WO2019061891A1 - 塔段、塔架、风力发电机组及制造塔段的方法 - Google Patents

塔段、塔架、风力发电机组及制造塔段的方法 Download PDF

Info

Publication number
WO2019061891A1
WO2019061891A1 PCT/CN2017/118235 CN2017118235W WO2019061891A1 WO 2019061891 A1 WO2019061891 A1 WO 2019061891A1 CN 2017118235 W CN2017118235 W CN 2017118235W WO 2019061891 A1 WO2019061891 A1 WO 2019061891A1
Authority
WO
WIPO (PCT)
Prior art keywords
longitudinal
tower
tower section
flanges
flange
Prior art date
Application number
PCT/CN2017/118235
Other languages
English (en)
French (fr)
Inventor
张紫平
曹旭东
刘金磊
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to AU2017433607A priority Critical patent/AU2017433607B2/en
Priority to US16/626,682 priority patent/US11118569B2/en
Priority to EP17927093.9A priority patent/EP3690236B1/en
Priority to ES17927093T priority patent/ES2949383T3/es
Publication of WO2019061891A1 publication Critical patent/WO2019061891A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of wind power generation technology, and more particularly to a tower section for manufacturing a wind turbine tower, a tower manufactured using the tower section, a wind turbine including the tower, and a manufacturing tower section Methods.
  • the tower in the wind turbine is a load-bearing, pressure-bearing and load-bearing component, and its structure directly affects the operational reliability of the wind turbine.
  • the cylindrical tower is a kind of common tower structure. Due to the huge structure, the cylindrical tower is usually formed by connecting a plurality of tower sections in the longitudinal direction, wherein each tower section is divided into a plurality of pieces in the circumferential direction. For transportation.
  • Figure 1A shows the welding of a conventional tower section and its singulation.
  • the sheet-like material is first wound and welded at the butt joint to form a butt weld 3', thereby producing a barrel joint member 1'.
  • the plurality of barrel members 1' are then sequentially joined in the longitudinal direction.
  • the butt welds 3' of the respective barrel members 1' are offset at a certain angle in the circumferential direction so as to be staggered in the longitudinal direction, so that a T-joint is present, in order to ensure The welding quality of the T-joint is strictly required for the welding process.
  • the segment cutting portion 6' needs to avoid the butt weld 3', because the cutting slit of the segment cutting portion 6' is small, and the width thereof is smaller than the width of the butt weld 3'. It is not possible to completely remove the butt weld 3'. Therefore, it is necessary to perform penetration welding of the butt weld 3' to ensure the welding quality.
  • Another object of the present disclosure is to provide a tower section, a tower, and a method of manufacturing the same that reduce a large amount of welding work.
  • a method of manufacturing a tower section comprising the steps of: (a) sequentially connecting a plurality of barrel members in a longitudinal direction to form a tower section body; (c) following the tower a longitudinal direction of the segment body, at least two longitudinal slits are cut in the tower segment body to divide the tower segment body into at least two segments; (d) a longitudinal flange pair is disposed in the longitudinal slit, The pair of longitudinal flanges respectively protrude from the inner and outer surfaces of the tower body along the radial direction of the tower body.
  • the barrel member has a longitudinal butt joint, and in step (a), the butt seam of the plurality of barrel members is disposed at a position corresponding to a position of at least one of the longitudinal slits .
  • the method also includes the step (b) of joining the circumferential flanges at both longitudinal ends of the tower section body after forming the tower section body by the step (a).
  • step (c) the butt seam is cut by cutting the longitudinal slit.
  • the circumferential flange is annular, respectively formed by splicing at least two curved flanges, and a seam is formed between adjacent curved flanges, and the step (b) further comprises: respectively: The longitudinal slit is aligned with the longitudinal direction.
  • the step (c) includes: when cutting the longitudinal slit, fixedly connecting the inner wall support member on the segment sheets on both sides of the longitudinal slit with the movement of the cutting position, or before cutting the longitudinal slit The connecting inner wall support is fixed to the segments on both sides of the longitudinal slit, and then the longitudinal slit is cut from the outside.
  • the method also includes the step (e) of welding at the junction of the longitudinal flange and the tower body.
  • the step (a) further includes forming the tubular joint member by winding the plate material, and performing intermittent welding or continuous welding on opposite sides of the plate material to form the butt joint.
  • a tower section including: a tower section body, the tower section body being divided into at least two segments by a longitudinal slit formed in a longitudinal direction;
  • the longitudinal flange pair is disposed longitudinally in the longitudinal slit, protrudes radially from the inner surface and the outer surface of the main body of the tower segment, and is weldedly connected to the corresponding segment.
  • the tower body includes a plurality of end-to-end tubular members, the tubular members forming longitudinal butt joints, the longitudinal slits being formed at the longitudinal butt joints and cutting the longitudinal butt joints.
  • the tower section further includes a circumferential flange connected to both ends of the main body of the tower segment, wherein the circumferential flanges are respectively formed by splicing at least two arc-shaped flanges, and a joint seam is formed between adjacent curved flanges. The seam is aligned with the longitudinal slit in the longitudinal direction.
  • the pair of longitudinal flanges includes a pair of longitudinal flanges that are fixedly coupled to the respective segments by double-sided angular seam welding.
  • a tower which is manufactured by joining the plurality of tower sections to each other in the longitudinal direction.
  • a wind power generator set comprising the above-described tower.
  • the wind power generator comprising the above-described tower.
  • Figure 1A shows a schematic of a conventional tower section.
  • Figure 1B shows a cross-sectional view of a longitudinal flange in a conventional tower section.
  • FIG. 2 illustrates a perspective view of a tower section in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 3 illustrates a partial enlarged view of a longitudinal flange of a tower section in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 4 illustrates a perspective view of a circumferential flange of a tower section in accordance with an exemplary embodiment of the present disclosure.
  • FIG. 5A illustrates a perspective view of a barrel member constituting a tower section according to an exemplary embodiment of the present disclosure.
  • FIG. 5B illustrates an exploded schematic view of the tower section before being longitudinally cut, according to an exemplary embodiment of the present disclosure.
  • 5C and 5D illustrate perspective views of a tower section before being longitudinally cut, according to an exemplary embodiment of the present disclosure.
  • 6A-6H illustrate process diagrams of a method of fabricating a tower segment in accordance with an exemplary embodiment of the present disclosure.
  • Fig. 7 is a partially enlarged view showing a portion of a broken line in Fig. 6D.
  • the tower main body 4 may be cylindrical or tapered, and the tubular wall of the tower main body 4 is divided into two or more segments by a longitudinal slit 6 extending in the longitudinal direction of the tower main body 4. . That is, the longitudinal slit 6 penetrates the cylindrical wall of the tower main body 4, so that the tower main body 4 is divided into two or more segments.
  • a longitudinal flange pair 9 is disposed in the longitudinal slit 6. The two circumferential flanges 2 are fixedly coupled to the axial ends of the tower body 4, respectively.
  • the tower body 4 is formed by sequentially connecting a plurality of barrel members 1 end to end.
  • the barrel member 1 is formed by winding a plate-like material, and thus, a longitudinal butt joint 3 is formed on the barrel member 1.
  • the butt seam 3 is placed at a position where the longitudinal slit 6 is to be formed, so that the seam 3 can be completely cut off when the longitudinal slit 6 is cut. Therefore, there is no butt joint 3 on the formed tower section, so that the tower assembled from the tower section main body 4 does not have the T-joint mentioned in the background art, and the subsequent radiographic inspection process is omitted. This will be described in detail later with reference to Figs. 6A-6H.
  • Figure 3 is a partial enlarged view of the longitudinal flange pair 9 disposed within the longitudinal slit 6.
  • the longitudinal flange pair 9 comprises two longitudinal flanges 8 arranged in parallel, the outer sides of the longitudinal flanges 8 being fixedly connected to the circumferential cutting faces of the segments.
  • the longitudinal flange 8 is provided with a plurality of through holes for interconnecting the bolts, and by connecting the pair of longitudinal flanges 8 to each other, adjacent segments can be joined together.
  • the longitudinal flange pair 9 is longitudinally disposed in the longitudinal slit 6 and protrudes radially from the inner surface 41 and the outer surface 42 of the tower section main body 4, the circumferential direction of the segment adjacent to the longitudinal flange 8.
  • the ends are welded to the sides of the longitudinal flange 8 to form a plurality of fillet welds 10.
  • the circumferential flange 2 is formed in a ring shape, and one of the two ends of the tower body 4 is provided. Multiple tower sections can be assembled into a tower by bolting the circumferential flanges 2 of the plurality of tower sections to each other.
  • the circumferential flange 2 is formed by splicing at least two arcuate flanges.
  • FIG. 4 shows a perspective view of a circumferential flange 2 in accordance with an exemplary embodiment of the present disclosure. In the example shown in Fig. 4, the circumferential flange 2 is formed by splicing three segments of curved flanges 21, 22, 23, and seams 211, 212, 213 are formed between adjacent curved flanges.
  • the seam of the circumferential flange 2 is aligned longitudinally with the seam 3 of the tubular member in the tower section.
  • the tower main body 4 is formed by longitudinal connection of the tubular member having the butt joint 3
  • the tower section manufactured according to the manufacturing method of the exemplary embodiment of the present disclosure has only the longitudinal slit 6 and is disposed on the longitudinal direction.
  • the longitudinal flange pair 9 in the seam does not have a butt joint 3, so there is no T-joint on the tower section or the entire tower, which eliminates the subsequent radiographic inspection process.
  • a tubular tower main body 4 is produced.
  • Fig. 5A shows a barrel member 1 for assembling the tower body 4 of the present disclosure
  • the single barrel member 1 is formed by winding a sheet material as a cylinder wall.
  • the opposite sides of the plate-like material are joined to form a butt seam 3.
  • the intermittent welding or the continuous welding may be performed at the butt joint 3 to ensure that the butt joint of the tubular member 1 is well positioned.
  • the tubular member 1 may be deformed, causing the roundness to be out of standard, and thus rewinding ensures the roundness of the tubular member 1, which is called a rounding.
  • the plurality of barrel members 1 are sequentially connected end to end to form the tower main body 4 of a predetermined length.
  • a plurality of barrel members 1 are joined together by welding.
  • the respective butt seams 3 are respectively located at positions where the slits 6 are to be formed.
  • a circumferential flange 2 is provided at each end of the tower main body 4.
  • Figure 4 shows the circumferential flange 2 disposed at the ends of the tower body 4.
  • the circumferential flange 2 is a connector for fasteningly connecting the plurality of tower segments 4.
  • On the circumferential flange 2 a large number of longitudinal through holes are provided in the circumferential direction to receive the bolts for fastening the connection.
  • the circumferential flange 2 is annular in its entirety, and the circumferential flange is cut into sections, divided into three arcuate flanges 21, 22, 23 as shown in Fig. 4, and then spliced into circumferential flanges by tooling.
  • the number of segments is not limited to this, and may be divided into two segments or four segments or more.
  • the number and location of the segments correspond to the number and position of the longitudinal slits 6 to be formed on the tower body 4.
  • the circumferential flange 2 is preferably also corresponding to the positions of the three longitudinal lines.
  • Figure 5B shows an exploded view of the tower section before cutting the segments.
  • Figures 5C and 5D show perspective views of a tower section prior to cutting the segments.
  • the plurality of barrel members 1 are arranged in the longitudinal direction and welded together, and the two circumferential flanges 2 are respectively disposed at both ends of the welded plurality of barrel members 1, and welded. Fixed to form the tower body 4.
  • the joint seam 3 can be distributed in the circumferential direction
  • the position corresponding to at least one longitudinal slit of the three longitudinal slits 6 may align all the butt seams 3 along a straight line, or may arrange the butt seams on two or three straight lines corresponding to the longitudinal slits 6, respectively. In short, it is sufficient that the seam 3 is disposed at a position where the longitudinal slit 6 is to be formed. Then, the circumferential flange 2 is welded to the tower main body 4, and the joints of the circumferential flange 2 are respectively aligned with the respective longitudinal slits 6.
  • the longitudinal slit 6 is cut on the tower main body 4.
  • the first longitudinal position is cut along a quilting direction of the circumferential flange 2.
  • the orientation of the tower section to be cut is adjusted so that the position to be cut faces downward.
  • the bottom support member 5 is disposed along the longitudinal interval of the tower body 4 to ensure that the bottom support member 5 supports the outer wall of the tower body 4, thereby reducing the deformation of the tower body 4 caused by the gravity of the tower segment.
  • the bottom support 5 may be one or more, but preferably extends longitudinally throughout the tower body 4 and has an auxiliary space 51.
  • the auxiliary space 51 is located directly below the position to be cut, so that the position to be cut is suspended for cutting. Then, as shown in Fig. 6C, the tower main body 4 is cut by a flame to form a longitudinal slit 6 penetrating the tower main body 4 in the longitudinal direction. In order to ensure uniform width of the longitudinal slit, it is preferred to perform cutting simultaneously using two flames, and the cutter is placed inside the main body 4 of the tower section. During the cutting process, the inner wall support members 7 can be placed one by one following the movement of the cutting position, and the segments on both sides of the longitudinal slits 6 are fixedly connected, so that the relative positions of the segments on both sides of the longitudinal slits 6 are fixed.
  • Fig. 7 is an enlarged view of the dotted circle in Fig. 6D, in which the circumferential flange 2 is omitted in order to more clearly show the longitudinal slit 6.
  • a longitudinal flange pair 9 is provided in the longitudinal slit 6.
  • two longitudinal flanges 8 having a plurality of bolt perforations are bolted and assembled to form a longitudinal flange pair 9.
  • the longitudinal flange pair 9 is placed longitudinally within the longitudinal slit 6 as shown in Fig. 6F.
  • the circumferential flange 2 is omitted in Figures 6E and 6F.
  • the longitudinal flange pair 9 can be inserted into the auxiliary space 51 from the lower side of the tower main body 4 in the longitudinal direction, and then inserted into the longitudinal slit 6 upward.
  • the longitudinal flange pair 9 projects with respect to the inner surface 41 and the outer surface 42 of the tower body 4 such that each longitudinal flange 8 forms a T-shaped cross section with the cylinder wall. So as shown in FIG. 3, the longitudinal flange pair 9 forms a fillet weld 10 on the inner and outer sides of the cylinder wall.
  • the corner weld 10 has the advantages of reducing the construction difficulty, making the heat generated during the welding process small, and welding. After completion, the residual stress is formed to be low, so that the flange is not easily deformed. Then, the two outer sides of the longitudinal flange pair 9 are welded to the side wall walls at the longitudinal slits 6, respectively, thereby completing the installation of a pair of longitudinal flanges 9.
  • the longitudinal flange pair 9 can be firstly positioned by intermittent welding or continuous welding, then the inner wall support member 7 and the bottom support member 5 are removed, and the longitudinal flange pair 9 is completely welded. .
  • FIG. 6G shows a perspective view of the installed tower section of the longitudinal flange pair 9 at a longitudinal seam.
  • Figure 6H shows a perspective view of the tower section after completion of the installation of the three longitudinal flange pairs 9.
  • the longitudinal flange pair 9 protrudes from the inner surface 41 and the outer surface 42 of the tower section main body 4, and each longitudinal flange 8 is in the circumferential direction of the tower.
  • the tubular wall forms a T-shaped cross section, which facilitates the use of fillet welds for welding, has a large construction space, is convenient to construct, and the weld quality is easy to control.
  • the present disclosure describes a tower section and a method of manufacturing the same by making a wind turbine tower as an example, the present disclosure is not limited to the field of wind power generation technology, and can be applied to various occasions where it is required to manufacture a tower.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Architecture (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Wind Motors (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

一种塔段、塔架、风力发电机组,塔段包括塔段主体(4)和纵向法兰对(9),塔段主体通过沿纵向形成的纵缝(6)被分成至少两个段片,纵向法兰对沿纵向设置于纵缝中,沿径向突出于塔段主体的内表面(41)以及外表面(42),并与相应的段片焊接连接。该塔段降低了焊接施工难度,减少了焊接过程中产生的热量,提高了焊接质量。还披露了一种塔段的制造方法。

Description

塔段、塔架、风力发电机组及制造塔段的方法 技术领域
本公开涉及风力发电技术领域,更具体地说,涉及一种用于制造风力发电机组塔架的塔段、利用所述塔段制造的塔架、包括该塔架的风力发电机组及制造塔段的方法。
背景技术
风力发电机组中的塔架是承重、承压和承受载荷的组件,其结构直接影响风力发电机组的工作可靠性。圆筒式塔架是常用塔架结构的一种,由于结构巨大,圆筒式塔架通常是通过将多个塔段沿纵向连接而成,其中每个塔段沿周向被分为多片以便运输。图1A示出了传统塔段的焊接及其分片方式。
如图1A所示传统的塔段中,首先将板状材料卷圆并在对接处进行焊接而形成对接焊缝3′,从而制作筒节构件1′。然后将多个筒节构件1′沿纵向依次相接。在将多个筒节构件1′纵向相接时时,各筒节构件1′的对接焊缝3′沿在圆周方向上错开一定角度从而在纵向上相互错开,这样就存在T型接头,为了保证T型接头焊接质量,对焊接工艺要求严格。
另外,在将上述塔架分片时,分片切割处6′需避开对接焊缝3′,因分片切割处6′的切割缝隙较小,其宽度小于对接焊缝3′的宽度,无法将对接焊缝3′完全切除。因此,需要对对接焊缝3′进行熔透焊以保证其焊接质量。
综上所述,为了进行质量控制,针对T型接头,当前普遍进行100%的RT(射线)探伤;针对熔透焊,需要达到100%UT(超声)探伤I级焊缝,这些探伤工作导致庞大的工作量。并且,射线探伤对工作人员伤害大,生产限制条件严格。
另外,在现有技术中,在将分片后的塔架进行组装时,如图1B所示,在分片切割处6′处,两个竖向法兰8′通过焊接而固定在筒壁内侧,因此两个竖向法兰8′之间的空间较小,导致焊接施工不方便。
发明内容
本公开的一个目的在于提供一种无需对筒节构件的对接缝进行超声探伤、RT探伤的,且减少UT探伤的塔段、塔架、风力发电机组及塔段制造方法。
本公开的另一个目的在于提供一种减少了大量焊接工作的塔段、塔架及其制造方法。
根据本公开的一方面,提供了一种制造塔段的方法,所述方法包括如下步骤:(a)将多个筒节构件沿纵向依次相连形成塔段主体;(c)沿着所述塔段主体的纵向,在所述塔段主体上切割出至少两条纵缝,以将所述塔段主体分为至少两个段片;(d)在所述纵缝中设置纵向法兰对,所述纵向法兰对沿着所述塔段主体的径向方向分别从塔段主体的内表面和外表面突出。
所述筒节构件具有纵向对接缝,在步骤(a)中,将所述多个筒节构件的所述对接缝布置在与所述纵缝中的至少一条的位置相对应的位置上。
所述方法还包括步骤(b):在通过步骤(a)形成所述塔段主体之后,在所述塔段主体的纵向的两端连接周向法兰。
在步骤(c)中,通过切割所述纵缝而将所述对接缝切除。
所述周向法兰为环形,分别由至少两个弧形法兰拼接而成,在相邻的弧形法兰之间形成有拼缝,所述步骤(b)还包括:使所述拼缝分别与所述纵缝沿着纵向对齐。
所述步骤(c)包括:在切割所述纵缝时,随切割的位置的移动而在所述纵缝两侧的段片上固定连接内壁支撑件,或者在切割所述纵缝前,在所述纵缝两侧的段片上固定所述连接内壁支撑件,然后从外侧对所述纵缝进行切割。
所述方法还包括步骤(e):在所述纵向法兰与所述塔段主体的连接处进行焊接。
所述步骤(a)还包括:通过将板状材料卷圆来形成筒节构件,在板状材料相对接的两边进行断续焊或连续焊,而形成所述对接缝。
根据本公开示例性实施例的另一方面,提供一种塔段,所述塔段包括:塔段主体,所述塔段主体通过沿纵向形成的纵缝而被分为至少两个段片;纵向法兰对,沿纵向设置于所述纵缝中,沿径向突出于所述塔段主体的内表面以及外表面,并与相应的段片焊接连接。
所述塔段主体包括多个首尾相连的筒节构件,所述筒节构件上形成纵向对接缝,所述纵缝形成在所述纵向对接缝处并将所述纵向对接缝切除。
所述塔段还包括连接在所述塔段主体的两端的周向法兰,所述周向法兰分别由至少两段弧形法兰拼接而成,相邻的弧形法兰之间形成有拼缝,所述拼缝与所述纵缝沿纵向对齐。
所述纵向法兰对包括一对纵向法兰,所述纵向法兰与相应的段片通过双面角缝焊而固定连接。
根据本公开的另一方面,提供了一种塔架,所述塔架是通过将上述多个塔段沿纵向彼此连接而制成的。
根据本公开的另一方面,提供了一种风力发电机组,所述风力发电机组包括上述的塔架。根据上述塔段的制造方法,由于筒节构件的对接缝在形成纵缝后被全部切除,因此,在制作筒节构件时,只需要在对接缝处进行简单地定位焊,从而减少了大量的熔透焊接工作;并且无需对筒节构件上的对接缝进行探伤检测,节省成本以及工时。
附图说明
通过下面结合示例性地示出实施例的附图进行的详细描述,本公开示例性实施例的上述和其它目的、特点和优点将会变得更加清楚,其中:
图1A示出了传统塔段的示意图。
图1B示出了传统塔段中纵向法兰的截面图。
图2示出了根据本公开示例性实施例的塔段的立体图。
图3示出了根据本公开示例性实施例的塔段的纵向法兰的局部放大图。
图4示出根据本公开示例性实施例的塔段的周向法兰的立体图。
图5A示出了构成根据本公开示例性实施例的塔段的筒节构件的立体图。
图5B示出根据本公开示例性实施例的塔段被纵向切割之前的分解示意图。
图5C和5D示出根据本公开示例性实施例的塔段被纵向切割之前的立体图。
图6A-6H示出根据本公开示例性实施例的塔段的制造方法的工序图。
图7示出了图6D中虚线圆圈部分的局部放大图。
具体实施方式
提供以下详细描述,以帮助读者获得对这里所描述的方法、设备的全面 理解。然而,这里所描述的方法、设备的各种变化、修改及其等同物对于本领域普通技术人员将是显而易见的。此外,为了更加清楚和简洁,可省去对于本领域普通技术人员公知的功能和结构的描述。
这里描述的特征可按照不同的方式实施,并且将不被解释为局限于这里所描述的示例。更确切地说,已经提供这里所描述的示例,使得本公开是彻底的和完整的,且将把本公开的全部范围传达给本领域的普通技术人员。
图2示出了本公开的一示例性实施例的塔段,该塔段由塔段主体4、纵向法兰对9以及两个周向法兰2组成。塔段主体4可以是圆筒状,也可以是锥筒状,塔段主体4的筒壁以沿着塔段主体4的纵向延伸的纵缝6为界,被分割为2片以上的段片。也就是说纵缝6贯穿塔段主体4的筒壁,使得塔段主体4被分割成2片以上的段片。纵向法兰对9设置在所述纵缝中6中。两个周向法兰2分别固定连接在塔段主体4的轴向端部。
如图5A-5D所示,根据本公开的塔段主体4是由多个筒节构件1首尾依次相连而形成的。筒节构件1是通过将板状材料卷圆而形成的,因此,在筒节构件1上形成纵向对接缝3。根据本公开的方案,将对接缝3设置在将要形成纵缝6的位置,从而在切割纵缝6时,能够将对接缝3完全切除。因此,所形成的塔段上没有对接缝3,从而使得由塔段主体4拼装成的塔架不存在背景技术中所提到的T型接头,也就省去了后续的射线探伤过程。这将后面参照图6A-6H进行详细描述。
图3是纵向法兰对9设置于纵缝6内的局部放大图。如图3所示,纵向法兰对9包括并行设置的两个纵向法兰8,纵向法兰8的外侧固定连接到段片的周向切割面上。纵向法兰8上设置有供螺栓互联的多个通孔,通过将所述一对纵向法兰8相互连接,可以将相邻的段片连接在一起。纵向法兰对9沿纵向设置于纵缝6中,并沿径向突出于所述塔段主体4的内表面41以及外表面42,与所述纵向法兰8相邻的段片的圆周方向的端部被焊接到所述纵向法兰8的侧面而形成多个角焊缝10。
周向法兰2形成为环状,在所述塔段主体4的两端各设置一个。通过将多个塔段的周向法兰2相互螺栓连接可以将多个塔段组装为塔架。周向法兰2由至少两段弧形法兰拼接而成。图4示出了根据本公开示例性实施例的周向法兰2的立体图。在图4所示的示例中,周向法兰2由三段弧形法兰21、22、23拼接而成,相邻的弧形法兰之间形成有拼缝211、212、213。
在连接周向法兰2时,使周向法兰2的拼缝与塔段中的筒节构件的对接缝3沿纵向对齐。在此,虽然塔段主体4是由具有对接缝3的筒节构件沿纵向连接而形成,但是根据本公开示例性实施例的制造方法制造的塔段上仅有纵缝6以及设置于纵缝内的纵向法兰对9,而并未留有对接缝3,因此塔段或整个塔架上便不存在T型接头了,也就省去了后续的射线探伤过程。
下面,参考图5A-5D以及6A-6H详细描述本公开的塔段的制造方法。
首先,制作筒状的塔段主体4。图5A示出了用于组装本公开的塔段主体4的筒节构件1,如图5A所示,单个筒节构件1是由作为筒壁的板状材料卷圆而成的。使板状材料相对的两边接合而形成对接缝3。可以在对接缝3处进行断续焊或者连续焊,从而保证筒节构件1的对接缝定位良好。焊接完成后筒节构件1可能会变形,造成圆度不达标,因此重新卷圆保证筒节构件1的圆度,称之为回圆。然后,将多个筒节构件1首尾依次相连而形成预定长度的塔段主体4。通常,通过焊接将多个筒节构件1连接在一起。在将多个筒节构件1首尾相连时,使各个对接缝3分别位于将要形成切割缝6的位置上。
接着,在塔段主体4的两端各设置一个周向法兰2。图4示出了设置于塔段主体4两端的周向法兰2。周向法兰2是用于将多个塔段4紧固连接的连接件。在周向法兰2上,沿圆周方向设置有大量纵向通孔以接收用于紧固连接的螺栓。周向法兰2整体上呈环状,将周向法兰切割分段,分为图4中所示的三段弧形法兰21、22、23,然后通过工装拼接为周向法兰。因此在周向法兰2上留有拼缝211、221、231。需要说明的是,分段的数量并不限定于此,也可以分为两段或者四段以上。优选地,分段的数量以及位置与塔段主体4上将要形成的纵缝6的数量和位置对应。例如,当将要把塔段主体4分为三个段片从而纵缝6沿着塔段主体4上的三条纵线分布时,周向法兰2也优选为与所述三条纵线的位置对应地分为三个弧段。图5B示出了切割分片前的塔段的分解图。图5C和5D示出了切割分片前的塔段的立体图。如图5B-5D所示,将多个筒节构件1沿纵向排列相接并焊接在一起,并将两个周向法兰2分别设置于焊接后的多个筒节构件1的两端,并焊接固定,从而形成塔段主体4。
在将多个筒节构件1依次相连时,可以如图5C所示,使每个筒节构件1的对接缝3沿纵向对齐,从而使得所有对接缝3位于一条直线上;也可以如 图5D这样,使对接缝3在纵向交错开,但是需要使每个对接缝3与后面将要切出的纵缝6处于同一直线,从而在切出纵缝6时将所有的对接缝3切除,因此使得塔段或整个塔架上便不存在T型接头了,也就省去了后续的射线探伤过程。换句话说,当打算将塔段主体4沿纵向切割为三个段片时,需要在塔段主体4上切出三条纵缝6,那么,可以沿圆周方向将对接缝3分布在所述三条纵缝6中的至少一条纵缝对应的位置,可以将所有对接缝3沿着一条直线对齐,也可以将对接缝分别布置在与纵缝6对应的两条或三条直线上。总之,只要对接缝3布置在将要形成纵缝6的位置上即可。然后,将周向法兰2与塔段主体4焊接,并使周向法兰2的拼缝分别与各个纵缝6对齐。
接着,在塔段主体4上切割纵缝6。切割时,沿着周向法兰2的一条拼缝方向进行第一个纵向位置的切割。具体地,如图6A所示,调整待切割塔段的朝向使待切割位置朝下。再如图6B所示,沿着塔段主体4的纵向间隔布置底部支撑件5,保证底部支撑件5支撑住塔段主体4的外壁,从而减小塔段重力引起的塔段主体4的变形。底部支撑件5可以是一个或多个,但优选沿纵向遍及塔段主体4,并具有辅助空间51。辅助空间51位于待切割位置的正下方,使得待切割位置悬空,以便切割。然后,如图6C所示,用火焰对塔段主体4进行切割而形成沿纵向贯穿塔段主体4的纵缝6。为保证纵缝宽度均匀,优选使用两道火焰同时进行切割,切割机置于塔段主体4的内侧。在切割的过程中,可以跟随切割的位置的移动而逐一放置内壁支撑件7,而将纵缝6两侧的段片连接固定,使得纵缝6两侧的段片的相对位置固定不变。如此,能够保证切割时塔段主体4不受自身重力影响而产生错位或变形。但也可以在切割纵缝6之前,将内壁支撑件7全部放置好,然后从外侧对纵缝6进行切割,这样可以省去底部支撑件5,减少工序。切割完成后,如图6D所示,将切除部分去掉,并对纵缝6进行打磨处理。为了切除对接缝3,优选地纵缝6的宽度等于或大于对接缝3的宽度。图7是图6D中虚线圆圈处的放大图,其中为了更清楚地显示出纵缝6而省略了周向法兰2。
接下来,在纵缝6内设置纵向法兰对9。如图6E所示,首先,将两个具有多个螺栓穿孔的纵向法兰8用螺栓定位并组对形成纵向法兰对9。然后,如图6F所示将纵向法兰对9沿纵向放置在纵缝6内。为了清楚示出纵缝6以及纵向法兰对9,在图6E和6F中省略了周向法兰2。纵向法兰对9可以先沿纵向从塔段主体4的下方插入到辅助空间51,再向上插入纵缝6。纵向法兰 对9相对于塔段主体4的内表面41以及外表面42均突出,从而使每一个纵向法兰8与筒壁形成T型截面。如此设置,如图3所示,纵向法兰对9在筒壁的内外面均形成了角焊缝10,角焊缝10的优点在于能够减小施工难度,使焊接过程产生的热量小,焊接完成后形成残余应力较低,使得法兰不易变形。然后,将纵向法兰对9的两外侧在纵缝6处分别与两侧筒壁焊接,从而完成一条纵向法兰对9的安装。纵向法兰对9的焊接过程中,可以先对纵向法兰对9通过断续焊或者连续焊进行定位,然后去除内壁支撑件7和底部支撑件5,再对纵向法兰对9进行完整焊接。
完成上述工作后,旋转塔段主体4将下一处要切割的位置置于辅助空间51的正上方,重复图6A至图6F的工序,直到全部完成。图6G示出了完成一个纵缝处的纵向法兰对9的安装后的塔段的立体图。图6H示出了完成三个纵向法兰对9的安装后的塔段的立体图。在切割纵缝6时,将多个筒节构件1所形成的对接缝3全部切除,因此,在完成后的塔段中,没有T型焊缝或者接缝。为了完全切除对接缝3,纵缝6的宽度等于或大于对接缝3的宽度。
根据上述方法制造的塔段,由于筒节构件1所形成的对接缝3在后续工序中被全部切除,因此,在制作筒节构件1时,只需要在对接缝3处进行简单地定位焊接,达到能够回圆的目的即可,从而减少了大量的熔透焊接工作;此外,由于对接缝3被纵缝6切除,使得塔段或整个塔架上不存在T型接头,因此,只需要控制相邻筒节构件的环向焊缝质量,而无需对筒节构件1上的对接缝进行UT探伤、RT探伤检测,节省成本以及工时。另外,如果纵向法兰对9与塔段主体的外壁对齐则需进行熔透焊,且需在筒壁侧开坡口,熔透焊产生热量较大会在焊接的时候产生较大的变形。而根据本公开的塔段以及塔段的制造方法,纵向法兰对9相对于塔段主体4的内表面41以及外表面42均突出,每个纵向法兰8在塔筒的周向上均与筒壁形成T型截面,这样便于采用角焊缝进行焊接,施工空间大,施工方便,焊缝质量容易控制。
虽然本公开以制造风力发电机组塔架为例描述了塔段及其制造方法,但是本公开不限于风力发电技术领域,还可以应用于各种需要制造塔架的场合。
尽管已经参照其示例性实施例具体显示和描述了本公开,但是本领域的技术人员应该理解,在不脱离权利要求所限定的本公开的精神和范围的情况下,可以对其进行形式和细节上的各种改变。

Claims (14)

  1. 一种制造塔段的方法,其特征在于,所述方法包括如下步骤:
    (a)将多个筒节构件(1)沿纵向依次相连形成塔段主体(4);
    (c)沿着所述塔段主体(4)的纵向,在所述塔段主体(4)上切割出至少两条纵缝(6),以将所述塔段主体(4)分为至少两个段片;
    (d)在所述纵缝(6)中设置纵向法兰对(9),所述纵向法兰对(9)沿着所述塔段主体(4)的径向方向分别从塔段主体(4)的内表面(41)和外表面(42)突出。
  2. 如权利要求1所述的方法,其特征在于,所述筒节构件(1)具有纵向对接缝(3),在步骤(a)中,将所述多个筒节构件(1)的所述对接缝(3)布置在与所述纵缝(6)中的至少一条的位置相对应的位置上。
  3. 如权利要求2所述的方法,其特征在于,还包括步骤(b):在通过步骤(a)形成所述塔段主体(4)之后,在所述塔段主体(4)的纵向的两端连接周向法兰(2)。
  4. 如权利要求2所述的方法,其特征在于,在步骤(c)中,通过切割所述纵缝(6)而将所述对接缝(3)切除。
  5. 如权利要求3所述的方法,其特征在于,所述周向法兰(2)为环形,分别由至少两个弧形法兰(21、22、23)拼接而成,在相邻的弧形法兰之间形成有拼缝(211、212、213),所述步骤(b)还包括:使所述拼缝(211、212、213)分别与所述纵缝(6)沿着纵向对齐。
  6. 如权利要求1所述的方法,其特征在于,所述步骤(c)包括:在切割所述纵缝(6)时,随切割的位置的移动而在所述纵缝(6)两侧的段片上固定连接内壁支撑件(7),或者在切割所述纵缝(6)前,在所述纵缝(6)两侧的段片上固定所述连接内壁支撑件(7),然后从外侧对所述纵缝(6)进行切割。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括步骤(e):在所述纵向法兰(9)与所述塔段主体(4)的连接处进行焊接。
  8. 如权利要求1-6中任一项所述的方法,其特征在于,所述步骤(a)还包括:通过将板状材料卷圆来形成筒节构件(1),在板状材料相对接的两边进行断续焊或连续焊,而形成所述对接缝(3)。
  9. 一种塔段,其特征在于,所述塔段包括:
    塔段主体(4),所述塔段主体(4)通过沿纵向形成的纵缝(6)而被分为至少两个段片;
    纵向法兰对(9),沿纵向设置于所述纵缝(6)中,沿径向突出于所述塔段主体(4)的内表面(41)以及外表面(42),并与相应的段片焊接连接。
  10. 如权利要求9所述的塔段,其特征在于,所述塔段主体(4)包括多个首尾相连的筒节构件(1),所述筒节构件(1)上形成纵向对接缝(3),所述纵缝(6)形成在所述纵向对接缝(3)处并将所述纵向对接缝(3)切除。
  11. 如权利要求9或10所述的塔段,其特征在于,所述塔段还包括连接在所述塔段主体(4)的两端的周向法兰(2),所述周向法兰(2)分别由至少两段弧形法兰(21、22、23)拼接而成,相邻的弧形法兰之间形成有拼缝(211、212、213),所述拼缝(211、212、213)分别与所述纵缝(6)沿纵向对齐。
  12. 如权利要求9或10所述的塔段,其特征在于,所述纵向法兰对(9)包括一对纵向法兰(8),所述纵向法兰(8)与相应的段片通过双面角缝焊而固定连接。
  13. 一种塔架,其特征在于,所述塔架是通过将多个如权利要求9-12所述的塔段沿纵向彼此连接而制成的。
  14. 一种风力发电机组,其特征在于,包括如权利要求13所述的塔架。
PCT/CN2017/118235 2017-09-30 2017-12-25 塔段、塔架、风力发电机组及制造塔段的方法 WO2019061891A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2017433607A AU2017433607B2 (en) 2017-09-30 2017-12-25 Tower portion, tower, wind turbine generator assembly and method for manufacturing tower portion
US16/626,682 US11118569B2 (en) 2017-09-30 2017-12-25 Tower portion, tower, wind turbine generator assembly and method for manufacturing tower portion
EP17927093.9A EP3690236B1 (en) 2017-09-30 2017-12-25 Tower portion, tower, wind turbine generator assembly and method for manufacturing tower portion
ES17927093T ES2949383T3 (es) 2017-09-30 2017-12-25 Conjunto de generador de turbina eólica, torre, porción de torre y método para fabricar una porción de torre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710920075.5 2017-09-30
CN201710920075.5A CN107654338B (zh) 2017-09-30 2017-09-30 塔段、塔架、风力发电机组及塔段的制造方法

Publications (1)

Publication Number Publication Date
WO2019061891A1 true WO2019061891A1 (zh) 2019-04-04

Family

ID=61117033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118235 WO2019061891A1 (zh) 2017-09-30 2017-12-25 塔段、塔架、风力发电机组及制造塔段的方法

Country Status (6)

Country Link
US (1) US11118569B2 (zh)
EP (1) EP3690236B1 (zh)
CN (1) CN107654338B (zh)
AU (1) AU2017433607B2 (zh)
ES (1) ES2949383T3 (zh)
WO (1) WO2019061891A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108843517A (zh) * 2018-06-28 2018-11-20 北京金风科创风电设备有限公司 塔筒及其制造方法、塔架和风力发电机组
CN109139386B (zh) * 2018-09-30 2019-08-23 北京金风科创风电设备有限公司 塔筒段、塔筒、分割方法及风力发电机组
CN109500486B (zh) * 2018-12-22 2023-01-03 山西汾西重工有限责任公司 铝合金厚板卷圆壳体的纵向对接缝的定位及焊接方法
CN110497158B (zh) * 2019-09-04 2021-05-14 南通泰胜蓝岛海洋工程有限公司 一种分片塔架的制作工艺
DK3835516T3 (da) * 2019-12-11 2022-11-14 Siemens Gamesa Renewable Energy Innovation & Technology SL Fremgangsmåde til bygning af et metallisk tårn til en vindmølle
CN113084461B (zh) * 2021-04-15 2022-03-08 湖南省通信建设有限公司 一种通信铁塔建造装配式钢结构制作加工方法
CN113319527A (zh) * 2021-05-25 2021-08-31 上海泰胜风能装备股份有限公司 一种大直径陆上风电塔架制造工艺
CN113579664B (zh) * 2021-09-29 2021-11-30 江苏海灵重工设备科技有限公司 一种海上风电塔筒短筒节法兰段的制作新方法
CN113927253B (zh) * 2021-11-10 2022-08-26 中国航发南方工业有限公司 多孔精密旋转件加工方法
CN114251234B (zh) * 2021-12-24 2024-06-14 射阳远景能源科技有限公司 风电塔架及其制造方法
CN114505653A (zh) * 2022-03-07 2022-05-17 江苏航宸重工科技有限公司 一种风力发电塔筒法兰锻辗成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201443475U (zh) * 2009-07-17 2010-04-28 辽宁大金钢结构工程(集团)有限公司 大功率分片式风力发电塔架
CN206158924U (zh) * 2016-11-10 2017-05-10 广东明阳风电产业集团有限公司 一种分片式塔筒结构
CN206158925U (zh) * 2016-11-10 2017-05-10 广东明阳风电产业集团有限公司 一种分片式风力发电塔筒
CN106762444A (zh) * 2017-01-22 2017-05-31 北京金风科创风电设备有限公司 塔筒片体、塔筒段、塔筒及其制造方法
CN206206090U (zh) * 2016-08-03 2017-05-31 上海电气风电设备有限公司 一种风力发电机塔架

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1011315C2 (nl) * 1999-02-16 2000-08-17 Janssens & Dieperink B V Werkwijze voor het vervaardigen van een silo.
US7802412B2 (en) * 2003-03-19 2010-09-28 Vestas Wind Systems A/S Method of constructing large towers for wind turbines
US8316615B2 (en) * 2011-01-19 2012-11-27 General Electric Company Modular tower and methods of assembling same
US9166274B2 (en) * 2011-04-01 2015-10-20 Crown Castle Australia Pty Ltd Standardised monopole strengthening
DE102013107059B4 (de) 2013-07-04 2018-12-06 SIAG Industrie GmbH Verfahren zur Herstellung und zum Errichten eines Rohrturmbauwerks
WO2015161854A1 (en) * 2014-04-22 2015-10-29 Vestas Wind Systems A/S Method and tool for assembling tower elements
US10018187B2 (en) * 2014-04-25 2018-07-10 Vestas Wind Systems A/S Tower section production process
DE102015110344A1 (de) * 2015-06-26 2016-12-29 Eno Energy Systems Gmbh Teilstück einer Turmsektion, ein Turm und ein Verfahren zum Herstellen eines Teilstücks einer Turmsektion
DE102015118163A1 (de) * 2015-10-23 2017-04-27 SIAG Industrie GmbH Windenergieturm
US9850674B1 (en) * 2016-10-13 2017-12-26 General Electric Company Vertical joint assembly for wind turbine towers
EP3339636A1 (de) * 2016-12-22 2018-06-27 Nordex Energy GmbH Stahlturm für eine windenergieanlage sowie ein verfahren zu dessen herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201443475U (zh) * 2009-07-17 2010-04-28 辽宁大金钢结构工程(集团)有限公司 大功率分片式风力发电塔架
CN206206090U (zh) * 2016-08-03 2017-05-31 上海电气风电设备有限公司 一种风力发电机塔架
CN206158924U (zh) * 2016-11-10 2017-05-10 广东明阳风电产业集团有限公司 一种分片式塔筒结构
CN206158925U (zh) * 2016-11-10 2017-05-10 广东明阳风电产业集团有限公司 一种分片式风力发电塔筒
CN106762444A (zh) * 2017-01-22 2017-05-31 北京金风科创风电设备有限公司 塔筒片体、塔筒段、塔筒及其制造方法

Also Published As

Publication number Publication date
ES2949383T3 (es) 2023-09-28
US20200158089A1 (en) 2020-05-21
EP3690236A4 (en) 2020-11-11
EP3690236B1 (en) 2023-06-28
AU2017433607B2 (en) 2021-08-19
CN107654338B (zh) 2019-09-03
EP3690236C0 (en) 2023-06-28
EP3690236A1 (en) 2020-08-05
US11118569B2 (en) 2021-09-14
CN107654338A (zh) 2018-02-02
AU2017433607A1 (en) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2019061891A1 (zh) 塔段、塔架、风力发电机组及制造塔段的方法
JP5999749B2 (ja) 鉄骨構造物柱梁接合部の梁と突起付き内ダイアフラム直結工法
WO2019128141A1 (zh) 塔筒段的制造方法、塔筒段和风力发电机组
JP2019218710A (ja) 角形鋼管柱の梁接合用装置
JP2015229173A (ja) 鋼材の溶接用治具および溶接方法
CN110238489A (zh) 一种高温换热器制作及焊接工艺
CN106762444A (zh) 塔筒片体、塔筒段、塔筒及其制造方法
JP2002146921A (ja) 鋼管構造
RU2667194C1 (ru) Способ изготовления двухшовных труб большого диаметра
JP6477552B2 (ja) 内部にコンクリートが充填された鋼管柱を用いた接合構造及びその製造方法
JP6893799B2 (ja) 切梁火打接続構造および切梁火打接続ピース
CN112372231B (zh) 一种控制管桁架节点法兰盘焊接变形的方法
US3165082A (en) Weld-controlling, pipe-aligning band
JP6653945B2 (ja) 溶接方法および鋼材の溶接用治具
CN213741594U (zh) 一种用于控制管桁架节点法兰盘焊接变形的焊接结构
JP2016008650A (ja) 新設管路の製造方法、及び管材
JP2012117300A (ja) 梁接合部構造
JP2001303661A (ja) 鋼管柱および鋼管柱の製造方法
JP5932567B2 (ja) 鉄骨構造物製作方法
JPH09234562A (ja) バンド金物を用いた現場溶接工法
CN116876363A (zh) 用于钢管拱桥拱肋支撑管牛腿的定位安装方法
JP3529360B2 (ja) 鋼管柱
JPH10266339A (ja) 鋼管柱梁接合用金物
JP2004027740A (ja) 柱材用鋼管の継手構造
JP2021161725A (ja) 柱部材の乾式継手構造および建築物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017433607

Country of ref document: AU

Date of ref document: 20171225

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017927093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017927093

Country of ref document: EP

Effective date: 20200430