WO2019128112A1 - 电子传输层、有机电致发光器件及显示器 - Google Patents

电子传输层、有机电致发光器件及显示器 Download PDF

Info

Publication number
WO2019128112A1
WO2019128112A1 PCT/CN2018/089977 CN2018089977W WO2019128112A1 WO 2019128112 A1 WO2019128112 A1 WO 2019128112A1 CN 2018089977 W CN2018089977 W CN 2018089977W WO 2019128112 A1 WO2019128112 A1 WO 2019128112A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transport layer
electron transport
electron
inert metal
Prior art date
Application number
PCT/CN2018/089977
Other languages
English (en)
French (fr)
Inventor
段炼
宾正杨
李国孟
Original Assignee
昆山国显光电有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司, 清华大学 filed Critical 昆山国显光电有限公司
Publication of WO2019128112A1 publication Critical patent/WO2019128112A1/zh
Priority to US16/521,570 priority Critical patent/US20190348614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Definitions

  • the present application relates to the field of organic electroluminescent devices, and in particular, to an electron transport layer, an organic electroluminescent device, and a display.
  • Organic electroluminescent devices such as organic light-emitting diodes (hereinafter referred to as Organic Light-Emitting Diodes, referred to as OLEDs), become a next-generation display due to a series of advantages such as self-illumination, low power consumption, large viewing angle, fast response, and thinness. The main force of technology.
  • the luminous efficiency of an organic electroluminescent device depends not only on the luminous efficiency of the luminescent material itself, but also on the transport of carriers within the transport layer and the luminescent layer.
  • the imbalance of electron and hole injection is one of the factors that affect the luminous efficiency.
  • the electron injection transport capability of organic molecules is weak, the imbalance of electron and hole injection, and the difference in mobility, so that carriers injected from the two poles cannot be effectively confined in the light-emitting region.
  • the electron transport layer has a low electron mobility (about 10 -5 cm 2 V -1 s -1 to 10 -4 cm 2 V -1 s -1 ), resulting in lower luminous efficiency of the organic electroluminescent device. .
  • an organic electroluminescent device and display are also provided.
  • An electron transport layer comprising an inert metal and an organic compound capable of coordinating reaction with an inert metal, the organic compound having the following formula:
  • L 1 and L 2 are each independently selected from the group consisting of an alkylene group having 1 to 12 carbon atoms and an arylene group having 6 to 30 carbon atoms;
  • Ar 1 , Ar 2 and Ar 3 are each independently selected from a nitrogen oxygen coordination group, a nitrogen sulfur coordination group, a sulfur oxygen coordination group, a sulfur sulfur coordination group, an oxygen oxygen coordination group, and a nitrogen nitrogen compound.
  • a nitrogen oxygen coordination group a nitrogen sulfur coordination group, a sulfur oxygen coordination group, a sulfur sulfur coordination group, an oxygen oxygen coordination group, and a nitrogen nitrogen compound.
  • n is any integer from 0 to 10.
  • An organic electroluminescent device comprising the above electron transport layer.
  • a display comprising the above organic electroluminescent device.
  • FIG. 1 is a schematic structural diagram of a TOF (Time of Flight) device according to an embodiment
  • FIG. 2 is a schematic structural view of a single carrier device according to an embodiment
  • FIG. 3 is a schematic structural view of an organic electroluminescent device according to an embodiment
  • Example 4 is a graph showing temperature-carrier mobility test of the TOF device of Example 1 and Comparative Example 1;
  • Example 6 is a current density-voltage test graph of the single carrier device in Example 14 and Example 15.
  • the electron transport layer is prepared from a raw material of the electron transport layer, and the raw material of the electron transport layer includes an inert metal and an organic compound capable of coordinating reaction with the inert metal, and the organic compound has the following formula:
  • L 1 and L 2 are each independently selected from the group consisting of an alkylene group having 1 to 12 carbon atoms and an arylene group having 6 to 30 carbon atoms;
  • Ar 1 , Ar 2 and Ar 3 are each independently selected from a nitrogen oxygen coordination group, a nitrogen sulfur coordination group, a sulfur oxygen coordination group, a sulfur sulfur coordination group, an oxygen oxygen coordination group, and a nitrogen nitrogen compound.
  • a nitrogen oxygen coordination group a nitrogen sulfur coordination group, a sulfur oxygen coordination group, a sulfur sulfur coordination group, an oxygen oxygen coordination group, and a nitrogen nitrogen compound.
  • n is any integer from 0 to 10.
  • Ar 1 , Ar 2 and Ar 3 are each independently selected from one of the following structures:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each selected from a hydrogen atom, an alkyl group, an aromatic group, a conjugated heterocyclic ring, a methoxy group, Amino group, -C n H 2n -NH 2 , cyano group, halogen atom, haloalkyl group, aldehyde group, keto group, ester group, acetylacetonate group, -C n H 2n -CN, -C n H 2n -COOR, - One of C n H 2n -CHO and -C n H 2n -COCH 2 COR; wherein the conjugated heterocyclic ring is mainly a nitrogen-containing heterocyclic ring, a sulfur-containing hetero ring, and an oxygen-containing hetero ring;
  • R is selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an aromatic group having 6 to 8 carbon atoms; further, the aromatic group is a phenyl group;
  • n is any integer from 1 to 30.
  • all the sites in the Ar 1 structure can be linked to L 1 ; all sites in the Ar 2 structure can be linked to L 1 and L 2 ; all sites in the Ar 3 structure can be Connect with L 2 .
  • the R 1 , R 2 , R 3 and R 4 sites in the Ar 1 structure are sites connected to L 1 ; R 1 , R 2 , R 3 and R 4 in the Ar 2 structure.
  • the point is a site to which L 1 and L 2 are linked; the R 1 , R 2 , R 3 and R 4 sites in the above Ar 3 structure are sites to which L 2 is attached.
  • L 1 and L 2 are each independently selected from one of the following structures:
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently selected from a hydrogen atom, an alkyl group, a methoxy group, an amino group, -C n H 2n -NH 2 , a cyano group.
  • a halogen atom, a halogenated alkyl group, an aldehyde group, a ketone group, an ester group, and an acetylacetonate group is an halogen atom, a halogenated alkyl group, an aldehyde group, a ketone group, an ester group, and an acetylacetonate group.
  • the organic compound is selected from one of the following structures:
  • the inert metal is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper (Cu), zinc, zirconium, hafnium, molybdenum, niobium, tantalum, niobium, lead, silver (Ag), cadmium, antimony, At least one of tungsten, ruthenium, osmium, iridium, gold (Au), platinum, and mercury. Further, the inert metal is at least one selected from the group consisting of cobalt, nickel, copper, ruthenium, silver, rhodium, gold, and platinum. Further, the inert metal is silver.
  • the mass ratio of the inert metal to the organic compound in the electron transport layer is from 5:100 to 50:100.
  • the mass ratio of the inert metal to the long-chain organic compound is less than 5:100, the content of the inert metal in the electron transport layer is too low to lower the electron mobility; when the mass ratio of the inert metal to the long-chain organic compound is higher than 50 When it is 100, it will affect other performances such as flexibility and light transmittance of the device.
  • the organic compound in the above electron transport layer contains a nitrogen-oxygen coordinating group, a nitrogen-sulfur complexing group, a sulfur-oxygen coordinating group, a sulfur-sulfur ligand group, an oxygen-oxygen coordinating group, and a nitrogen-nitrogen complex.
  • At least one heterocyclic coordination structure in a group, the coordination structure of the coordination structure is such that the van der Waals force between the molecules of the previous organic compound becomes a coordination force, which increases the inter The force closes the distance between the molecules of the organic compound, reduces the transport barrier of the carrier, and significantly improves the mobility of the electron transport layer.
  • the above organic compound contains one or more heterocyclic coordination structures, it can further close the intermolecular distance after coordination with the inert metal, and the long chain structure of the ligand is favorable for constructing the current carrying.
  • the sub-transmission channel further enhances the mobility.
  • the inert metal can achieve a good n-type doping effect in the ligand structure, which can greatly increase the carrier concentration, and the external carrier can fill the trap state of the original electron transport layer while enhancing the conductance of the electron transport layer. rate.
  • This organic-inorganic composite film (electron transport layer material) has a marked improvement in thermal stability of the film. Conducive to the improvement of the thermal stability of the electron transport layer, the transport layer is not easily crystallized at a higher temperature evaporation, and the transmission layer can maintain a stable transmission effect.
  • the electron transport layer of one embodiment is prepared by co-evaporating the inert metal and the organic compound.
  • An organic electronic device of an embodiment includes the above-described electron transport layer.
  • the organic electronic device is selected from the group consisting of a TOF (Time of Flight) device, a single carrier device, and an organic electroluminescent device.
  • the thickness of the electron transport layer is from 1 nm to 200 nm.
  • the thickness of the electron transport layer is less than 1 nm or higher than 200 nm, the recombination of carriers in the light-emitting layer is disadvantageous.
  • the electron transport layer has a thickness of 5 nm to 50 nm.
  • a TOF (Time of Flight) device 100 includes a substrate 110 , a first electrode 120 , an electron transport layer 130 , and a second electrode 140 .
  • the first electrode 120 is an ITO layer; the raw material of the electron transport layer 130 includes the inert metal and the organic compound; and the second electrode 140 is Ag.
  • the single carrier device 200 includes a substrate 210, a first electrode 220, a barrier layer 230, an electron transport layer 240, and a second electrode 250.
  • the first electrode 220 is an ITO layer
  • the barrier layer 230 is a BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) layer
  • the raw material of the electron transport layer 240 The above inert metal and the above organic compound are included
  • the second electrode 250 is an Al layer.
  • an organic electroluminescent device 300 includes a substrate 310, a first electrode 320, a hole transport layer 330, a light-emitting layer 340, an electron transport layer 350, and a second electrode 360.
  • the first electrode 320 is an ITO layer; and the hole transport layer 330 is NPB (N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4, a 4'-diamine) layer; the light-emitting layer 340 is an Alq3 (8-hydroxyquinoline aluminum) layer; the raw material of the electron transport layer 350 includes the above inert metal and the above organic compound; and the second electrode 360 is an aluminum (Al) layer
  • the above organic electroluminescent device uses the above electron transporting layer, and since the above electron transporting layer has an effect of enhancing electrical conductivity of the electron transporting layer and increasing mobility of the electron transporting layer, the organic electroluminescent device has a reduced voltage and reduced efficiency. Roll-off, the effect of increasing the luminescence lifetime of the device.
  • a display of an embodiment includes the above-described organic electroluminescent device.
  • the above display uses the above-described electron transport layer, since the above electron transport layer has an effect of enhancing the electrical conductivity of the electron transport layer and increasing the mobility of the electron transport layer, so that the display using the organic electroluminescence device has a reduced voltage and reduced efficiency. Roll-off, the effect of increasing the luminescence lifetime of the device.
  • the structure of the TOF (Time of Flight) device of the present embodiment is: substrate / ITO (150 nm) / Ag (5%): Bphen-2 (95%) (1 ⁇ m) / Ag (150 nm), wherein ITO
  • the first electrode has a thickness of 150 nm; Ag (5%): (Bphen-2) (1 ⁇ m) is an electron transport layer, and the electron transport layer is formed by evaporation of a material of the electron transport layer, and the raw material of the electron transport layer includes Ag and
  • the mass ratio of Bphen-2, Ag and Bphen-2 is 5:95, the thickness of the electron transport layer is 1 ⁇ m; Ag is the second electrode; "/" means lamination, the same below.
  • the structure of the TOF device of the present embodiment is substantially the same as that of Embodiment 1, except that the mass ratio of Ag to Bphen-2 in the raw material of the electron transport layer is 20:80.
  • the structure of the TOF device of the present embodiment is substantially the same as that of Embodiment 1, except that the mass ratio of Ag to Bphen-2 in the raw material of the electron transport layer is 30:70.
  • the structure of the TOF device of this embodiment is substantially the same as that of Embodiment 1, except that the inert metal in the raw material of the electron transport layer is Cu.
  • the structure of the TOF device of this embodiment is substantially the same as that of Embodiment 1, except that the inert metal in the raw material of the electron transport layer is Au.
  • the structure of the TOF device of this embodiment is substantially the same as that of the third embodiment, except that the organic compound in the raw material of the electron transport layer is a compound represented by the above formula 4-2, and the specific structural formula is as follows:
  • the structure of the TOF device of this embodiment is substantially the same as that of the third embodiment, except that the organic compound in the raw material of the electron transport layer is a compound represented by the above formula 4-7, and the specific structural formula is as follows:
  • the structure of the TOF device of this embodiment is substantially the same as that of the third embodiment, except that the organic compound in the raw material of the electron transport layer is a compound represented by the above formula 5-2, and the specific structural formula is as follows:
  • the structure of the TOF device of this embodiment is substantially the same as that of the embodiment 3, except that the organic compound in the raw material of the electron transport layer is a compound represented by the above formula 5-6, and the specific structural formula is as follows:
  • the structure of the TOF device of this embodiment is substantially the same as that of the third embodiment, except that the organic compound in the raw material of the electron transport layer is a compound represented by the above formula 6-1, and the specific structural formula is as follows:
  • the structure of the TOF device of this embodiment is substantially the same as that of the third embodiment, except that the organic compound in the raw material of the electron transport layer is a compound represented by the above formula 6-6, and the specific structural formula is as follows:
  • the structure of the TOF device of this comparative example was substantially the same as that of Example 1, except that the material of the electron transport layer was Bphen-2.
  • the structure of the TOF device of this comparative example was substantially the same as that of Example 1, except that the material of the electron transport layer was Bphen (4,7-diphenyl-1,10-phenanthroline), and the structure was as follows:
  • the structure of the TOF device of this comparative example was substantially the same as that of Example 1, except that the raw material of the electron transport layer included Ag and Bphen, and the mass ratio of Ag to Bphen was 30:70.
  • Example 1 The carrier mobility of Example 1 and Comparative Example 1 was tested at different temperatures using a TOF (Time of Flight) test, and the results are shown in Fig. 4.
  • TOF Time of Flight
  • the carrier mobility of the TOF device of Example 1 is higher than that of the TOF device of Comparative Example 1, indicating that the presence of the inert metal Ag in the electron transport layer causes the electron transport barrier to decrease. Conducive to the improvement of electron mobility.
  • the structure of the single carrier device of this embodiment is: ITO (150 nm) / BCP (10 nm) / Ag (5%): Bphen-2 (95%) (100 nm) / Al (150 nm), wherein ITO is the first One electrode, thickness 150 nm; BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) as a barrier layer, thickness 10 nm; Ag (5%): Bphen -2 (95%) is an electron transport layer, and the electron transport layer is formed by evaporation of a material of the electron transport layer, and the raw materials of the electron transport layer include Ag and Bphen-2 (1,4-bis-(4,7-diphenyl)
  • the base-1,10-phenanolyl-3-)benzene, Ag and Bphen-2 have a mass ratio of 5:95, the electron transport layer has a thickness of 100 nm, and Al is a second electrode having a thickness of 150 nm.
  • the structure of the single carrier device of this embodiment is substantially the same as that of Embodiment 12, except that the mass ratio of Ag to Bphen-2 in the raw material of the electron transport layer is 20:80.
  • the structure of the single carrier device of this embodiment is substantially the same as that of Embodiment 12, except that the mass ratio of Ag to Bphen-2 in the raw material of the electron transport layer is 30:70.
  • the structure of the single carrier device of this embodiment is substantially the same as that of Embodiment 12, except that the organic compound in the raw material of the electron transport layer is Bphen (4,7-diphenyl-1,10-phenanthroline).
  • the mass ratio of Ag to Bphen is 30:70.
  • the structure of the single carrier device of this comparative example was substantially the same as that of Example 12, except that the electron transport layer was a Bphen-2 layer.
  • the structure of the single carrier device of this comparative example is substantially the same as that of the embodiment 12, except that the material of the electron transport layer is Bphen-2, and the electron transport layer further includes an electron injection layer having a thickness of 1 nm, and electron injection.
  • the material is LiF.
  • the current density of the single carrier devices of Examples 12-14 at the same voltage is higher than for the single carrier devices of Comparative Examples 4-5, illustrating the examples 12-14
  • the single-carrier device has good electron transport performance, and doping the inert metal Ag in the electron transport layer can increase the electron mobility of the electron transport layer.
  • the single carrier device in Comparative Example 5 includes an electron transport layer and an electron injection layer, and the electron transport performance of the single carrier device in Embodiments 12-14 is still better than that of the single carrier device in Comparative Example 5.
  • the excellent electron transport performance indicates that the presence of inert metal Ag in the electron transport layer is not only advantageous for electron transport, but also for electron injection, and the effect is even stronger than that of the electron injection layer using LiF material.
  • the single carrier device of Example 14 has a higher current density at the same voltage than that of the single carrier in Embodiment 15 on the premise that the content of the inert metal Ag in the electron transport layer is the same.
  • the device shows that the coordination of the long-chain organic compound as a ligand in the electron transport layer with the inert metal facilitates the increase of carrier mobility.
  • the structure of the organic electroluminescent device of the present embodiment is: ITO (150 nm) / NPB (40 nm) / Alq3 (30 nm) / Ag (5%): Bphen-2 (95%) (30 nm) / Al (150 nm),
  • ITO is the first electrode and has a thickness of 150 nm;
  • the amine is a hole transport layer having a thickness of 40 nm;
  • Alq3 (8-hydroxyquinoline aluminum) is a light-emitting layer having a thickness of 30 nm;
  • Ag (5%): Bphen-2 (95%) is an electron transport layer, and an electron transport layer
  • the material of the electron transport layer is vapor-deposited, and the raw materials of the electron transport layer include Ag and Bphen-2 (1,4-bis-(4,7-diphen
  • the structure of the organic electroluminescent device of the present embodiment is substantially the same as that of the embodiment 16, except that the mass ratio of Ag to Bphen-2 in the raw material of the electron transport layer is 20:80.
  • the structure of the organic electroluminescent device of this example was substantially the same as that of Example 16, except that the mass ratio of Ag to Bphen-2 in the raw material of the electron transport layer was 30:70.
  • the structure of the organic electroluminescent device of this embodiment is substantially the same as that of the embodiment 16.
  • the difference is that the material of the electron transport layer is Bphen-2, and the electron transport layer further includes an electron injection layer having a film thickness of 1 nm, and electron injection.
  • the material is LiF.
  • the structure of the organic electroluminescent device of the present embodiment is substantially the same as that of Embodiment 16, except that the raw material of the electron transport layer includes cobalt and an organic compound having a structure represented by Formula 3-7, cobalt and Formula 3-7.
  • the mass ratio of the organic compound of the structure is 20:80.
  • the structure of the organic electroluminescent device of the present embodiment is substantially the same as that of the embodiment 16, except that the material of the electron transporting layer includes copper and an organic compound having a structure represented by the formula 3-27, copper and having the formula 3-27.
  • the mass ratio of the organic compound of the structure shown was 10:90.
  • the structure of the organic electroluminescent device of the present embodiment is substantially the same as that of the embodiment 16, except that the raw material of the electron transporting layer includes gold and an organic compound having a structure represented by the formula 3-31, gold and having the formula 3-31.
  • the mass ratio of the organic compound of the structure shown was 20:80.
  • the structure of the organic electroluminescent device of the present embodiment is substantially the same as that of the embodiment 16, except that the raw material of the electron transporting layer includes platinum and an organic compound having a structure represented by the formula 4-4, platinum and having the formula 4-4.
  • the mass ratio of the organic compound of the structure shown was 15:85.
  • the organic electroluminescent devices of Examples 16-18 had lower voltages at the same luminance (1000 cd/m 2 ) than Comparative Example 6, indicating the inert metal Ag in the electron transport layer.
  • Doping is beneficial to the improvement of the mobility of the electron transport layer and the injection of electrons, and is more advantageous for balancing the carrier concentration in the organic electroluminescent device, thereby reducing the voltage of the organic electronic device; and the organic electricity in the embodiments 16-18
  • the current efficiency of the electroluminescent device at the same brightness (1000 cd/m 2 ) is higher, indicating that the doping of the inert metal Ag in the electron transport layer is advantageous for the mobility of the electron transport layer, and the organic electroluminescent device is more balanced.
  • the carrier mobility is such that carriers injected from the two electrodes are effectively combined in the light-emitting region to form excitons, thereby improving the luminescent properties of the organic electroluminescent device.
  • the material of the electron transporting layer of the organic electroluminescent device of Comparative Example 6 is Bphen-2, and the electron transporting layer further includes an electron injecting layer, and the electron injecting material is LiF, and the organic electric energy in Examples 16-18
  • the electroluminescence properties of the electroluminescent device are still superior to those of the organic electroluminescent device of Comparative Example 6, indicating that the presence of the inert metal Ag in the electron transport layer is not only advantageous for electron transport but also for electron injection, electrons of the inert metal Ag.
  • the injection effect is even stronger than the electron injection layer using LiF as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种电子传输层,电子传输层的原料包括惰性金属及能够与惰性金属发生配位反应的有机化合物,有机化合物具有通式(I):其中,L 1和L 2分别独立选自含有1~12个碳原子的亚烷基及含有6~30个碳原子的亚芳基中的一种;Ar 1、Ar 2及Ar 3分别独立选自氮氧配位基团、氮硫配位基团、硫氧配位基团、硫硫配位基团、氧氧配位基团及氮氮配位基团中的一种;m为0~10中的任一整数。

Description

电子传输层、有机电致发光器件及显示器 技术领域:
本申请涉及有机电致发光器件领域,尤其涉及一种电子传输层、有机电致发光器件及显示器。
背景技术:
有机电致发光器件,例如有机发光二极管(英文全称为Organic Light-Emitting Diode,简称为OLED),由于自发光、低功耗、视角大、响应速度快、轻薄等一系列优点,成为下一代显示器技术的主力军。
有机电致发光器件的发光效率不仅取决于发光材料本身的发光效率,而且也和载流子在运输层和发光层内部的输运有关。电子和空穴注入的不平衡是影响发光效率的因素之一。相比于空穴注入传输能力,有机分子的电子注入传输能力很弱,电子和空穴注入的不平衡以及迁移率的差异,使得从两极注入的载流子不能有效地限制在发光区而形成激子,导致部分多余载流子到达电极,造成电极处发光的淬灭,而且多余的载流子也会和发光层中激子的三线态能级碰撞,产生三线态-极化子湮灭(TPA),这些都会引起电致发光器件发光效率和寿命的降低。
与无机半导体相比,有机半导体材料分子间作用力较低,载流子主要通过跳跃传输,导致其传输层的迁移率与电导率偏低。目前电子传输层的电子迁移率较低(约为10 -5cm 2V -1s -1至10 -4cm 2V -1s -1数量级),导致有机电致发光器件的发光效率较低。
发明内容:
基于此,有必要提供一种电子迁移率较高的电子传输层。
此外,还提供了一种有机电致发光器件及显示器。
一种电子传输层,电子传输层的原料包括惰性金属和能够与惰性金属发生配位反应的有机化合物,有机化合物具有如下通式:
Figure PCTCN2018089977-appb-000001
其中,L 1和L 2分别独立选自含有1~12个碳原子的亚烷基及含有6~30个碳原子的亚芳基中的一种;
Ar 1、Ar 2及Ar 3分别独立选自氮氧配位基团、氮硫配位基团、硫氧配位基团、硫硫配位基团、氧氧配位基团及氮氮配位基团中的一种;
m为0~10中的任一整数。
一种有机电致发光器件,包括上述的电子传输层。
一种显示器,包括上述的有机电致发光器件。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明:
图1为一实施方式的TOF(Time of flight)器件的结构示意图;
图2为一实施方式的单载流子器件的结构示意图;
图3为一实施方式的有机电致发光器件的结构示意图;
图4为实施例1与对比例1中的TOF器件的温度-载流子迁移率测试曲线图;
图5为实施例12~14、对比例4及对比例5中的单载流子器件的电流密度-电压测试曲线图;
图6为实施例14和实施例15中的单载流子器件的电流密度-电压测试曲线图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本 申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体地实施例的目的,不是旨在于限制本申请。
一实施方式的电子传输层,电子传输层由电子传输层的原料制备得到,电子传输层的原料包括惰性金属及能够与所述惰性金属发生配位反应的有机化合物,所述有机化合物具有如下通式:
Figure PCTCN2018089977-appb-000002
其中,L 1和L 2分别独立选自含有1~12个碳原子的亚烷基及含有6~30个碳原子的亚芳基中的一种;
Ar 1、Ar 2及Ar 3分别独立选自氮氧配位基团、氮硫配位基团、硫氧配位基团、硫硫配位基团、氧氧配位基团及氮氮配位基团中的一种;
m为0~10中的任一整数。
进一步地,Ar 1、Ar 2及Ar 3分别独立选自如下结构中的一种:
Figure PCTCN2018089977-appb-000003
Figure PCTCN2018089977-appb-000004
其中,
R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9及R 10分别选自氢原子、烷基、芳香基、共轭杂环、甲氧基、氨基、-C nH 2n-NH 2、氰基、卤原子、卤代烷基、醛基、酮基、酯基、乙酰丙酮基、-C nH 2n-CN、-C nH 2n-COOR、-C nH 2n-CHO及-C nH 2n-COCH 2COR中的一种;其中,共轭杂环主要是含氮杂环,含硫杂环,含氧杂环;
R选自氢原子、含1~10个碳原子的烷基及含6~8个碳原子的芳香基中的一种;进一步地,芳香基为苯基;
n为1~30中的任一整数。
其中,上述Ar 1结构中的所有位点均可与L 1进行连接;上述Ar 2结构中的所有位点均可与L 1和L 2进行连接;上述Ar 3结构中的所有位点均可与L 2进行连接。进一步地,上述Ar 1结构中的R 1、R 2、R 3及R 4位点为与L 1进行连接的位点;上述Ar 2结构中的R 1、R 2、R 3及R 4位点为与L 1和L 2进行连接的位点;上述Ar 3结构中的R 1、R 2、R 3及R 4位点为与L 2进行连接的位点。
进一步地,L 1和L 2分别独立选自如下结构中的一种:
Figure PCTCN2018089977-appb-000005
其中,
R 11、R 12、R 13、R 14、R 15、R 16、R 17及R 18分别独立选自氢原子、烷基、甲氧基、氨基、-C nH 2n-NH 2、氰基、卤原子、卤代烷基、醛基、酮基、酯基及乙酰丙酮基中的一种。
具体地,有机化合物选自如下结构中的一种:
Figure PCTCN2018089977-appb-000006
Figure PCTCN2018089977-appb-000007
Figure PCTCN2018089977-appb-000008
Figure PCTCN2018089977-appb-000009
Figure PCTCN2018089977-appb-000010
其中,惰性金属选自钛、钒、铬、锰、铁、钴、镍、铜(Cu)、锌、锆、铌、钼、锝、钌、铑、铅、银(Ag)、镉、钽、钨、铼、锇、铱、金(Au)、铂及汞中的至少一种。进一步地,惰性金属选自钴、镍、铜、钌、银、铱、金及铂中的至少一种。更进一步地,惰性金属为银。
其中,电子传输层中的惰性金属与有机化合物的质量比为5∶100~50∶100。当惰性金属与长链有机化合物的质量比低于5∶100时,会导致电子传输层中的惰性金属含量过低而降低电子迁移率;当惰性金属与长链有机化合物的质量比高于50∶100时,则会影响器件的柔软性和透光性等其他使用性能。
上述电子传输层至少具有以下优点:
(1)上述电子传输层中的有机化合物含有氮氧配位基团、氮硫配位基团、硫氧配位基团、硫硫配位基团、氧氧配位基团及氮氮配位基团中的至少一种杂环配位结构,这种配位结构与惰性金属进行配位后使之前的有机化合物分子间的范德华力变成配位作用力,增加了有机化合物分子间的作用力,拉近了有机化合物分子间的距离,降低载流子的传递势垒,显著改善电子传输层的迁移率。
(2)由于上述有机化合物含有1个或多个杂环配位结构,因此其与惰性金属配位后能更近一步的拉近分子间距离,同时配体的长链结构有利于构筑载流子传输的通道,进一步提升迁移率。
(3)惰性金属在配体结构中可以实现很好的n型掺杂效果,可以大大提高载流子浓度,外生载流子填充原来电子传输层陷阱态的同时,增强电子传输层的电导率。
(4)这种有机无机材料复合的薄膜(电子传输层材料),其薄膜的热稳定性有明显的改善。有利于电子传输层的热稳定性的提升,在较高温度蒸镀时传输层不易结晶,能够保持传输层稳定的传输效果。
一实施方式的电子传输层的制备方法为:将上述惰性金属及上述有机化合物共蒸镀。
一实施方式的有机电子器件,包括上述的电子传输层。其中,有机电子器件选自TOF(Time of flight)器件、单载流子器件及有机电致发光器件中的一种。
其中,电子传输层的厚度为1nm~200nm。当电子传输层的厚度低于1nm或高于200nm都不利于载流子在发光层的复合。进一步地,电子传输层的厚度为5nm~50nm。
如图1所示,为一实施方式的TOF(Time of flight)器件100,包括基板110、第一电极120、电子传输层130及第二电极140。其中,第一电极120为ITO层;电子传输层130的原料包括上述惰性金属和上述有机化合物;第二电极140为Ag。
如图2所示,单载流子器件200包括基板210、第一电极220、阻挡层230、电子传输层240及第二电极250。其中,第一电极220为ITO层;阻挡层230为BCP(2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲)层;电子传输层240的原料包括上述惰性金属和上述有机化合物;第二电极250为Al层。
如图3所示,为一实施方式的有机电致发光器件300包括基板310、第一电极320、空穴传输层330、发光层340、电子传输层350及第二电极360。其中,第一电极320为ITO层;空穴传输层330为NPB(N,N’-二(1-萘基)-N,N’-二苯基-1,1’-联苯-4,4’-二胺)层;发光层340为Alq3(8-羟基喹啉铝)层;电子传输层350的原料包括上述惰性金属和上述有机化合物;第二电极360为铝(Al)层
上述有机电致发光器件使用了上述电子传输层,由于上述电子传输层具有增强电子传输层的电导率、增加电子传输层的迁移率的效果,从而使得有机电致发光器件具有降低电压,降低效率滚降,增长器件发光寿命的效果。
一实施方式的显示器,包括上述的有机电致发光器件。上述显示器使用了上述电子传输层,由于上述电子传输层具有增强电子传输层的电导率、增加电子传输层的迁移率的效果,从而使得使用该有机电致发光器件的显示器具有降低电压,降低效率滚降,增长器件发光寿命的效果。
具体实施例部分:
实施例1
本实施例的飞行时间法TOF(Time of flight)器件的结构为:基板/ITO(150nm)/Ag(5%):Bphen-2(95%)(1μm)/Ag(150nm),其中,ITO为第一电极,厚度为150nm;Ag(5%):(Bphen-2)(1μm)为电子传输层,电子传输层由电子传输层的原料蒸镀而成,电子传输层的原料包括Ag和Bphen-2,Ag和Bphen-2的质量比为5∶95,电子传输层的厚度为1μm;Ag为第二电极;“/”表示层叠,下同。
其中,Bphen-2的结构式如下:
Figure PCTCN2018089977-appb-000011
实施例2
本实施例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料中Ag和Bphen-2的质量比为20∶80。
实施例3
本实施例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料中Ag和Bphen-2的质量比为30∶70。
实施例4
本实施例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料中的惰性金属为Cu。
实施例5
本实施例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料中的惰性金属为Au。
实施例6
本实施例的TOF器件的结构与实施例3大致相同,其区别在于,电子传输层的原料中的有机化合物为上述式4-2所示的化合物,具体结构式如下:
Figure PCTCN2018089977-appb-000012
实施例7
本实施例的TOF器件的结构与实施例3大致相同,其区别在于,电子传输层的原料中的有机化合物为上述式4-7所示的化合物,具体结构式如下:
Figure PCTCN2018089977-appb-000013
实施例8
本实施例的TOF器件的结构与实施例3大致相同,其区别在于,电子传输层的原料中的有机化合物为上述式5-2所示的化合物,具体结构式如下:
Figure PCTCN2018089977-appb-000014
实施例9
本实施例的TOF器件的结构与实施例3大致相同,其区别在于,电子传输层的原料中的有机化合物为上述式5-6所示的化合物,具体结构式如下:
Figure PCTCN2018089977-appb-000015
实施例10
本实施例的TOF器件的结构与实施例3大致相同,其区别在于,电子传输层的原料中的有机化合物为上述式6-1所示的化合物,具体结构式如下:
Figure PCTCN2018089977-appb-000016
实施例11
本实施例的TOF器件的结构与实施例3大致相同,其区别在于,电子传输层的原料中的有机化合物为上述式6-6所示的化合物,具体结构式如下:
Figure PCTCN2018089977-appb-000017
对比例1
本对比例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料为Bphen-2。
对比例2
本对比例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料为Bphen(4,7-二苯基-1,10-菲罗啉),结构如下:
Figure PCTCN2018089977-appb-000018
对比例3
本对比例的TOF器件的结构与实施例1大致相同,其区别在于,电子传输层的原料包括Ag和Bphen,Ag和Bphen的质量比为30∶70。
采用飞行时间法(Time of Flight)对实施例1-11及对比例1-3进行电子迁移率测试,测试结果如表1所示:
表1 电子迁移率测试结果
Figure PCTCN2018089977-appb-000019
Figure PCTCN2018089977-appb-000020
由表1的电子迁移率结果可以看出,将Ag、Cu及Au等惰性金属掺杂在有机化合物中配位形成电子传输层,采用该电子传输层制备的TOF器件的电子迁移率明显提高,并且随着惰性金属在电子传输层中的含量的提升,电子传输层的迁移率逐渐升高,说明电子传输层中含有惰性金属有利于电子传输层载流子迁移率的提升。
从实施例3、6-11及对比例3的电子迁移率结果可以看出,随着有机化合物的分子链长度的增加,电子传输层的电子迁移率逐渐提升,说明随着有机化合物的分子链长度的增加,其杂环配位结构也随之增加,使有机化合物与惰性金属配位后更近一步的拉近分子间距离,同时有机化合物的长链结构又有利于构筑载流子传输的通道,从而进一步提升电子迁移率。
采用TOF(飞行时间)测试法在不同温度下测试实施例1和对比例1的载流子迁移率,结果见图4。
从图4可以看出,在相同温度下,实施例1的TOF器件的载流子迁移率高于对比例1的TOF器件,说明电子传输层中惰性金属Ag的存在导致电子传递势垒降低,有利于电子迁移率的提升。
实施例12
本实施例的单载流子器件的结构为:ITO(150nm)/BCP(10nm)/Ag(5%):Bphen-2(95%)(100nm)/Al(150nm),其中,ITO为第一电极,厚度为150nm;BCP(2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲)为阻挡层,厚度为10nm;Ag(5%):Bphen-2(95%)为电子传输层,电子传输层由电子传输层的原料蒸镀而成,电子传输层的原料包括Ag和Bphen-2(1,4-二-(4,7-二苯基-1,10-菲罗啉基-3-)苯,Ag和Bphen-2的质量比为5∶95,电子传输层厚度为100nm;Al为第二电极,厚度为150nm。
实施例13
本实施例的单载流子器件的结构与实施例12大致相同,其区别在于,电子传输层的原料中Ag和Bphen-2的质量比为20∶80。
实施例14
本实施例的单载流子器件的结构与实施例12大致相同,其区别在于,电子传输层的原料中Ag和Bphen-2的质量比为30∶70。
实施例15
本实施例的单载流子器件的结构与实施例12大致相同,其区别在于,电子传输层的原料中的有机化合物为Bphen(4,7-二苯基-1,10-菲罗啉),Ag和Bphen的质量比为30∶70。
对比例4
本对比例的单载流子器件的结构与实施例12大致相同,其区别在于,电子传输层为Bphen-2层。
对比例5
本对比例的单载流子器件的结构与实施例12大致相同,其区别在于,电子传输层的原料为Bphen-2,此外,电子传输层中还包含厚度为1nm的电子注入层,电子注入材料为LiF。
采用Keithley K 2400数字源表系统对实施例12-15及对比例4-5中的单载流子器件进行电流密度-电压测试,结果如图5和图6所示。
从图5中可以看出,实施例12-14中的单载流子器件在相同电压下的电流密度比对比例4-5中的单载流子器件高,说明实施例12-14中的单载流子器件的电子传输性能较好,在电子传输层中掺杂惰性金属Ag能够提高电子传输层的电子迁移率。同时,对比例5中的单载流子器件包括电子传输层和电子注入层,而实施例12-14中的单载流子器件的电子传输性能仍比对比例5中的单载流子器件的电子传输性能优异,说明电子传输层中惰性金属Ag的存在不仅有利于电子传输,而且对电子注入也有提升,其效果甚至强于使用LiF材料的电子注入层。
另外,从图5中的实施例12-14的电流密度-电压曲线可以看出,随着Ag在电子传输层中含量的提高,电子传输性能也逐渐提升,且Ag的质量含量达到30%时为最优。
从图6中可以看出,在电子传输层中惰性金属Ag含量相同的前提下,实施例14中的单载流子器件在相同电压下的电流密度要大于实施例15中的单载流子器件,说明在电子传输层中以长链的有机化合物作为配体与惰性金属进行配位有利于载流子迁移率的提升。
实施例16
本实施例的有机电致发光器件的结构为:ITO(150nm)/NPB(40nm)/Alq3(30nm)/Ag(5%):Bphen-2(95%)(30nm)/Al(150nm),其中,ITO为第一电极,厚度为150nm;NPB(N,N’-二(1-萘基)-N,N’-二苯基-1,1’-联苯-4,4’-二胺)为空穴传输层,厚度为40nm;Alq3(8-羟基喹啉铝)为发光层,厚度为30nm;Ag(5%):Bphen-2(95%)为电子传输层,电子传输层由电子传输层的原料蒸镀而成,电子传输层的原料包括Ag和Bphen-2(1,4-二-(4,7-二苯基-1,10-菲罗啉基-3-)苯,Ag和Bphen-2的质量比为5∶95;Al为第二电极,厚度为150nm。
实施例17
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料中Ag和Bphen-2的质量比为20∶80。
实施例18
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料中Ag和Bphen-2的质量比为30∶70。
对比例6
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料为Bphen-2,同时,电子传输层还包含膜厚为1nm的电子注入层,电子注入材料为LiF。
实施例19
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料包括钴和具有式3-7所示结构的有机化合物,钴和式3-7所示结构的有机化合物的质量比为20∶80。
实施例20
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料包括铜和具有式3-27所示结构的有机化合物,铜和具有式3-27所示结构的有机化合物的质量比为10∶90。
实施例21
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料包括金和具有式3-31所示结构的有机化合物,金和具有式3-31所示结构的有机化合物的 质量比为20∶80。
实施例22
本实施例的有机电致发光器件的结构与实施例16大致相同,其区别在于,电子传输层的原料包括铂和具有式4-4所示结构的有机化合物,铂和具有式4-4所示结构的有机化合物的质量比为15∶85。
采用PR 650光谱扫描亮度计和Keithley K 2400数字源表系统对实施例16~22及对比例6中的有机电致发光器件进行电流、电压、亮度及发光光谱等特性同步测试,其结果如表2所示:
表2 有机电致发光器件的性能测试结果
Figure PCTCN2018089977-appb-000021
从表2可以看出,与对比例6相比,实施例16-18中的有机电致发光器件在相同亮度(1000cd/m 2)下的电压更低,说明电子传输层中惰性金属Ag的掺杂有利于电子传输层迁移率的提升和电子的注入,更有利于平衡有机电致发光器件中的载流子浓度,从而降低有机电子器件的电压;同时实施例16-18中的有机电致发光器件在相同亮度(1000cd/m 2)下的电流效率更高,说明电子传输层中惰性金属Ag的掺杂有利于电子传输层迁移率的提升,而使有机电致发光器件具有更加平衡的载流子迁移率,使得从两极注入的载流子有效地在发光区复合而形成激子,提升有机电致发光器件发光性能。
此外,对比例6中的有机电致发光器件的电子传输层的原料为Bphen-2,同时,电子传输层还包括电子注入层,电子注入材料为LiF,而实施例16-18中的有机电致发光器件的电致发光性能仍比对比例6中的有机电致发光器件优异,说明电子传输层中惰性金属Ag的存在不仅有利于电子传输,而且对电子注入也有提升,惰性金属Ag的电子注入效果甚至强于使用LiF为原料的电子注入层。
另外,从表2中可以看出,随着Ag在电子传输层中含量的提高,实施例16~18中的有机电致发光器件在1000cd/m 2下的电压逐渐降低、电流效率逐渐提升;且当Ag的质量含量达到30%时,有机电致发光器件的性能最优,这与实施例1~3中的单载流子器件电子传输层迁移率随惰性金属掺杂质量的测试变化规律一致。
同时,从实施例19~22中的有机电致发光器件的测试结果可以看出,随着有机化合物的分子链长度的增加,电致发光器件在相同亮度下的电压有所降低,这证明随着引入化合物分子的分子链增加,可配位的位点增加。有利于分子间距离的减少,更近一步的拉近分子间距离,同时配体的长链结构有利于构筑载流子传输的通道,进一步提升迁移率,从而降低器件的开启电压。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (14)

  1. 一种电子传输层,所述电子传输层的原料包括惰性金属及能够与所述惰性金属发生配位反应的有机化合物,所述有机化合物具有如下通式:
    Figure PCTCN2018089977-appb-100001
    其中,L 1和L 2分别独立选自含有1~12个碳原子的亚烷基及含有6~30个碳原子的亚芳基中的一种;
    Ar 1、Ar 2及Ar 3分别独立选自氮氧配位基团、氮硫配位基团、硫氧配位基团、硫硫配位基团、氧氧配位基团及氮氮配位基团中的一种;
    m为0~10中的任一整数。
  2. 根据权利要求1所述的电子传输层,其特征在于,所述Ar 1、所述Ar 2及所述Ar 3分别独立选自如下结构中的一种:
    Figure PCTCN2018089977-appb-100002
    Figure PCTCN2018089977-appb-100003
    其中,
    R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9及R 10分别选自氢原子、烷基、芳香基、共轭杂环、甲氧基、氨基、-C nH 2n-NH 2、氰基、卤原子、卤代烷基、醛基、酮基、酯基、乙酰丙酮基、-C nH 2n-CN、-C nH 2n-COOR、-C nH 2n-CHO及-C nH 2n-COCH 2COR中的一种;
    R选自氢原子、含1~10个碳原子的烷基及含6~18个碳原子的芳香基中的一种;n为1~30中的任一整数。
  3. 根据权利要求2所述的电子传输层,其特征在于,所述芳香基为苯基。
  4. 根据权利要求2所述的电子传输层,其特征在于,R 1、R 2、R 3及R 4所在位点为与L 1或L 2进行连接的位点。
  5. 根据权利要求1所述的电子传输层,其特征在于,所述L 1和所述L 2分别独立选自如下结构中的一种:
    Figure PCTCN2018089977-appb-100004
    其中,
    R 11、R 12、R 13、R 14、R 15、R 16、R 17及R 18分别选自氢原子、烷基、甲氧基、氨基、-C nH 2n-NH 2、氰基、卤原子、卤代烷基、醛基、酮基、酯基及乙酰丙酮基中的一种。
  6. 根据权利要求1所述的电子传输层,其特征在于,所述有机化合物选自如下结构中的一种:
    Figure PCTCN2018089977-appb-100005
    Figure PCTCN2018089977-appb-100006
    Figure PCTCN2018089977-appb-100007
    Figure PCTCN2018089977-appb-100008
    Figure PCTCN2018089977-appb-100009
  7. 根据权利要求1所述的电子传输层,其特征在于,所述惰性金属选自钛、钒、铬、锰、铁、钴、镍、铜、锌、锆、铌、钼、锝、钌、铑、铅、银、镉、钽、钨、铼、锇、铱、金、铂及汞中的至少一种。
  8. 根据权利要求7所述的电子传输层,其特征在于,所述惰性金属选自钴、镍、铜、钌、银、铱、金及铂中的至少一种。
  9. 根据权利要求8所述的电子传输层,其特征在于,所述惰性金属为银。
  10. 根据权利要求1所述的电子传输层,其特征在于,所述电子传输层的原料中所述惰性金属与所述有机化合物的质量比为5∶100~50∶100。
  11. 一种有机电致发光器件,包括权利要求1~10任意一项所述的电子传输层。
  12. 根据权利要求11所述的有机电致发光器件,其特征在于,所述电子传输层的厚度为1nm~200nm。
  13. 根据权利要求11所述的有机电致发光器件,其特征在于,所述电子传输层的厚度为5nm~50nm。
  14. 一种显示器,包括权利要求11~13任意一项所述的有机电致发光器件。
PCT/CN2018/089977 2017-12-29 2018-06-05 电子传输层、有机电致发光器件及显示器 WO2019128112A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/521,570 US20190348614A1 (en) 2017-12-29 2019-07-24 Electron transporting layers, organic electroluminescence devices, and displays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711480627.1 2017-12-29
CN201711480627.1A CN109994651B (zh) 2017-12-29 2017-12-29 一种有机电致发光器件及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/521,570 Continuation US20190348614A1 (en) 2017-12-29 2019-07-24 Electron transporting layers, organic electroluminescence devices, and displays

Publications (1)

Publication Number Publication Date
WO2019128112A1 true WO2019128112A1 (zh) 2019-07-04

Family

ID=64797241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089977 WO2019128112A1 (zh) 2017-12-29 2018-06-05 电子传输层、有机电致发光器件及显示器

Country Status (4)

Country Link
US (1) US20190348614A1 (zh)
CN (1) CN109994651B (zh)
TW (1) TWI667329B (zh)
WO (1) WO2019128112A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240807A1 (ja) * 2019-05-31 2020-12-03 シャープ株式会社 発光素子及び表示装置
CN110283172A (zh) * 2019-07-23 2019-09-27 武汉华星光电半导体显示技术有限公司 光耦合输出材料及其制备方法、电致发光器件
EP3798213B1 (en) * 2019-09-26 2024-01-10 Novaled GmbH Organic semiconductor layer, organic electronic device comprising the same and compounds therefor
CN111253393B (zh) * 2020-02-05 2022-01-25 北京大学 长寿命三线态激子限域材料及其在oled器件中的应用
CN113421984A (zh) * 2021-06-23 2021-09-21 上海晶合光电科技有限公司 一种oled器件及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224605A1 (en) * 2007-03-13 2008-09-18 Samsung Electronics Co., Ltd. White organic light emitting device including color control layer
CN102372693A (zh) * 2010-08-20 2012-03-14 清华大学 一种咔唑类化合物及其应用
KR20120078294A (ko) * 2010-12-31 2012-07-10 서울대학교산학협력단 인버티드 유기 발광 소자 및 이를 포함하는 평판 표시 장치
CN107464885A (zh) * 2016-06-06 2017-12-12 清华大学 一种有机电致发光器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924648B2 (ja) * 1999-11-02 2007-06-06 ソニー株式会社 有機電界発光素子
JP2003226870A (ja) * 2002-02-04 2003-08-15 Matsushita Electric Ind Co Ltd 発光素子材料、およびこれを用いた発光素子ならびに装置
JPWO2003076549A1 (ja) * 2002-03-08 2005-07-07 キヤノン株式会社 金属配位化合物を用いた電界発光素子
WO2004015746A2 (en) * 2002-08-12 2004-02-19 Colorado State University Research Foundation Low work function metal complexes and uses thereof
CN100431195C (zh) * 2005-04-22 2008-11-05 友达光电股份有限公司 有机发光元件
JP5656338B2 (ja) * 2007-03-12 2015-01-21 ケミプロ化成株式会社 新規な1,10−フェナントロリン誘導体、電子輸送材料、電子注入材料およびそれを含有する有機電界発光素子
DE102008011185A1 (de) * 2008-02-27 2009-09-03 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer dotierten organischen halbleitenden Schicht
DE102008056391B4 (de) * 2008-09-26 2021-04-01 Osram Oled Gmbh Organisches elektronisches Bauelement und Verfahren zu dessen Herstellung
DE102009047880A1 (de) * 2009-09-30 2011-03-31 Osram Opto Semiconductors Gmbh Organische elektronische Vorrichtung und Verfahren zu dessen Herstellung
KR102244374B1 (ko) * 2013-08-09 2021-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
CN104659251A (zh) * 2013-11-19 2015-05-27 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104650116B (zh) * 2013-12-26 2017-12-05 北京鼎材科技有限公司 一种有机化合物及其在有机电致发光器件中的应用
KR102408143B1 (ko) * 2015-02-05 2022-06-15 삼성전자주식회사 유기금속 화합물, 유기금속 화합물-함유 조성물 및 이를 포함한 유기 발광 소자
KR102523099B1 (ko) * 2015-06-18 2023-04-18 엘지디스플레이 주식회사 유기전계발광소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224605A1 (en) * 2007-03-13 2008-09-18 Samsung Electronics Co., Ltd. White organic light emitting device including color control layer
CN102372693A (zh) * 2010-08-20 2012-03-14 清华大学 一种咔唑类化合物及其应用
KR20120078294A (ko) * 2010-12-31 2012-07-10 서울대학교산학협력단 인버티드 유기 발광 소자 및 이를 포함하는 평판 표시 장치
CN107464885A (zh) * 2016-06-06 2017-12-12 清华大学 一种有机电致发光器件

Also Published As

Publication number Publication date
CN109994651B (zh) 2020-12-25
TW201835303A (zh) 2018-10-01
TWI667329B (zh) 2019-08-01
CN109994651A (zh) 2019-07-09
US20190348614A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2019128112A1 (zh) 电子传输层、有机电致发光器件及显示器
Sun et al. High efficiency tandem organic light emitting diode using an organic heterojunction as the charge generation layer: an investigation into the charge generation model and device performance
Wolak et al. High‐Performance Organic Light‐Emitting Diodes Based on Dioxolane‐Substituted Pentacene Derivatives
JP6178966B2 (ja) 改善された性能を有する発光トランジスタ
TWI356090B (en) Organic electroluminescent element
WO2023024445A1 (zh) 螺环化合物、制剂、有机电致发光二极管及显示装置
Doh et al. Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems
Chen et al. Effect of multi-walled carbon nanotubes on electron injection and charge generation in AC field-induced polymer electroluminescence
WO2020034805A1 (zh) 一种基于激基复合物和激基缔合物体系的有机电致发光器件
KR102122453B1 (ko) 유기 발광 장치
US11081646B2 (en) Coating composition, method for producing organic electroluminescent device using same, and organic electroluminescent device produced thereby
CN109638170B (zh) 一种有机电致光电元件
Ullah et al. Hybrid light-emitting transistors based on low-temperature solution-processed metal oxides and a charge-injecting interlayer
Hu et al. Assistant dopant system in red phosphorescent OLEDs and its mechanism reveal
US20130062599A1 (en) Organic light emitting devices having graded emission regions
Chang et al. Great improvement of operation-lifetime for all-solution OLEDs with mixed hosts by blade coating
KR102148534B1 (ko) 유기 전계 발광 소자
Dong et al. Enhanced hole injection by introducing an electron-withdrawing layer in inverted quantum dot light-emitting diodes
Hu et al. Assistant dopant system in solution processed phosphorescent OLEDs and its mechanism reveal
Han et al. Modification of ITO with Composite Self-Assembled Monolayer Enables Hole Injection and Transport Layer-Free TADF-OLED with Preferable Performance
Tsai et al. Effects of novel transition metal oxide doped bilayer structure on hole injection and transport characteristics for organic light-emitting diodes
Bhui et al. Deep blue organic light-emitting diodes of 1, 8-diaryl anthracene
Li et al. Improving the performance of solution-processed small molecule OLEDs via micro-aggregation formed by an alcohol additive incorporation
Li et al. High thermal stability fluorene-based hole-injecting material for organic light-emitting devices
US20170229672A1 (en) Organic light emitting devices and methods of making them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895203

Country of ref document: EP

Kind code of ref document: A1