WO2019128141A1 - 塔筒段的制造方法、塔筒段和风力发电机组 - Google Patents

塔筒段的制造方法、塔筒段和风力发电机组 Download PDF

Info

Publication number
WO2019128141A1
WO2019128141A1 PCT/CN2018/091803 CN2018091803W WO2019128141A1 WO 2019128141 A1 WO2019128141 A1 WO 2019128141A1 CN 2018091803 W CN2018091803 W CN 2018091803W WO 2019128141 A1 WO2019128141 A1 WO 2019128141A1
Authority
WO
WIPO (PCT)
Prior art keywords
door frame
barrel section
section
barrel
manufacturing
Prior art date
Application number
PCT/CN2018/091803
Other languages
English (en)
French (fr)
Inventor
张紫平
王洋
胥勇
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to AU2018374067A priority Critical patent/AU2018374067B2/en
Priority to ES18882291T priority patent/ES2882909T3/es
Priority to EP18882291.0A priority patent/EP3540216B1/en
Priority to US16/464,085 priority patent/US20210115902A1/en
Publication of WO2019128141A1 publication Critical patent/WO2019128141A1/zh
Priority to US18/543,526 priority patent/US20240117787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/26Manufacture essentially without removing material by rolling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to the field of wind turbine technology, and more particularly to a method of manufacturing a tower section, a tower section and a wind turbine.
  • Wind turbines are used to convert wind energy into electrical energy.
  • the wind turbine includes a tower and a wind turbine mounted on top of the tower.
  • the existing door frame is curved and T-weld between the tower and the tower, resulting in a very large stress concentration between the door frame and the tower.
  • the existing door frame design results in an increase in the thickness of the barrel section in which the door frame is located, increasing the total weight of the tower, thus resulting in increased tower manufacturing and installation costs.
  • a method of manufacturing a tower section comprising: manufacturing a first barrel section and a second barrel section; bonding the first barrel section and the second barrel section to a first gap is formed in the first tube section, and a second gap is formed in the second tube section, wherein the first notch and the second notch form an opening, and the height of the first notch Less than the height of the first barrel section, the height of the second notch is smaller than the height of the second barrel section; a door frame is manufactured, and the door frame is embedded in the opening and welded to the first barrel section And the second tube section, wherein the door frame is provided with a door hole.
  • a tower section including: a first barrel section having a first notch, a height of the first notch being smaller than a height of the first barrel section; a second tubular joint, combined with the first tubular section, the second tubular section having a second notch, the height of the second notch being smaller than the height of the second tubular section, the first notch and the first
  • the two notches together form an opening; the door frame is embedded in the opening and welded to the first barrel section and the second barrel section, wherein the door frame is provided with a door opening.
  • a wind power generator set comprising a tower section as described above.
  • the roundness of the first barrel section and the second barrel section can be ensured, the manufacture of the door frame can be made easier, and the welding of the door frame and the adjacent first barrel section and the second barrel section can be easier to operate, and it is easy to ensure welding.
  • the quality effectively reduces the stress concentration factor at the weld at the time of welding, reduces the deformation and ensures roundness, and is easier to align when the door frame is aligned with the first and second barrel sections.
  • the door frame manufactured according to the present invention has higher precision, less residual stress, less deformation, and can improve production efficiency, less waste, less cutting process, and high cutting quality.
  • Figure 1 is a perspective view of a tower section in accordance with an embodiment of the present invention.
  • Figure 2 is an exploded view of the tower section of Figure 1;
  • Figure 3 is a plan view of the tower section of Figure 1;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is a schematic view of the portion P of Figure 4.
  • Figure 6 is a plan view of a tower section in accordance with another embodiment of the present invention.
  • Figure 7 is a flow diagram of manufacturing a tower section in accordance with an embodiment of the present invention.
  • Figure 8 is a schematic view showing a state in which the first barrel section and the second barrel section are combined
  • Figure 9 is a schematic view showing an opening in the first barrel section and the second barrel section
  • Figure 10 is a schematic view of a first cylinder for forming a door frame
  • Figure 11 is a schematic view of cutting a first cylinder to form a plurality of door frames
  • Figure 12 is a schematic view of a third cylinder for forming a door frame
  • Figure 13 is a schematic view of cutting a second cylinder to form a plurality of door frames
  • Figure 14 is a schematic illustration of a door frame in accordance with an embodiment of the present invention.
  • Figure 15 is a schematic view showing the mounting of the door frame into the opening in the first barrel section and the second barrel section;
  • Figure 16 is a schematic view showing a door opening in a door frame
  • FIG. 17 and FIG. 18 are schematic diagrams showing angular deformation of a door frame according to prior art
  • Figure 19 is a schematic illustration of the door frame in accordance with the present invention without angular distortion.
  • FIGS. 1 through 16 a tower section, a method of manufacturing a tower section, and a wind power generator according to an embodiment of the present invention will be described with reference to FIGS. 1 through 16.
  • a tower section includes: a first barrel section 10 having a first notch 11, the height of the first notch 11 being smaller than the height of the first barrel section 10;
  • the barrel section 20 is combined with the first barrel section 10, and the second barrel section 20 has a second notch 21, the height of the second notch 21 is smaller than the height of the second barrel section 20, and the first notch 11 and the second notch 21 together form an opening 30.
  • the door frame 40, the door frame 40 is embedded in the opening 30 and welded to the first barrel section 10 and the second barrel section 20, and the door frame 40 is provided with a door opening 43.
  • the first barrel section 10 and the second barrel section 20 may be made of a steel sheet and may be rolled into a cylindrical shape, and the ends of the first barrel section 10 and the second barrel section 20 may be aligned with each other, and They can be joined together by welding.
  • the first barrel section 10 and the second barrel section 20 are cylindrical, and the diameters of the first barrel section 10 and the second barrel section 20 may be equal to each other, so that the first barrel section 10 and the first section
  • the tower section of the two-tube section 20 can form part of a cylindrical tower.
  • the present invention is not limited thereto, and the first barrel section 10 and the second barrel section 20 may also have a truncated cone shape, that is, the diameters of the first barrel section 10 and the second barrel section 20 may be gradually changed, thereby
  • the tower section formed by the tubular section 10 and the second tubular section 20 may form part of a conical tower.
  • the heights of the first barrel section 10 and the second barrel section 20 may be equal or unequal to each other without being specifically limited.
  • a first notch 11 may be formed on the first tubular section 10, and a second notch 21 may be formed in the second tubular section 20, and the first notch 11 and the second notch 21 may together form the opening 30.
  • the height of the first notch 11 may be smaller than the height of the first barrel section 10
  • the height of the second notch 21 may be smaller than the height of the second barrel section 20, so that the first barrel section 10 and the second barrel section 20 may form 360°. ring.
  • the first barrel section and the second barrel section form a ring smaller than 360°, then the first barrel section is manufactured
  • the rounding process cannot be performed, and the rounding process can only be performed after the welded door frame. Since the thickness of the door frame is generally thicker than the thickness of the barrel section, it is basically impossible to perform rounding together with the barrel section and the door frame. Process. According to the present invention, since the first barrel section 10 and the second barrel section 20 form a 360° ring, the first barrel section 10 and the second barrel section 20 can be formed when the first barrel section 10 and the second barrel section 20 are manufactured. The rounding process is performed so that the roundness of the first barrel section 10 and the second barrel section 20 can be ensured.
  • the heights of the first notch 11 and the second notch 21 may be equal to each other or not, and are not particularly limited.
  • the door frame 40 can be embedded in the opening 30 and can be welded to the first barrel section 10 and the second barrel section 20, and the door frame 40 is provided with a door opening 43 to facilitate entry and exit of the tower.
  • the door frame 40 can also be made of steel sheet.
  • the door opening 43 may be oblong or elliptical.
  • the first barrel section 10 and the second barrel section 20 form a cylinder
  • the door frame 40 may have two straight sides along the direction of the generatrix of the cylinder and two curved sides along the circumference of the cylinder. Wherein the two curved sides are substantially identical to the curvature of the cylinder and together with the cylinder form a 360° ring.
  • the door frame 40 may have a rectangular shape when the first barrel section 10 and the second barrel section 20 are formed in a cylindrical shape as viewed in plan. Therefore, "the door frame 40 is rectangular” means that the door frame 40 has a rectangular shape in plan view.
  • the door frame 40 may be trapezoidal in plan view, that is, the door frame 40 may also have two along the direction of the busbar of the truncated cone. a straight edge and two curved sides along the circumferential direction of the truncated cone, wherein the two curved sides substantially coincide with the curvature of the truncated cone, and together with the truncated cone form a 360° ring. Therefore, "the door frame 40 is trapezoidal" means that the door frame 40 has a trapezoidal shape as viewed in plan.
  • the manufacture of the door frame 40 can be made easier, and the welding of the door frame 40 with the adjacent first barrel section 10 and the second barrel section 20 can be performed more easily, and the welding quality can be easily ensured.
  • the door frame is curved from the plan view, firstly, the process of manufacturing the curved door frame is complicated, and it is difficult to ensure the manufacturing precision.
  • the weld formed by the door frame and the adjacent tube section is a three-dimensional curve. It is difficult to align and it is difficult to perform a welding process, resulting in a decrease in welding quality.
  • the thickness of the door frame 40 may be thicker than the thickness of the first barrel section 10 and the second barrel section 20, and the outer side of the door frame 40 protrudes from the outer walls of the first barrel section 10 and the second barrel section 20, And the inner side of the door frame 40 protrudes from the inner walls of the first barrel section 10 and the second barrel section 20.
  • the door frame 40 may include a door frame body 41 and a connecting portion 42 formed at an outer circumference of the door frame body 41 (for example, four edges of the door frame body 41).
  • the thickness of the connecting portion 42 may be smaller than the thickness of the door frame body 41 and greater than the thickness t2 of the first barrel section 10 and the second barrel section 20.
  • the thickness of the connecting portion 42 may be uniformly reduced along the circumferential direction of the tower section, and the minimum thickness t1 of the portion of the connecting portion 42 in contact with the first barrel section 10 is still greater than the thickness of the first barrel section 10 and the second barrel section 20. T2.
  • the connecting portion 42 by forming the connecting portion 42 and uniformly reducing the thickness of the connecting portion 42 in the circumferential direction of the tower section, the door frame 40 and the first barrel section 10 and the first can be realized as compared with the case where the connecting portion 42 is not formed.
  • the smooth transition between the two barrel sections 20 facilitates welding the door frame to the first barrel section 10 and the second barrel section 20, and can effectively reduce the stress concentration factor at the weld seam during welding, reduce deformation and ensure roundness.
  • the minimum thickness t1 of the connecting portion 42 is larger than the thickness t2 of the first barrel section 10 and the second barrel section 20, which is equal to the first barrel section 10 and the second barrel section as compared with the minimum thickness t1 of the connecting portion 42. In the case of the thickness t2 of 20, it is easier to align when the door frame 40 and the first cylinder section 10 and the second cylinder section 20 are butted, which is advantageous for ensuring the welding quality.
  • the door frame 40 may be of a unitary structure or may be formed by splicing two or more sections of the door frame along the axial direction of the tower section.
  • Figure 6 is a plan view of a tower section according to another embodiment of the present invention. As shown in Figure 6, the rounded transition between adjacent sides of the door frame 40 allows smooth transition of the weld to ensure convenient and safe welding construction. Sex.
  • FIGS. 1 to 6 it should be understood that although only an example in which one opening 30 is formed on the first barrel section 10 and the second barrel section 20 is shown in FIGS. 1 to 6, the present invention is not limited thereto and may be in the first A plurality of openings 30 are formed in the barrel section 10 and the second barrel section 20 (ie, a plurality of first notches 11 are formed on the first barrel section 10, and a plurality of second notches 21 are formed on the second barrel section 20, and a plurality of The first notch 11 and the plurality of second notches 21 form a plurality of openings 30) and embed a plurality of door frames 40 into the plurality of openings 30.
  • another opening may be opened on the opposite side of the opening 30 in FIG. 1 and the door frame 40 may be mounted on the other opening.
  • a method of manufacturing a tower section can be provided.
  • a method of manufacturing a tower section according to an embodiment of the present invention will be described with reference to FIGS. 7 through 16, and in order to avoid redundancy, a description overlapping with the description of the above tower section will be omitted.
  • a method of manufacturing a tower section may include: manufacturing a first barrel section 10 and a second barrel section 20 (S10); bonding the first barrel section 10 and the second barrel section 20 together (S20) a first notch 11 is opened in the first tubular section 10, and a second notch 21 is formed in the second tubular section 20, and the first notch 11 and the second notch 21 constitute an opening 30 (S30), and the height of the first notch 11 Less than the height of the first barrel section 10, the height of the second notch 21 is smaller than the height of the second barrel section 20; the door frame 40 is manufactured and the door frame 40 is embedded in the opening 30 and welded to the first barrel section 10 and the second barrel section 20 (S40), the door frame 40 is provided with a door opening 43.
  • the first barrel section 10 and the second barrel section 20 may be first manufactured.
  • the first barrel section 10 and the second barrel section 20 can be manufactured by, for example, rolling a steel sheet into a barrel and then performing a rounding process.
  • the first barrel section 10 and the second barrel section 20 may be rolled into a cylindrical shape or a truncated cone shape.
  • step S20 as shown in Fig. 8, the first barrel section 10 and the second barrel section 20 may be welded together by, for example, welding.
  • an opening 30 may be formed in the first barrel section 10 and the second barrel section 20.
  • the opening 30 may be opened in the first barrel section 10 and the second barrel section 20 in accordance with the outer dimensions of the door frame 40 to be installed.
  • the opening 30 may include a first notch 11 disposed on the first barrel section 10 and a second notch 21 disposed on the second barrel section 20.
  • the height of the first notch 11 is smaller than the height of the first barrel section 10, and the second notch
  • the height of 21 is smaller than the height of the second barrel section 20.
  • the first barrel section and the second barrel section form a ring smaller than 360°, then the first barrel section is manufactured
  • the rounding process cannot be performed, and the rounding process can only be performed after the welded door frame. Since the thickness of the door frame is generally thicker than the thickness of the barrel section, it is basically impossible to perform rounding together with the barrel section and the door frame. Process. According to the present invention, since the first barrel section 10 and the second barrel section 20 form a 360° ring, the first barrel section 10 and the second barrel section 20 can be formed when the first barrel section 10 and the second barrel section 20 are manufactured. The rounding process is performed so that the roundness of the first barrel section 10 and the second barrel section 20 can be ensured.
  • the steel plate around the opening 30 can be sanded and opened to facilitate the welding of the door frame 40.
  • step S40 the door frame 40 is manufactured and the door frame 40 is mounted into the opening 30.
  • FIGS. 10 and 11 show an example of a manufacturing method in which the height of the door frame does not exceed the length of the winding plate of the winding machine.
  • a steel sheet may be first rolled into a first cylinder 40a, and then a rounding process is performed on the first cylinder 40a, and finally the first cylinder 40a is formed according to the size of the door frame 40 to be formed. Cutting is performed to form at least one door frame 40.
  • the size of the actually used blank steel plate is larger than the design of the door frame to ensure the shape of the door frame design, and the final size of the door frame is realized by cutting off excess steel.
  • this solution cannot perform the rounding process, which makes the curved door frame easy to rebound and deform.
  • the precision is higher and the residual stress is higher than that of directly rolling the steel sheet into a curved door frame. Small, not easy to deform, and can improve production efficiency, less waste, less cutting process and high cutting quality.
  • FIGS. 12 and 13 show an example of a manufacturing method in which the height of the door frame exceeds the length of the winding plate of the winding machine.
  • the two steel plates may be separately rolled into the second cylindrical body 40b, and the rounding process is performed on the two second cylindrical bodies 40b, respectively, and then the two second cylindrical bodies 40b are welded together to form the third cylindrical body 40c.
  • the third cylinder 40c is cut according to the size of the door frame 40 to be formed to form at least one door frame 40.
  • Manufacturing the door frame according to this method can also have the beneficial effects described above.
  • the joint position generates a large amount of heat during the welding process, and the weld seam shrinks during the cooling process, so that two curved door frames are produced.
  • the angle is deformed and it is difficult to correct.
  • 17 and 18 show the angular deformation produced by directly welding two curved door frames 1. If an angular deformation occurs, the angle between the two curved door frames 1 is less than 180 (Fig. 17) or greater than 180 ( Figure 18), not equal to 180°.
  • the door frame 40 is formed by first welding the two second cylinders 40b together to form the third cylinder 40c, and then cutting the third cylinder 40c.
  • the two cylinders The body welding deformation is small, easy to control, no additional control deformation, and automatic welding is possible, and the efficiency is high. Therefore, according to the present invention, in the case where the door frame 40 is spliced by a plurality of door frames, the angle between the plurality of door frames 40 can be made 180° (as shown in FIG. 19).
  • FIGS. 10 to 13 describe a method of manufacturing the door frame 40 in which the first barrel section 10 and the second barrel section 20 are cylindrical and the door frame 40 is rectangular in plan view, in which case, The first cylinder 40a and the second cylinder 40b may be rolled into a cylindrical shape.
  • the first barrel section 10 and the second barrel section 20 have a truncated conical shape and the door frame 40 has a trapezoidal door frame 40 in plan view
  • the first cylinder body 40a and the second cylinder body 40b can be wound into a truncated cone shape.
  • the step of manufacturing the door frame 40 may further include forming a connecting portion 42 at a periphery of the door frame body 41 of the door frame 40 (for example, four edges of the door frame body 41) after the door frame 40 is formed.
  • the connecting portion 42 can be formed by sanding. The specific structure of the connecting portion 42 has been described in detail when describing the tower section, and will not be described herein. After the connecting portion 42 is formed, the edge of the door frame 40 can be beveled to facilitate welding.
  • the adjacent edges of the door frame 40 can be made into a rounded transition, such as the door frame 40 shown in FIG. 6, for smooth transition of the weld seam, ensuring convenient operability of the welding construction.
  • the manufactured door frame 40 shown in FIG. 14 can be embedded in the opening 30 and then the door frame 40 can be welded to the first barrel section 10 and the second barrel section 20. After welding, the weld bead can be sanded to achieve a smooth transition between the door frame 40 and the first barrel section 10 and the second barrel section 20. Finally, as shown in FIG. 16, a door opening 43 can be formed in the door frame 40 to form a final tower section.
  • the rounding process can be performed on the first barrel section and the second barrel section when the first barrel section and the second barrel section are manufactured, thereby The roundness of the first barrel section and the second barrel section can be ensured.
  • the manufacture of the door frame can be made easier, and the welding of the door frame and the adjacent first and second barrel segments can be performed more easily, and it is easy to ensure Welding quality.
  • a smooth transition between the door frame and the first barrel section and the second barrel section can be achieved as compared with the case where the connecting portion is not formed, and the door frame can be easily welded to the first barrel section and the first
  • the two-tube joint can effectively reduce the stress concentration factor at the weld seam during welding, reduce the deformation and ensure the roundness, and can be more easily aligned when the door frame and the first cylinder section and the second cylinder section are docked, which is beneficial to ensure Welding quality.
  • the precision is higher, the residual stress is smaller, and the deformation is less, and the deformation is smaller, and the deformation is less, and It can improve production efficiency, less waste, less cutting process and high cutting quality.
  • the two cylinders have small welding deformation, easy control, no additional control deformation, and automatic welding ,efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种塔筒段的制造方法、塔筒段和风力发电机组,制造方法包括:制造第一筒节(10)和第二筒节(20);将第一筒节(10)和第二筒节(20)结合到一起;在第一筒节(10)上开设第一缺口(11),并在第二筒节(20)上开设第二缺口(21),第一缺口(11)及第二缺口(21)组成开口(30),第一缺口(11)的高度小于第一筒节(10)的高度,第二缺口(21)的高度小于第二筒节(20)的高度;制造门框(40),将门框(40)嵌入到开口(30)中并焊接到第一筒节(10)和第二筒节(20),其中,门框(40)上开设有门孔(43)。

Description

塔筒段的制造方法、塔筒段和风力发电机组 技术领域
本发明涉及风力发电机组技术领域,更具体地讲,本发明涉及一种塔筒段的制造方法、塔筒段和风力发电机组。
背景技术
风力发电机组用于将风能转换成电能。风力发电机组包括塔筒和安装在塔筒顶部的风力发电机。
为了便于人员进入塔筒内部,需要在塔筒上开设门孔并使用门框进行局部加强。现有的门框呈弧形,并且与塔筒之间为T型焊缝,导致门框与塔筒之间的应力集中非常大。另外,现有的门框设计导致门框所在的筒节的厚度增大,增加了塔筒的总重量,因此导致塔筒制造和安装成本增加。
发明内容
本发明的目的在于提供一种便于焊接并且能够有效降低应力集中的具有门框的塔筒段的制造方法、塔筒段和风力发电机组。
根据本发明的一方面,提供一种塔筒段的制造方法,所述制造方法包括:制造第一筒节和第二筒节;将所述第一筒节和所述第二筒节结合到一起;在所述第一筒节上开设第一缺口,并在所述第二筒节上开设第二缺口,所述第一缺口及所述第二缺口组成开口,所述第一缺口的高度小于所述第一筒节的高度,所述第二缺口的高度小于所述第二筒节的高度;制造门框,并且所述门框被嵌入到所述开口中并焊接到所述第一筒节和所述第二筒节,其中,所述门框上开设有门孔。
根据本发明的另一方面,提供一种塔筒段,所述塔筒段包括:第一筒节,具有第一缺口,所述第一缺口的高度小于所述第一筒节的高度;第二筒节,与所述第一筒节结合,所述第二筒节具有第二缺口,所述第二缺口的高度小于所述第二筒节的高度,所述第一缺口和所述第二缺口共同形成开口;门框,所述门框嵌入到所述开口中并焊接到所述第一筒节和所述第二筒节,其中, 所述门框上开设有门孔。
根据本发明的另一方面,提供一种风力发电机组,所述风力发电机组包括如上所述的塔筒段。
根据本发明,可保证第一筒节和第二筒节的圆度,门框的制造可更容易,门框与相邻的第一筒节和第二筒节的焊接可更容易操作,容易保证焊接质量,有效减小焊接时焊缝处的应力集中系数,减小变形并保证圆度,并且在对接门框与第一筒节和第二筒节时,可更容易对齐。
另外,根据本发明制造的门框,其精度更高、残余应力更小、不易变形,并且可提高生产效率、废料少、切割工序少且切割质量高。
附图说明
通过下面结合附图进行的详细描述,本发明的上述和其它目的、特点和优点将会变得更加清楚,其中:
图1是根据本发明的实施例的塔筒段的立体图;
图2是图1中的塔筒段的分解视图;
图3是图1中的塔筒段的平面图;
图4是沿图3的A-A线截取的截面图;
图5是图4中的P部分的示意图;
图6是根据本发明的另一实施例的塔筒段的平面图;
图7是根据本发明的实施例的制造塔筒段的流程图;
图8是将第一筒节和第二筒节组合在一起的状态的示意图;
图9是在第一筒节和第二筒节上开设开口的示意图;
图10是用于形成门框的第一筒体的示意图;
图11是切割第一筒体以形成多个门框的示意图;
图12是用于形成门框的第三筒体的示意图;
图13是切割第二筒体以形成多个门框的示意图;
图14是根据本发明的实施例的门框的示意图;
图15是将门框安装到第一筒节和第二筒节上的开口中的示意图;
图16是在门框上开设门孔的示意图;
图17和图18是根据现有技术的门框产生角变形的示意图;
图19是根据本发明的门框未产生角变形的示意图。
具体实施方式
以下,将参照图1至图16描述根据本发明的实施例的塔筒段、塔筒段的制造方法和风力发电机组。
首先,将参照图1至图6描述根据本发明的实施例的塔筒段。
如图1至图6所示,根据本发明的实施例的塔筒段包括:第一筒节10,具有第一缺口11,第一缺口11的高度小于第一筒节10的高度;第二筒节20,与第一筒节10结合,第二筒节20具有第二缺口21,第二缺口21的高度小于第二筒节20的高度,第一缺口11和第二缺口21共同形成开口30;门框40,门框40嵌入到开口30中并焊接到第一筒节10和第二筒节20,门框40上开设有门孔43。
如图1所示,第一筒节10和第二筒节20可由钢板制成,并可卷制成筒状,第一筒节10和第二筒节20的端部可彼此对准,并且可通过焊接彼此结合到一起。
如图1至图3所示,第一筒节10和第二筒节20为圆柱形,且第一筒节10和第二筒节20的直径可彼此相等,从而第一筒节10和第二筒节20可构成的塔筒段可构成圆柱形塔筒的一部分。然而,本发明不限于此,第一筒节10和第二筒节20还可以为截圆锥形,即,第一筒节10和第二筒节20的直径均可以是逐渐变化的,从而第一筒节10和第二筒节20构成的塔筒段可构成圆锥形塔筒的一部分。
另外,第一筒节10和第二筒节20的高度可彼此相等或不等,而不受具体限制。
第一筒节10上可形成有第一缺口11,第二筒节20上可形成有第二缺口21,第一缺口11和第二缺口21可共同形成开口30。其中,第一缺口11的高度可小于第一筒节10的高度,第二缺口21的高度可小于第二筒节20的高度,从而第一筒节10和第二筒节20可形成360°环。
如果第一缺口的高度等于第一筒节的高度且第二缺口的高度等于第二筒节的高度,则第一筒节和第二筒节形成小于360°环,则在制造第一筒节和第二筒节时,无法执行回圆工艺,只能在焊接门框后一起执行回圆工艺,由于门框的厚度一般比筒节的厚度厚,因此目前基本不能对筒节和门框一起执行回圆工艺。根据本发明,由于第一筒节10和第二筒节20形成360°环, 因此可在制造第一筒节10和第二筒节20时,对第一筒节10和第二筒节20执行回圆工艺,从而能够保证第一筒节10和第二筒节20的圆度。
另外,第一缺口11和第二缺口21的高度可彼此相等或不等,而不受具体限制。
根据本发明,门框40可嵌入到开口30中并可焊接到第一筒节10和第二筒节20,门框40上开设有门孔43,以便于人员进出塔筒。根据本发明,门框40也可由钢板制成。如图3所示,门孔43可呈长圆形或椭圆形。
如图1所示,第一筒节10和第二筒节20形成圆柱,门框40可具有沿着该圆柱的母线方向的两条直边以及沿着该圆柱的圆周方向的两条弧形边,其中,两条弧形边与该圆柱的弧度基本一致,并与该圆柱共同围成360°环。如图3所示,从平面图上来看,当第一筒节10和第二筒节20形成圆柱形时,门框40可呈矩形。因此,“门框40为矩形”指的是从平面图来看,门框40呈矩形。
应理解的是,当第一筒节10和第二筒节20形成截圆锥时,在平面图上,门框40可呈梯形,即,门框40也可具有沿着该截圆锥的母线方向的两条直边以及沿着该截圆锥的圆周方向的两条弧形边,其中,两条弧形边与该截圆锥的弧度基本一致,并与该截圆锥共同围成360°环。因此,“门框40为梯形”指的是从平面图来看,门框40呈梯形。
根据本发明,当门框40呈矩形或梯形时,门框40的制造可更容易,并且门框40与相邻的第一筒节10和第二筒节20的焊接可更容易操作,容易保证焊接质量。相反,当从平面图上看,门框呈弧形时,首先,制造弧形门框的工艺复杂,难以保证制造精度,另外,当焊接门框时,门框与相邻筒节形成的焊缝为立体曲线,难以对准并且难以执行焊接工艺,导致焊接质量降低。
如图4和图5所示,门框40的厚度可比第一筒节10和第二筒节20的厚度厚,门框40的外侧凸出于第一筒节10和第二筒节20的外壁,且门框40的内侧凸出于第一筒节10和第二筒节20的内壁。通过对门框40进行加厚,可以有效提高门框40周围塔筒的屈曲和疲劳的承载力。
另外,如图4和图5所示,根据本发明的实施例,门框40可包括门框本体41和形成在门框本体41的外周(例如,门框本体41的四个边缘)处的连接部42。如图5所示,连接部42的厚度可小于门框本体41的厚度并大于第一筒节10和第二筒节20的厚度t2。另外,连接部42的厚度沿塔筒段的周向 可均匀减小,连接部42与第一筒节10接触的部分的最小厚度t1仍大于第一筒节10和第二筒节20的厚度t2。
根据本发明,通过形成连接部42并使连接部42的厚度沿塔筒段的周向均匀减小,与未形成连接部42的情况相比,可以实现门框40与第一筒节10和第二筒节20之间的平滑过渡,可便于将门框焊接到第一筒节10和第二筒节20,并可有效减小焊接时焊缝处的应力集中系数,减小变形并保证圆度。另外,根据本发明,连接部42的最小厚度t1大于第一筒节10和第二筒节20的厚度t2,相较于连接部42的最小厚度t1等于第一筒节10和第二筒节20的厚度t2的情况,在对接门框40与第一筒节10和第二筒节20时,可更容易对齐,有利于保证焊接质量。
另外,根据本发明,门框40可以为一体结构或者由两段或更多段门框沿塔筒段的轴向拼接而成。
图6是根据本发明的另一实施例的塔筒段的平面图,如图6所示,门框40的相邻边之间圆角过渡,以便焊缝的顺利过渡,保证焊接施工的方便可操作性。
另外,应理解的是,虽然在图1至图6中仅示出了在第一筒节10和第二筒节20上形成一个开口30的示例,但本发明不限于此,可在第一筒节10和第二筒节20上形成多个开口30(即,在第一筒节10上形成多个第一缺口11,在第二筒节20上形成多个第二缺口21,多个第一缺口11和多个第二缺口21形成多个开口30),并将多个门框40嵌入到多个开口30中。例如,可在图1中的开口30的相对侧开设另一开口,并可在另一开口上安装门框40。
根据本发明的另一实施例,可提供一种塔筒段的制造方法。以下,将参照图7至图16描述根据本发明的实施例的塔筒段的制造方法,为了避免冗余,将省略与以上塔筒段的描述重复的描述。
根据本发明的实施例,塔筒段的制造方法可包括:制造第一筒节10和第二筒节20(S10);将第一筒节10和第二筒节20结合到一起(S20);在第一筒节10上开设第一缺口11,并在第二筒节20上开设第二缺口21,第一缺口11及第二缺口21组成开口30(S30),第一缺口11的高度小于第一筒节10的高度,第二缺口21的高度小于第二筒节20的高度;制造门框40并将门框40嵌入到开口30中并焊接到第一筒节10和第二筒节20(S40),门框40上开设有门孔43。
在步骤S10中,可首先制造第一筒节10和第二筒节20。可通过例如卷板机将钢板卷制成筒,然后执行回圆工艺,来制造第一筒节10和第二筒节20。可将第一筒节10和第二筒节20卷制成圆柱形或者截圆锥形。
在步骤S20中,如图8所示,可通过例如焊接将第一筒节10和第二筒节20焊接到一起。
在步骤S30中,如图9所示,可在第一筒节10和第二筒节20上开设开口30。可根据将要安装的门框40的外形尺寸在第一筒节10和第二筒节20上开设开口30。开口30可包括设置在第一筒节10上的第一缺口11和设置在第二筒节20上的第二缺口21,第一缺口11的高度小于第一筒节10的高度,第二缺口21的高度小于第二筒节20的高度。
如果第一缺口的高度等于第一筒节的高度且第二缺口的高度等于第二筒节的高度,则第一筒节和第二筒节形成小于360°环,则在制造第一筒节和第二筒节时,无法执行回圆工艺,只能在焊接门框后一起执行回圆工艺,由于门框的厚度一般比筒节的厚度厚,因此目前基本不能对筒节和门框一起执行回圆工艺。根据本发明,由于第一筒节10和第二筒节20形成360°环,因此可在制造第一筒节10和第二筒节20时,对第一筒节10和第二筒节20执行回圆工艺,从而能够保证第一筒节10和第二筒节20的圆度。
根据本发明,在形成开口30之后,可对开口30周围的钢板进行打磨处理并开坡口,以便于焊接门框40。
在步骤S40中,制造门框40并将门框40安装到开口30中。
图10和图11示出了门框高度未超出卷板机的卷板长度的制造方法的示例。如图10和图11所示,可先将一块钢板卷制成第一筒体40a,然后对第一筒体40a执行回圆工艺,最后根据将要形成的门框40的尺寸对第一筒体40a进行切割,以形成至少一个门框40。
对于利用钢板卷制成弧形门框的方案,实际使用的下料钢板的尺寸要大于门框设计尺寸才能保证门框设计的形状,门框最终的尺寸是通过切除多余的钢材的方式来实现的,此方案废料较多,成本高,另外此方案无法执行回圆工艺,导致弧形门框容易回弹变形。然而,根据本发明,通过将一块钢板卷制成第一筒体40a,然后切割形成多个弧形的门框40,与直接将钢板卷制成弧形门框相比,精度更高、残余应力更小、不易变形,并且可提高生产效率、废料少、切割工序少且切割质量高。
图12和图13示出了门框高度超出卷板机的卷板长度的制造方法的示例。可先将两块钢板分别卷制成第二筒体40b,并分别对两个第二筒体40b执行回圆工艺,然后将两个第二筒体40b焊接到一起以形成第三筒体40c,最后根据将要形成的门框40的尺寸切割第三筒体40c以形成至少一个门框40。
根据该方法来制造门框也可具有以上描述的有益效果。另外,如果首先形成两个弧形门框,然后对两个弧形门框直接进行焊接,对接位置在焊接过程中会产生大量的热,焊缝冷却过程中焊缝收缩,使得两个弧形门框产生角变形,很难校正。图17和图18示出了直接焊接两个弧形门框1产生的角变形,如果产生角变形,则两个弧形门框1之间的夹角小于180°(图17)或大于180°(图18),而不等于180°。根据本发明,通过先将两个第二筒体40b焊接到一起形成第三筒体40c后对第三筒体40c切割来形成门框40,与焊接两个弧形门框1相比,两个筒体焊接变形小,容易控制,无需额外控制变形,且可以进行自动焊,效率高。因此根据本发明,对于门框40由多段门框拼接而成的情况,可使得多段门框40之间的夹角为180°(如图19所示)。
另外,应理解的是,图10至图13描述了第一筒节10和第二筒节20呈圆柱形、从平面图上看门框40呈矩形的门框40的制造方法,在这种情况下,可将第一筒体40a和第二筒体40b卷制成圆柱形。当第一筒节10和第二筒节20呈截圆锥形、从平面图上看门框40呈梯形的门框40,可将第一筒体40a和第二筒体40b卷制成截圆锥形。
根据本发明的实施例,制造门框40的步骤还可包括:在形成门框40之后,在门框40的门框本体41的周边(例如,门框本体41的四个边缘)形成连接部42。例如,可通过打磨来形成连接部42。在描述塔筒段时已经详细描述了连接部42的具体结构,在此不做赘述。在形成连接部42之后,可对门框40的边缘开坡口,以便于焊接。
根据本发明的实施例,可将门框40的相邻边之间制造成为圆角过渡,如图6中示出的门框40,以便焊缝的顺利过渡,保证焊接施工的方便可操作性。
如图15所示,可将图14中示出的制造好的门框40嵌入到开口30中然后将门框40焊接到第一筒节10和第二筒节20。在焊接后,可对焊缝进行打磨以实现门框40与第一筒节10和第二筒节20之间的平滑过渡。最后,如图16所示,可在门框40上开设门孔43,形成最终的塔筒段。
应理解的是,虽然按照以上顺序描述了制造塔筒段的方法,但除非有明 显的先后步骤关系,否则制造塔筒段的方法不受上述先后顺序的限制。
根据本发明,由于第一筒节和第二筒节形成360°环,因此可在制造第一筒节和第二筒节时,对第一筒节和第二筒节执行回圆工艺,从而能够保证第一筒节和第二筒节的圆度。另外,根据本发明,当从平面图上看,门框呈矩形或梯形,因此门框的制造可更容易,并且门框与相邻的第一筒节和第二筒节的焊接可更容易操作,容易保证焊接质量。
根据本发明,通过形成连接部,与未形成连接部的情况相比,可以实现门框与第一筒节和第二筒节之间的平滑过渡,可便于将门框焊接到第一筒节和第二筒节,可有效减小焊接时焊缝处的应力集中系数,减小变形并保证圆度,并且在对接门框与第一筒节和第二筒节时,可更容易对齐,有利于保证焊接质量。
根据本发明,通过将一块钢板卷制成筒体,然后切割形成多个弧形的门框,与直接将钢板卷制成弧形门框相比,精度更高、残余应力更小、不易变形,并且可提高生产效率、废料少、切割工序少且切割质量高。另外,通过先将两个筒体焊接到一起然后切割来形成门框,与焊接两个弧形门框相比,两个筒体进行焊接变形小,容易控制,无需额外控制变形,且可以进行自动焊,效率高。
尽管已经参照附图具体描述了本发明的示例性实施例,但是本领域的技术人员应该理解,在不脱离权利要求所限定的本发明的精神和范围的情况下,可以对其进行形式和细节上的各种改变。

Claims (15)

  1. 一种塔筒段的制造方法,其特征在于,所述制造方法包括:
    制造第一筒节和第二筒节;
    将所述第一筒节和所述第二筒节结合到一起;
    在所述第一筒节上开设第一缺口,并在所述第二筒节上开设第二缺口,所述第一缺口及所述第二缺口组成开口,所述第一缺口的高度小于所述第一筒节的高度,所述第二缺口的高度小于所述第二筒节的高度;
    制造门框,并且所述门框被嵌入到所述开口中并焊接到所述第一筒节和所述第二筒节,其中,所述门框上开设有门孔。
  2. 根据权利要求1所述的制造方法,其特征在于,制造所述门框的步骤包括:
    将一块钢板卷制成第一筒体;
    对所述第一筒体执行回圆工艺;
    沿着第一筒体的长度方向切割所述第一筒体以形成至少一个所述门框。
  3. 根据权利要求1所述的制造方法,其特征在于,制造所述门框的步骤包括:
    将两块钢板分别卷制成第二筒体;
    对所述第二筒体执行回圆工艺;
    将两个所述第二筒体焊接到一起以形成第三筒体;
    沿着第三筒体的长度方向切割所述第三筒体以形成至少一个所述门框。
  4. 根据权利要求2所述的制造方法,其特征在于,制造所述门框的步骤还包括:
    在形成所述门框之后,在所述门框的本体的周边形成连接部,所述连接部的厚度小于所述门框的本体的厚度并大于所述第一筒节和所述第二筒节的厚度。
  5. 根据权利要求3所述的制造方法,其特征在于,制造所述门框的步骤还包括:
    在形成所述门框之后,在所述门框的本体的周边形成连接部,所述连接部的厚度小于所述门框的本体的厚度并大于所述第一筒节和所述第二筒节的厚度。
  6. 根据权利要求2所述的制造方法,其特征在于,所述门框为矩形或梯形,制造所述门框的步骤还包括:将所述门框的相邻边之间制造成为圆角过渡。
  7. 根据权利要求3所述的制造方法,其特征在于,所述门框为矩形或梯形,制造所述门框的步骤还包括:将所述门框的相邻边之间制造成为圆角过渡。
  8. 根据权利要求1所述的制造方法,其特征在于,在制造所述第一筒节和所述第二筒节的步骤中,首先将钢板卷制成筒,然后执行回圆工艺。
  9. 一种塔筒段,其特征在于,所述塔筒段包括:
    第一筒节,具有第一缺口,所述第一缺口的高度小于所述第一筒节的高度;
    第二筒节,与所述第一筒节结合,所述第二筒节具有第二缺口,所述第二缺口的高度小于所述第二筒节的高度,所述第一缺口和所述第二缺口共同形成开口;
    门框,所述门框嵌入到所述开口中并焊接到所述第一筒节和所述第二筒节,其中,所述门框上开设有门孔。
  10. 根据权利要求9所述的塔筒段,其特征在于,所述门框的厚度比所述第一筒节和所述第二筒节的厚度厚,所述门框的外侧凸出于所述第一筒节和所述第二筒节的外壁,所述门框的内侧凸出于所述第一筒节和所述第二筒节的内壁。
  11. 根据权利要求9所述的塔筒段,其特征在于,所述门框包括门框本体和形成在所述门框本体外周的连接部,所述连接部的厚度小于所述门框本体的厚度并大于所述第一筒节和所述第二筒节的厚度。
  12. 根据权利要求11所述的塔筒段,其特征在于,所述连接部的厚度沿所述塔筒段的周向均匀减小。
  13. 根据权利要求9所述的塔筒段,其特征在于,所述门框为一体式结构。
  14. 根据权利要求9所述的塔筒段,其特征在于,所述门框为矩形或梯形,所述门框的相邻边之间圆角过渡。
  15. 一种风力发电机组,其特征在于,所述风力发电机组包括如权利要求9所述的塔筒段。
PCT/CN2018/091803 2017-12-29 2018-06-19 塔筒段的制造方法、塔筒段和风力发电机组 WO2019128141A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2018374067A AU2018374067B2 (en) 2017-12-29 2018-06-19 Method for manufacturing tower tube section, tower tube section and wind turbine generator system
ES18882291T ES2882909T3 (es) 2017-12-29 2018-06-19 Método de fabricación de sección de tubo de torre, sección de tubo de torre y unidad de generador de potencia eólica
EP18882291.0A EP3540216B1 (en) 2017-12-29 2018-06-19 Method for manufacturing tower barrel section, tower barrel section and wind power generator unit
US16/464,085 US20210115902A1 (en) 2017-12-29 2018-06-19 Method for manufacturing tower tube section, tower tube section and wind turbine generator system
US18/543,526 US20240117787A1 (en) 2017-12-29 2023-12-18 Method for manufacturing tower tube section, tower tube section and wind turbine generator system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711470055.9A CN108000076B (zh) 2017-12-29 2017-12-29 塔筒段的制造方法、塔筒段、塔筒和风力发电机组
CN201711470055.9 2017-12-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/464,085 A-371-Of-International US20210115902A1 (en) 2017-12-29 2018-06-19 Method for manufacturing tower tube section, tower tube section and wind turbine generator system
US18/543,526 Division US20240117787A1 (en) 2017-12-29 2023-12-18 Method for manufacturing tower tube section, tower tube section and wind turbine generator system

Publications (1)

Publication Number Publication Date
WO2019128141A1 true WO2019128141A1 (zh) 2019-07-04

Family

ID=62049238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091803 WO2019128141A1 (zh) 2017-12-29 2018-06-19 塔筒段的制造方法、塔筒段和风力发电机组

Country Status (6)

Country Link
US (2) US20210115902A1 (zh)
EP (1) EP3540216B1 (zh)
CN (1) CN108000076B (zh)
AU (1) AU2018374067B2 (zh)
ES (1) ES2882909T3 (zh)
WO (1) WO2019128141A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108000076B (zh) * 2017-12-29 2024-06-21 金风科技股份有限公司 塔筒段的制造方法、塔筒段、塔筒和风力发电机组
CN109869282B (zh) * 2019-03-14 2022-12-27 北京金风科创风电设备有限公司 塔筒段、塔筒段的制造方法、塔筒和风力发电机组
CN110682064A (zh) * 2019-11-01 2020-01-14 三一重能有限公司 分片式塔筒结构及其制造方法
CN113458714A (zh) * 2020-03-31 2021-10-01 新疆金风科技股份有限公司 塔筒段的成型方法、塔筒段、塔筒以及风力发电机组
CN113798783A (zh) * 2020-06-16 2021-12-17 中车兰州机车有限公司 一种筒节的成型方法
CN111730179B (zh) * 2020-07-08 2022-04-05 南通泰胜蓝岛海洋工程有限公司 一种塔架门框的焊接工艺
CN113334035A (zh) * 2021-07-29 2021-09-03 衡阳泰豪通信车辆有限公司 一种薄壁大管径带缺口卷筒加工的方法
CN114905171A (zh) * 2022-05-18 2022-08-16 河北工业大学 一种筒体密闭结构的加工工装及加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057074A (zh) * 2004-11-10 2007-10-17 维斯塔斯风力系统有限公司 用于风轮机的塔架部分、孔口覆盖系统、用于制造塔架部分的方法及其应用
EP2840259A1 (en) * 2013-08-23 2015-02-25 Alstom Renovables España, S.L. Tower portion
WO2015169968A1 (en) * 2014-05-09 2015-11-12 Doxatech Aps Reinforcement of an access-way to a tower
CN205805835U (zh) * 2016-05-25 2016-12-14 上海电气风电集团有限公司 一种塔筒与门框的连接结构
CN108000076A (zh) * 2017-12-29 2018-05-08 新疆金风科技股份有限公司 塔筒段的制造方法、塔筒段、塔筒和风力发电机组

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8171674B2 (en) * 2010-12-16 2012-05-08 General Electric Company Doorway for a wind turbine tower
CN203856651U (zh) * 2013-12-23 2014-10-01 江苏海力风电设备科技有限公司 一种风力发电机组用塔筒
EP3134644B1 (en) * 2014-04-25 2018-04-04 Vestas Wind Systems A/S Tower section production process
CN104405597B (zh) * 2014-10-15 2018-04-03 新疆金风科技股份有限公司 风机塔架的门框、门框单元、门框的制造方法及风机塔架
CN204152736U (zh) * 2014-10-21 2015-02-11 东方电气集团东方汽轮机有限公司 一种风力发电机组塔架及其螺旋型筒体结构
EP3184812B1 (en) * 2015-12-22 2020-05-06 Nordex Energy Spain, S.A.U. Curved cross-section wind turbine tower and wind turbine comprising said tower
ES2828348T3 (es) * 2016-03-14 2021-05-26 Siemens Gamesa Renewable Energy As Marco de puerta de una torre de turbina eólica
CN207777089U (zh) * 2017-12-29 2018-08-28 新疆金风科技股份有限公司 塔筒段、塔筒和风力发电机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057074A (zh) * 2004-11-10 2007-10-17 维斯塔斯风力系统有限公司 用于风轮机的塔架部分、孔口覆盖系统、用于制造塔架部分的方法及其应用
EP2840259A1 (en) * 2013-08-23 2015-02-25 Alstom Renovables España, S.L. Tower portion
WO2015169968A1 (en) * 2014-05-09 2015-11-12 Doxatech Aps Reinforcement of an access-way to a tower
CN205805835U (zh) * 2016-05-25 2016-12-14 上海电气风电集团有限公司 一种塔筒与门框的连接结构
CN108000076A (zh) * 2017-12-29 2018-05-08 新疆金风科技股份有限公司 塔筒段的制造方法、塔筒段、塔筒和风力发电机组

Also Published As

Publication number Publication date
EP3540216A4 (en) 2020-02-19
AU2018374067B2 (en) 2021-01-28
CN108000076B (zh) 2024-06-21
EP3540216B1 (en) 2021-07-28
EP3540216A1 (en) 2019-09-18
US20240117787A1 (en) 2024-04-11
AU2018374067A1 (en) 2019-07-18
ES2882909T3 (es) 2021-12-03
CN108000076A (zh) 2018-05-08
US20210115902A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2019128141A1 (zh) 塔筒段的制造方法、塔筒段和风力发电机组
CN101829856B (zh) 超大型球形封头的制造方法
US8171674B2 (en) Doorway for a wind turbine tower
CN102491011B (zh) 大型回收油气储罐
US10183320B2 (en) Method for producing a multi-layer large pipe
WO2011142348A1 (ja) 超伝導加速空洞および超伝導加速空洞の製造方法
WO2019061891A1 (zh) 塔段、塔架、风力发电机组及制造塔段的方法
CN102700870B (zh) 封头模块、大型容器及两者的制造方法
CN109869282B (zh) 塔筒段、塔筒段的制造方法、塔筒和风力发电机组
JP6813589B2 (ja) 風力原動機に用いられる支持構造
CN207777089U (zh) 塔筒段、塔筒和风力发电机组
CN213681781U (zh) 一种桥梁墩柱外包钢护筒用环形抱箍
CN102678694B (zh) 大型风电机组筒式塔架的无法兰连接方式及其实施方法
JP7187707B2 (ja) 風力タービンのための支持構造
CN211007865U (zh) 一种复合型电杆结构
CN204603607U (zh) 一种防止塔体法兰内凹的支撑结构
CN220452502U (zh) 一种大直径法兰锻件
CN115043265B (zh) 铝制系留缆绕线滚筒及其制备工艺
CN202646258U (zh) 大型风电机组筒式塔架的无法兰连接方式
JP7151807B2 (ja) 機械式継手管を有する鋼管矢板の製造方法
CN111395530A (zh) 一种逆作法环梁节点处的环梁主筋构造及制造方法
CN108035852B (zh) 塔筒分段、组合式塔筒及风力发电机组
CN114251234B (zh) 风电塔架及其制造方法
CN107268663A (zh) 一种大功率风机单桩组装工艺
JP6304148B2 (ja) ダクト接続方法及びダクト接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018374067

Country of ref document: AU

Date of ref document: 20180619

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018882291

Country of ref document: EP

Effective date: 20190606

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE