WO2019127680A1 - Procédé de purification de nanotubes de carbone, transistor en couches minces et procédé de fabrication d'un transistor en couches minces - Google Patents

Procédé de purification de nanotubes de carbone, transistor en couches minces et procédé de fabrication d'un transistor en couches minces Download PDF

Info

Publication number
WO2019127680A1
WO2019127680A1 PCT/CN2018/072701 CN2018072701W WO2019127680A1 WO 2019127680 A1 WO2019127680 A1 WO 2019127680A1 CN 2018072701 W CN2018072701 W CN 2018072701W WO 2019127680 A1 WO2019127680 A1 WO 2019127680A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
carbon nanotube
bottom gate
walled carbon
insulating layer
Prior art date
Application number
PCT/CN2018/072701
Other languages
English (en)
Chinese (zh)
Inventor
谢华飞
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2019127680A1 publication Critical patent/WO2019127680A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes

Definitions

  • the present invention relates to the field of display manufacturing technology, and in particular, to a carbon nanotube purification method, a thin film transistor, and a preparation method.
  • Carbon Nanotube Thin Film Transitor (CNT-TFT) has attracted the attention of many researchers in the display field due to its high mobility, high transparency and high elasticity.
  • CNT-TFTs are all prepared from network-like carbon nanotube films.
  • single-walled carbon nanotubes SWCNTs, Single-Walled Carbon Nanotubes
  • m-SWCNTs metallic single-walled carbon nanotubes
  • sc-SWCNT Semiconductor Single-Walled Carbon Nanotube
  • m-SWCNT is used to prepare nano-scale electrodes
  • sc-SWCNT is a high mobility and switching ratio conductive channel, and the band gap of different diameter sc-SWCNTs will be different, and the band gap distribution will be different. This will result in a greatly reduced conductivity of the prepared CNT-TFT.
  • the invention also provides a carbon nano thin film transistor and a preparation method thereof.
  • the method for purifying carbon nanotubes according to the present invention comprises:
  • Single-walled carbon nanotubes mixed with metallic single-walled carbon nanotubes and semi-conducting single-walled carbon nanotubes are added to an organic solvent containing a small molecule compound, and ultrasonically dispersed to obtain a carbon nanotube suspension;
  • the carbon nanotube suspension was subjected to centrifugation to remove deposits of the carbon nanotube suspension to obtain a semiconducting single-walled carbon nanotube supernatant.
  • single-walled carbon nanotubes mixed with metallic single-walled carbon nanotubes and semi-conducting single-walled carbon nanotubes are added to an organic solvent containing a small molecule compound, and ultrasonically dispersed to obtain a suspension of carbon nanotubes.
  • ultrasonic dispersion was carried out under ice water bath conditions.
  • the method for purifying the carbon nanotubes comprises:
  • the carbon nanotubes prepared by the arc method are dissolved in a toluene solution containing a small molecule compound, and ultrasonically dispersed in an ice water bath for 20 min to 40 min to obtain a carbon nanotube suspension, wherein the mass ratio of the carbon nanotubes to the small molecule compound is obtained. 1 to 3;
  • the carbon nanotube suspension was centrifuged at a high speed of 20 kg to 30 kg for 20 min to 40 min, and the deposit of the carbon nanotube suspension was removed to obtain a semiconducting single-walled carbon nanotube supernatant.
  • the small molecule compound comprises 1,4-bis(indol-9-methylthio)-p-xylene, 1-(indol-1-methoxy)-4-(indol-1-methoxy) -p-xylene, 1-(indol-1-methylthio)-4-(indol-1-methylthio)-p-xylene, 1-(benzoxan-1-methoxy)-4-( Benzopyrene-1-methoxy)-p-xylene.
  • the method for preparing a thin film transistor of the present invention comprises:
  • a top gate insulating layer, a top gate, and a passivation layer are sequentially formed on the source and the drain.
  • the substrate is immersed and rinsed with an organic solution, and dried at 50 ° C to 100 ° C.
  • the active layer is formed by pulling deposition.
  • the process of forming an active layer on the bottom gate insulating layer with the semiconducting single-walled carbon nanotube supernatant is performed in an atmosphere filled with a shielding gas.
  • the thin film transistor of the present invention comprises:
  • top gate insulating layer a top gate insulating layer, a top gate, and a passivation layer covering the source and the drain;
  • the present invention adopts the semiconducting carbon nanotube obtained by the single-walled carbon nanotube purification method of the present invention, and the semi-band gap distribution of the semiconducting carbon nanotube obtained by the purification is narrow, and the high-purity semiconducting carbon nanotube is used as an active source.
  • Layer preparation results in a carbon nano-thin film transistor with high performance field effect.
  • FIG. 1 is a flow chart of a method for purifying single-walled carbon nanotubes according to the present invention.
  • FIG. 2 is a flow chart showing a method of fabricating the thin film transistor of the present invention.
  • FIG 3 is a view showing a structure of a film layer of a thin film transistor according to the present invention.
  • the present invention provides a method for purifying a semiconducting single-walled carbon nanotube, comprising:
  • a single-walled carbon nanotube in which a single-walled carbon nanotube and a semi-walled carbon nanotube are mixed with metal is added to an organic solvent containing a small molecule compound, and ultrasonically dispersed to obtain a carbon nanotube suspension.
  • the single-walled carbon nanotubes may be prepared by a laser evaporation method, an arc discharge method, or a chemical vapor deposition method, and the single-walled carbon nanotubes include metallic single-walled carbon nanotubes and semiconductor properties.
  • the semiconducting carbon nanotubes are encapsulated by small molecular compounds which are dissolved in an organic solvent, wherein the small molecular compound has the general formula of a polycyclic aromatic hydrocarbon-benzene ring-fused aromatic hydrocarbon (PAH-B-PAH, Polycyclic Aromatic Hydrocarbon- Benzene-Polycyclic Aromatic Hydrocarbon), whose chemical structure is as follows:
  • the fused ring aromatic hydrocarbon (PAN), that is, R1 and R2 in the above structural formula includes, but is not limited to, a fused ring within five benzene rings such as ruthenium, osmium, benzofluorene, naphthalene, butyl, phenanthrene and naphthene.
  • An aromatic hydrocarbon, the chemical structural formula of the fused aromatic hydrocarbon is as follows:
  • the PAH-B-PAH includes, but is not limited to, 1,4-bis(indol-9-methylthio)-p-xylene, 1-(indol-1-methoxy)-4-(anthracene- 1-methoxy)-p-xylene, 1-(indol-1-methylthio)-4-(indol-1-methylthio)-p-xylene, 1-(benzoxan-1-methoxy
  • the specific chemical structural formula of the small molecule compound is as follows: 4-(benzoxan-1-methoxy)-p-xylene:
  • Organic solvents that can dissolve small molecule compounds include, but are not limited to, toluene solutions.
  • Ultrasonic dispersion of an organic solvent of a mixed oil single-walled carbon nanotube and a small molecule compound in an ice water bath condition can effectively prevent the organic solvent from volatilizing a large amount during the ultrasonic process, when the small molecule compound and the single-walled carbon After the nanotubes are ultrasonically dispersed and incubated in the organic solvent, the small molecule compound is selectively encapsulated with the semiconducting single-walled carbon nanotubes to make the semiconducting single-walled carbon nanotubes in the organic solvent. The solubility and dispersibility are enhanced.
  • the carbon nanotubes prepared by the arc method are dissolved in a toluene solution containing a small molecule compound, and ultrasonically dispersed in an ice water bath for 20 min to 40 min to obtain a carbon nanotube suspension, a carbon nanotube and a small carbon nanotube.
  • the mass ratio of the molecular compound is 1-3.
  • the carbon nanotubes prepared by the 4 mg arc method are dissolved in 20 ml of a toluene solution containing 2 mg of a small molecule compound, and ultrasonically dispersed for 30 minutes in an ice water bath to obtain a carbon nanotube suspension. .
  • the carbon nanotube suspension is subjected to centrifugation to remove deposits of the carbon nanotube suspension to obtain a semiconducting single-walled carbon nanotube supernatant.
  • metallic single-walled carbon nanotubes and amorphous carbides are precipitated at the bottom of the solution, and the semiconducting single-walled carbon nanotubes are small.
  • the molecular compound is encapsulated and dissolved in an organic solvent, so that the separation of the metallic single-walled carbon nanotubes and the semiconducting single-walled carbon nanotubes can be achieved by separating the supernatant and the bottom precipitate.
  • the supernatant can be taken out from the centrifuge tube to remove the metallic single-walled carbon nanotubes and amorphous carbon impurities in the bottom solution, thereby obtaining a high content of semiconducting single-walled carbon nanotubes for constructing the carbon nanotube film.
  • Transistor In this embodiment, the carbon nanotube suspension is centrifuged at a high speed of 20 kg to 30 kg for 20 min to 40 min, and then the supernatant is taken out from the centrifuge tube by a syringe to remove the metallic single-walled carbon nanotubes at the bottom of the centrifuge tube. Amorphous carbon impurities provide a high content of semiconducting single-walled carbon nanotube solution.
  • the present invention also provides a method for fabricating a thin film transistor, comprising:
  • the substrate includes, but is not limited to, a quartz substrate, a glass substrate, or a flexible plastic substrate.
  • the substrate is a glass substrate, and a Mo film is first sputtered on the glass substrate by physical vapor deposition, then a Cu film is formed by sputtering to form a first metal film, and then a photolithographic process is used to form a Mo/Cu bottom gate.
  • a 200 nm thick SiO 2 is covered as a bottom gate insulating layer by plasma enhanced chemical deposition, and then the impurities are washed away with acetone, methanol and isopropanol, and baked at 50 ° C to 100 ° C. dry.
  • the material of the bottom gate includes and is not limited to one or more conductive materials such as Al, Ag, Cu, Mo or Ti
  • the material of the bottom gate insulating layer includes and is not limited to SiO 2 , Al 2 O 3 . , SiN x , HfO 2 or ionic gel materials.
  • the method of forming the bottom gate and the gate insulating layer includes, but is not limited to, a deposition method such as Plasma Enhanced Chemical Vapor Deposition (PECVD).
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the single-walled nanotube supernatant is prepared by the above-mentioned method for purifying the semi-conducting single-walled carbon nanotubes, and the substrate prepared in S201 is immersed in the semiconductor in a glove box filled with a protective gas.
  • a uniform carbon nanotube active layer is formed by multiple lift deposition techniques, and the carbon nanotube channel is etched by photolithography and oxygen plasma and placed in the electron. In the beam evaporation machine.
  • S203 a source and a drain are respectively formed at opposite ends of the active layer.
  • a layer of Mo film is first plated on the bottom gate insulating layer by electron evaporation, followed by vapor deposition of a Cu film, and then vapor deposition of a layer of Mo film to form a three-layer film of Mo/Cu/Mo.
  • the material of the source and drain includes, and is not limited to, one or more conductive materials such as Al, Ag, Cu, Mo or Ti.
  • a top gate insulating layer, a top gate, and a passivation layer are sequentially formed on the source and the drain.
  • a 300 nm thick SiO 2 film is covered by a chemical vapor deposition method as a top gate insulating layer on the sample prepared in the step S203; a Mo film is vapor-deposited under the action of the shadow mask, and then vapor deposition is performed. An upper Cu film is formed, and the Mo/Cu film layer forms a top gate; then SiO 2 is overlaid as a passivation layer by chemical vapor deposition.
  • the method for forming the top gate insulating layer and the passivation layer comprises chemical vapor deposition or physical vapor deposition, and the thickness of formation of the top gate insulating layer is not specifically limited, and the technology capable of achieving the object of the present invention as understood by those skilled in the art is known.
  • the material of the top gate insulating layer includes and is not limited to materials such as SiO 2 , Al 2 O 3 , SiN x , HfO 2 or ionic gel, and the material of the top gate includes and is not limited to Al, Ag, Cu, Mo. Or one or more conductive materials such as Ti, the material of the passivation layer includes and is not limited to materials such as SiO 2 , phosphosilicate glass, Si 3 N 4 or Al 2 O 3 .
  • a contact hole is sequentially formed on the top gate insulating layer by coating a photoresist, exposing, etching, and photoresist removing to obtain a double gate carbon nano thin film transistor.
  • a high-purity semiconducting carbon nanotube is used to prepare an active layer, and a high-performance field effect carbon nano-thin film transistor is prepared.
  • the present invention also provides a thin film transistor 100 prepared by the above method for preparing a thin film transistor for preparing a display panel.
  • the thin film transistor 100 includes a bottom gate electrode 20 and a bottom gate insulating layer 30 sequentially formed on a substrate 10; an active layer 40 formed on the bottom gate insulating layer 30; a source and a drain 50 at both ends of the active layer 40; a top gate insulating layer 60, a top gate 70, a passivation layer 80 covering the source and drain electrodes 50; and a contact hole 90.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne un procédé de purification de nanotubes de carbone. Le procédé comprend les étapes consistant à : ajouter des nanotubes de carbone monoparoi qui comprennent des nanotubes de carbone monoparoi métalliques et des nanotubes de carbone monoparoi semi-conducteurs dans un solvant organique contenant un composé à petites molécules, et réaliser une dispersion ultrasonore pour obtenir une suspension de nanotubes de carbone ; et soumettre la suspension de nanotubes de carbone à une centrifugation pour éliminer les sédiments présents dans la suspension de nanotubes de carbone de façon à obtenir un surnageant formé de nanotubes monoparoi semi-conducteurs. L'invention concerne également un procédé de fabrication d'un transistor en couches minces (100). Le procédé de fabrication du transistor en couches minces comprend les étapes consistant à : former une grille inférieure (20) et une couche isolante de grille inférieure (30) qui recouvre la grille inférieure (20) sur un substrat (10) ; former une couche active (40) sur la couche isolante de grille inférieure (30) en utilisant le surnageant formé de nanotubes monoparoi semi-conducteurs ; former séparément une électrode de source (50) et une électrode de drain (50) aux deux extrémités opposées de la couche active (40) ; et former successivement une couche isolante de grille supérieure (60), une grille supérieure (70) et une couche de passivation (80) sur l'électrode de source (50) et l'électrode de drain (50).
PCT/CN2018/072701 2017-12-27 2018-01-15 Procédé de purification de nanotubes de carbone, transistor en couches minces et procédé de fabrication d'un transistor en couches minces WO2019127680A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711444710.3A CN108163840B (zh) 2017-12-27 2017-12-27 碳纳米管提纯方法、薄膜晶体管及制备方法
CN201711444710.3 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019127680A1 true WO2019127680A1 (fr) 2019-07-04

Family

ID=62518486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072701 WO2019127680A1 (fr) 2017-12-27 2018-01-15 Procédé de purification de nanotubes de carbone, transistor en couches minces et procédé de fabrication d'un transistor en couches minces

Country Status (2)

Country Link
CN (1) CN108163840B (fr)
WO (1) WO2019127680A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987576B (zh) * 2018-07-18 2020-12-25 深圳市华星光电半导体显示技术有限公司 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法
CN109256467B (zh) * 2018-09-07 2022-08-26 苏州希印纳米科技有限公司 高性能单壁碳纳米管薄膜晶体管及其制备方法
CN111864069A (zh) * 2019-04-26 2020-10-30 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、显示装置
CN110395715B (zh) * 2019-09-04 2021-05-11 中国科学院福建物质结构研究所 一种纯化碳纳米角的方法
CN112993041B (zh) * 2021-02-03 2023-03-24 重庆先进光电显示技术研究院 一种液晶显示面板、薄膜晶体管及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280480A (zh) * 2011-07-14 2011-12-14 合肥工业大学 双栅沟道导电类型可调单壁碳纳米管场效应晶体管及制备工艺
CN103112840A (zh) * 2012-12-24 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 商业化大管径cnt中半导体cnt的选择性分离方法及其应用
CN106409916A (zh) * 2015-07-31 2017-02-15 凌巨科技股份有限公司 薄膜晶体管结构
CN107235482A (zh) * 2016-03-28 2017-10-10 中国科学院苏州纳米技术与纳米仿生研究所 表面洁净无分散剂的单壁碳纳米管的制备方法
CN107298436A (zh) * 2016-04-07 2017-10-27 中国科学院苏州纳米技术与纳米仿生研究所 获取高纯度半导体性单壁碳纳米管的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8193430B2 (en) * 2008-01-03 2012-06-05 The University Of Connecticut Methods for separating carbon nanotubes
WO2015024115A1 (fr) * 2013-08-20 2015-02-26 National Research Council Of Canada Procédé de purification de nanotubes de carbone semi-conducteurs à paroi unique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280480A (zh) * 2011-07-14 2011-12-14 合肥工业大学 双栅沟道导电类型可调单壁碳纳米管场效应晶体管及制备工艺
CN103112840A (zh) * 2012-12-24 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 商业化大管径cnt中半导体cnt的选择性分离方法及其应用
CN106409916A (zh) * 2015-07-31 2017-02-15 凌巨科技股份有限公司 薄膜晶体管结构
CN107235482A (zh) * 2016-03-28 2017-10-10 中国科学院苏州纳米技术与纳米仿生研究所 表面洁净无分散剂的单壁碳纳米管的制备方法
CN107298436A (zh) * 2016-04-07 2017-10-27 中国科学院苏州纳米技术与纳米仿生研究所 获取高纯度半导体性单壁碳纳米管的方法

Also Published As

Publication number Publication date
CN108163840B (zh) 2020-02-07
CN108163840A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
WO2019127680A1 (fr) Procédé de purification de nanotubes de carbone, transistor en couches minces et procédé de fabrication d'un transistor en couches minces
US8816328B2 (en) Patterning contacts in carbon nanotube devices
US9887361B2 (en) Methods for forming a carbon nanotube-graphene hybrid film on a substrate
Liyanage et al. Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks
KR101240656B1 (ko) 평판표시장치와 평판표시장치의 제조방법
US10790335B2 (en) Method for making three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circuit
US20120021224A1 (en) Graphene/graphene oxide platelet composite membranes and methods and devices thereof
TWI552191B (zh) Connection structure and manufacturing method thereof, semiconductor device
US9085458B2 (en) Selective nanotube formation and related devices
JP2009278107A (ja) 薄膜トランジスタの製造方法
KR20120047541A (ko) 박막 트랜지스터 기판 및 이의 제조 방법
CN107946189A (zh) 一种薄膜晶体管及其制备方法
JP5903463B2 (ja) カーボンナノチューブ複合膜、その製造方法、及びそれを利用した薄膜トランジスタ
CN107275218A (zh) 一种避免光刻胶沾污的二维材料器件制造方法
TW201640684A (zh) 薄膜電晶體、薄膜電晶體之製造方法及使用薄膜電晶體之影像顯示裝置
CN113193115B (zh) 一种悬空碳纳米管场效应晶体管及其制备方法
WO2007094164A1 (fr) transistor à film mince organique et son procédé de fabrication
WO2018209751A1 (fr) Procédé de fabrication de substrat de transistor à couches minces
TW201330343A (zh) 製造有機半導體元件之方法、半導體元件及電子裝置
CN106952949A (zh) 石墨烯场效应晶体管及其形成方法
US10192930B2 (en) Three dimensional complementary metal oxide semiconductor carbon nanotube thin film transistor circuit
WO2019095556A1 (fr) Substrat de réseau, panneau d'affichage et procédé de fabrication de substrat de réseau
CN104867980B (zh) 薄膜晶体管及其阵列
Narasimhamurthy et al. Fabrication of carbon nanotube field effect transistor
JP7465471B2 (ja) グラフェンナノリボン、及びその製造方法、電子装置、並びにグラフェンナノリボン前駆体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894345

Country of ref document: EP

Kind code of ref document: A1