格栅单元和所述多个凹槽一一对应,所述格栅单元的边框宽度不大于对应的凹槽的侧壁宽度。
  6. 根据权利要求5所述的MEMS芯片结构,其特征在于,所述格栅单元的几何中心与对应的凹槽的几何中心的连线与对应的凹槽底面垂直。
  7. 根据权利要求1-4任一项所述的MEMS芯片结构,其特征在于,所述介质板具备透光的特性。
  8. 根据权利要求1-4任一项所述的MEMS芯片结构,其特征在于,所述MEMS芯片结构还包括焊球层,所述焊球层位于所述中空结构内,在所述基底和所述MEMS微镜阵列之间,用于将电极引出。
  9. 根据权利要求1-4任一项所述的MEMS芯片结构,其特征在于,所述MEMS芯片结构还包括薄膜层,所述薄膜层位于所述中空结构内,在所述格栅阵列的下表面和所述多个凹槽侧壁上表面之间,所述薄膜层的热导率大于所述格栅阵列的热导率。
  10. 根据权利要求1-4任一项所述的MEMS芯片结构,其特征在于,所述格栅阵列的材料包括硅、玻璃、树脂以及金属中的任意一种,所述格栅阵列由半导体刻蚀工艺制备而成。
  11. 一种MEMS芯片结构,其特征在于,包括:基底,MEMS微镜阵列,格栅阵列以及介质板,
    所述MEMS微镜阵列位于所述基底的上方,所述MEMS微镜阵列包括多个凹槽和多个MEMS微镜,其中,所述多个MEMS微镜与所述多个凹槽一一对应,所述多个MEMS微镜位于对应的凹槽内或位于对应的凹槽上方;
    所述格栅阵列位于所述MEMS微镜阵列上方,所述格栅阵列的下表面与所述多个凹槽中的至少部分凹槽的侧壁上表面连接;
    所述介质板位于所述格栅阵列的上方,与所述格栅阵列的上表面连接。
  12. 根据权利要求11所述的MEMS芯片结构,其特征在于,所述介质板具备透光的特性。
  13. 根据权利要求11或12所述的MEMS芯片结构,其特征在于,所述格栅阵列包括多个格栅单元,所述格栅单元为环形结构,其中,所述多个格栅单元与所述多个凹槽一一对应,所述格栅单元的边框宽度不大于对应的凹槽的侧壁宽度。
  14. 根据权利要求11或12所述的MEMS芯片结构,其特征在于,所述MEMS芯片结构还包括焊球层,所述焊球层位于所述基底和所述MEMS微镜阵列之间,用于将电极引出。
  15. 根据权利要求11或12所述的MEMS芯片结构,其特征在于,所述MEMS芯片结构还包括薄膜层,所述薄膜层位于在所述格栅阵列下表面和所述多个凹槽的侧壁上表面之间,所述薄膜层的热导率大于所述格栅阵列的热导率。
  16. 根据权利要求11或12所述的MEMS芯片结构,其特征在于,所述格栅阵列的材料包括硅、玻璃、树脂以及金属中的任意一种,所述格栅阵列由半导体刻蚀工艺制备而成。
  17. 一种光开关,其特征在于,包括:输入端口阵列、输入端微镜阵列、输出端微镜阵列、输出端口阵列;
    所述输入端口阵列,用于将接收光信号;
    所述输入端微镜阵列,用于将所述输入端口阵列输出的光信号反射到所述输出端微镜阵列;
    所述输出端微镜阵列,用于将所述输入端微镜阵列反射的光信号反射到所述输出端口阵列;
    所述输出端口阵列,用于将接收到的光信号发送出去;
    其中,所述输入端微镜阵列和所述输出端微镜阵列包括如权利要求1-10任一项或权利要求11-16任一项所述的MEMS芯片结构,通过所述输入端微镜阵列和所述输出端微镜阵列包括的MEMS微镜的偏转,将从所述输入端口阵列中的一个输入端口输入的光信号交换到所述输出端口阵列的不同输出端口上去,实现光路交换。
PCT/CN2018/122100 2017-12-29 2018-12-19 Mems芯片结构 WO2019128807A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18896353.2A EP3699139A4 (en) 2017-12-29 2018-12-19 MEMS CHIP STRUCTURE
US16/915,601 US11713239B2 (en) 2017-12-29 2020-06-29 MEMS chip structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711481331.1 2017-12-29
CN201711481331.1A CN109991728B (zh) 2017-12-29 2017-12-29 Mems芯片结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/915,601 Continuation US11713239B2 (en) 2017-12-29 2020-06-29 MEMS chip structure

Publications (1)

Publication Number Publication Date
WO2019128807A1 true WO2019128807A1 (zh) 2019-07-04

Family

ID=67066532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122100 WO2019128807A1 (zh) 2017-12-29 2018-12-19 Mems芯片结构

Country Status (4)

Country Link
US (1) US11713239B2 (zh)
EP (1) EP3699139A4 (zh)
CN (1) CN109991728B (zh)
WO (1) WO2019128807A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933987A (zh) * 2020-06-29 2022-01-14 华为技术有限公司 Mems微镜及光学扫描装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050166677A1 (en) * 2004-02-02 2005-08-04 Nasiri Steven S. Vertically integrated MEMS structure with electronics in a hermetically sealed cavity
US20060014312A1 (en) * 2003-06-04 2006-01-19 Texas Instruments, Inc. Method for stripping sacrificial layer in MEMS assembly
CN102408091A (zh) * 2011-10-10 2012-04-11 无锡微奥科技有限公司 一种改进的微机电系统平台圆片级封装结构
CN104020561A (zh) * 2014-05-12 2014-09-03 无锡微奥科技有限公司 热驱动mems微镜及1×n热驱动mems微镜阵列
CN105223657A (zh) * 2014-05-27 2016-01-06 华为技术有限公司 光开关和波分复用光系统
CN106082107A (zh) * 2016-06-08 2016-11-09 无锡微奥科技有限公司 一种热驱动mems微镜阵列器件及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907155B2 (en) * 2002-10-15 2005-06-14 Glimmerglass Networks, Inc. Three-dimensional optical switch with annular input-output ports
JP2016029432A (ja) * 2014-07-25 2016-03-03 セイコーエプソン株式会社 電気光学装置、及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060014312A1 (en) * 2003-06-04 2006-01-19 Texas Instruments, Inc. Method for stripping sacrificial layer in MEMS assembly
US20050166677A1 (en) * 2004-02-02 2005-08-04 Nasiri Steven S. Vertically integrated MEMS structure with electronics in a hermetically sealed cavity
CN102408091A (zh) * 2011-10-10 2012-04-11 无锡微奥科技有限公司 一种改进的微机电系统平台圆片级封装结构
CN104020561A (zh) * 2014-05-12 2014-09-03 无锡微奥科技有限公司 热驱动mems微镜及1×n热驱动mems微镜阵列
CN105223657A (zh) * 2014-05-27 2016-01-06 华为技术有限公司 光开关和波分复用光系统
CN106082107A (zh) * 2016-06-08 2016-11-09 无锡微奥科技有限公司 一种热驱动mems微镜阵列器件及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699139A4

Also Published As

Publication number Publication date
EP3699139A1 (en) 2020-08-26
US11713239B2 (en) 2023-08-01
CN109991728A (zh) 2019-07-09
CN109991728B (zh) 2021-01-05
US20200325015A1 (en) 2020-10-15
EP3699139A4 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US11294168B2 (en) Process for manufacturing a MEMS micromirror device, and associated device
CN103996674B (zh) 电子组件
US7098517B2 (en) Semiconductor device
JP2004235638A (ja) 微細加工素子およびその製造方法
WO2019128807A1 (zh) Mems芯片结构
WO2021135135A1 (zh) 一种压电驱动结构和成像模组
JP2009048009A (ja) ミラーデバイス
JP2006350124A (ja) 光学デバイスの製造方法および光学デバイス
US10156779B2 (en) Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
WO2022022478A1 (zh) Mems芯片及其制备方法、mems器件、电子设备
CN203643683U (zh) 一种可双轴旋转的mems微镜芯片
US10156717B2 (en) Electro-optical device, method of manufacturing electro-optical device, electro-optical unit, and electronic apparatus
US20200249468A1 (en) Micromirror structure and micromirror array chip
WO2021136042A1 (zh) 一种微机电系统及其制备方法
CN113376826B (zh) 双面电极结构的mems微镜及其制备方法
WO2021098218A1 (zh) 一种成像模组
US9933614B2 (en) Electro-optic device, electro-optic unit, and electronic apparatus
JP2006350125A (ja) 光学デバイス
JP4758069B2 (ja) フォトカプラーとフォトカプラーアレイとフォトカプラー内蔵型半導体集積回路
WO2023030542A1 (zh) 激光器
US7149023B2 (en) Optical scanner capable of flip-chip hermetic packaging
JP6052901B2 (ja) マイクロミラー素子およびミラーアレイ
JP2012047910A (ja) 光偏向装置
WO2004001481A1 (ja) マイクロミラーユニット及びその製造方法並びに該マイクロミラーユニットを用いた光スイッチ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018896353

Country of ref document: EP

Effective date: 20200518

NENP Non-entry into the national phase

Ref country code: DE