WO2021136042A1 - 一种微机电系统及其制备方法 - Google Patents

一种微机电系统及其制备方法 Download PDF

Info

Publication number
WO2021136042A1
WO2021136042A1 PCT/CN2020/138746 CN2020138746W WO2021136042A1 WO 2021136042 A1 WO2021136042 A1 WO 2021136042A1 CN 2020138746 W CN2020138746 W CN 2020138746W WO 2021136042 A1 WO2021136042 A1 WO 2021136042A1
Authority
WO
WIPO (PCT)
Prior art keywords
mems device
comb teeth
movable
movable platform
wafer
Prior art date
Application number
PCT/CN2020/138746
Other languages
English (en)
French (fr)
Inventor
孙丰沛
冯志宏
徐景辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20910700.2A priority Critical patent/EP4063317A4/en
Publication of WO2021136042A1 publication Critical patent/WO2021136042A1/zh
Priority to US17/854,668 priority patent/US20220324699A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0086Electrical characteristics, e.g. reducing driving voltage, improving resistance to peak voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B5/00Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • H02N1/008Laterally driven motors, e.g. of the comb-drive type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/004Angular deflection
    • B81B3/0043Increasing angular deflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0022Protection against electrostatic discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00166Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00198Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00642Manufacture or treatment of devices or systems in or on a substrate for improving the physical properties of a device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/033Comb drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/04Optical MEMS
    • B81B2201/042Micromirrors, not used as optical switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0109Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0136Comb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0145Flexible holders
    • B81B2203/0154Torsion bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/04Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/058Rotation out of a plane parallel to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/012Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being separate parts in the same package
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/053Arrays of movable structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0156Lithographic techniques
    • B81C2201/0159Lithographic techniques not provided for in B81C2201/0157
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means

Definitions

  • the invention relates to the field of Micro-Electro-Mechanical Systems (MEMS), in particular to a MEMS device and a preparation method thereof.
  • MEMS Micro-Electro-Mechanical Systems
  • MEMS devices are widely used in optical communications, consumer electronics and other fields.
  • the principle is to use the potential difference loaded on the drive structure of the MEMS device to generate electrostatic force and torque to drive the movable parts on the MEMS device to rotate or translate.
  • the driving structure of the MEMS device includes a flat plate structure and a comb tooth structure.
  • the flat-plate structure of the MEMS is shown on the left side of Figure 1. Its movable platform is connected to a fixed anchor point through the support beams on both sides. There are two fixed electrodes under the movable platform, which form a flat capacitor with the movable platform. The movable platform is the upper part of the flat capacitor. The electrode, the fixed electrode is the lower electrode. The movable platform is grounded through the supporting beam and the anchor point, and a constant or periodically varying electrostatic bias voltage is applied to the fixed electrode. The potential difference between the upper and lower electrodes forms an electrostatic force and moment, which drives the movable platform to rotate around the supporting beam.
  • the comb-tooth structure of the MEMS is shown on the right side of Figure 1.
  • the movable combs are connected to the two sides of the movable platform, corresponding to the two fixed combs below.
  • the movable comb teeth are grounded, and a constant or periodically varying electrostatic bias voltage is applied to the fixed comb teeth.
  • the potential difference between the movable comb teeth and the fixed comb teeth forms an electrostatic torque, which drives the movable platform to rotate around the support beam.
  • the embodiment of the present invention provides a microelectromechanical system MEMS device and a preparation method thereof, which improves the driving efficiency of the MEMS device, improves the reliability, and expands the application range of the MEMS device.
  • an embodiment of the present invention provides a MEMS device for a microelectromechanical system, including: a first fixed comb, a second fixed comb, a supporting beam, a movable platform, and a movable comb; wherein: the first fixed comb and The second fixed comb teeth are fixed on the base plate, and the first fixed comb teeth and the second fixed comb teeth are electrically isolated; both ends of the supporting beam are fixed on the base plate, and the movable platform is connected to the supporting beam; the movable comb teeth are connected to the movable On the platform, it forms a three-layer comb structure with the first fixed comb teeth and the second fixed comb teeth.
  • the three-layer comb structure improves the driving efficiency of the MEMS device and reduces the driving voltage required under a certain torque.
  • the MEMS device includes two sets of three-layer comb structures, which are located on the left and right sides of the support beam, respectively. Thereby, the driving ability is further improved.
  • the first fixed comb tooth is used to apply a first potential difference between it and the movable comb tooth
  • the second fixed comb tooth is used to apply a second potential difference between it and the movable comb tooth.
  • the movable platform is plated with a metal reflective layer or a dielectric reflective layer. So it can be more widely used in optical communication systems, consumer electronics and other fields.
  • the shape of the movable platform is rectangular, polygonal, circular, or elliptical. Different platform shapes expand the application range of MEMS devices.
  • the first fixed comb tooth is used to apply a potential difference between it and the movable comb tooth
  • the second fixed comb tooth is used to measure the rotation angle of the movable platform through the capacitance between it and the movable comb tooth. This further expands the application range of MEMS devices.
  • the support beam is electrically isolated from the substrate. Therefore, the net charge accumulation of the MEMS device is avoided, and the long-term stability of the MEMS device is improved.
  • the first fixed comb teeth and the second fixed comb teeth are electrically isolated by a first insulating layer, and the support beams are electrically isolated from the substrate by a second insulating layer, and the first insulating layer is electrically isolated from the second insulating layer.
  • the insulating layer is located on the same plane. This is beneficial to reduce the volume of the MEMS device and reduce the manufacturing cost.
  • the movable comb teeth are connected to the edge of the movable platform perpendicular to the supporting beam, and the three-layer comb tooth structure abuts against the supporting beam. This structure is beneficial to reduce the size of the MEMS device, and is beneficial to the application to the micromirror array.
  • the MEMS device includes two sets of three-layer comb structures located on the same side of the supporting beam, and the two sets of three-layer comb structures are used to control the movable platform. This helps to improve the flexibility of the driving activity platform.
  • one of the above two sets of three-layer comb structures is used to apply a potential difference to drive the movable platform, and the other is used to measure the rotation angle of the movable platform. This helps to improve the flexibility of using MEMS devices.
  • a two-dimensional MEMS device includes two MEMS devices, a first MEMS device and a second MEMS device, wherein: the movable platform of the first MEMS device is used as a substrate for fixing the second MEMS device; The support beam of one MEMS device and the support beam of the second MEMS device are perpendicular to each other.
  • the two-dimensional rotation of the movable platform is realized, and the application range of the MEMS device is further expanded.
  • a MEMS device array is characterized by comprising a plurality of the aforementioned MEMS devices, wherein the plurality of MEMS devices are distributed in one dimension or two dimensions.
  • the MEMS device further includes a substrate, a tube case, a light window, and a control circuit; wherein: the substrate is used to fix the first fixed comb teeth and the second fixed comb teeth, and the two ends of the fixed support beam;
  • the shell is installed on the substrate to protect the MEMS device;
  • the light window is installed on the top of the tube shell for light in and out;
  • the control circuit is used to control the rotation of the movable platform.
  • an embodiment of the present invention provides a method for preparing a MEMS device, including: forming first fixed comb teeth on a first wafer by photolithography; forming movable comb teeth on a double-layer second wafer by photolithography; The movable platform and the supporting beam; the first wafer and the double-layer second wafer are bonded; the second fixed comb teeth are formed by photolithography on the bonded wafer; the movable platform and the movable comb teeth are released.
  • This method realizes the aforementioned three-layer comb-tooth structure MEMS device through a single-layer wafer and a double-layer wafer.
  • an embodiment of the present invention provides another method for manufacturing a MEMS device, including: forming first fixed comb teeth on a first wafer by photolithography; bonding the second wafer to the first wafer; The two wafers are bonded together to form movable comb teeth, movable platforms and support beams by photolithography; the third wafer is bonded to the two wafers after bonding; the three wafers are bonded The second fixed comb teeth are formed by photolithography on the subsequent wafer; the movable platform and the movable comb teeth are released.
  • This method realizes the aforementioned three-layer comb structure MEMS device with three single-layer wafers.
  • an embodiment of the present invention provides a method for using a MEMS device, including: applying a potential difference between the first fixed comb teeth and the movable comb teeth of the MEMS device to rotate the movable platform; and measuring the second fixed comb teeth of the MEMS device And the capacitance between the movable comb teeth to monitor the rotation angle of the movable platform. After the performance of the MEMS device is monitored in this way, further measures can be taken to compensate for the performance change, so that the MEMS device is also suitable for scenarios where the working environment changes greatly and the continuous operation does not stop, which expands the use range of the MEMS device.
  • the above technical solutions provided by the embodiments of the present invention improve the driving efficiency of the MEMS device, reduce the driving voltage, improve the net charge accumulation problem of the MEMS device, and improve the long-term stability of the MEMS device; in addition, due to the increased driving efficiency, The occupied area of the driving structure in the MEMS device is reduced accordingly, thereby increasing the effective duty ratio of the MEMS device and expanding the application range of the MEMS device.
  • FIG. 1 is a schematic diagram of a MEMS device with a plate structure and a comb-tooth structure in the prior art
  • FIG. 2a is a schematic cross-sectional view of a MEMS device provided by an embodiment of the present invention.
  • 2b is a 45° schematic diagram of a MEMS device provided by an embodiment of the present invention.
  • Fig. 3a is a 45° schematic diagram of another MEMS device provided by an embodiment of the present invention.
  • 3b is a schematic cross-sectional view of another MEMS device provided by an embodiment of the present invention.
  • 3c is a schematic cross-sectional view of another MEMS device provided by an embodiment of the present invention.
  • FIG. 4a is a schematic diagram of a rotating state of a MEMS device according to an embodiment of the present invention.
  • 4b is a schematic diagram of the simulation of the relationship between the capacitance of the feedback structure and the rotation angle of the movable platform according to an embodiment of the present invention
  • Fig. 5a is a 45° schematic diagram of another MEMS device provided by an embodiment of the present invention.
  • 5b is a schematic cross-sectional view of another MEMS device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a one-dimensional array of MEMS devices provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of still other MEMS devices provided by embodiments of the present invention.
  • FIG. 8 is a schematic diagram of still other MEMS devices provided by embodiments of the present invention.
  • FIG. 9 is a schematic diagram of still other MEMS devices provided by embodiments of the present invention.
  • FIG. 10 is a schematic diagram of a MEMS device with multiple groups of three-layer comb-tooth structure on the same side according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram of a two-dimensional MEMS device provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a manufacturing method of a MEMS device provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another method for manufacturing a MEMS device provided by an embodiment of the present invention.
  • the electrostatic torque generated by the current driving structure is relatively limited.
  • the development of technology and the miniaturization of equipment all require MEMS devices to generate greater driving torque, reduce bias voltage, and reduce the area of MEMS chips.
  • the MEMS device provided by the embodiment of the present invention may be a MEMS chip, which may be used as a MEMS micromirror or a micromirror array.
  • MEMS devices are widely used in the field of optical communication. For example, MEMS devices realize optical crossover by cross-reflecting input multiple optical signals into output multiple optical signals. It is also widely used in consumer fields, for example, MEMS devices adjust the light path to achieve eye movement tracking in the field of Augmented Reality (AR).
  • AR Augmented Reality
  • Figures 2a and 2b show a MEMS device according to an embodiment of the present invention.
  • Figure 2a is a cross-sectional view of the MEMS device
  • Figure 2b is a 45° schematic diagram of the MEMS device
  • the light window and sidewalls have been removed in Figure 2b.
  • the MEMS chip 201 and the control ASIC (Application Specific Integrated Circuit) 202 are packaged in a tube case 203, and the top of the tube case is a transparent light window 204 that allows light to enter and exit.
  • the MEMS device is fixed on the substrate 205, which may be a ceramic substrate.
  • the movable platform of the MEMS device is plated with a reflective layer 206 for reflecting light incident from the light window.
  • the control ASIC is connected to the electrode 207 of the comb tooth of the MEMS device through a wire, and is used to control the movable platform, for example, by loading an electrostatic bias on the three-layer comb structure to control the rotation or translation of the movable platform.
  • FIGS. 3a and 3b are schematic diagrams of a MEMS device with a three-layer comb-tooth structure provided by an embodiment of the present invention, and are a specific embodiment of the above-mentioned MEMS chip 201.
  • FIG. 3a is a 45° schematic diagram of the MEMS device
  • FIG. 3b is a cross-sectional view of the MEMS device.
  • the MEMS device includes: an upper fixed comb 301, a lower fixed comb 302, a supporting beam 303, a movable platform 304, and a movable comb 305.
  • the movable comb teeth, the upper fixed comb teeth and the lower fixed comb teeth form a group of three-layer comb structure.
  • the MEMS device may include one or more sets of three-layer comb structures.
  • the MEMS device in FIGS. 3a and 3b includes two sets of three-layer comb structures, which are located on the left and right sides of the support beam.
  • the lower fixed comb teeth and the upper fixed comb teeth on the left and right sides are all fixed on the substrate, which is not shown in Figures 3a and 3b.
  • the upper and lower fixed comb teeth are respectively connected to their respective electrodes, including an upper fixed comb electrode 307 and a lower fixed comb electrode 308.
  • the insulating layer material can be silicon dioxide SiO2, silicon nitride SixNy, and the like.
  • the two ends of the supporting beam are also fixed on the base plate, and the fixed part on both sides can be called anchor points 309.
  • the movable platform is connected to the supporting beam.
  • the movable comb teeth on the left and right sides are connected to the movable platform and form two groups of three-layer comb structures on the left and right sides with the upper fixed comb teeth and the lower fixed comb teeth.
  • Above and below the movable comb teeth correspond to the upper fixed comb teeth and the lower fixed comb teeth respectively, and the movable comb teeth are respectively offset from the upper and lower fixed comb teeth in the horizontal direction to avoid collision with the fixed comb teeth when rotating around the support beam.
  • the movable comb teeth can be grounded through the movable platform, support beams and anchor points.
  • the substrate can be a flat plate, a hollow frame, or other fixing members that can fix the upper and lower layers of the fixed comb teeth and the two ends of the support beam.
  • the movable platform, support beam, upper fixed comb teeth, lower fixed comb teeth, and movable comb teeth can be composed of doped monocrystalline silicon or polysilicon.
  • the movable platform can be coated with a metal reflective layer (such as aluminum or gold) or dielectric reflection Floor.
  • the movable comb teeth are connected to the supporting beams on both sides through the movable platform, and the movable comb teeth can rotate around the supporting beam.
  • an electrostatic bias voltage can be applied to the upper fixed comb teeth on the left and the lower fixed comb teeth on the right. Since the movable comb teeth are grounded, the potential difference between the upper fixed comb teeth on the left and the movable comb teeth generates an electrostatic moment M1, and the potential difference between the fixed comb teeth on the right lower layer and the movable comb teeth generates an electrostatic moment M2.
  • M1 and M2 are in the same direction.
  • the torque that drives the movable platform to rotate clockwise around the support beam is M1+M2.
  • an electrostatic bias voltage is applied to the upper fixed comb teeth on the right and the lower fixed comb teeth on the left, the movable platform can also be driven to rotate counterclockwise around the support beam.
  • the increase in the driving torque caused by the three-layer comb structure improves the driving efficiency of the MEMS device.
  • the driving efficiency is improved, the occupied area of the driving structure in the MEMS device is reduced, thereby increasing the effective duty cycle of the MEMS device;
  • the three-layer comb structure also reduces the driving voltage, thereby improving the net charge accumulation problem of the MEMS device, and improving the long-term stability of the MEMS device.
  • An insulating layer can also be set between the anchor point and the support beam.
  • the movable comb teeth and the movable platform can not be grounded, but an electrostatic bias is applied separately, so as to flexibly control the movable comb teeth and the upper or lower fixed comb teeth. The potential difference between. Increased the flexibility of drive control.
  • the insulating layer between the anchor point and the supporting beam can be located on the same plane as the insulating layer between the upper and lower fixed comb teeth, as shown in Fig. 3c. The insulating layer being located on the same plane facilitates the preparation of the MEMS device. For details, see step 13 of the embodiment of the preparation method shown in FIGS. 12 and 13 below.
  • FIG. 4a shows a schematic diagram of the rotation of the movable platform of the MEMS device when driven by the driving structure.
  • the upper fixed comb teeth and movable comb teeth on the right constitute a driving structure
  • the lower fixed comb teeth and the movable comb teeth on the right constitute a feedback structure.
  • Figure 4b shows a simulation diagram of the relationship between the capacitance C of the feedback structure and the rotation angle A of the movable platform, where the abscissa represents the rotation angle and the unit is degree (°); the ordinate represents the capacitance change and the unit is femtofarad (fF) .
  • the lower fixed comb teeth and movable comb teeth on the right side can be used to form a driving structure
  • the upper fixed comb teeth and movable comb teeth form a feedback structure.
  • the performance of the MEMS device will change. For example, under different temperatures or different working hours, the same potential difference causes different rotation angles of the movable platform. After monitoring changes in the performance of the MEMS device, measures can be taken to compensate for the changes in performance, such as further adjusting the driving potential difference. In this way, the MEMS device is also suitable for scenarios where the working environment changes greatly and the continuous operation does not stop, which expands the use scene and use range of the MEMS device.
  • Figures 5a and 5b disclose another MEMS device structure.
  • Figure 5a is a 45° schematic diagram of the MEMS device
  • Figure 5b is a cross-sectional view of the MEMS device.
  • the movable platform is connected with a fixed anchor point through a supporting beam, and can rotate around the supporting beam.
  • the three-layer comb structure included in the MEMS device is located on both sides of the support beam, close to the edge of the movable platform perpendicular to the support beam, and the movable comb teeth are connected to the edge of the movable platform perpendicular to the support beam. This structure is conducive to reducing the size of the MEMS device. Smaller pitches can be achieved when multiple MEMS devices are formed into an array.
  • MEMS device array can accurately control the reflection direction of different light beams, so it can be applied to optical cross-connect OXC, wavelength selective switch WSS and other modules in the field of optical communications, and can also be applied to micro-projection, laser TV, etc. in the consumer field In the device.
  • the shape of the movable platform may include, but is not limited to, a polygon, a circle, and an ellipse.
  • the driving method of the MEMS device is as described above. This also expands the application range of MEMS devices.
  • the three-layer comb structure of the MEMS device can also be located on both sides of the movable platform and distributed along the axis parallel to the support beam.
  • the advantage is that the electrostatic torque driving the comb teeth is larger, which can drive the movable platform to obtain a higher Big corner.
  • the three-layer comb tooth structure can be distributed on both sides of the support beam and the movable platform at the same time, as shown in Figure 9.
  • the advantage is that the number of comb teeth is more, the electrostatic driving force or torque is stronger, so the rotation angle or displacement of the movable platform is larger.
  • the driving method of the activity platform is as described above.
  • the MEMS device can also have more than two groups of three-layer comb structures on the same side. As shown in FIG. 10, it is another MEMS device provided by an embodiment of the present invention. Among them, there are 3 groups of three-layer comb structures on each side of the support beam, the right side of the support beam includes the first, second, and third groups of three-layer comb structures, and the left side of the support beam includes the fourth, fifth, and sixth groups of three-layer comb structures. Structure, these 6 groups of comb tooth structures are controlled independently of each other, and each group of three-layer comb tooth structure can independently drive the movable platform to rotate. It can also be combined flexibly to drive the movable platform to rotate.
  • a fixed comb tooth and a movable comb tooth of each group of three-layer comb tooth structure can be used as a feedback structure, and the rotation angle of the movable platform is fed back through the capacitance of the feedback structure.
  • the specific driving and feedback methods are as described above.
  • a three-layer comb structure with a relatively large number of comb teeth is used as a driving comb structure, and a three-layer comb structure with a relatively small number of comb teeth is used as a feedback comb structure.
  • the measurement accuracy is higher.
  • the number of comb teeth of the second and fifth groups of three-layer comb structure is larger than that of the other four groups. In this way, the second and fifth groups alone or together with other groups can be used as drive structures; and the other three-layer comb structures that are not used as drive structures can be used as feedback structures.
  • the shape of the movable platform may include, but is not limited to, polygon, circle, and ellipse.
  • the multiple three-layer comb structures on the same side of the support beam are independent of each other, which improves the flexibility of application and improves the control accuracy of the MEMS device.
  • the embodiment of the present invention also provides a two-dimensional MEMS device to realize the two-dimensional rotation of the movable platform.
  • This two-dimensional MEMS device is equivalent to including two MEMS devices, called the first MEMS device and the second MEMS device.
  • the first MEMS device includes a first support beam 1111, a first three-layer comb structure 1112, and a movable frame 1113.
  • the second MEMS device includes a second support beam 1121, a second three-layer comb structure 1122, and a movable platform 1123.
  • the movable frame 1113 serves as a movable platform for the first MEMS device and also serves as a substrate for fixing the second MEMS device.
  • the movable frame 1113 is connected to the first supporting beam 1111, and both sides of the first supporting beam are fixed on the substrate of the entire two-dimensional MEMS device through anchor points (the substrate is not shown in the figure).
  • the three-layer comb structure 1112 of the first MEMS device is located on both sides of the first support beam.
  • the movable platform 1123 in the figure which is a circular mirror, is the movable platform of the second MEMS device and the movable platform of the entire two-dimensional MEMS device. It is fixed on the movable frame 1113 through the second support beam 1121, and the fixed point is equivalent to an anchor point.
  • Figure 11 also includes a partial enlarged view of two MEMS devices.
  • the movable platform By controlling the three-layer comb-tooth structure of the first MEMS device and the three-layer comb-tooth structure of the second MEMS device, the movable platform can rotate around the first supporting beam and the second supporting beam, thereby realizing the movement of the movable platform Two-dimensional rotation.
  • the method of controlling the comb structure is as described above.
  • the shape of the movable platform of the two-dimensional MEMS device may include, but is not limited to, a rectangle, a polygon, a circle, an ellipse, and the like.
  • the two-dimensional rotation of the movable platform greatly increases the application range of MEMS devices.
  • MEMS device array can accurately control the reflection direction of different light beams, so it can be applied to optical cross-connect OXC, wavelength selective switch WSS and other modules in the field of optical communications, and can also be applied to micro-projection, laser TV, etc. in the consumer field In the device.
  • the embodiment of the present invention also provides a method for preparing a MEMS device, which uses a single-layer wafer and a double-layer wafer to prepare by wafer bonding at one time. Specifically, it includes: lithographically forming lower fixed combs on one wafer; lithographically forming movable combs, movable platforms and support beams on another double-layer wafer; bonding the two wafers; and lithographically forming upper fixed combs Teeth; release the movable platform and movable comb teeth.
  • FIG. 12 A more specific example of preparing a MEMS device is shown in Figure 12, including the following 14 steps: 1. Select a highly doped Silicon-On-Insulator (SOI) first wafer as the preparation of the lower fixed comb teeth 2. Make a double-sided photolithography alignment mark on the first wafer substrate layer; 3. Etch the electrical isolation groove of the lower fixed comb on the device layer of the first wafer; 4. Photoetch the lower fixed Comb teeth and movable platform back cavity structure; 5. Choose another double-layer highly doped SOI second wafer as the base for making movable platforms, movable comb teeth and leads; 6.
  • SOI Silicon-On-Insulator
  • the remaining silicon dioxide (SiO2) layer in the double-layer second wafer constitutes the insulating layer 1203 between the comb teeth, between the first fixed comb teeth and the second fixed comb teeth in the three-layer comb structure
  • the insulating layer 1203 is electrically isolated, and the support beam and the substrate are also electrically isolated by the insulating layer.
  • One insulating layer realizes two electrical isolations; 14, a metal electrode 1201 and a specular reflection layer 1202 are prepared.
  • the embodiment of the present invention also provides another method for preparing a MEMS device, which uses three single-layer wafers and two wafer bonding preparations. It specifically includes: forming the lower fixed comb teeth on the first wafer by photolithography; bonding the second wafer to the first wafer; forming movable comb teeth, movable platforms and support beams on the bonded wafer by photolithography ; Bond the third wafer with the above-mentioned bonded wafer again; form the upper fixed comb teeth on the bonded wafer by photolithography; release the movable platform and the movable comb teeth.
  • the process of double bonding is more complicated.
  • FIG. 13 A more specific example of preparing a MEMS device is shown in Fig. 13, which includes the following 14 steps: 1. Make a double-sided photolithography alignment mark on the first wafer substrate layer of doped SOI; 2. Photolithography forms the lower fixed comb teeth, The back cavity of the movable platform; 3, the electrical isolation groove of the lower fixed comb teeth is etched; 4, the first wafer and the second wafer doped with SOI are bonded to form a wafer through Si-Si; 5, the crystal is removed by etching The Si layer at the top of the circle; 6, photolithography to form movable comb teeth; 7, etching to reduce the height of the fixed comb teeth of the lower layer; 8, etching to remove the hard mask on the surface of the device layer; 9, using the third wafer to prepare the first Cap wafer for the second wafer bonding; 10, Si-SiO2 bonding the third wafer and the previously bonded wafer again to complete the second wafer bonding; 11, etching to remove the crystal
  • the remaining SiO2 layer in the second wafer is formed
  • the insulating layer 1303 between the comb teeth, the first fixed comb teeth and the second fixed comb teeth in the three-layer comb structure are electrically isolated by the insulating layer 1303, and the support beam and the substrate are also electrically isolated by the insulating layer,
  • One insulating layer realizes two electrical isolations; 14, a metal electrode 1301 and a specular reflection layer 1302 are prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

一种微机电系统及其制备方法,微机电系统包括:第一固定梳齿,第二固定梳齿,支撑梁(303),活动平台(304)和活动梳齿(305);其中:第一固定梳齿和第二固定梳齿固定在基板上,第一固定梳齿和第二固定梳齿之间电学隔离;支撑梁的两端固定在基板上,活动平台连接在支撑梁上;活动梳齿连接在活动平台上,并与第一固定梳齿和第二固定梳齿形成三层梳齿结构。这样的结构提高了微机电系统的驱动效率。

Description

一种微机电系统及其制备方法
本申请要求于2019年12月31日提交中国国家知识产权局、申请号为201911408207.1、发明名称为“一种微机电系统及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及微机电系统(Micro-Electro-Mechanical Systems,MEMS)领域,尤其涉及一种MEMS装置及其制备方法。
背景技术
微机电系统MEMS器件广泛应用于光通信、消费电子等领域。其原理是,利用加载在MEMS器件驱动结构上的电势差产生静电力和力矩,驱动MEMS器件上的活动部件转动或平动。MEMS器件的驱动结构包括平板结构和梳齿结构等。
平板结构的MEMS如图1左边所示,其活动平台通过两侧的支撑梁连接到固定锚点,活动平台下方有两个固定电极,与活动平台构成平板电容,其中活动平台为平板电容的上电极,固定电极为下电极。将活动平台通过支撑梁和锚点接地,并在固定电极上施加恒定或者周期性变化的静电偏置电压,上下电极之间的电势差形成静电力和力矩,驱动活动平台绕支撑梁旋转。梳齿结构的MEMS如图1右边所示,活动平台两侧连接有活动梳齿,分别对应下方的两个固定梳齿。将活动梳齿接地,并在固定梳齿上施加恒定或者周期性变化的静电偏置电压,活动梳齿与固定梳齿之间的电势差形成静电力矩,驱动活动平台绕支撑梁旋转。
发明内容
本发明实施例提供一种微机电系统MEMS装置及其制备方法,提高了MEMS装置的驱动效率,提升了可靠性,扩大了MEMS装置的应用范围。
第一方面,本发明实施例提供了一种微机电系统MEMS装置,包括:第一固定梳齿,第二固定梳齿,支撑梁,活动平台和活动梳齿;其中:第一固定梳齿和第二固定梳齿固定在基板上,第一固定梳齿和第二固定梳齿之间电学隔离;支撑梁的两端固定在基板上,活动平台连接在支撑梁上;活动梳齿连接在活动平台上,并与第一固定梳齿和第二固定梳齿形成三层梳齿结构。三层梳齿结构提高了MEMS装置的驱动效率,减小了一定力矩下所需的驱动电压。
在一个可能的设计中,MEMS装置包括两组三层梳齿结构,分别位于支撑梁的左侧和右侧。从而进一步提高了驱动能力。
在又一个可能的设计中,第一固定梳齿用于在其与活动梳齿间施加第一电势差,第二固定梳齿用于在其与活动梳齿间施加第二电势差。从而进一步提高了驱动能力。
在又一个可能的设计中,活动平台上镀有金属反射层或介质反射层。从而可以更广泛应用于光通信系统、消费电子等领域。
在又一个可能的设计中,活动平台的形状为矩形、多边形、圆形,或椭圆形。不同的平台形状扩大了MEMS装置的应用范围。
在又一个可能的设计中,第一固定梳齿用于在其与活动梳齿间施加电势差,第二固定梳齿用于通过其与活动梳齿间的电容测量活动平台的旋转角度。从而进一步扩大了MEMS装置的应用范围。
在又一个可能的设计中,支撑梁与基板之间电学隔离。从而避免了MEMS装置的的净电荷积累,提升MEMS装置长期稳定性。
在又一个可能的设计中,第一固定梳齿和第二固定梳齿之间通过第一绝缘层电学隔离,支撑梁与基板之间通过第二绝缘层电学隔离,第一绝缘层与第二绝缘层位于同一平面。这样有利于减小MEMS装置的体积,降低制备成本。
在又一个可能的设计中,活动梳齿连接在活动平台中与支撑梁垂直的边上,三层梳齿结构紧靠着支撑梁。这种结构有利于减小MEMS装置尺寸,有利于应用到微镜阵列。
在又一个可能的设计中,MEMS装置包括两组三层梳齿结构,位于支撑梁的同一侧,两组三层梳齿结构分别用于控制活动平台。从而有利于提高驱动活动平台的灵活性。
在又一个可能的设计中,上述两组三层梳齿结构中的一组用于施加电势差驱动活动平台,一组用于测量活动平台的旋转角度。从而有利于提高MEMS装置使用的灵活性。
在又一个可能的设计中,一种二维MEMS装置,包括两个MEMS装置,第一MEMS装置和第二MEMS装置,其中:第一MEMS装置的活动平台作为固定第二MEMS装置的基板;第一MEMS装置的支撑梁与第二MEMS装置的支撑梁相互垂直。从而实现了活动平台的二维转动,进一步扩大了MEMS装置的应用范围。
在又一个可能的设计中,一种MEMS装置阵列,其特征在于,包括多个前述的MEMS装置,其中,多个MEMS装置呈一维分布或二维分布。
在又一个可能的设计中,MEMS装置还包括基板、管壳、光窗、以及控制电路;其中:基板用于固定第一固定梳齿和第二固定梳齿,以及固定支撑梁两端;管壳安装在基板上,用于保护MEMS装置;光窗安装在管壳顶部,用于光线的入出;控制电路用于控制活动平台转动。这样完整的产品有利于保护MEMS装置长时间使用。
第二方面,本发明实施例提供了一种MEMS装置的制备方法,包括:在第一晶圆上光刻形成第一固定梳齿;在双层第二晶圆上光刻形成活动梳齿、活动平台以及支撑梁;将第一晶圆 和双层第二晶圆键合;在键合后的晶圆上光刻形成第二固定梳齿;释放活动平台和活动梳齿。这种方法通过一个单层晶圆和一个双层晶圆实现了前述三层梳齿结构的MEMS装置。
第三方面,本发明实施例提供了另一种MEMS装置的制备方法,包括:在第一晶圆上光刻形成第一固定梳齿;将第二晶圆与第一晶圆键合;在两个晶圆键合后的晶圆上光刻形成活动梳齿、活动平台以及支撑梁;将第三晶圆和两个晶圆键合后的晶圆键合;在三个晶圆键合后的晶圆上光刻形成第二固定梳齿;释放活动平台和活动梳齿。这种方法通过3个单层晶圆实现了前述三层梳齿结构的MEMS装置。
第四方面,本发明实施例提供了一种MEMS装置的使用方法,包括:在MEMS装置的第一固定梳齿和活动梳齿间施加电势差使活动平台旋转;测量MEMS装置的第二固定梳齿和活动梳齿间的电容来监控活动平台的旋转角度。这样监控到MEMS装置的性能出现变化后,可进一步采取措施以补偿性能的变化,使得MEMS装置也适用于工作环境变化大以及连续工作不停机的场景,扩大了MEMS装置的使用范围。
本发明实施例提供的上述技术方案,提高了MEMS装置的驱动效率,减小了驱动电压,改善了MEMS装置的净电荷积累问题,提升了MEMS装置的长期稳定性;另外,由于驱动效率提高,MEMS装置中驱动结构的占用面积随之减小,因此提高了MEMS装置的有效占空比,扩大了MEMS装置的应用范围。
附图说明
图1为现有技术的平板结构和梳齿结构MEMS装置示意图;
图2a为本发明实施例提供的一种MEMS装置的剖面示意图;
图2b为本发明实施例提供的一种MEMS装置的45°示意图;
图3a为本发明实施例提供的另一种MEMS装置的45°示意图;
图3b为本发明实施例提供的另一种MEMS装置的剖面示意图;
图3c为本发明实施例提供的又一种MEMS装置的剖面示意图;
图4a为本发明实施例提供的一种MEMS装置旋转状态的示意图;
图4b为本发明实施例提供的反馈结构电容与活动平台旋转角度关系的仿真示意图;
图5a为本发明实施例提供的又一种MEMS装置的45°示意图;
图5b为本发明实施例提供的又一种MEMS装置的剖面示意图;
图6为本发明实施例提供的一维排列的MEMS装置阵列示意图;
图7为本发明实施例提供的又一些MEMS装置的示意图;
图8为本发明实施例提供的又一些MEMS装置的示意图;
图9为本发明实施例提供的又一些MEMS装置的示意图;
图10为本发明实施例提供的同侧多组三层梳齿结构的MEMS装置示意图;
图11为本发明实施例提供的一种二维MEMS装置示意图;
图12为本发明实施例提供的一种MEMS装置的制备方法示意图;
图13为本发明实施例提供的另一种MEMS装置的制备方法示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步详细描述。
目前的驱动结构产生的静电力矩比较有限。技术的发展、设备小型化等,都要求MEMS装置能产生更大驱动力矩、降低偏置电压、减小MEMS芯片面积。
本发明实施例提供的MEMS装置,可以是一个MEMS芯片,可作为MEMS微镜或微镜阵列。MEMS装置广泛应用于光通信领域,例如,MEMS装置通过将输入的多路光信号交叉反射为输出的多路光信号,实现光交叉。还广泛应用于消费类领域,例如MEMS器件调节光路实现增强现实(Augmented Reality,AR)领域的人眼移动追踪。
如图2a和2b所示,为本发明实施例的一个MEMS装置,其中,图2a为MEMS装置的剖面图,图2b为MEMS装置的45°示意图,图2b中已去掉光窗和侧壁。
MEMS芯片201和控制ASIC(Application Specific Integrated Circuit,专用集成电路)202封装在管壳203内,管壳顶部为透明光窗204,允许光线入射和出射。MEMS装置固定在基板205上,基板可以是陶瓷基板。MEMS装置的活动平台上镀有反射层206,用于反射从光窗入射的光线。控制ASIC通过引线与MEMS装置梳齿的电极207相连,用于控制活动平台,例如通过在三层梳齿结构上加载静电偏置来控制活动平台的旋转或平移。
图3a和3b所示为本发明实施例提供的一种三层梳齿结构的MEMS装置示意图,是上述MEMS芯片201的一个具体的实施例。其中,图3a是MEMS装置的45°示意图,图3b是MEMS装置的一个剖面图。MEMS装置包括:上层固定梳齿301,下层固定梳齿302,支撑梁303,活动平台304和活动梳齿305。活动梳齿与上层固定梳齿和下层固定梳齿形成一组三层梳齿结构。MEMS装置可以包括一组或多组三层梳齿结构,图3a和3b中的MEMS装置包括了两组三层梳齿结构,位于支撑梁左右两侧。
左右两侧的下层固定梳齿和上层固定梳齿都固定在基板上,图3a和3b中基板未画出。在上层和下层固定梳齿之间有一个绝缘层306,以实现电学隔离,从而可分别控制上层和下层固定梳齿上的电压以形成与活动梳齿之间的电势差。上层和下层固定梳齿分别与各自的电极相连,包括上层固定梳齿电极307和下层固定梳齿电极308。绝缘层材料可以是二氧化硅SiO2、氮化硅SixNy等。
支撑梁的两端也固定在基板上,两侧固定的部分可称为锚点309。活动平台连接在支撑梁上。左右两侧的活动梳齿连接在所述活动平台上,并与上层固定梳齿和下层固定梳齿形成左右两侧的两组三层梳齿结构。活动梳齿上方和下方分别对应上层固定梳齿和下层固定梳齿,且活动梳齿在水平方向上分别与上下层固定梳齿错开,避免绕支撑梁转动时与固定梳齿发生碰撞。活动梳齿可以通过活动平台、支撑梁和锚点接地。
基板可以是一个平板,也可以是一个中空的框架,或其他可固定上下层固定梳齿和支撑梁两端的固定件。
活动平台、支撑梁、上层固定梳齿、下层固定梳齿、活动梳齿均可由掺杂单晶硅或多晶硅构成,活动平台上可以镀金属反射层(如铝或金),也可以是介质反射层。
活动梳齿通过活动平台连接到两侧的支撑梁,活动梳齿可以绕支撑梁转动。当需要驱动 活动平台旋转时,可以在左侧上层固定梳齿和右侧下层固定梳齿上分别施加静电偏置电压。由于活动梳齿接地,左侧上层固定梳齿与活动梳齿之间的电势差产生静电力矩M1,右侧下层固定梳齿与活动梳齿之间的电势差产生静电力矩M2,M1与M2方向相同,驱动活动平台绕支撑梁顺时针旋转的力矩为M1+M2。同样,如果在右侧上层固定梳齿和左侧下层固定梳齿上分别施加静电偏置电压,则同样可驱动活动平台绕支撑梁逆时针旋转。
三层梳齿结构导致的驱动力矩的增加,提高了MEMS装置的驱动效率,由于驱动效率提高,MEMS装置中驱动结构的占用面积随之减小,因此提高了MEMS装置的有效占空比;另外,三层梳齿结构也降低了驱动电压,从而改善了MEMS装置的净电荷积累问题,提升了MEMS装置的长期稳定性。这些效果都扩大了MEMS装置的应用范围。
锚点与支撑梁之间也可以设置一个绝缘层,在静电驱动时,活动梳齿和活动平台可以不接地,而单独施加静电偏置,从而灵活控制活动梳齿和上层或下层固定梳齿之间的电势差。增加了驱动控制的灵活性。进一步,这个锚点与支撑梁之间的绝缘层可以与上下层固定梳齿之间的绝缘层位于同一平面,如图3c所示。绝缘层位于同一平面有利于MEMS装置的制备,具体见后面图12和图13所示制备方法实施例的步骤13。
除可用于驱动活动平台旋转外,上述MEMS装置还可以用于监控活动平台的旋转角度。例如,图4a所示为MEMS装置活动平台受驱动结构驱动时发生旋转的示意图。右侧的上层固定梳齿与活动梳齿构成驱动结构,右侧的下层固定梳齿与活动梳齿构成反馈结构。在右侧上层固定梳齿施加偏置电压时,与活动梳齿之间的电势差产生的力矩可驱动活动平台旋转,同时通过测量前述反馈结构的电容C,可监控活动平台的旋转角度A。图4b所示为反馈结构的电容C与活动平台旋转角度A之间关系的仿真示意图,其中横坐标表示旋转角度,单位是度(°);纵坐标表示电容变化,单位是飞法拉(fF)。
同样,也可以用右侧的下层固定梳齿与活动梳齿构成驱动结构,上层固定梳齿与活动梳齿构成反馈结构。当驱动活动平台旋转时,通过测量反馈结构的电容,监控活动平台的旋转角度。
一般随着温度等环境因素的变化,或者随着工作时间变长,MEMS装置的性能会出现变化。例如,不同温度下,或者不同工作时长下,相同电势差引起活动平台旋转角度会不同。监控到MEMS装置的性能出现变化后,可以采取措施以补偿性能的变化,例如进一步调节驱动电势差。这样使得MEMS装置也适用于工作环境变化大以及连续工作不停机的场景,扩大了MEMS装置的使用场景和使用范围。
图5a和5b公开了另一种MEMS装置结构,图5a是MEMS装置的45°示意图,图5b是MEMS装置的一个剖面图。其中活动平台通过支撑梁与固定锚点相连,可以绕支撑梁转动。MEMS装置包含的三层梳齿结构位于支撑梁两侧,靠近活动平台中与支撑梁垂直的边,活动梳齿连接在与活动平台中与支撑梁垂直的边上。这种结构有利于减小MEMS装置尺寸。多个MEMS装置组成阵列时可以实现较小的间距。
如图6所示,为一维排列的MEMS装置阵列。阵列也可以是二维排列,如M*N的阵列,排列成M行,每行N个(M和N为整数)MEMS装置。MEMS装置阵列可以对不同光束的反射方向进行精确控制,从而可以应用到光通信领域中的光交叉连接OXC、波长选择开关WSS等模块中,也可以应用到消费领域中的微投影、激光电视等设备中。
除了图5所示的矩形MEMS装置之外,如图7所示,活动平台的形状可包含但不限于多边形、圆形、椭圆形。MEMS装置的驱动方法如前所述。这样也扩大了MEMS装置的应用范围。
如图8中所示,MEMS装置的三层梳齿结构也可以位于活动平台两侧,沿平行于支撑梁的轴向分布,优点是驱动梳齿的静电力矩更大,可以驱动活动平台获得较大的转角。
进一步地,三层梳齿结构可以同时分布在支撑梁和活动平台两侧,如图9所示,优点是梳齿数更多,静电驱动力或力矩更强,因此活动平台的转角或位移更大。活动平台的驱动方法如前所述。
MEMS装置还可以在同一侧有2组以上的三层梳齿结构。如图10所示,为本发明实施例提供的另一种MEMS装置。其中,支撑梁两侧各有3组三层梳齿结构,支撑梁右侧包括第1、2、3组三层梳齿结构,支撑梁左侧包括第4、5、6组三层梳齿结构,这6组梳齿结构相互独立控制,每一组三层梳齿结构可以单独驱动活动平台转动。也可以灵活组合驱动活动平台转动。
同样,每一组三层梳齿结构的一个固定梳齿和活动梳齿都可以作为反馈结构,通过反馈结构的电容来反馈活动平台的转角。具体的驱动和反馈方法如前所述。进一步,梳齿数量相对较多的三层梳齿结构作为驱动的梳齿结构,梳齿数量相对较少的三层梳齿结构作为反馈的梳齿结构,这样,测量的精度更高一些。具体的,如图5,第2和第5组三层梳齿结构的梳齿数量相对其他4组多。这样,第2、第5组单独或者与其他组一起,可以作为驱动结构;而其它未被作为驱动结构的三层梳齿结构,可作反馈结构。
同样,这些同侧包含多组梳齿结构的MEMS装置,活动平台的的形状可包含但不限于多边形、圆形、椭圆形。支撑梁同侧的多个三层梳齿结构之间相互独立,提高了应用的灵活性,提升了MEMS装置的控制精度。
如图11所示,本发明实施例还提供一种二维MEMS装置,实现活动平台的二维转动。这种二维MEMS装置相当于包括了两个MEMS装置,称为第一MEMS装置和第二MEMS装置。第一MEMS装置包括第一支撑梁1111、第一三层梳齿结构1112、以及活动框架1113。第二MEMS装置包括第二支撑梁1121、第二三层梳齿结构1122、以及活动平台1123,活动框架1113作为第一MEMS装置的活动平台,也作为固定第二MEMS装置的基板。
活动框架1113连接在第一支撑梁1111上,第一支撑梁两侧通过锚点固定在整个二维MEMS装置的基板上(图中基板未画出)。第一MEMS装置的三层梳齿结构1112位于第一支撑梁两侧。图中的活动平台1123,也就是圆形镜面,为第二MEMS装置的活动平台,也是整个二维MEMS装置的活动平台,通过第二支撑梁1121固定在活动框架1113上,固定点相当于锚点。第二MEMS装置的三层梳齿结构1122的上层和下层固定梳齿也固定在活动框架1113上,第二三层梳齿结构1122位于第二支撑梁1121两侧。第一支撑梁与第二支撑梁相互垂直。图11中还包括了两个MEMS装置的局部放大图。
通过控制第一MEMS装置的三层梳齿结构和第二MEMS装置的三层梳齿结构,活动平台既可绕第一支撑梁旋转,又可绕第二支撑梁旋转,从而实现了活动平台的二维旋转。控制梳齿结构的方法如前所述。同样,二维MEMS装置的活动平台的形状可包含但不限于矩形、多边形、圆形、椭圆形等。活动平台的二维旋转极大增加了MEMS装置的应用范围。
多个二维MEMS装置也可以组成一维或二维的MEMS装置阵列。MEMS装置阵列可以对不同光束的反射方向进行精确控制,从而可以应用到光通信领域中的光交叉连接OXC、波长选择开关WSS等模块中,也可以应用到消费领域中的微投影、激光电视等设备中。
本发明实施例还提供一种MEMS装置的制备方法,用一个单层晶圆和一个双层晶圆,一次晶圆键合制备。具体包括:在一个晶圆光刻形成下层固定梳齿;在另一个双层晶圆光刻形成活动梳齿、活动平台以及支撑梁;将两个晶圆键合;再光刻形成上层固定梳齿;释放活动平台和活动梳齿。
一个更具体制备MEMS装置的实施例如图12所示,包括如下14步:1,选择高掺杂的绝缘衬底上硅(Silicon-On-Insulator,SOI)第一晶圆作为制备下层固定梳齿的基底;2,在第一晶圆衬底层制作双面光刻对准标记;3,在第一晶圆的器件层上刻蚀下层固定梳齿的电隔离槽;4,光刻形成下层固定梳齿、活动平台背腔结构;5,选择另一片双层高掺杂SOI第二晶圆作为制作活动平台、活动梳齿及引线的基底;6,在第二晶圆衬底层制作双面光刻对准标记;7,光刻形成支撑梁区域;8,光刻形成活动梳齿和下层固定梳齿的电隔离槽;9,两个SOI晶圆通过Si-Si键合形成一个晶圆;10,刻蚀去除晶圆最上方的Si层;11,刻蚀去除晶圆最上方的SiO2层;12,光刻形成上层固定梳齿;13,通过气相HF刻蚀SiO2层,释放活动平台和活动梳齿,双层第二晶圆中剩余的二氧化硅(SiO2)层构成梳齿之间的绝缘层1203,三层梳齿结构中的第一固定梳齿和第二固定梳齿之间通过绝缘层1203电学隔离,支撑梁与基板之间也通过该绝缘层电学隔离,一个绝缘层实现了两个电学隔离;14,制备金属电极1201和镜面反射层1202。
本发明实施例还提供另一种MEMS装置的制备方法,用3个单层晶圆,两次晶圆键合制备。具体包括:在第一个晶圆光刻形成下层固定梳齿;将第二个晶圆与第一个晶圆键合;在键合的晶圆光刻形成活动梳齿、活动平台以及支撑梁;将第三个晶圆与上述键合的晶圆再次键合;在键合的晶圆光刻形成上层固定梳齿;释放活动平台和活动梳齿。两次键合的工艺更复杂一些。
一个更具体制备MEMS装置的实施例如图13所示,包括如下14步:1,在掺杂SOI第一晶圆衬底层制作双面光刻对准标记;2,光刻形成下层固定梳齿、活动平台背腔;3,刻蚀下层固定梳齿的电隔离槽;4,将第一晶圆与掺杂SOI第二晶圆通过Si-Si键合形成一个晶圆;5,刻蚀去除晶圆最上方的Si层;6,光刻形成活动梳齿;7,刻蚀减小下层固定梳齿高度;8,刻蚀去除器件层表面的硬掩模;9,用第三晶圆制备第二次晶圆键合的加盖(cap)晶圆;10,将第三晶圆与前面键合的晶圆再次Si-SiO2键合完成第二次晶圆键合;11,刻蚀去除晶圆最上层的Si层;12,刻蚀上层固定梳齿;13,通过气相HF刻蚀去除上层固定梳齿上的SiO2,释放活动平台和活动梳齿,第二晶圆中剩余的SiO2层构成梳齿之间的绝缘层1303,三层梳齿结构中的第一固定梳齿和第二固定梳齿之间通过绝缘层1303电学隔离,支撑梁与基板之间也通过该绝缘层电学隔离,一个绝缘层实现了两个电学隔离;14,制备金属电极1301和镜面反射层1302。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公 开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种微机电系统MEMS装置,其特征在于,包括:第一固定梳齿,第二固定梳齿,支撑梁,活动平台和活动梳齿;其中:
    所述第一固定梳齿和第二固定梳齿固定在基板上,所述第一固定梳齿和第二固定梳齿之间电学隔离;
    所述支撑梁的两端固定在基板上,所述活动平台连接在支撑梁上;
    所述活动梳齿连接在所述活动平台上,并与所述第一固定梳齿和第二固定梳齿形成三层梳齿结构。
  2. 如权利要求1所述的MEMS装置,其特征在于,所述MEMS装置包括两组三层梳齿结构,分别位于支撑梁的左侧和右侧。
  3. 如权利要求1或2所述的MEMS装置,其特征在于,所述第一固定梳齿用于在其与所述活动梳齿间施加第一电势差,所述第二固定梳齿用于在其与所述活动梳齿间施加第二电势差。
  4. 如权利要求1-3任一项所述的MEMS装置,其特征在于,所述活动平台上镀有金属反射层或介质反射层。
  5. 如权利要求1-4任一项所述的MEMS装置,其特征在于,所述活动平台的形状为矩形、多边形、圆形,或椭圆形。
  6. 如权利要求1-5任一项所述的MEMS装置,其特征在于,所述第一固定梳齿用于在其与所述活动梳齿间施加电势差,所述第二固定梳齿用于通过其与活动梳齿间的电容测量活动平台的旋转角度。
  7. 如权利要求1-6任一项所述的MEMS装置,其特征在于,所述支撑梁与基板之间电学隔离。
  8. 如权利要求7所述的MEMS装置,其特征在于,所述第一固定梳齿和第二固定梳齿之间通过第一绝缘层电学隔离,所述支撑梁与基板之间通过第二绝缘层电学隔离,所述第一绝缘层与第二绝缘层位于同一平面。
  9. 如权利要求1-8任一项所述的MEMS装置,其特征在于,所述活动梳齿连接在活动平台中与支撑梁垂直的边上。
  10. 如权利要求1-9任一项所述的MEMS装置,其特征在于,所述MEMS装置包括两组三层梳齿结构,位于所述支撑梁的同一侧,所述两组三层梳齿结构分别用于控制所述活动平台。
  11. 如权利要求10所述的MEMS装置,其特征在于,所述两组三层梳齿结构中的一组用于施加电势差驱动活动平台,另一组用于测量活动平台的旋转角度。
  12. 一种二维微机电系统MEMS装置,其特征在于,包括第一如权利要求1-11任一项所述的MEMS装置和第二如权利要求1-11任一项所述的MEMS装置,其中:
    第一MEMS装置的活动平台作为固定第二MEMS装置的基板;
    第一MEMS装置的支撑梁与第二MEMS装置的支撑梁相互垂直。
  13. 一种微机电系统MEMS装置阵列,其特征在于,包括多个如权利要求1-12任一项所述的MEMS装置,其中,所述多个MEMS装置呈一维分布或二维分布。
  14. 如权利要求1-12任一项所述的MEMS装置,其特征在于,还包括基板、管壳、光窗、以及控制电路;其中:
    所述基板用于固定所述第一固定梳齿和第二固定梳齿,以及固定支撑梁两端;
    所述管壳安装在基板上,用于保护所述MEMS装置;
    所述光窗安装在管壳顶部,用于光线的入出;
    所述控制电路用于控制所述活动平台转动。
  15. 一种如权利要求1-12任一项所述的MEMS装置的制备方法,其特征在于,包括:
    在第一晶圆上光刻形成所述第一固定梳齿;
    在双层第二晶圆上光刻形成所述活动梳齿、所述活动平台以及所述支撑梁;
    将所述第一晶圆和所述双层第二晶圆键合;
    在所述键合后的晶圆上光刻形成所述第二固定梳齿;
    释放所述活动平台和所述活动梳齿。
  16. 一种如权利要求1-12任一项所述的MEMS装置的制备方法,其特征在于,包括:
    在第一晶圆上光刻形成所述第一固定梳齿;
    将第二晶圆与所述第一晶圆键合;
    在所述两个晶圆键合后的晶圆上光刻形成所述活动梳齿、所述活动平台以及所述支撑梁;
    将第三晶圆和所述两个晶圆键合后的晶圆键合;
    在所述三个晶圆键合后的晶圆上光刻形成所述第二固定梳齿;
    释放所述活动平台和所述活动梳齿。
PCT/CN2020/138746 2019-12-31 2020-12-23 一种微机电系统及其制备方法 WO2021136042A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20910700.2A EP4063317A4 (en) 2019-12-31 2020-12-23 ELECTROMECHANICAL MICROSYSTEM AND METHOD FOR THE PREPARATION
US17/854,668 US20220324699A1 (en) 2019-12-31 2022-06-30 Micro-electro-mechanical systems and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911408207.1 2019-12-31
CN201911408207.1A CN113120850B (zh) 2019-12-31 2019-12-31 一种微机电系统及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/854,668 Continuation US20220324699A1 (en) 2019-12-31 2022-06-30 Micro-electro-mechanical systems and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021136042A1 true WO2021136042A1 (zh) 2021-07-08

Family

ID=76686467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138746 WO2021136042A1 (zh) 2019-12-31 2020-12-23 一种微机电系统及其制备方法

Country Status (4)

Country Link
US (1) US20220324699A1 (zh)
EP (1) EP4063317A4 (zh)
CN (1) CN113120850B (zh)
WO (1) WO2021136042A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279613A (zh) * 2021-12-23 2022-04-05 西安交通大学 基于电容检测原理的mems六轴力传感器芯片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115373131A (zh) * 2021-05-19 2022-11-22 安徽中科米微电子技术有限公司 双面电极结构mems微镜的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907769A (zh) * 2010-07-01 2010-12-08 西北工业大学 一种基于soi晶圆双掩膜刻蚀的垂直梳齿驱动微扭转镜及其制作方法
CN102298207A (zh) * 2011-08-16 2011-12-28 无锡微奥科技有限公司 一种微机电系统微镜封装
US8691099B2 (en) * 2001-12-13 2014-04-08 John Gritters Process for fabricating MEMS devices
US20150234176A1 (en) * 2010-10-20 2015-08-20 Tiansheng ZHOU Micro-electro-mechanical systems micromirrors and micromirror arrays
CN105353506A (zh) * 2015-12-18 2016-02-24 中国电子科技集团公司第十三研究所 垂直梳齿驱动moems微镜及其制作方法
CN107667067A (zh) * 2015-05-15 2018-02-06 株式会社村田制作所 多级微机械结构
CN110568611A (zh) * 2019-09-20 2019-12-13 苏州知芯传感技术有限公司 一种双向驱动微镜芯片及制造方法
CN210639349U (zh) * 2019-09-20 2020-05-29 苏州知芯传感技术有限公司 一种双向驱动微镜芯片
CN111204701A (zh) * 2020-01-09 2020-05-29 西安知象光电科技有限公司 一种具备完全对称式差分电容角度反馈的微镜

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011144B2 (ja) * 1997-07-31 2000-02-21 日本電気株式会社 光スキャナとその駆動方法
US7079299B1 (en) * 2000-05-31 2006-07-18 The Regents Of The University Of California Staggered torsional electrostatic combdrive and method of forming same
US6925710B1 (en) * 2002-03-27 2005-08-09 Analog Devices, Inc. Method for manufacturing microelectromechanical combdrive device
KR100707193B1 (ko) * 2005-05-31 2007-04-13 삼성전자주식회사 복층 구조의 콤전극을 구비한 광스캐너
DE102005063640B3 (de) * 2005-11-10 2019-11-21 Tdk Corporation MEMS-Package und Verfahren zur Herstellung
JP2013029849A (ja) * 2012-09-14 2013-02-07 Topcon Corp Mems走査型ミラーの製造方法
CN105891545A (zh) * 2016-06-13 2016-08-24 中国工程物理研究院电子工程研究所 一种高精度低g值SOI微加速度计

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691099B2 (en) * 2001-12-13 2014-04-08 John Gritters Process for fabricating MEMS devices
CN101907769A (zh) * 2010-07-01 2010-12-08 西北工业大学 一种基于soi晶圆双掩膜刻蚀的垂直梳齿驱动微扭转镜及其制作方法
US20150234176A1 (en) * 2010-10-20 2015-08-20 Tiansheng ZHOU Micro-electro-mechanical systems micromirrors and micromirror arrays
CN102298207A (zh) * 2011-08-16 2011-12-28 无锡微奥科技有限公司 一种微机电系统微镜封装
CN107667067A (zh) * 2015-05-15 2018-02-06 株式会社村田制作所 多级微机械结构
CN105353506A (zh) * 2015-12-18 2016-02-24 中国电子科技集团公司第十三研究所 垂直梳齿驱动moems微镜及其制作方法
CN110568611A (zh) * 2019-09-20 2019-12-13 苏州知芯传感技术有限公司 一种双向驱动微镜芯片及制造方法
CN210639349U (zh) * 2019-09-20 2020-05-29 苏州知芯传感技术有限公司 一种双向驱动微镜芯片
CN111204701A (zh) * 2020-01-09 2020-05-29 西安知象光电科技有限公司 一种具备完全对称式差分电容角度反馈的微镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4063317A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279613A (zh) * 2021-12-23 2022-04-05 西安交通大学 基于电容检测原理的mems六轴力传感器芯片及其制备方法
CN114279613B (zh) * 2021-12-23 2022-11-11 西安交通大学 基于电容检测原理的mems六轴力传感器芯片及其制备方法

Also Published As

Publication number Publication date
CN113120850A (zh) 2021-07-16
US20220324699A1 (en) 2022-10-13
EP4063317A4 (en) 2023-06-14
EP4063317A1 (en) 2022-09-28
CN113120850B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
US7817331B2 (en) MEMS device with an angular vertical comb actuator
US10768408B2 (en) Process for manufacturing a MEMS micromirror device, and associated device
US7952778B2 (en) Biaxial MEMS mirror with hidden hinge
WO2021136042A1 (zh) 一种微机电系统及其制备方法
US7715076B2 (en) Micromirror device with a hybrid actuator
US7019876B2 (en) Micro-mirror with rotor structure
US6002507A (en) Method and apparatus for an integrated laser beam scanner
US8169678B2 (en) Micro-mirror actuator having encapsulation capability and method for the production thereof
Jung et al. High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-aligned vertical electrostatic combdrives
US20030053078A1 (en) Microelectromechanical tunable fabry-perot wavelength monitor with thermal actuators
US20180031823A1 (en) Oscillating structure with piezoelectric actuation, system and manufacturing method
US20210072532A1 (en) Spatial Light Modulators for Phased-Array Applications
US20230136105A1 (en) Vertical mechanical stops to prevent large out-of-plane displacements of a micro-mirror and methods of manufacture
KR20030067491A (ko) 공진형 평면외 써멀 버클빔 액츄에이터
US20220371883A1 (en) Method for preparing a mems micro mirror with elctrodes on both sides
Wu et al. A large-aperture, piston-tip-tilt micromirror for optical phase array applications
CN113376826B (zh) 双面电极结构的mems微镜及其制备方法
WO2022022478A1 (zh) Mems芯片及其制备方法、mems器件、电子设备
Fan et al. An electrostatic vertical comb-drive micromirror with self-aligned assembly
CN114408854A (zh) 一种二维微机械双向扭转镜阵列及其制作方法
US9309111B2 (en) Micromechanical component and method for producing a micromechanical component
US20230072948A1 (en) Microfabrication of omni-view peripheral scanning system
Helmbrecht et al. Preliminary results of large-actuator-count MEMS DM development
WO2024037916A1 (en) Micro-optical element
JP2003302586A (ja) 光デバイス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020910700

Country of ref document: EP

Effective date: 20220623

NENP Non-entry into the national phase

Ref country code: DE