WO2019127305A1 - Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic - Google Patents

Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic Download PDF

Info

Publication number
WO2019127305A1
WO2019127305A1 PCT/CN2017/119647 CN2017119647W WO2019127305A1 WO 2019127305 A1 WO2019127305 A1 WO 2019127305A1 CN 2017119647 W CN2017119647 W CN 2017119647W WO 2019127305 A1 WO2019127305 A1 WO 2019127305A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
solution
sodium sulfite
leaching
alkali
Prior art date
Application number
PCT/CN2017/119647
Other languages
English (en)
Chinese (zh)
Inventor
石仁章
袁冬华
石宏娇
梁金凤
石俊阳
王小明
汪琴
梁智芳
梁智军
莫运华
Original Assignee
焱鑫环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 焱鑫环保科技有限公司 filed Critical 焱鑫环保科技有限公司
Priority to PCT/CN2017/119647 priority Critical patent/WO2019127305A1/fr
Publication of WO2019127305A1 publication Critical patent/WO2019127305A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/14Preparation of sulfites

Definitions

  • the present invention relates to non-ferrous smelting industry, particularly to a technique of flue gas desulfurization inorganic chemicals, particularly relates to a method Flue Gas SO 2 removal arsenic purification, the production of products utilizing sodium sulfite Containing Industrial Alkali alkali flooding, absorption.
  • the annual output of arsenic-containing industrial alkali slag is about 10,000 to 20,000 tons. Because it contains 1 to 8% of arsenic, it is a toxic solid waste strictly controlled by the environmental protection department. The secondary resources of value.
  • smelting furnaces such as blast furnaces and smelting furnaces produce a large amount of smelting flue gas containing SO 2 concentration of 500-15000 mg/m 3 . Due to the low concentration of SO 2 , it is difficult to directly use it for acid production. Desulfurization is generally carried out using a spray desulfurization tower. The commonly used method is to use limestone powder as the absorption medium, produce calcium sulfite, further oxidize to calcium sulfate with air, and press the filtrate to separate and obtain a large amount of gypsum slag. Because the grade is not high, there is no consumer market, so the slag yard pile is built. It is easy to cause secondary pollution.
  • Chinese public patent application CN101899574A proposes a method for comprehensively recovering arsenic alkali slag and sulfur dioxide flue gas in fire refining.
  • the idea of using arsenic alkali slag to absorb flue gas SO 2 and produce sodium sulfite is proposed. It shows good prospects for the environmental protection industry that has been abolished, but its methods have many obvious technical defects. According to the method in the manual, it is impossible to produce a stable quality sodium sulfite product, and the industrially produced stable sodium sulfite product is the key to measuring whether the patented technology is mature and has practical value.
  • arsenic alkali slag in the leaching step of arsenic alkali slag, it is immersed for 30 to 60 minutes with 2 times of mass of water, 90-100 ° C, re-dip once, and filtered, which is feasible under laboratory conditions, but industrial In scale production, arsenic slag often has large blocks that can block the mixer, sometimes causing mechanical accidents; and because arsenic slag usually contains 20-30% soluble Na 2 O, and contains 0.5 to 1% sulfuric acid.
  • liquid-solid ratio 2:1 to dissolve the arsenic alkali slag, it is feasible at high temperature, but under industrial production conditions, especially in winter production, after the ambient temperature is lower than 10 °C, in the high concentration lye A small amount of Na 2 SO 4 will precipitate hydrate crystals, which will block pipes and valves seriously. Such liquid-solid ratio parameters are not appropriate.
  • sulfur dioxide neutralization step sulfur dioxide waste gas is introduced into the leachate, and the reaction is neutralized at 20-50 °C. 10 to 20 hours, high-priced strontium and high-priced arsenic are reduced. When the pH of the solution reaches 3 to 6, the ventilation is stopped, and such an end point pH selection has serious problems.
  • the lye absorbs SO 2 and produces Na 2 SO 3 .
  • the pH value of the system is lower, the more easily the sodium sulfite is oxidized to Na 2 SO 4 , the Na 2 SO 3 content in the product is lowered;
  • an aqueous solution of a vulcanizing agent having a mass of 1.0 to 2.0 times is added dropwise at a temperature of 20 to 40 ° C, and the reaction is carried out for 1 to 2 hours, and the pH is adjusted to 6.0 to 7.0 with sulfuric acid, and the mixture is allowed to stand for 2 to 6 hours, and the arsenic sulfide and the low arsenic are separated by filtration.
  • the sodium sulfite solution, the hydrogen sulfide gas generated is absorbed by the waste arsenic alkali water and returned to the arsenic removal.
  • the disadvantage of this step is that a large amount of sulfuric acid is introduced to adjust the pH, and the sulfurous acid solution is mixed with sodium sulfate, thereby reducing the content of the sodium sulfite product again.
  • the generation of toxic gas of hydrogen sulfide has potential safety hazard; in the deep arsenic removal step, slowly add the iron sulfate of As content in the solution of low arsenic sodium sulfite solution, react for 1 hour, to pH 6-9, and stand still for 4 hours.
  • CN101899574A proposes the idea of waste treatment and the technical process parameters under laboratory conditions, but it has not been in-depth in terms of industrial scale production, especially how to stably produce high-content sodium sulfite products. Not done enough, no practical value.
  • the object of the present invention is to solve the above-mentioned technical problems, in particular, the technical disadvantage of CN101899574A, and propose a process for purifying arsenic by using arsenic industrial alkali slag immersion lye to absorb SO 2 flue gas to remove arsenic.
  • the technical solution of the present invention is used: Alkali flooding Containing Industrial utilizing alkali flue gas SO 2 absorbent, the production process for purifying arsenic removal of sodium sulfite, the method steps:
  • the leaching slag is smelted to replenish the ingredients and recover valuable metal elements.
  • the leachate usually contains about 6-10% NaOH and As 1-15g/L, and is stored for use;
  • p-phenylenediamine is added to the leachate, and the final concentration of p-phenylenediamine in the leachate is 0.01-0.1 g/L, which is used for preventing oxidation and is advantageous for increasing the percentage of sodium sulfite product;
  • a concentrated aqueous solution of ferric sulfate having a mass concentration of 50 to 200 g/L is added to carry out arsenic deposition, and the amount of addition is controlled according to the molar ratio of Fe:As in the absorbing liquid system to 3-6; newly introduced As, thereby arsenic precipitation process The precipitate is removed together.
  • the aqueous solution of the ferric sulfate is first hydrolyzed to ferric iron hydroxide, and then the iron hydroxide reacts with Na 3 AsO 4 in the solution to form a precipitate of FeAsO 4 .
  • the chemical reaction equation is as follows (at normal temperature):
  • arsenic in arsenic industrial alkali slag accounts for more than 85% of all arsenic, and a small amount is trivalent arsenic. Therefore, arsenic includes two reaction formulas of pentavalent arsenic and trivalent arsenic.
  • the iron arsenate is precipitated by flocculation of inorganic macromolecules in excess of trivalent iron hydroxide in the solution, and adsorbed and rapidly settled, so that the As in the system can be purified to the level of 1 PPM, meeting the requirements of national environmental protection standards;
  • the filter residue obtained after pressure filtration is mainly FeAsO 4 ⁇ 4Fe(OH) 3 ⁇ n ⁇ MeS, containing up to 40% iron, which can be returned to the smelting production ingredients as iron raw materials, and the arsenic can be further enriched into smelting. In the dust, it is further treated in a harmless manner.
  • the precipitated crystals are separated by a centrifuge to separate the mother liquor; the wet crystals after separating the mother liquor are dried to obtain a sodium sulfite product having a mass concentration of ⁇ 96%.
  • the arsenic-containing industrial alkali residue according to the present invention generally has As 1 to 8%, Na 2 O 20 to 35%, Pb 1 to 3%, Sb 2 to 8%, Sn 0.5 to 3%, and S 1 to 3% is a toxic solid waste strictly controlled by the national environmental protection department. This method carries forward the spirit of waste treatment and waste. Based on the Chinese patent application CN101899574A, starting from industrialized stable production, increasing the content of sodium sulfite as much as possible, optimizing the technical process and parameter selection, and achieving obvious technological progress, making use of arsenic The industrial alkali slag water immersion lye absorbs SO 2 in flue gas to produce arsenite.
  • the process of producing sodium sulfite has become a practical and mature technology for industrial production. According to the national output of 20,000 tons of alkali slag per year, the economic benefit can be increased by about 35 million yuan.
  • FIG. 1 is a flow chart showing the preparation process of sodium sulfite of the present invention
  • the present invention is a process for producing sodium sulfite by using arsenic industrial alkali residue immersion lye to absorb SO 2 flue gas to remove arsenic and purify arsenic.
  • the method steps are as follows:
  • the specific gravity is 1.25-1.4; the leaching residue and the leachate are separated by pressure filtration; the leaching slag is returned to the smelting method to replenish the supplementary ingredients, and the valuable metal elements are recovered.
  • the leachate usually contains about 6-10% NaOH and As 1-15g/L, and is stored for use;
  • p-phenylenediamine is added to the leachate, and the final concentration of p-phenylenediamine in the leachate is 0.01-0.1 g/L, which is used for preventing oxidation and is advantageous for increasing the percentage of sodium sulfite product;
  • a concentrated aqueous solution of ferric sulfate having a mass concentration of 50 to 200 g/L is added to carry out arsenic deposition, and the amount of addition is controlled according to the molar ratio of Fe:As in the absorbing liquid system to 3-6; newly introduced As, thereby arsenic precipitation process The precipitate is removed together.
  • the aqueous solution of the ferric sulfate is first hydrolyzed to ferric iron hydroxide, and then the iron hydroxide reacts with Na 3 AsO 4 in the solution to form a precipitate of FeAsO 4 .
  • the chemical reaction equation is as follows (at normal temperature):
  • the precipitated crystals are separated by a centrifuge to separate the mother liquor; the wet crystals after separating the mother liquor are dried to obtain a sodium sulfite product having a mass concentration of ⁇ 96%.
  • Argon-containing industrial alkali slag crushing water immersing circulating beating system using B250 ⁇ L400 hammer crusher with circulating pump to spray water to eliminate dust coarse crushing, combined ⁇ 1.8 ⁇ L3.6m ball mill and spiral classifier combined with 15m 3 ⁇ 2 stirring tank Form a cyclic beating leaching system.
  • the pressure filter is extracted (two sets of 60 m 2 box filter presses are alternately pressure-filtered) to obtain a leaching solution having a specific gravity of about 1.12, which contains about 9% of NaOH.
  • a 15m 3 agitation tank to take the leachate from the filter press and use it as a mass concentration of Na 2 S (with a mass concentration of 0.5 g/L of Na 2 S in the leachate after addition) and p-phenylenediamine (The final concentration of the mass volume in the leachate after the addition was 0.08 g/L) was treated with a treating agent.
  • a 40m 2 box filter press was set up, and the leaching solution containing arsenic leaching solution obtained by fine pressure filtration of the leaching solution treated with Na 2 S and p-phenylenediamine was sent to a 120 m 3 high storage tank for use.
  • the absorption liquid containing NaHSO 3 was 3.5%, Na 2 SO 3 was 10.5%, Na 2 SO 4 was 0.4%, As +5 to 6.8g / L, As +3 to 1.2g / L, in Add the arsenic leaching lye solution to the arsenic agitation tank, completely neutralize NaHSO 3 and convert it to Na 2 SO 3 , then slowly replenish it until the pH reaches 11 and then add 200g/ to the arsenic tank. An aqueous solution of Fe 2 (SO 4 ) 3 having a concentration of L was immersed in 1.4 m 3 of arsenic. The liquid-solid separation of the 60m 2 filter press was set up.
  • the sodium sulfite solution was 13.3m 3 , and the pump was sent to the 30m 3 high-level liquid storage tank for sampling and testing.
  • the residual arsenic was 1.1PPm and Fe +3 ⁇ 100PPm.
  • the sulphur-depleted sodium sulfite solution was continuously pumped from a 30 m 3 liquid storage tank to a 2 ton boiler, and concentrated and dehydrated by evaporation and concentration.
  • the boiler was intermittently discharged to a volume of 2 m 3 vacuum-stirred crystallizer to deliver a concentrated concentrated hot liquid of a sodium sulfite solution having a concentration of 24%. The crystals are continuously accumulated and precipitated.
  • the batch is discharged, and the mother liquid is separated by a ⁇ 600mm horizontal stainless steel automatic discharge centrifuge, and the wet crystal heat-flowing air dryer is dried to obtain a sodium sulfite content of more than 96%.
  • Fe +3 ⁇ 0.001% qualified sodium sulfite product As ⁇ 1PPm, Fe +3 ⁇ 0.001% qualified sodium sulfite product.
  • the specific yield varies with the amount of blast furnace flue gas and the concentration of SO 2 contained. In general, when the average flue gas volume is 50000 m 3 /h and the SO 2 5000 mg/m 3 is contained, 96% of the sodium sulfite product can be produced per day, which is about 12.3 tons/day.
  • Example 2 The same equipment and process parameters as in Example 1 were used, but the leachate was pretreated without adding Na 2 S, ie, trace amounts of Pb(OH) 2 , Sb(OH) 3 and Zn(OH) 2 in the leachate were not performed. Precipitation; as a comparison, due to the change of an important process, the sodium sulfite produced in this example is catalytically oxidized to form Na 2 SO 4 , which reduces the Na 2 SO 3 content to 82.4%, and does not reach the industrial standard of 96%. At the content level, the product content decreased significantly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion SO2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation d'un résidu industriel alcalin contenant de l'arsenic. Le procédé comprend les étapes suivantes : le broyage d'un résidu industriel alcalin contenant de l'arsenic, l'ajout d'eau, la réduction en pâte et la filtration sous pression afin d'obtenir une solution de lixiviation; l'ajout d'une solution aqueuse de sulfure de sodium et de p-phénylènediamine dans la solution de lixiviation, suivi d'une filtration sous pression afin d'obtenir une solution limpide de lixiviation alcaline contenant de l'arsenic de réserve; le pompage de la solution limpide dans une tour de désulfuration par pulvérisation afin d'absorber le SO2, de façon à réduire la valeur du pH d'une solution d'absorption résultante à environ 6,2-6,4, suivi de l'ajout de la solution de lixiviation alcaline contenant de l'arsenic limpide pour ajuster la valeur du pH à environ 10,5 à 11,5; l'ajout d'une solution aqueuse de sulfate poly-ferrique pour la précipitation de l'arsenic et la filtration sous pression de façon à effectuer une séparation liquide-solide, suivi de la concentration et de l'évaporation de la solution limpide, puis la cristallisation pour séparer la solution mère, et enfin le séchage, obtenant ainsi un produit de sulfite de sodium ayant une concentration massique supérieure ou égale à 96 %.
PCT/CN2017/119647 2017-12-29 2017-12-29 Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic WO2019127305A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119647 WO2019127305A1 (fr) 2017-12-29 2017-12-29 Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/119647 WO2019127305A1 (fr) 2017-12-29 2017-12-29 Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic

Publications (1)

Publication Number Publication Date
WO2019127305A1 true WO2019127305A1 (fr) 2019-07-04

Family

ID=67062817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119647 WO2019127305A1 (fr) 2017-12-29 2017-12-29 Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic

Country Status (1)

Country Link
WO (1) WO2019127305A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961987A (zh) * 2021-02-01 2021-06-15 中国科学院沈阳应用生态研究所 一种砷碱渣无害化与资源化处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198415B1 (fr) * 1999-06-04 2003-02-26 Aluminium Pechiney Procede d'epuration des liqueurs d'aluminate de sodium contenant de l'oxalate de sodium permettant de valoriser les residus
WO2010057412A1 (fr) * 2008-11-18 2010-05-27 Pangang Group Research Institute Co. Ltd. Procédé de fabrication d’oxyde de vanadium utilisant une extraction
CN101899574A (zh) * 2010-08-04 2010-12-01 锡矿山闪星锑业有限责任公司 一种火法炼锑中综合回收砷碱渣和二氧化硫烟气的方法
CN105753209A (zh) * 2016-03-03 2016-07-13 湖州欧美新材料有限公司 一种含砷废水的处理方法
CN107963642A (zh) * 2017-12-29 2018-04-27 焱鑫环保科技有限公司 利用含砷工业碱渣水浸碱液吸收so2烟气、脱砷净化生产亚硫酸钠产品的工艺方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1198415B1 (fr) * 1999-06-04 2003-02-26 Aluminium Pechiney Procede d'epuration des liqueurs d'aluminate de sodium contenant de l'oxalate de sodium permettant de valoriser les residus
WO2010057412A1 (fr) * 2008-11-18 2010-05-27 Pangang Group Research Institute Co. Ltd. Procédé de fabrication d’oxyde de vanadium utilisant une extraction
CN101899574A (zh) * 2010-08-04 2010-12-01 锡矿山闪星锑业有限责任公司 一种火法炼锑中综合回收砷碱渣和二氧化硫烟气的方法
CN105753209A (zh) * 2016-03-03 2016-07-13 湖州欧美新材料有限公司 一种含砷废水的处理方法
CN107963642A (zh) * 2017-12-29 2018-04-27 焱鑫环保科技有限公司 利用含砷工业碱渣水浸碱液吸收so2烟气、脱砷净化生产亚硫酸钠产品的工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI GANG ET AL.: "Anticorrosion and scale inhibition technology for hot-water boiler", CHEMICAL INDUSTRY PRESS, 31 March 2002 (2002-03-31), pages 63, ISBN: 7-5025-3438-5 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961987A (zh) * 2021-02-01 2021-06-15 中国科学院沈阳应用生态研究所 一种砷碱渣无害化与资源化处理方法

Similar Documents

Publication Publication Date Title
CN102755826B (zh) 氧化锌法冶炼行业尾气脱硫
CN107963642A (zh) 利用含砷工业碱渣水浸碱液吸收so2烟气、脱砷净化生产亚硫酸钠产品的工艺方法
CN102390868B (zh) 一种利用冶炼炉气生产硫酸锰的方法
CN110090548B (zh) 一种铜渣尾矿协同锌冶炼除尘灰湿法脱硫并回收硫酸锌的方法
CN110040757A (zh) 一种利用电石渣制备轻质碳酸钙的方法
CN108315571A (zh) 一种含硫化砷物料的处理工艺
CN111500869A (zh) 一种铜冶炼副产物协同处理工艺
CN109095578A (zh) 一种草酸沉淀法回收电厂脱硫废水钙镁的方法
CN109650412B (zh) 一种用含砷工业碱渣脱除含硫烟气中硫生产亚硫酸钠的方法
WO2020233558A1 (fr) Procédé de purification d'un résidu de sulfate de sodium
CN105016387A (zh) 一种铬盐泥的处理方法
CN112941312A (zh) 一种炼锑砷碱渣综合回收工艺
CN101585553A (zh) 由含钒矿石和含钒中间物料生产五氧化二钒的方法
CZ286574B6 (cs) Způsob zpracování zbytků z loužení sirníku barnatého nebo sirníku stroncnatého
CN104445425B (zh) 一种高纯硫酸锰的制备方法
CN102815728A (zh) 一种利用硼泥制备纳米氢氧化镁和纳米白炭黑的方法
CN109534387A (zh) 一种亚硫酸锌氧化为硫酸锌的方法
CN109876630A (zh) 一种用碱性废渣治理二氧化硫烟气并回收锡锑金属及亚硫酸钠晶体的方法
CN102328947B (zh) 一种回收锶渣的方法
WO2019127305A1 (fr) Procédé de traitement destiné à produire un produit de sulfite de sodium par absorption de gaz de combustion so2 et par purification par élimination de l'arsenic à l'aide d'une solution de lixiviation de résidu industriel alcalin contenant de l'arsenic
CN111979421A (zh) 一种铜冶炼过程中所产含铜砷烟灰综合利用的方法
JP3945216B2 (ja) 廃酸石膏製造方法
CN112830505B (zh) 一种烟道气法净化制盐母液浆的方法
CN113136488B (zh) 一种湿法炼锌中铁矾渣的湿法处理工艺
WO2020133210A1 (fr) Méthode de production de sulfite de sodium par élimination du soufre d'un gaz de combustion contenant du soufre à l'aide d'un résidu alcalin industriel contenant de l'arsenic

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17936198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17936198

Country of ref document: EP

Kind code of ref document: A1