WO2019128705A1 - 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件 - Google Patents

浆料及其制备方法、食品包装材料及其制备方法及食品包装构件 Download PDF

Info

Publication number
WO2019128705A1
WO2019128705A1 PCT/CN2018/120380 CN2018120380W WO2019128705A1 WO 2019128705 A1 WO2019128705 A1 WO 2019128705A1 CN 2018120380 W CN2018120380 W CN 2018120380W WO 2019128705 A1 WO2019128705 A1 WO 2019128705A1
Authority
WO
WIPO (PCT)
Prior art keywords
food packaging
tungsten oxide
slurry
oxide particles
packaging material
Prior art date
Application number
PCT/CN2018/120380
Other languages
English (en)
French (fr)
Inventor
黄宗之
Original Assignee
黄宗之
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄宗之 filed Critical 黄宗之
Publication of WO2019128705A1 publication Critical patent/WO2019128705A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a slurry, a food packaging material, and a food packaging member, and more particularly to a slurry comprising tungsten oxide particles having an average particle diameter ranging from 100 nm or less, a method for preparing a slurry, and an average particle diameter range.
  • a food packaging material having a tungsten oxide particle of 100 nm or less, a method of preparing a food packaging material, and a food packaging member comprising tungsten oxide particles having an average particle diameter of 100 nm or less can accelerate coarse embryo speed heating and energy saving, and the component has been American food. Approved by the Drug Administration (FDA) for food contact safety.
  • FDA Drug Administration
  • the Chinese Patent Publication No. 103732666 discloses any compatible liquid preparation, a container preform and a packaging container.
  • the liquid formulation comprises a carrier compatible with a polyester and tungsten oxide particles dispersed in the carrier, wherein the carrier is ethylene glycol, vegetable oil or mineral oil, and the tungsten oxide particles have the formula WO 2.72 and wherein less than 5 wt
  • the % tungsten oxide particles have a particle size of more than 100 ⁇ m.
  • the average particle size of the ground tungsten oxide particles was 1.22 ⁇ m, and the median value was 0.97 ⁇ m (corresponding to 970 nm).
  • the container preform comprises a polymer composition.
  • the polymer composition includes polyethylene terephthalate (PET) and 12 ppm to 50 ppm of tungsten oxide particles.
  • PET polyethylene terephthalate
  • the polymer composition is formed by esterification reaction and polycondensation reaction of the liquid preparation and the raw material component for forming polyethylene terephthalate, but there is no example to show whether there is chemical activity. React to each other with negative effects.
  • the packaging container such as a beverage bottle, is formed by forming heat treatment of the container preform. This molding heat treatment is performed using a quartz infrared heater and a mold.
  • the patent does not at all suggest that the packaging container is proof of compliance with food safety regulations, so there is a safety concern with the packaging container for food.
  • the patent transmits the heating energy of the quartz infrared heater by the tungsten oxide particles having the formula WO 2.72 , and increases the heating rate of the heat treatment of the container preform, thereby enabling the production rate of the packaging container to be Upgrade.
  • the container preform of the patent has poor haze and transparency, and the container preform absorbs the energy of the quartz infrared heater. Not good.
  • the slurry of the present invention can be used for a food packaging material, and comprises water, ethylene glycol, and tungsten oxide particles having an average particle diameter ranging from 100 nm or less, wherein the tungsten oxide particles include W 18 O 49 and the slurry is The total amount of the tungsten oxide particles is in the range of 18% by weight to 28% by weight, which can be added in the polymerization manufacturing process to reduce the cost, and the components are not adversely affected by the reaction with the manufacturing process. .
  • a second object of the present invention is to provide a superior technical method for preparing a slurry which is fast, economical, and superior in quality.
  • the method for preparing a slurry of the present invention comprises the steps of: mixing a mixture of ethylene glycol, water and a tungsten oxide material having an average particle diameter of more than 100 nm to form a formulation mixture, wherein the tungsten oxide material comprises W 18 O 49 ; a pulverization step of pulverizing the formulation mixture to form a slurry comprising ethylene glycol, water, and tungsten oxide particles having an average particle diameter ranging from 100 nm or less, wherein the pulverization treatment is sequentially used to have a large size A small number of beads of different sizes and sizes, respectively, corresponding to the operating line speed of the grinding beads, from small to large, using the unique technology of the formula to achieve a successful graded grinding.
  • the third object of the present invention is to provide a visible light-free or light-colored, but capable of selectively absorbing near-infrared light, which has good effects, can accelerate the production efficiency when the rough embryo is reheated, and energy-saving food packaging materials.
  • the food packaging material of the present invention comprises a polyester and tungsten oxide particles having an average particle diameter ranging from 100 nm or less, wherein the tungsten oxide particles comprise W 18 O 49 , and the total amount of the polyester is 100 g, The total content of tungsten oxide particles ranges from 0.1 mg to 5 mg.
  • the tungsten oxide particles of the present invention have an optical size particle size absorption effect at a D 50 of about 80 nm, so that they effectively absorb the corresponding near infrared (NIR) energy, which in turn makes the absorption heat energy effect better than the use of the particle size.
  • the large 1.0 ⁇ m W 18 O 49 has a thermal energy absorption effect of 2 to 5 times. For example, under the same mass, refer to (c) in Fig.
  • the W 18 O particle diameter is 80 nm.
  • the transmittance of 49 is 8.3%, and in (a) of Fig. 3, the transmittance of W 18 O 49 having a particle diameter of 0.5 ⁇ m to 2 ⁇ m is 56.6%, and according to Beer's law, the particle diameter is known.
  • W is the absorbance of the 18 O 49 80nm is 1.081 (i.e. log0.083), and a particle diameter of 0.5 ⁇ m to 2 ⁇ m of W 18 O 49 0.247 absorbance (i.e.
  • the absorbance of W 18 O 49 to 80 nm at a wavelength of 1350 nm is 4.37 times (i.e., 1.081/0.247) of the absorbance of W 18 O 49 having a particle diameter of 0.5 ⁇ m to 2 ⁇ m, which means that W having a particle diameter of 80 nm is used.
  • 18 O 49 will absorb thermal energy to effect a particle size of 0.5 ⁇ m to 2 ⁇ m 4.37 times the effect of W 18 O 49 absorbs heat energy is.
  • a fourth object of the present invention is to provide a method of preparing a food packaging material.
  • the method of the present invention for preparing a food packaging material comprises the steps of: providing a raw material component for forming a polyester and the above-mentioned slurry; and subjecting the raw material component for forming the polyester to an esterification reaction and a polymerization reaction, And adding the slurry during the esterification reaction or the polymerization reaction, and then forming a food packaging material comprising polyester and tungsten oxide particles having an average particle diameter ranging from 100 nm or less, a formulation used, and a PET manufacturing process and It is compatible with its raw materials, does not react with each other, and has no negative effects such as the activity of nanomaterials. It has been tested by Pilot for many times and can be reacted together.
  • a fifth object of the present invention is to provide a food packaging member having high transparency and low haze.
  • the temperature inside and outside the rough embryo can be uniform, and the quality of the member to be processed can be improved without brittleness.
  • the food packaging member of the present invention is formed by a material component comprising the above-mentioned food packaging material, which is subjected to heat treatment and molding treatment.
  • Figure 2 is used to illustrate the penetration of different coarse embryos.
  • the NIR energy reaches the highest point, and the energy distribution curves of the light wavelengths of the quartz lamps and the transmittance curves of the blank blanks of Comparative Example 1 in Table 1 are respectively shown from top to bottom (hereinafter referred to as number B).
  • the transmittance curve of the crude embryo of Example 2 and the transmittance curve of the coarse embryo containing 80 ppm of W 18 O 49 . No.
  • B indicates a preform formed only of pure polyethylene terephthalate, and the preform has a very good absorption of near infrared rays of 1660 nm, but a near infrared ray of 1660 nm penetrates 4 mm according to optical analysis.
  • the depth of the preform is 0.5mm, that is, 27.5% of the light is absorbed, and the relative depth of 0.5mm at 4mm absorbs only 5.85% of the light.
  • the difference between the two is 4.7 times, that is, when the surface temperature rises up to 100 °C, and the innermost rises only At a height of 21.3 ° C, the 4 mm preform has a surface (about 0.5 mm) temperature too high, but the inside has a problem of not being hot enough.
  • the particle diameter of 0.5 ⁇ m to 2 ⁇ m under the equal mass also has a very good absorption of W 18 O 49 to the near infrared rays of 1660 nm, and therefore, the surface temperature is too high and the inside is insufficient.
  • the problem of heat indicates that it does not have an optical size-size effect.
  • the particle size of FIG. 5 is very concentrated, and the cup-shaped curve of FIG. 4 is obtained.
  • the food packaging material of the present invention has an optical size particle size absorption effect due to the use of tungsten oxide particles having an average particle diameter range of 100 nm or less.
  • the absorption of near infrared rays at 1660 nm is reduced, and the near infrared rays in the region of 700 nm to 1600 nm have a better absorption effect, especially the absorption at 1150 nm, so that the inside and outside of the preform can be heated uniformly, thereby avoiding the production of preforms.
  • the problem that the surface temperature is too high and the inside is not hot enough causes internal enthalpy during the over-cooling of the bottle, and the surface overheating causes the crystallized polyethylene terephthalate to atomize, both of which cause the food packaging component to rupture during pressure filling. .
  • the absorption effect of the optical size particle size is like a rainbow after rain.
  • the particle size When the particle size is as small as one degree, it can correspond to an optical frequency. When the incident light enters the inside of the particle, it will continuously reflect completely, so the particle size has a frequency. Selective absorption, and 2 to 5 times the absorption effect, as shown in Figure 4.
  • the effect of the invention is that: through the design of the particle size of the tungsten oxide particles and the content of the formula component, the slurry does not cause precipitation phenomenon, which is favorable for storage and grinding dispersion, and the operation is uniformly distributed and dispersed, and the slurry is used.
  • the food packaging material formed has a good absorption effect on near-infrared rays in the region of 700 nm to 1600 nm, in particular, absorption of near-infrared rays at 1150 nm is better, and further, the food packaging member formed by the food packaging material is oxidized.
  • the tungsten particles have a small particle size and a small amount of addition, and thus have high transparency and low haze.
  • the food packaging material has good absorption effect on near-infrared rays in the region of 700 nm to 1600 nm, the inside and outside of the preform are uniformly heated, and the polyethylene terephthalate crystal is not atomized, so it is applied to a jar or
  • the soft drink pressure bottle can avoid the problem that the wide bottle is difficult to be heated due to the wall thickness of the bottle, and the bottle is broken due to brittle crack when the pressure bottle is easy to be filled.
  • the tungsten oxide particles in the slurry of this case are to be in contact with food, that is, to comply with the Food Contact Substance (FCS) application in the food safety regulations, and to pass the Food and Drug Administration (referred to as the Food and Drug Administration).
  • FCS Food Contact Substance
  • FCN Food and Drug Administration
  • the application process of the food contact substance shall be subjected to various dissolution tests for water, acid, alkali, temperature, chemical properties, physical stability, material inaccuracy, dissolution of the human body, and toxicity of the substance to the living being.
  • the tungsten oxide particles in the slurry are dispersed in the ethylene glycol water, the OH group on the ethylene glycol is compatible with the tungsten oxide particle interface and grasps the tungsten oxide particles without causing the tungsten oxide particles to mutually
  • the agglomeration makes the slurry less prone to precipitation during storage, and ethylene glycol is one of the PET raw materials, and the water is the reactant when it is esterified, which is harmless to the manufacturing process.
  • the tungsten oxide particles have a median diameter (D 50 ) of 0.08 ⁇ m.
  • Applicants in this case should emphasize that it is extremely difficult to achieve the nanometer scale of the particle size of tungsten oxide particles, and this case is through the classification and pulverization treatment, and adjust the viscosity and line speed of the formula during the treatment process.
  • the preparation method of the slurry of the present invention comprises the following steps: a mixing step and a pulverization and dispersing step.
  • the mixing step comprises mixing ethylene glycol and a tungsten oxide species having an average particle size ranging from greater than 100 nm to form a mixture, wherein the tungsten oxide species comprises W 18 O 49 .
  • the pulverizing step is a pulverization treatment of the mixture to obtain the most energy-efficient, high-efficiency, and best-effect finished product. This pulverization treatment is performed by separately grinding the mixture by using a plurality of types of grinding beads and passing through a plurality of beads having different particle diameters, or by using a homogenizer.
  • the homogenizer is for example but not limited to a high pressure homogenizer.
  • the grinder or homogenizer is not the main technical feature of the present invention, and the grinder can use a conventionally known grinder, and the homogenizer can use a well-known high-pressure homogenizer, for the sake of streamlining, the details are This is not to be explained.
  • the beads are, for example but not limited to, zirconium beads. In order to effectively grind the tungsten oxide material to an average particle diameter range of 100 nm or less, maintain the structural properties of the tungsten oxide material, and meet the cost of economic polishing time, preferably, the size of the beads is greater than 0 mm to 1.2mm.
  • the mill has an operating linear velocity ranging from 8 m/s to 14 m/s.
  • the grinding beads having a size of 1.2 mm are sequentially operated and the grinding beads having a linear velocity of 8 m/sec and a size of 0.3 mm are operated and the linear velocity is 11 m/sec, and the grinding beads having a size of 0.1 mm and the operation wires are operated.
  • the pulverization treatment was carried out under the conditions of a speed of 14 m/sec.
  • the tungsten oxide particles having an average particle diameter of 100 nm or less can be more effectively pulverized, and in the pulverization step, water is added to adjust the viscosity. The amount of water added is adjusted according to the manufacturing process requirements.
  • the raw material component used to form the polyester such as, but not limited to, the raw material component used to form polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the polyester is for example but not limited to polyethylene terephthalate.
  • the method for preparing the food packaging material comprises the steps of: subjecting a raw material component for forming a polyester to an esterification reaction and a polycondensation reaction, and adding the slurry before the polycondensation reaction.
  • the polyester is a polyester known in the prior art, and the raw material component for forming the polyester is selected according to the selected polyester.
  • the polyester to be selected is polyethylene terephthalate.
  • the raw material component used to form the polyester comprises terephthalic acid and ethylene glycol.
  • the operating conditions such as the temperature or time of the esterification reaction and the polycondensation reaction are adjusted depending on the polyester to be formed.
  • the esterification reaction has an operating temperature in the range of from 210 ° C to 270 ° C.
  • the polycondensation reaction has an operating temperature in the range of 260 ° C to 290 ° C.
  • the operation pressure of the polycondensation reaction is in the range of 250 mmHg or less.
  • the method for preparing the food packaging material further comprises the step of adding a catalyst.
  • the catalyst is, for example but not limited to, antimony trioxide (Sb 2 O 3 ), a phosphoric acid stabilizer, cerium acetate, cerium oxide or a titanium catalyst.
  • the titanium catalyst is for example but not limited to tetrabutyl titanium.
  • the addition of the catalyst does not adversely affect the slurry reaction.
  • the tungsten oxide particles of the food packaging material have an average particle diameter ranging from 100 nm or less, the tungsten oxide particles and the food packaging material have an optical size particle size effect, and when the certain frequency light enters the inside of the particle The total reflection is repeated again, so that the extinction heat absorption effect is increased, and the particle diameter is controlled so as to correspond to the frequency of the near-infrared light to be produced, so that the near infrared rays can be absorbed more effectively. It has been confirmed by experiments that the tungsten oxide particles of the present invention have better absorption effect on near-infrared rays than all the near-infrared endothermic materials currently available on the market, and are designed by optical theory.
  • the inside and outside of the rough embryo can absorb heat and rise evenly without causing breakage. Bottles and food safety specifications.
  • the polyester will enter the micropores of the tungsten oxide particles, so that the tungsten oxide particles are aggregated. The ester is bound, so that the tungsten oxide particles are more difficult to be migrated and are more food-safe.
  • the tungsten oxide particles of the present invention have an average particle diameter range of 100 nm or less, the tungsten oxide particles having a larger particle diameter than the conventional ones have an optical size effect, and can correspond to the frequency of the near-infrared light used for production, as shown in FIG.
  • the food packaging member of the present invention has properties such as high transparency, low haze, and less brittleness, and the tungsten oxide particles are not easily leached and dissolved from the food packaging member.
  • the manufacturing process of the food packaging component of the invention complies with the specifications and certification of the US Food and Drug Administration, and officially obtains the notification of the food contact substance and the announcement number is FCN1669, and can be safely used for packaging food.
  • the food packaging component of the present invention is tested by the FDA 177.1630 dissolution test method of the US Food and Drug Administration, and the migration amount of tungsten is measured by a high precision inductively coupled plasma (ICP) instrument, and the test results show that When the content of tungsten oxide particles in the inventive food packaging component is 50 ppm (based on the total amount of the polyester 40 g), only about 0.05 ppb is dissolved into the water of the 1000 g bottle, which is far lower than the FDA 21 CFR 10.115 specification. The dissolution amount is 0.5 ppb, even lower than the tungsten content of drinking tap water of 3.32 ppb and the tungsten content of the well water is 10 ppb. Therefore, the food packaging component of the present invention is safe for food contact and does not affect the human body.
  • ICP inductively coupled plasma
  • the food packaging member is, for example but not limited to, a container in contact with the food or a sheet in contact with the food.
  • the container in contact with the food product is for example, but not limited to, a beverage bottle.
  • the sheet in contact with the food product is, for example but not limited to, a wrapper.
  • the method for preparing the food packaging member comprises the steps of: subjecting the material component containing the food packaging material to heat treatment and molding treatment.
  • This heat treatment is performed using an infrared heater.
  • the heat source temperature and the main radiation wavelength of the infrared heater are selected according to the manufacturing process and materials.
  • the heat source temperature of the infrared heater is, for example but not limited to, a color temperature of 2050 °C.
  • the main radiation wavelength of the infrared heater is, for example but not limited to, 1250 nm.
  • the infrared heater is, for example but not limited to, an infrared quartz lamp.
  • This forming process is performed using a mold. The mold is selected in accordance with the shape required for the food packaging member. Since the food packaging material has an optical size particle size effect, the near-infrared ray can be absorbed more effectively in the required section, so that the preparation method of the food packaging member has the advantages of energy saving and high production speed.
  • a slurry for food packaging material comprising ethylene glycol, water and tungsten oxide particles having an average particle diameter ranging from 100 nm or less, wherein the tungsten oxide particles comprise W18O49, and the total amount of the slurry is 100% by weight.
  • the total content of the tungsten oxide particles ranges from 18% by weight to 28% by weight.
  • the tungsten oxide particles may have a median (D 50 ) particle diameter of 0.08 ⁇ m.
  • a method of preparing a slurry comprising the steps of: mixing a glycol, water, and a tungsten oxide material having an average particle size ranging from greater than 100 nm to form a formulation mixture, wherein the tungsten oxide material comprises W 18 O 49 a pulverizing step of pulverizing the formulation mixture, wherein the pulverizing treatment sequentially uses a plurality of kinds of grinding beads having a size ranging from large to small, and respectively aligning the operation linear velocities corresponding to the grinding beads from small to large In order to achieve economic nanometer size.
  • a food packaging material comprising a polyester and tungsten oxide particles having an average particle diameter ranging from 100 nm or less, wherein the tungsten oxide particles comprise W 18 O 49 , and the total amount of the polyester is 100 g, and the tungsten oxide The total content of the particles ranges from 0.1 mg to 5 mg.
  • the tungsten oxide particles have a median diameter of 0.08 ⁇ m and have an excellent optical size particle size absorption effect corresponding to NIR.
  • the tungsten oxide particles have a median diameter of 0.08 ⁇ m and have an effect of optical size on the infrared heating.
  • the optical size effect the NIR emitted by the quartz lamp, has a corresponding maximum absorption wavelength spectrum for the specific size of the material. This is the so-called optical size particle size effect, which is more than 2 times or even 5 times in the particle size.
  • the peak-wavelength absorption value of the wave relative to the prior art corresponding to the Chinese Patent Publication No. 103732666).
  • the tungsten oxide particle has a median diameter of 0.08 ⁇ m, an endothermic peak of about 1200 nm, avoids the 1660 nm NIR region of the PET endotherm, and the large particle size absorption peak moves to the 1660 nm NIR region, thereby causing the rough embryo surface. Overheating, while the interior is not hot, this is a new application using optical technology.
  • the food packaging material meets the FDA FCN No. 1669 certification.
  • a method of preparing a food packaging material comprising the steps of: providing a raw material component for forming a polyester and a slurry as described above; and subjecting the raw material component for forming the polyester to an esterification reaction and a polymerization reaction, and Adding the slurry during the esterification reaction or the polymerization reaction, and then forming a food packaging material comprising polyester and nano-tungsten oxide particles having an average particle diameter ranging from 100 nm or less, which is proved to be feasible by experiments, and thus the material is more transparent. There will be fewer migrations, more economical operations, and no negative impact.
  • the slurry is added during the polymerization, and tungsten oxide W 18 O 49 , ethylene glycol, and water in the slurry are allowed to participate in the polymerization.
  • the quality is better, the FDA-approved FCN1669 announcement can be used for food packaging.
  • a food packaging member is formed by heat-treating and molding a material component containing the food packaging material described above, wherein the heat treatment is performed by using an infrared heater.
  • Figure 1 is a spectrum diagram of the color temperature of various quartz lamps
  • Figure 2 is a spectrum diagram of the transmittance of different rough embryos
  • Figure 3 is a spectrogram illustrating the transmittance of W 18 O 49 of different sizes
  • Figure 4 is a spectrogram showing the transmittance of Example 1 of the slurry of the present invention, the pattern showing a depression at 1150 nm, which is a representation of the optical size particle size;
  • Figure 5 is a graph showing the actual laser particle size distribution, illustrating the actual distribution of the particle size of the tungsten oxide particles of the slurry of the present invention.
  • Preparation of slurry 3000 g of W 18 O 49 having an average particle diameter of 25 ⁇ m, 10,500 g of water and 1500 g of ethylene glycol were placed in a first grinder (label: ASADA Asada; model: LMJ20). The first grinding treatment was carried out with zirconium beads having a size of 1.2 mm and an operating linear velocity of 8 m/sec, and ground to 0.6 ⁇ m. Next, it was transferred to a second grinder (label: Mitsui MTSIU; model: SC220), and subjected to a second grinding treatment with a zirconium bead having a size of 0.3 mm and an operating linear velocity of 11 m/sec, and ground to 0.20 ⁇ m.
  • a first grinder label: ASADA Asada; model: LMJ20
  • the first grinding treatment was carried out with zirconium beads having a size of 1.2 mm and an operating linear velocity of 8 m/sec, and ground to 0.6 ⁇ m.
  • the third grinder (label: Hi-Team Association; model: NANO-M2)
  • the third grinding treatment was carried out with zirconium beads of 0.1 mm in size and operating at a line speed of 14 m/sec. Grind to the required size.
  • the slurry contained water, ethylene glycol, and W 18 O 49 having a median diameter (D 50 ) of 80 nm.
  • the water content was 70% by weight
  • the ethylene glycol content was 10% by weight
  • the W 18 O 49 content was 20% by weight based on 100% by weight of the total amount of the slurry. There is no need to add a dispersant during the preparation of the slurry, which is more in line with food safety.
  • Preparation of food packaging materials with a certain molar ratio, it will contain 38 kg of terephthalic acid (TPA), 900 g of meta-phthalic acid (IPA) and 18.16 kg.
  • TPA terephthalic acid
  • IPA meta-phthalic acid
  • the raw material component of ethylene glycol and the above slurry are put into a mixing tank, and then placed in a press axe, and subjected to an esterification reaction at a temperature of 250 ° C for 6.5 hours, and when the degree of esterification is about 95%, it is placed in a vacuum.
  • the first condensation polymerization was carried out at a temperature of about 270 ° C and an evacuation pressure of about 100 mmHg, while 230 ppm of antimony trioxide (based on the total amount of polyethylene terephthalate) was added. And 35 ppm of phosphoric acid stabilizer (based on the total amount of polyethylene terephthalate).
  • a second condensation polymerization is carried out at a temperature of 270 ° C to 290 ° C and a pressure of less than 1 mmHg to form a mixed component having a viscosity of 0.55 dL / g to 0.60 dL / g.
  • the mixed component is introduced into a pump, extruded in a strip shape and rapidly cooled by cooling water, and then cut into pellets by a cutter to obtain about 50 kg of wet ester granules, and the wet ester granules are obtained.
  • the solid state polymerization manufacturing process is carried out at about 200 ° C to form a food contact food packaging material having a viscosity of 0.72 dL / g to 0.88 dL / g, wherein the total weight of the food packaging material is 1.00002 kg, the poly
  • the content of ethylene terephthalate (PET) was 1 kg
  • the content of W 18 O 49 having an average particle diameter of 80 nm was 0.02 g.
  • W 18 O 49 has been experimentally confirmed to be inert and has no negative effects such as chemical activity of nanomaterials.
  • the solid state polymerization process is a low molecular weight oligomer that enhances viscosity and reduces harmful hygiene, so that PET polyester particles that meet food contact and high heat absorption can be obtained.
  • Preparation of food packaging members The above food packaging materials are desiccated and dried, and then introduced into an injection molding machine (brand: Husky) containing a mold.
  • the food packaging material is plasticized into a melt in the injection molding machine and injected into the mold to form a molded body, and then the molded body is subjected to a cooling treatment, so that the molded body forms a coarse embryo, and the wall thickness of the rough embryo It is about 4mm.
  • an infrared quartz tube (main radiation wavelength: about 1250 nm; heat source temperature: about 2050 ° C; brand: Sidel) is used to heat the rough embryo for about 0.5 minutes so that the rough embryo is within about 4 mm.
  • the glass softening conversion point is reached externally, and finally, a high pressure blow molding process is applied to form a container for accommodating the food.
  • the container has a wall thickness of about 0.35 mm.
  • the process of preparing the slurry, the food packaging material, and the preparation of the food packaging member the process of preparing the food packaging material of the first embodiment and the preparation of the food packaging member, but the food packaging material of the embodiment 2 comprises 1 kg of polyethylene terephthalate and 0.04 g of W 18 O 49 having an average particle diameter of 80 nm.
  • the preparation of the food packaging material, and the process of preparing the food packaging member are similar to the preparation of the food packaging material of Example 1 and the preparation of the food packaging member, except that the slurry of the present invention is not added.
  • Preparation of slurry 3 kg of W 18 O 49 with an average particle size of 25 ⁇ m, 10.5 kg of water and 1.5 kg of ethylene glycol were placed in a first grinder (label: ASADA Asada; model: LMJ20).
  • the first grinding treatment was carried out with zirconium beads having a size of 1.2 mm and an operating linear velocity of 8 m/sec, and ground to 0.6 ⁇ m, but the prior art 10373266 was ground to 0.97 ⁇ m.
  • the slurry contained water, ethylene glycol, and W 18 O 49 having a median diameter (D 50 ) of 0.20 ⁇ m.
  • the water content was 70% by weight, the ethylene glycol content was 10% by weight, and the W 18 O 49 content was 20% by weight based on 100% by weight of the total amount of the slurry.
  • Comparative Example 2 The preparation of the food packaging material and the process of preparing the food packaging member were the same as those of the preparation of the food packaging material of Example 1 and the preparation of the food packaging member. Referring to FIG. 3 and according to Beer's law, the food packaging material of Comparative Example 2 uses only 0.20 ⁇ m of W 18 O 49 , so that the endothermic effect is only the food packaging material of Example 1 (containing W 18 O having a D 50 of 80 nm). 49 ) 0.5 times.
  • Preparation of slurry 3 kg of W 18 O 49 with an average particle size of 25 ⁇ m, 10.5 kg of water and 1.5 kg of ethylene glycol were placed in a grinder (label: Mitsui MITSIU; model: SC220) in size It was a 1.2 mm zirconium bead and was ground at a line speed of 8 m/sec and ground to the required size.
  • the slurry contained water, ethylene glycol, and W 18 O 49 having a median diameter (D 50 ) of 0.6 ⁇ m.
  • the water content was 70% by weight
  • the ethylene glycol content was 10% by weight
  • the W 18 O 49 content was 20% by weight based on 100% by weight of the total amount of the slurry.
  • Comparative Example 3 The preparation of the food packaging material and the process of preparing the food packaging member were the same as those of the preparation of the food packaging material of Example 1 and the preparation of the food packaging member. Referring to FIG. 3a and according to Beer's law, the food packaging material of Comparative Example 3 uses only 0.97 ⁇ m of W 18 O 49 , so that its endothermic effect is only the food packaging material of Example 1 (containing W 18 having a D 50 of 80 nm). O 49 ) is 0.2 to 0.3 times.
  • Particle size (unit: nm) measurement: MALVERN-2000 laser particle size analyzer was used. 1 ⁇ m 1000 nm.
  • Transmittance (unit: %) measurement using different sizes of W 18 O 49 and the slurry of Example 1 using Japanese SHIMADZU-2600 UV-Visible-NIR, the materials of the present invention are shown in Fig. 4 and Example 2, and compared with Example 1 Blanks No preforms containing the material of the present invention (bottle wall thickness 4 mm) were measured. When the preform is measured, it is irradiated from one side of the preform and is measured on the other side of the preform, and the thickness is 8 mm in total.
  • L, La and Lb measurements L value, La and Lb values are based on the color scheme of CIE1976 specified by the International Lighting Association in 1976, L stands for whiteness 100 and highest 0, La is red, negative is green; Lb is positive On behalf of yellow, negative represents blueness, the instrument is measured by Macbeth color eye 2145 spectrometer, wherein the observation angle used in operation is 2 °, and the illumination source is D65. When the test sample is a preform, the sample thickness is set to 4 mm.
  • Gross embryo haze value (Haze, unit: %) Measurement: Konica Minolta haze meter was used. The haze value is (Td/Tt) ⁇ 100, wherein Td is the diffuse transmittance; Tt is the total transmittance, ASTM-D1003 method.
  • the coarse embryo formed by the slurry of the present invention has an excellent absorption effect on near-infrared rays and the absorption temperature is increased by 22 compared to the absorption effect of the coarse embryo of Comparative Example 1 on near-infrared rays.
  • °C heat increase rate of 25.9% (22 x 100% / (110-25 normal temperature))
  • 40 ° C heat increase rate of 47.0% (40 x 100% / (110-25 normal temperature))].
  • the haze of the rough embryo formed by the slurry of the present invention was low, which indicates that the food packaging member of the present invention has high transparency.
  • the tungsten oxide particles of the present invention are finer and more effective than the conventional tungsten oxide particles having a large particle diameter, and have an optical size particle size effect, and are more compatible with near infrared rays for production.
  • the frequency of the light wave is such that it absorbs 3 times to 5 times or more in the near infrared absorption effect.
  • the inventors of the present invention present the experimental data of the Chinese Patent Publication No. 103732666 described in the prior art [0002] in Tables 2 and 3.
  • Tables 2 and 3 tungsten oxide particles of different particle sizes are added at the injection port of the injection machine.
  • the experimental data in Tables 2 and 3 is to test the temperature rise in an oven, and the effect is about half of the case.
  • the problem is that there will be a temperature rise from the surface measurement, but there is no temperature rise inside.
  • the average actual temperature is only about 9.5 °C, which is only 1/3 of the effect of this case.
  • the effect of the prior art patent case should be less than 1/3 of the case.
  • the case is analyzed by spectral scanning, and the actual experiment with infrared irradiation is mutually confirmed, so it is most correct.
  • Figure 3 is used to illustrate the spectral transmittance of W 18 O 49 of different masses of different sizes.
  • (a) in Fig. 3 shows a transmittance curve of W 18 O 49 of 0.5 ⁇ m to 2 ⁇ m
  • (b) in Fig. 3 shows a transmittance curve of W 18 O 49 of 200 nm
  • (c) in Fig. 3 A transmittance curve representing W 18 O 49 of 80 nm
  • (d) in FIG. 3 indicates a transmittance curve of acicular W 18 O 49 of 60 nm ⁇ 10 nm
  • (e) in FIG. 3 indicates a needle shape W 18 of 40 nm ⁇ 7 nm. O 49 penetration curve. It can be seen from the spectral curve of Fig.
  • tungsten oxide having a fine particle size has several times better absorption NIR than tungsten oxide having a larger particle size, so that it is utilized.
  • the formulations used in the present invention, as well as the method of milling, can be achieved in a cost effective manner.
  • the material of this case is W 18 O 49 CAS Reg. No. 12037-57-9, as early as 1985, Thin Solid Films, 130 (1985) 181-194 by B.YOUS, S.ROBIN, J.ROBIN ETA.DONNADIEU
  • This material has excellent infrared absorption properties and has been applied to the heat absorption of glass insulation paper.
  • the applicant in this case has applied for FDA certification.
  • the number FCN1669 can be applied to PET food packaging contacts.
  • the present invention designs the particle size and the formulation content of the tungsten oxide particles so that the slurry does not precipitate, which facilitates storage, dispersion, and operation, and the food package formed by the slurry.
  • the material has good absorption effect on near-infrared rays.
  • the food packaging member formed by the food packaging material has high transparency and low haze, the bottle does not be brittle, and can meet the food safety regulations, so it can be achieved.

Abstract

一种浆料,用于食品包装材料,包含水、乙二醇及平均粒径范围为100nm以下的氧化钨粒子,该氧化钨粒子包括W18O49,且以该浆料的总量为100wt%计,该氧化钨粒子的总含量范围为18wt%至28wt%。一种食品包装材料是由包含上述的浆料,及用来形成聚酯的原料组分的混合物经共同聚合反应所形成,且包含聚酯及粒子平均粒径范围为100nm以下的氧化钨,以该聚酯的总量为100克计,该氧化钨粒子的总含量范围为0.1毫克至5毫克。一种食品包装构件,由包含上述的食品包装材料的物料组分,经加热处理及成型处理所形成,可以加速材料重热功能并节能及提高产品品质。

Description

浆料及其制备方法、食品包装材料及其制备方法及食品包装构件
相关申请的交叉引用
本申请基于申请号为201711432749.3、申请日为2017年12月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明是有关于一种浆料、食品包装材料及食品包装构件,特别是指一种包含平均粒径范围为100nm以下的氧化钨粒子的浆料、制备浆料的方法、包含平均粒径范围为100nm以下的氧化钨粒子的食品包装材料、制备食品包装材料的方法,及包含平均粒径范围为100nm以下的氧化钨粒子的食品包装构件,可加速粗胚速热及节能,构件已经美国食品药物局(FDA)认证,合乎食品接触安全。
背景技术
中国大陆公开第103732666号专利案揭示任一种可以相容液体制剂、一种容器预制件及一种包装容器。
该液体制剂包含与聚酯相容的载体及分散在该载体中的氧化钨粒子,其中,该载体为乙二醇、植物油或矿物油,且该氧化钨粒子具有式WO 2.72且其中少于5wt%的氧化钨粒子具有超过100μm的粒度。在该专利案的实施例中,已研磨氧化钨粒子的粒度的平均值为1.22μm,且中值为0.97μm(相当于970nm)。
该容器预制件包含聚合物组成物。该聚合物组成物包括聚对苯二甲酸乙二醇酯(PET)及12ppm至50ppm的氧化钨粒子。该聚合物组成物是由该 液体制剂及用来形成聚对苯二甲酸乙二醇酯的原料组分经酯化反应及缩聚合反应所形成,但未有实施例证明是否会有化学活性,相互反应负面效果。
该包装容器,例如饮料瓶,是由该容器预制件经成型加热处理所形成。该成型加热处理是利用石英红外线加热器及一模具来进行。该专利案完全未提出该包装容器是符合食品安全规范的依据证明,故将该包装容器用来盛装食品是存在有安全上的疑虑。
该专利案透过该具有式WO 2.72的氧化钨粒子能吸收该石英红外线加热器的能量的特性,增加了对该容器预制件进行加热处理的加热速率,因而使得该包装容器的生产速率得以被提升。
虽然该专利案可提升该容器预制件进行加热处理的加热速率,然而,该专利案的容器预制件的雾度及透明度不佳,且该容器预制件吸收该石英红外线加热器的能量的效果亦不佳。
发明内容
因此,本发明的第一要义目的,即在提供一种不会产生沉淀现象而利于储存及操作、分散的浆料。
于是,本发明浆料,能用于食品包装材料,且包含水、乙二醇及平均粒径范围为100nm以下的氧化钨粒子,其中,该氧化钨粒子包括W 18O 49,且以该浆料的总量为100wt%计,该氧化钨粒子的总含量范围为18wt%至28wt%,能在聚合制造工艺中加入,以降低成本,组分又不会有与制造工艺反应而有负面影响。
本发明的第二要义目的,即在提供一种较优的制备浆料的技术方法,生产快速、成本经济、品质卓越。
于是,本发明制备浆料的方法,包含以下步骤:混合步骤,将乙二醇、水及平均粒径范围为大于100nm的氧化钨物质混合,形成配方混合物,其中,该氧化钨物质包括W 18O 49;粉碎步骤,对该配方混合物进行粉碎处理, 以形成包含乙二醇、水及平均粒径范围为100nm以下的氧化钨粒子的浆料,其中,该粉碎处理是依序利用尺寸由大至小的数个阶段大小不同的研磨珠,且分别对应该等研磨珠的操作线速度,由小至大来进行,借配方的独特技术,达成成功的分级研磨。
本发明的第三要义目的,即在提供一种可见光无色或淡色,但能选择性吸收近红外线功能,效果佳,可以加速粗胚重新被加热时提高生产效率,及节能的食品包装材料。
于是,本发明食品包装材料,包含聚酯及平均粒径范围为100nm以下的氧化钨粒子,其中,该氧化钨粒子包括W 18O 49,且以该聚酯的总量为100克计,该氧化钨粒子的总含量范围为0.1毫克至5毫克。本发明氧化钨粒子在D 50=80nm左右发生光学尺寸粒径吸收效应,使得其有效地吸收对应的近红外线(near infrared,简称NIR)能量,继而使得其吸收热能效果相较于使用粒径较大的1.0μm的W 18O 49的吸收热能效果有2到5倍,举例来说,等质量下,参阅图3中的(c),当波长在1350nm时,粒径为80nm的W 18O 49的穿透率为8.3%,而在图3的(a)中,粒径为0.5μm至2μm的W 18O 49的穿透率为56.6%,依据比尔定律(Beer’s law)可知,粒径为80nm的W 18O 49的吸收度为1.081(即log0.083),而粒径为0.5μm至2μm的W 18O 49的吸收度为0.247(即log0.566),由此可知,粒径为80nm的W 18O 49对波长在1350nm的吸收度,为粒径为0.5μm至2μm对W 18O 49的吸收度的4.37倍(即1.081/0.247),此表示使用粒径为80nm的W 18O 49的吸收热能效果会为粒径为0.5μm至2μm对W 18O 49的吸收热能效果的4.37倍。
本发明的第四要义目的,即在提供一种制备食品包装材料的方法。
于是,本发明制备食品包装材料的方法,包含以下步骤:提供用来形成聚酯的原料组分及上述的浆料;使该用来形成聚酯的原料组分进行酯化反应及聚合反应,并于该酯化反应或该聚合反应的过程中加入该浆料,继 而形成包含聚酯及平均粒径范围为100nm以下的氧化钨粒子的食品包装材料,所使用的配方,与PET制造工艺及与其原料相容,不会相互反应,及未有纳米材料化学的活性等负面效果,已经多次先导工厂(Pilot)试验无误,可以一起反应。
本发明的第五要义目的,即在提供一种高透明度且低雾度的食品包装构件,在热升温时,粗胚内外升温都能均匀,并提高被加工构件品质不会有脆裂性。
于是,本发明食品包装构件,是由包含上述的食品包装材料的物料组分,经加热处理及成型处理所形成。参阅图2,图2用来说明不同粗胚的穿透率。在波长为1050nm处,NIR能量达最高点,由上而下分别表示石英灯的光波长各能量分布曲线、表1中的比较例1的空白粗胚的穿透率曲线(以下称为编号B)、实施例2的粗胚的穿透率曲线,及含有80ppm的W 18O 49的粗胚的穿透率曲线。编号B表示仅由纯的聚对苯二甲酸乙二酯所形成的瓶胚,且该瓶胚对1660nm的近红外线有非常好的吸收,但1660nm的近红外线,依据光学分析穿透过4mm的瓶胚的深度的0.5mm,即吸收27.5%的光,相对的4mm处深度的0.5mm只吸收5.85%的光,两者相差4.7倍,也就是表面升温高达100℃时,而最内部只升高21.3℃,使得4mm的瓶胚存在有表面(约0.5mm)温度过高,而内部却有远远不够热的问题。且另参阅图3,由图3可知,在等质量下粒径为0.5μm至2μm对W 18O 49对1660nm的近红外线也有非常好的吸收,因此,更存在有表面温度过高而内部不够热的问题,同时,由于其曲线在近红外线区域为平坦区段,表示其不具有光学尺寸粒径效应。而参阅本发明图5粒径非常集中,而得到图4杯型曲线可知,本发明食品包装材料因使用平均粒径范围为100nm以下的氧化钨粒子,是具有光学尺寸粒径吸收效应,曲线翘楚以至于减少了对1660nm的近红外线的吸收,而对700nm至1600nm区域的近红外线有更很好的吸收效 果,尤其是加强1150nm处吸收,如此使得瓶胚内外能受热均匀,继而避免瓶胚产生表面温度过高而内部不够热的问题,导致过冷吹瓶时内部产生瑕疵,且表面过热促使聚对苯二甲酸乙二酯结晶雾化,二者皆使得食品包装构件在压力充填时产生破裂。此光学尺寸粒径吸收效应,就是像雨后有彩虹一样,粒径小到一个程度时,能对应到一个光频,入射光进入此粒子内部时,会不断的全反射,因而粒径有频率选择性吸收,又有2到5倍的吸收效果,如图4。
本发明的功效在于:透过该氧化钨粒子的粒径及配方成份含量的设计,使得该浆料不会产生沉淀现象而利于储存及研磨分散,及操作使用均匀分配分散,且由该浆料所形成的食品包装材料,对700nm至1600nm区域的近红外线的吸收效果佳,尤其是对1150nm的近红外线的吸收效果更佳,再者,由该食品包装材料所形成的食品包装构件,因氧化钨粒子的粒径小,且添加量又少,因而具有高透明度及低雾度的功效。且由于该食品包装材料对700nm至1600nm区域的近红外线的吸收效果佳,使得瓶胚内外受热均匀,且不会促使聚对苯二甲酸乙二酯结晶雾化,因此,应用至广口瓶或软性饮料压力瓶(CSD瓶),可避免广口瓶因瓶壁厚,难以被加热升温的问题,以及压力瓶易于充填时因脆裂而破瓶的问题。
以下将就本发明内容进行详细说明。
<浆料>
本案浆料中的氧化钨粒子是要接触食品,即要能符合食品安全规范中的食品接触物质(Food Contact Substance,简称FCS)申请,是要经过美国食品药物管理局(Food and Drug Administration,简称FDA)认证,并获得FDA对其食品接触物质通告(Food Contact Substance Notification,简称FCN),以确保使用的安全。该食品接触物质的申请过程要做各种溶出试验,对水、酸、碱、温度、化性、物性稳定度,材料的不纯度,溶出物对人体摄入量, 及该物质对生物的毒理剖析及研究,相关基因疾病,诱导致癌性,传染病,材料各种相关纳米论述,甚至包含动物人体实验等都是必要的,要做各项详细分述并总结做安全性总叙述(Safety Narrative,简称SN)和全面毒理学综述(Comprehensive Toxicological Profile,简称CTP),甚而材料对环境影响等。FDA声称本申请人,不可更改已申请所用材料,及其所用制造工艺否则核准失效,任何人引用必须重新申请。有了通过可接触食品的认证,才可以谈可应用于食品接触。
由于该浆料中的氧化钨粒子分散于该乙二醇水中,而乙二醇上的OH基能与氧化钨粒子界面相容并抓住该氧化钨粒子,而不会使得该氧化钨粒子相互团聚,因而使得该浆料于储存的过程中不易有沉淀现象发生,且乙二醇是做PET原料之一,水又是其酯化时的反应物对制造工艺无害。较佳地,该氧化钨粒子的中值粒径(D 50)为0.08μm。本案申请人要强调的是,将氧化钨粒子的粒径尺寸,要达到纳米等级是极度不容易的事,且本案是透过分级粉碎处理,以及调整处理过程中配方的黏度及线速度,才能制备出具有光学尺寸粒径效应的D 50=80nm氧化钨粒子,其效果如图3及图4及粒径分布如图5。
本发明浆料的制备方法包含以下步骤:混合步骤及粉碎分散步骤。该混合步骤是将乙二醇及平均粒径范围为大于100nm的氧化钨物质混合,形成混合物,其中,该氧化钨物质包括W 18O 49。该粉碎步骤是对该混合物进行粉碎处理,可得到最节能,效率最高,效果最好的成品。该粉碎处理是利用多个研磨机并透过多种粒径不同研磨珠,来分别研磨该混合物,或者,利用均质机来进行。该均质机例如但不限于高压均质机。因该研磨机或均质机并非本发明主要的技术特征,且该研磨机可采用以往众所周知的研磨机,而均质机可采用以往众所周知的高压均质机,为了精简的因素,故细节在此不多作说明。该研磨珠例如但不限于锆珠。为使该氧化钨物质有效 地被研磨至平均粒径范围为100nm以下、维持氧化钨物质结构性质,并符合经济研磨时间成本的效果,较佳地,该等研磨珠的尺寸范围为大于0mm至1.2mm。为使该氧化钨物质有效地被研磨至粒径范围为100nm以下,较佳地,该研磨机的操作线速度范围为8m/s至14m/s。较佳地,依序以尺寸为1.2mm的研磨珠且操作线速度为8m/sec、尺寸为0.3mm的研磨珠且操作线速度为11m/sec,及尺寸为0.1mm的研磨珠且操作线速度为14m/sec的条件下进行粉碎处理。
为使该粉碎处理过程中黏度符合需求而可更有效地粉碎出平均粒径范围为100nm以下的氧化钨粒子,在该粉碎步骤中,加入水,以调整黏度。该水的添加量依制造工艺需求调整。
<食品包装材料>
该用来形成聚酯的原料组分,例如但不限于用来形成聚对苯二甲酸乙二酯(polyethylene terephthalate,简称PET)的原料组分。该聚酯例如但不限于聚对苯二甲酸乙二酯。该食品包装材料的制备方法包含以下步骤:将用来形成聚酯的原料组分进行酯化反应及缩聚合反应,并于该缩聚合反应前加入该浆料。该聚酯是采用以往所知的聚酯,而该用来形成聚酯的原料组分是依据所选用的聚酯进行选择,举例来说,所要选用的聚酯为聚对苯二甲酸乙二酯时,而该用来形成聚酯的原料组分包含对苯二甲酸及乙二醇。该酯化反应及缩聚合反应的温度或时间等操作条件依据所要形成的聚酯进行调整。该酯化反应的操作温度范围为210℃至270℃。该缩聚合反应的操作温度范围为260℃至290℃。该缩聚合反应的操作压力范围为250mmHg以下。一般为促使该缩聚合反应的进行,该食品包装材料的制备方法还包含加入催化剂的步骤。该催化剂例如但不限于三氧化二锑(Sb 2O 3)、磷酸稳定剂、醋酸锑、氧化锗或钛触媒等。该钛触媒例如但不限于四丁基钛。但催化剂的添加都不会与浆料反应发生负面作用。
由于该食品包装材料的氧化钨粒子的平均粒径范围为100nm以下,使得该氧化钨粒子及该食品包装材料具有光学尺寸粒径效应,在该粒径尺寸下,一定频率光线进入此粒子内部时会一再全反射,故消光吸热效果加大,控制粒径从而能够对应到要生产用的近红外线的光波频率,因而可更有效地吸收近红外线。经实验证实比较,本发明氧化钨粒子对近红外线吸收效果是优于目前市面上所有近红外线吸热材料,以光学理论设计出,粗胚内外部都能吸热温升均匀,不会造成破瓶及具备食品接触安全规范。在本发明的食品包装材料中,因氧化钨粒子的结构具有微孔洞,因此,在该缩聚合反应过程时,聚酯将会进入氧化钨粒子的微孔洞中,使得氧化钨粒子被聚酯所束缚住,所以造成氧化钨粒子更不易被迁移(Migration)出来的特性,更具食品安全性。此外,本发明氧化钨粒子因平均粒径范围为100nm以下,相较于以往粒径大的氧化钨粒子,更因光学尺寸效应,能够对应到生产所用近红外线的光波频率,如图3、图4所示使得在近红外线吸收效果上有3倍以上,而且避开PET本身会吸收1660nm NIR部分,以免粗胚表面过热,而内部又不热问题,对照图2及图4曲线可知,它的吸热区段改善了粗胚会被冷延伸吹瓶,即粗胚不够热,在玻璃转化点(Tg点)以下被吹瓶问题,使用本发明技术,如此可以不致造成潜藏脆裂的风险,改善了瓶子充填后破瓶的大问题。
<食品包装构件>
本发明食品包装构件具有高透明性、低雾度、不易脆裂等性质,且该氧化钨粒子不易从该食品包装构件中被迁移溶出来。本发明食品包装构件制造工艺符合美国食品药品管理局的规范及其认证,并正式获得食品接触物质通告且公告号码为FCN1669,而可安全地用来包装食品。本发明食品包装构件以美国食品药品管理局所订试验方法FDA177.1630溶出试验,以高精密感应耦合电浆(inductively coupled plasma,简称ICP)仪器测量钨的迁 移量,且由该试验结果可知当本发明食品包装构件中的氧化钨粒子含量为50ppm(以该聚酯的总量为40克计)时,只约0.05ppb被溶出到1000克瓶子的水中,远远低于美国FDA 21 CFR 10.115规范的溶出量0.5ppb,甚至比饮用的自来水中钨含量为3.32ppb以及井水中钨含量为10ppb还要更低,所以本发明食品包装构件对食品接触是安全,不致影响人体建康。
该食品包装构件例如但不限于与食品接触的容器或与食品接触的片材。该与食品接触的容器例如但不限于饮料瓶。该与食品接触的片材例如但不限于包装纸。
该食品包装构件的制备方法包含以下步骤:将包含该食品包装材料的物料组分进行加热处理及成型处理。该加热处理是利用红外线加热器来进行。该红外线加热器的热源温度及主辐射波长依据制造工艺及材料进行选择。该红外线加热器的热源温度例如但不限于色温2050℃。该红外线加热器的主辐射波长例如但不限于1250nm。该红外线加热器例如但不限于红外线石英灯管。该成形处理是利用模具来进行。该模具依据该食品包装构件所需要的形体来选择。由于该食品包装材料具有光学尺寸粒径效应,而能更有效地在需要区段吸收近红外线,使得该食品包装构件的制备方法具有节约能源且生产速度快的优点。
为使本领域具有通常知识者,能够更清楚的知道本发明的特点及细节,达成上述的要义目的及其他目的,本发明提供:
一种浆料,用于食品包装材料,包含乙二醇、水及平均粒径范围为100nm以下的氧化钨粒子,其中,该氧化钨粒子包括W18O49,且以该浆料的总量为100wt%计,该氧化钨粒子的总含量范围为18wt%至28wt%。
其中,该氧化钨粒子的中值(D 50)粒径可为0.08μm。
一种制备浆料的方法,包含以下步骤:混合步骤,将乙二醇、水及平均粒径范围为大于100nm的氧化钨物质混合,形成配方混合物,其中,该 氧化钨物质包括W 18O 49;粉碎步骤,对该配方混合物进行粉碎处理,其中,该粉碎处理是依序利用尺寸由大至小的数种研磨珠,且分别对应该等研磨珠的操作线速度由小至大分级来进行,以达到经济纳米粒径化。
一种食品包装材料,包含聚酯及平均粒径范围为100nm以下的氧化钨粒子,其中,该氧化钨粒子包括W 18O 49,且以该聚酯的总量为100克计,该氧化钨粒子的总含量范围为0.1毫克至5毫克。
其中,该氧化钨粒子的中值粒径为0.08μm,具有对应NIR有优良光学尺寸粒径吸收效应。
其中,该氧化钨粒子的中值粒径为0.08μm,并具对红外线加热生产有光学尺寸粒径效应。光学尺寸效应,石英灯所发出的NIR,对于本材料的特定尺寸粒径,有对应的极大吸收波长频谱,此即所谓光学尺寸粒径效应,在此粒径下有2倍以上甚至5倍相对于现有技术(对应中国大陆公开第103732666号专利案)的波峰值光波吸收值。
其中,该氧化钨粒子的中值粒径为0.08μm,吸热峰值在1200nm左右,避开PET吸热的1660nm NIR区域,而大粒径吸收峰会移至此1660nm NIR区域部位,而造成粗胚表面过热,而内部又不热问题,此为利用光学技术新应用。
其中,该食品包装材料符合FDA第FCN1669号认证的规范。
FDA第FCN1669号认证合乎食品公告,指针对原申请人,其它人引用必须各自申请。
一种制备食品包装材料的方法,包含以下步骤:提供用来形成聚酯的原料组分及如上述的浆料;使该用来形成聚酯的原料组分进行酯化反应及聚合反应,并于该酯化反应或该聚合反应的过程中加入该浆料,继而形成包含聚酯及平均粒径范围为100nm以下的纳米氧化钨粒子的食品包装材料,经实验证实可行,因而材料更透明,迁移量会更少,更具经济操作添 加,没有负面影响。
其中,于该聚合反应的过程中加入该浆料,且使该浆料中的氧化钨W 18O 49、乙二醇、水参与该聚合反应。除实验可行,品质更好外,经FDA认证FCN1669公告可用于食品包装。
一种食品包装构件,是由包含上述的食品包装材料的物料组分经加热处理及成型处理所形成,其中,该加热处理是利用红外线加热器来进行。
附图说明
本发明的其他的特征及功效,将于参照附图的实施方式中清楚地呈现,其中:
图1是各种石英灯的色温的光谱图;
图2是不同粗胚的穿透率的光谱图;
图3是光谱图,说明不同尺寸的W 18O 49的穿透率;
图4是光谱图,说明本发明浆料的实施例1的穿透率,图谱在1150nm地方出现凹陷现象,此即光学尺寸粒径的表征;及
图5是实际雷射量测粒径分布图,说明本发明浆料的氧化钨粒子的粒径实际分布情况。
具体实施方式
本发明将就以下实施例来作进一步说明,但应了解的是,该等实施例仅为例示说明之用,而不应被解释为本发明实施的限制。
实施例1食品包装构件
浆料的制备:将3000克的平均粒径为25μm的W 18O 49、10500克的水及1500克的乙二醇置于第一研磨机(厂牌:ASADA浅田;型号:LMJ20)中,以尺寸为1.2mm的锆珠且操作线速度为8m/sec进行第一次研磨处理,并研磨至0.6μm。接着,转移至第二研磨机(厂牌:三井MITSIU;型号: SC220),以尺寸为0.3mm的锆珠且操作线速度为11m/sec进行第二次研磨处理,并研磨至0.20μm。然后转移至第三研磨机(厂牌:Hi-Team协城;型号:NANO-M2),以尺寸为0.1mm的锆珠且操作线速度为14m/sec的条件进行第三次研磨处理,并研磨至需要尺寸。该浆料包含水、乙二醇及中值粒径(D 50)为80nm的W 18O 49。以该浆料的总量为100wt%计,该水的含量为70wt%、该乙二醇的含量为10wt%,且该W 18O 49的含量为20wt%。在浆料的制备过程中无需添加分散剂,更符合食品安全。
食品包装材料的制备:以一定的莫尔比,将包含38公斤的对苯二甲酸(terephthalic acid,简称TPA)、900克的间苯二甲酸(meta-phthalic acid,简称IPA)及18.16公斤的乙二醇的原料组分及上述浆料投入调配槽,然后置于加压斧中,并在250℃的温度下进行6.5小时的酯化反应,当酯化度约95%时,置于真空斧环境中,以温度约为270℃且抽真空压力约为100mmHg进行第一次缩聚合反应,于此同时,加入230ppm的三氧化二锑(以聚对苯二甲酸乙二酯的总量计)及35ppm的磷酸稳定剂(以聚对苯二甲酸乙二酯的总量计)。接着,以温度为270℃至290℃且压力为低于1mmHg进行第二次缩聚合反应,而形成黏度为0.55dL/g至0.60dL/g的混合组分。将该混合组分导入泵(pump)中,而以条状被挤出并利用冷却水急速冷却,接着以切刀切成粒状物,可得约50kg的湿酯粒,并将该湿酯粒置于约200℃进行固态聚合反应制造工艺,形成黏度为0.72dL/g至0.88dL/g的合乎食品接触的食品包装材料,其中,以该食品包装材料的总重为1.00002公斤计,该聚对苯二甲酸乙二酯(PET)的含量为1公斤,而平均粒径为80nm的W 18O 49的含量有0.02克。W 18O 49经实验证实是惰性的,没有纳米材料化学活性等的负面影响。再经过固态聚合制造工艺,是增强粘度及减低有害卫生的低分子量的寡聚物,如此可达符合食品接触又高吸热的PET聚酯粒。
食品包装构件的制备:将上述食品包装材料进行除湿干燥,然后导入 包含模具的射出成型机(厂牌:Husky)中。该食品包装材料在该射出成型机中被塑化成熔体并注入该模具中而形成成型体,接着对该成型体施予冷却处理,而使该成型体形成粗胚,该粗胚的壁厚度约为4mm左右。
然后,吹瓶时使用红外线石英灯管(主辐射波长:约1250nm;热源温度约:2050℃;厂牌:Sidel)对该粗胚进行约0.5分钟的加热处理,以使该粗胚约4mm内外部均达到玻璃软化转化点,最后,施予高压吹塑成型处理,以形成用来容置食品的容器。该容器的壁厚度约为0.35mm。
实施例2
浆料、食品包装材料的制备,及食品包装构件的制备的过程,类似实施例1的食品包装材料的制备及食品包装构件的制备的过程,但不同的是实施例2的该食品包装材料包含1公斤的聚对苯二甲酸乙二酯及0.04克的平均粒径为80nm的W 18O 49
比较例1 食品包装构件
食品包装材料的制备,及食品包装构件的制备的过程,类似实施例1的食品包装材料的制备及食品包装构件的制备的过程,但不同的是未加入本发明浆料。
比较例2 食品包装构件
浆料的制备:将3公斤的平均粒径为25μm的W 18O 49、10.5公斤的水及1.5公斤的乙二醇置于第一研磨机(厂牌:ASADA浅田;型号:LMJ20)中,以尺寸为1.2mm的锆珠且操作线速度为8m/sec进行第一次研磨处理,并研磨至0.6μm,但现有技术10373266只磨到0.97μm。接着,转移至第二研磨机(厂牌:MITSU三井;型号:SC220),以尺寸为0.3mm的锆珠且操作线速度为11m/sec进行第二次研磨处理,并研磨至需要尺寸。该浆料包含水、乙二醇及中值粒径(D 50)为0.20μm的W 18O 49。以该浆料的总量为100wt%计,该水的含量为70wt%、该乙二醇的含量为10wt%,且该W 18O 49的含量 为20wt%。
比较例2食品包装材料的制备及食品包装构件的制备的过程同实施例1的食品包装材料的制备及食品包装构件的制备的过程。参阅图3及依据比尔定律可知,比较例2的食品包装材料因使用0.20μm的W 18O 49,使得其吸热效果仅为实施例1的食品包装材料(含有D 50为80nm的W 18O 49)的0.5倍。
比较例3 食品包装构件
浆料的制备:将3公斤的平均粒径为25μm的W 18O 49、10.5公斤的水及1.5公斤的乙二醇置于研磨机(厂牌:三井MITSIU;型号:SC220)中,以尺寸为1.2mm的锆珠且操作线速度为8m/sec进行研磨处理,并研磨至需要尺寸。该浆料包含水、乙二醇及中值粒径(D 50)为0.6μm的W 18O 49。以该浆料的总量为100wt%计,该水的含量为70wt%、该乙二醇的含量为10wt%,且该W 18O 49的含量为20wt%。
比较例3食品包装材料的制备及食品包装构件的制备的过程同实施例1的食品包装材料的制备及食品包装构件的制备的过程。参阅图3a及依据比尔定律可知,该比较例3的食品包装材料因使用0.97μm的W 18O 49,使得其吸热效果仅为实施例1的食品包装材料(含有D 50为80nm的W 18O 49)的0.2至0.3倍。
评价项目
粒径尺寸(单位:nm)量测:使用MALVERN-2000雷射粒径分析仪。1μm=1000nm。
穿透率(单位:%)量测:使用日本SHIMADZU-2600UV-Visible-NIR对不同尺寸的W 18O 49、实施例1的浆料得图4及实施例2有含本发明材料,与比较例1空白没有含本发明的材料的瓶胚(瓶壁厚度为4mm)进行量测。量测瓶胚时,由瓶胚的一侧照射并于瓶胚的另一侧接收量测,厚度共8mm。
L、La及Lb量测:L值、La与Lb值是依据使用国际照明协会1976 年所定CIE1976的表色方式,L代表白度100最高0最低,La正代表红,负代表绿;Lb正代表黄,负代表蓝度,仪器是以Macbeth color eye 2145光谱仪所测得,其中操作时使用的观测角是2°,发光源是D65。当测试样品是瓶胚时,样品厚度定为4mm。
粗胚雾度值(Haze,单位:%)量测:使用Konica Minolta雾度仪。该雾度值为(Td/Tt)×100,其中,Td为散透光率;Tt为总透光率,ASTM-D1003方法。
吸热效果量测:如下表1量测实施例1至2及比较例1的粗胚经红外线石英灯管加热后,以感温枪感测的表面温度方式来测量。该温度越高,大致表示该粗胚吸热效果越佳。
表1
Figure PCTCN2018120380-appb-000001
由表1的实验数据可知,相较于比较例1的粗胚对近红外线的吸收效果,由本发明的浆料所形成的粗胚对近红外线的吸收效果极佳,且吸收温度分别提升了22℃[热增加率为25.9%(为22×100%/(110-25常温))]及40℃[热增加率为47.0%(为40×100%/(110-25常温))]。再者,相较于表1比较例1的粗胚的雾度,由本发明的浆料所形成的粗胚的雾度低,此表示本发明的食品包装构件具有高透明度。此外,由图3的数据可知,相较于以往粒径大的氧化钨粒子,本发明的氧化钨粒子较细,效果较好,又有光学尺寸粒径效应,更能够对应到生产用近红外线的光波频率,使得在近红外线吸收效果上有3倍至5倍甚至以上的吸收。
为方便比较,本案发明人将现有技术第[0002]段中所述的中国大陆公开第103732666号专利案的实验数据呈现在表2及表3中。该专利案是在射出机进料口处加入不同粒径的氧化钨粒子。表2及表3的实验数据是以烤箱来测试温升,其效果约为本案的一半左右。问题是由表面量测会有温升,而其内部尚未温升,平均实际全部只有温升约9.5℃,就只有本案的1/3效果而已。若以光谱扫描实验依据,现有技术专利案效果应为本案1/3不到才正确,本案是以光谱扫描来做分析,及用红外照射实际实验相互印证,故最为正确无疑。
表2
Figure PCTCN2018120380-appb-000002
表3
Figure PCTCN2018120380-appb-000003
参阅图3,图3用来说明等质量不同尺寸的W 18O 49的光谱穿透率。图3中的(a)表示0.5μm至2μm的W 18O 49的穿透率曲线、图3中的(b)表示200nm的W 18O 49的穿透率曲线、图3中的(c)表示80nm的W 18O 49的穿透率曲线、图3中的(d)表示60nmx10nm的针状W 18O 49的穿透率曲线,及图3中的(e)表示40nmx7nm的针状W 18O 49的穿透率曲线。由图3的光谱曲线可知,不 同尺寸的氧化钨对NIR吸收竟有如此大的差别,且粒径较细的氧化钨对吸收NIR效果比粒径较大的氧化钨好上好几倍,故利用本发明所使用的配方,及研磨方式能以低成本经济方式来达成。
本案材料W 18O 49CAS Reg.No.12037-57-9,早在1985年Thin Solid Films,130(1985)181-194由B.YOUS,S.ROBIN,J.ROBIN ETA.DONNADIEU氏等都已有详尽论文提出,此材料具有优良红外线吸收性能,早已应用在玻璃隔热纸吸热上,但无人能证明能应用在食品安全接触上,本案申请人为首位已经申请获得FDA认证,公告号码FCN1669,可应用在PET食品包装接触上。
该FDA第FCN1669号认证,请参见专利申请书专利附送书件的其他栏位中文件档名FDA_FCN1699的文件。
综上所述,本发明透过该氧化钨粒子的粒径及配方含量的设计,使得该浆料不会产生沉淀现象而利于储存、分散、使用操作,且由该浆料所形成的食品包装材料对近红外线的吸收效果佳,再者,由该食品包装材料所形成的食品包装构件具有高透明度及低雾度、瓶子不会脆裂的功效,及能符合食品安全规范,故确实能达成本发明的目的。
以上所述,仅为本发明的实施例而已,不能以此限定本发明实施的范围,凡是依本发明权利要求书及专利说明书内容所作的简单的等效变化与修饰,皆仍属本发明专利涵盖的范围内。

Claims (9)

  1. 一种浆料,用于食品包装材料,包含:
    乙二醇、水及平均粒径范围为100nm以下的氧化钨粒子,其中,该氧化钨粒子包括W 18O 49,且以该浆料的总量为100wt%计,该氧化钨粒子的总含量范围为18wt%至28wt%。
  2. 如权利要求1所述的浆料,其中,该氧化钨粒子的中值(D 50)粒径为0.08μm。
  3. 一种制备浆料的方法,包含以下步骤:混合步骤,将乙二醇、水及平均粒径范围为大于100nm的氧化钨物质混合,形成配方混合物,其中,该氧化钨物质包括W 18O 49;粉碎步骤,对该配方混合物进行粉碎处理,以形成包含乙二醇、水及平均粒径范围为100nm以下的氧化钨粒子的浆料,其中,该粉碎处理是依序利用尺寸由大至小的数种研磨珠且分别对应该等研磨珠的操作线速度由小至大分级来进行。
  4. 一种食品包装材料,包含聚酯及平均粒径范围为100nm以下的氧化钨粒子,其中,该氧化钨粒子包括W 18O 49,且以该聚酯的总量为100克计,该氧化钨粒子的总含量范围为0.1毫克至5毫克。
  5. 如权利要求4所述的食品包装材料,其中,该氧化钨粒子的中值粒径为0.08μm。
  6. 如权利要求4所述的食品包装材料,其中,该食品包装材料符合FDA第FCN1669号认证的规范。
  7. 一种制备食品包装材料的方法,包含以下步骤:提供用来形成聚酯的原料组分及如权利要求1至2所述的浆料;使该用来形成聚酯的原料组分进行酯化反应及聚合反应,并于该酯化反应或该聚合反应的过程中加入该浆料,继而形成包含聚酯及平均粒径范围为100nm以下的纳米氧化钨粒子的食品包装材料。
  8. 如权利要求7所述的制备食品包装材料的方法,其中,在该聚合反应的过程中加入该浆料,且使该浆料中的氧化钨W 18O 49、乙二醇、水参与该聚合反应。
  9. 一种食品包装构件,是由包含如权利要求4至7中任一项所述的食品包装材料的物料组分经加热处理及成型处理所形成,其中,该加热处理是利用红外线加热器来进行。
PCT/CN2018/120380 2017-01-05 2018-12-11 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件 WO2019128705A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW106100252A TWI628212B (zh) 2017-01-05 2017-01-05 漿料及其製備方法、食品包裝材料及其製備方法,及食品包裝構件
CN201711432749.3 2017-12-26
CN201711432749.3A CN107964119B (zh) 2017-01-05 2017-12-26 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件

Publications (1)

Publication Number Publication Date
WO2019128705A1 true WO2019128705A1 (zh) 2019-07-04

Family

ID=61995961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120380 WO2019128705A1 (zh) 2017-01-05 2018-12-11 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件

Country Status (3)

Country Link
CN (1) CN107964119B (zh)
TW (1) TWI628212B (zh)
WO (1) WO2019128705A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628212B (zh) * 2017-01-05 2018-07-01 黃宗之 漿料及其製備方法、食品包裝材料及其製備方法,及食品包裝構件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044609A (ja) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd 車窓用日射遮蔽体及び車両用窓
CN102942818A (zh) * 2007-11-05 2013-02-27 巴斯夫欧洲公司 用于提高近红外辐射的热输入量的氧化钨
CN103732666B (zh) * 2011-07-21 2016-08-17 彩色矩阵控股公司 聚合材料
CN107964119A (zh) * 2017-01-05 2018-04-27 黄宗之 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641926B2 (ja) * 2008-03-04 2014-12-17 株式会社東芝 水系分散液とそれを用いた塗料
KR101622055B1 (ko) * 2012-06-01 2016-05-17 가부시끼가이샤 도시바 수계 분산액과 그것을 사용한 도료, 광촉매막 및 제품
US9870842B2 (en) * 2013-06-12 2018-01-16 Ppg Industries Ohio, Inc. Rapidly curable electrically conductive clear coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044609A (ja) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd 車窓用日射遮蔽体及び車両用窓
CN102942818A (zh) * 2007-11-05 2013-02-27 巴斯夫欧洲公司 用于提高近红外辐射的热输入量的氧化钨
CN103732666B (zh) * 2011-07-21 2016-08-17 彩色矩阵控股公司 聚合材料
CN107964119A (zh) * 2017-01-05 2018-04-27 黄宗之 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件

Also Published As

Publication number Publication date
TW201825566A (zh) 2018-07-16
CN107964119A (zh) 2018-04-27
TWI628212B (zh) 2018-07-01
CN107964119B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
RU2397999C2 (ru) Полимерные материалы и добавки к ним
TWI410451B (zh) 作為聚酯及聚丙烯樹脂再加熱添加劑之具有大的主要顆粒尺寸之碳黑
RU2472814C2 (ru) Полимерная композиция для пищевых контейнеров
JP6456906B2 (ja) ポリマー材料
WO2019128705A1 (zh) 浆料及其制备方法、食品包装材料及其制备方法及食品包装构件
JP5986208B2 (ja) プラスチック製飲料用容器における再生利用可能な着色剤
EA031434B1 (ru) Сложные полиэфирные смолы с частицами углеродной сажи в качестве добавок для повторного нагрева
JP2009046679A (ja) 熱可塑性重合体組成物、その製造方法、及び該熱可塑性重合体組成物を用いた成形品
TWI629294B (zh) 用於製造pet樹酯之觸媒系統組合物
US10710158B2 (en) Slurry used for a food packaging substance and method of preparation including the food packaging structure and substance
TWI617604B (zh) Infrared absorbing polyester masterbatch, infrared absorbing polyester preform and polyester bottle
MXPA06011692A (es) Metodos para elaborar resinas de tereftalato de polietileno catalizado por titanio.
AU2014208948B2 (en) Polymeric materials
KR100797760B1 (ko) 재가열 성능이 우수한 폴리에스테르 조성물 및 이를포함하는 폴리에스테르 용기
JP2004026853A (ja) 紫外線透過率を下げるポリエステル組成物及びこれを使って製造したペットボトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894512

Country of ref document: EP

Kind code of ref document: A1