WO2019124249A1 - 液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法 - Google Patents

液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法 Download PDF

Info

Publication number
WO2019124249A1
WO2019124249A1 PCT/JP2018/046105 JP2018046105W WO2019124249A1 WO 2019124249 A1 WO2019124249 A1 WO 2019124249A1 JP 2018046105 W JP2018046105 W JP 2018046105W WO 2019124249 A1 WO2019124249 A1 WO 2019124249A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal polyester
liquid crystal
mass
less
repeating unit
Prior art date
Application number
PCT/JP2018/046105
Other languages
English (en)
French (fr)
Inventor
大雅 坂井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2019124249A1 publication Critical patent/WO2019124249A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a liquid crystal polyester composition, a molded body, and a method for producing a liquid crystal polyester composition.
  • liquid crystalline polyester has high flowability and heat resistance, and can form a molded product having high dimensional accuracy.
  • the liquid crystalline polyester is usually not used alone, and is used as a liquid crystalline polyester composition containing a filler in order to satisfy the required characteristics (for example, bending strength) in various applications. It is known that a molded product obtained from such a liquid crystal polyester composition is lightweight but has high strength.
  • liquid crystalline polyester instead of the current metallic material as a material for forming an outer panel member for automobiles, which requires high strength, by taking advantage of the characteristics of the liquid crystalline polyester as described above.
  • the liquid crystal polyester as a forming material of the outer plate member for an automobile, an outer plate member for an automobile lighter than the current product can be obtained.
  • the molded product obtained from the above-mentioned liquid crystal polyester composition has a problem that the impact strength is low as compared with the molded product obtained from the liquid crystal polyester alone.
  • Patent Document 1 and Patent Document 2 describe liquid crystalline resin compositions containing an impact modifier.
  • the liquid crystalline resin composition described in Patent Document 1 comprises a liquid crystalline resin, at least one inorganic filler selected from fibrous fillers such as glass fibers and non-fibrous fillers such as talc, and olefins
  • the liquid crystalline resin comprises 65 to 93% by mass
  • the inorganic filler comprises 5 to 20% by mass
  • the liquid crystalline resin composition described in Patent Document 2 includes at least one selected from a plate-like filler such as mica, talc and glass flake, and an olefin copolymer and a styrene copolymer as a liquid crystalline resin.
  • the copolymer is blended so that the content of the liquid crystalline resin is 64 to 78% by mass, the plate-like filler is 20 to 30% by mass, and the copolymer is 2 to 6% by mass.
  • the present invention has been made in view of such circumstances, and is capable of forming a molded article having high impact strength and having high fluidity, a liquid crystal polyester composition, a molded article, and a method of producing the liquid crystalline polyester composition. Intended to provide.
  • the present invention contains the following modes.
  • an olefin copolymer comprising a repeating unit derived from an ⁇ -olefin and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid
  • the content of the liquid crystal polyester is more than 80% by mass and 95% by mass or less
  • the content of the olefin copolymer is 5% by mass or more and less than 20% by mass
  • the dispersion diameter of the olefin copolymer measured by the following measurement method is less than 0.8 ⁇ m, Liquid crystalline polyester composition.
  • the liquid crystal polyester has a repeating unit represented by the following general formula (1) in an amount of 30 mol% to 80 mol% based on the total amount of all repeating units constituting the liquid crystal polyester [1] ]
  • the liquid-crystal polyester composition as described in. (1) -O-Ar 1 -CO- (Ar 1 is a phenylene group, a hydrogen atom in the group represented by .Ar 1 representing a naphthylene group or biphenylene group independently represents a halogen atom, may be substituted with an alkyl group or an aryl group.)
  • melt-kneading a liquid crystalline polyester and an olefin copolymer containing repeating units derived from ⁇ -olefin and repeating units derived from glycidyl ester of ⁇ , ⁇ -unsaturated acid,
  • the melt-kneading is performed at a shear rate of 3000 s ⁇ 1 or more and 10000 s ⁇ 1 or less at a processing temperature included in a temperature range of 10 ° C. or more and 20 ° C. or less with respect to the flow start temperature of the liquid crystal polyester.
  • Method for producing a liquid crystal polyester composition Method for producing a liquid crystal polyester composition.
  • liquid crystalline polyester composition capable of forming a molded article having high impact strength and having high fluidity, a molded article, and a method for producing the liquid crystalline polyester composition are provided.
  • the liquid crystal polyester composition of the present embodiment contains a liquid crystal polyester and an olefin copolymer.
  • liquid crystalline polyester composition what shape
  • molded the mixture containing liquid crystalline polyester and an olefin type copolymer in pellet shape may be called "liquid crystalline polyester composition.”
  • the liquid crystal polyester composition of the present embodiment is used as a forming material of a molded body described later.
  • the liquid crystal polyester according to the present embodiment is a liquid crystal polyester exhibiting liquid crystallinity in a molten state, and is preferably melted at a temperature of 250 ° C. or more and 450 ° C. or less.
  • the liquid crystal polyester according to the present embodiment may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide. It is preferable that the liquid crystal polyester which concerns on this embodiment is a wholly aromatic liquid crystal polyester which uses only an aromatic compound as a raw material monomer.
  • the liquid crystal polyester As a typical example of the liquid crystal polyester according to the present embodiment, at least one selected from the group consisting of aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic hydroxyamine and aromatic diamine Those obtained by polymerizing (polycondensing) a compound; those obtained by polymerizing a plurality of aromatic hydroxycarboxylic acids; from the group consisting of an aromatic dicarboxylic acid, an aromatic diol, an aromatic hydroxyamine and an aromatic diamine And those obtained by polymerizing at least one selected compound; and those obtained by polymerizing a polyester such as polyethylene terephthalate and an aromatic hydroxycarboxylic acid.
  • aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine are each independently substituted for part or all thereof, and the polymerizable derivative thereof is used. It is also good.
  • Examples of polymerizable derivatives of compounds having a carboxyl group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include those obtained by converting a carboxyl group into an alkoxycarbonyl group or an aryloxycarbonyl group (ie, an ester) And those obtained by converting a carboxyl group to a haloformyl group (that is, an acid halide) and those obtained by converting a carboxyl group to an acyloxycarbonyl group (that is, an acid anhydride).
  • polymerizable derivatives of compounds having a hydroxyl group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating a hydroxyl group into an acyloxyl group (ie, And acylated compounds of hydroxyl group).
  • polymerizable derivatives of compounds having an amino group such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (that is, an acylated product of an amino group) It can be mentioned.
  • the liquid crystal polyester according to the present embodiment preferably has a repeating unit represented by the following formula (1) (hereinafter sometimes referred to as “repeating unit (1)”), and the repeating unit (1):
  • the repeating unit represented by the formula (2) hereinafter sometimes referred to as “repeating unit (2)”
  • the repeating unit represented by the following formula (3) hereinafter referred to as “repeating unit (3)” It is more preferable to have the
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following formula (4).
  • Y each independently represent an oxygen atom or an imino group (-NH-)
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is each independently a halogen atom or an alkyl group Or may be substituted by an aryl group
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • the groups represented by Ar 4 or Ar 5 Each hydrogen atom in the group may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group and a t-butyl group. , N-hexyl group, 2-ethylhexyl group, n-octyl group and n-decyl group.
  • the aryl group is preferably an aryl group having a carbon number of 6 to 20, and examples thereof include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 1-naphthyl group and a 2-naphthyl group.
  • the number thereof is preferably independently 2 or less, more preferably 1 for each of the groups represented by Ar 1 , Ar 2 or Ar 3. .
  • the alkylidene group is preferably an alkylidene group having 1 to 10 carbon atoms, and examples thereof include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group and a 2-ethylhexylidene group.
  • the repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid.
  • the repeating unit (1) those in which Ar 1 is a p-phenylene group (for example, repeating units derived from p-hydroxybenzoic acid) and those in which Ar 1 is a 2,6-naphthylene group (for example, 6 Preferred is a repeating unit derived from -hydroxy-2-naphthoic acid.
  • “derived from” means that the chemical structure of the functional group contributing to the polymerization changes and no other structural change occurs because the raw material monomer is polymerized.
  • the repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid.
  • the repeating unit (2) one in which Ar 2 is a p-phenylene group (for example, a repeating unit derived from terephthalic acid), one in which Ar 2 is a m-phenylene group (for example, a repeating unit derived from isophthalic acid ), Ar 2 is a 2,6-naphthylene group (eg, a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenylether-4,4′-diyl group (For example, a repeating unit derived from diphenyl ether-4,4'-dicarboxylic acid) is preferred.
  • the repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • the repeating unit (3) those in which Ar 3 is a p-phenylene group (for example, repeating units derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group (For example, repeating units derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl) are preferred.
  • the content of the repeating unit (1) in the liquid crystal polyester is the total amount of all repeating units constituting the liquid crystal polyester (ie, the mass of each repeating unit constituting the liquid crystal polyester is divided by the formula weight of each repeating unit Therefore, 30 mol% or more is preferable, 30 mol% or more and 80 mol% or less is more preferable, and 40 mol% or more is obtained with respect to the substance equivalent amount (mol) of each repeating unit and a value obtained by adding them. 70 mol% or less is more preferable, and 45 mol% or more and 65 mol% or less is particularly preferable.
  • 35 mol% or less is preferable with respect to the total amount of all the repeating units which comprise the said liquid crystal polyester, as for content of the repeating unit (2) in the said liquid crystal polyester, 10 mol% or more and 35 mol% or less are more preferable, 15 More preferably, it is 30% by mole or more, and more preferably 17.5% by mole or more and 27.5% by mole or less.
  • 35 mol% or less is preferable with respect to the total amount of all the repeating units which comprise the said liquid crystal polyester, as for content of the repeating unit (3) in the said liquid crystal polyester, 10 mol% or more and 35 mol% or less are more preferable, 15 More preferably, it is 30% by mole or more, and more preferably 17.5% by mole or more and 27.5% by mole or less.
  • the content of the repeating unit (1) is 30 to 80 mol%, preferably 40 to 80, with respect to the total amount of all the repeating units constituting the liquid crystal polyester. 70 mol%, more preferably 45 to 65 mol%; the content of the repeating unit (2) is 10 to 35 mol%, preferably 15 to 30 mol%, more preferably 17.5 to 27.5 mol %, The content of the repeating unit (3) is 10 to 35 mol%, preferably 15 to 30 mol%, more preferably 17.5 to 27.5 mol%.
  • the total content of the repeating unit (1), the repeating unit (2) and the repeating unit (3) does not exceed 100 mol%.
  • melt flowability, heat resistance, strength and rigidity tend to improve, but when the content is too large, the melt temperature and the melt viscosity tend to increase, and the temperature necessary for molding increases. easy. That is, if the content of the repeating unit (1) is within the above range, melt flowability and heat resistance are likely to be improved, and when it is formed into a molded article, strength and rigidity are likely to be improved, and melt temperature and melt viscosity Is not too high, and the temperature required for molding is not too high.
  • the ratio of the content of the repeating unit (2) to the content of the repeating unit (3) is represented by [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol)
  • the ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polyester according to this embodiment may have two or more repeating units (1) to (3), each independently.
  • the liquid crystal polyester may further have a repeating unit other than the repeating units (1) to (3).
  • the content of repeating units other than the repeating units (1) to (3) is preferably 0 mol% to 10 mol%, more preferably 0 mol% to 5%, based on the total amount of all the repeating units constituting the liquid crystal polyester. The mole% or less is more preferable.
  • the liquid crystal polyester according to the present embodiment has a repeating unit (3) in which X and Y each have an oxygen atom, that is, having a repeating unit derived from a predetermined aromatic diol has a melt viscosity of It is preferable to have a low value, and it is more preferable to have only recurring units (3) in which X and Y each are an oxygen atom.
  • the liquid crystal polyester according to the present embodiment is obtained by melt-polymerizing a raw material monomer corresponding to a repeating unit constituting the liquid-crystalline polyester, and solid-phase polymerizing the obtained polymer (hereinafter sometimes referred to as "prepolymer"). It is preferable to manufacture. Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst, and examples of this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, etc.
  • nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine and 1-methylimidazole, and nitrogen-containing heterocyclic compounds are preferably used.
  • 270 degreeC or more is preferable, as for the flow start temperature of liquid crystal polyester which concerns on this embodiment, 270 degreeC or more and 400 degrees C or less are more preferable, and 280 degreeC or more and 380 degrees C or less are more preferable.
  • the heat resistance, the strength and the rigidity of the liquid crystal polyester tend to be improved.
  • the flow start temperature of the liquid crystal polyester exceeds 400 ° C.
  • the melting temperature and the melt viscosity of the liquid crystal polyester tend to be high. Therefore, there is a tendency that the temperature required for forming the liquid crystal polyester becomes high. That is, when the flow start temperature of the liquid crystal polyester is within the above range, the heat resistance, strength and rigidity of the liquid crystal polyester are improved, and the melting temperature and the melt viscosity of the liquid crystal polyester are not too high. The required temperature is not too high.
  • the flow start temperature of the liquid crystal polyester is also referred to as the flow temperature or the flow temperature, and is a temperature serving as a standard of the molecular weight of the liquid crystal polyester. , CMC Co., Ltd., June 5, 1987, p. 95).
  • the flow start temperature is obtained by melting the liquid crystal polyester while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ) using a capillary rheometer, from a nozzle with an inner diameter of 1 mm and a length 10 mm. When extruded, it is a temperature that exhibits a viscosity of 4800 Pa ⁇ s (48000 poise).
  • the olefin copolymer according to the present embodiment is dispersed in a liquid crystal polyester and has a function as an impact absorber (also referred to as an impact modifier).
  • the impact absorbing material absorbs an impact from the outside of the molded body.
  • the liquid crystal polyester composition of the present invention the liquid crystal polyester forms a continuous phase, and the olefin copolymer forms a dispersed phase.
  • the olefin copolymer since the olefin copolymer is dispersed, the olefin copolymer in unit mass in a plurality of samples arbitrarily collected from the liquid crystal polyester composition Content is the same.
  • the olefin copolymer according to the present embodiment comprises (a) repeating units derived from ⁇ -olefins (hereinafter referred to as repeating units (a)) and (b) glycidyl esters of ⁇ , ⁇ -unsaturated acids. And a repeating unit derived therefrom (hereinafter referred to as repeating unit (b)).
  • the content of the repeating unit (a) is preferably 50% by mass or more and 99% by mass or less based on the total mass of the olefin copolymer.
  • the content of the repeating unit (b) is preferably 0.1% by mass to 30% by mass, and more preferably 0.5% by mass to 20% by mass, with respect to the total mass of the olefin copolymer. It is more preferable that it is, and it is further more preferable that it is 2 to 4 mass%. Further, the content of the repeating unit (a) and the content of the repeating unit (b) are such that the total content of the repeating unit (a) and the repeating unit (b) is 100 based on the total mass of the olefin copolymer. It combines so that it may become mass% or less.
  • the total content of the repeating units (a) and the repeating units (b) is preferably 80% by mass or more and 100% by mass or less based on the total mass of the olefin copolymer, 90 It is more preferable that the content is 100% by mass or more.
  • the olefin copolymer preferably further contains (c) a repeating unit derived from an ethylenically unsaturated ester (hereinafter referred to as a repeating unit (c)).
  • ethylenically unsaturated ester as used herein is a compound represented by the chemical formula R 1 -CO-O-R 2 , wherein R 1 and R 2 are each independently a vinyl group, a derivative of a vinyl group, a methyl group Or an ethyl group, and at least one of R 1 and R 2 is a compound wherein the vinyl group or a derivative of the vinyl group.
  • the "derivative of vinyl group” as referred to herein is one in which one or more hydrogen atoms bonded to two carbons in the vinyl group are each independently substituted with a methyl group or an ethyl group.
  • content of the said repeating unit (c) is more than 0 mass% and 50 mass% or less with respect to the total mass of the said olefin-type copolymer.
  • the content of the repeating unit (a), the content of the repeating unit (b) and the content of the repeating unit (c) are the repeating units (a) to (c) with respect to the total mass of the olefin copolymer.
  • the combination is performed such that the total content of (a) and (b) is 100 mass% or less.
  • the total content of the repeating units (a) to (c) is preferably 80% by mass or more and 100% by mass or less, relative to the total mass of the olefin copolymer, 90% by mass It is more preferable that it is 100 mass% or less.
  • the olefin copolymer may further contain repeating units other than the repeating units (a) to (c).
  • the olefin copolymer according to the present embodiment comprises a repeating unit derived from an ⁇ -olefin (repeating unit (a)) and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid A repeating unit (b)) and, optionally, a repeating unit derived from an ethylenically unsaturated ester (repeating unit (c)).
  • the olefin copolymer according to the present embodiment is a repeating unit derived from an ⁇ -olefin-derived repeating unit (repeating unit (a)) and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid (Repetitive unit (b)), optionally (repeating unit (c)) derived from an ethylenically unsaturated ester, and recurring units other than the above recurring units (a) to (c).
  • the compound giving the repeating unit (a) is not particularly limited, and examples thereof include ⁇ -olefins having 2 to 13 carbon atoms, such as ⁇ -olefins such as ethylene, propylene and butene.
  • the glycidyl ester of C2, 13 alpha, beta- unsaturated acid is mentioned,
  • R is a hydrocarbon group having 2 to 13 carbon atoms which has an ethylenically unsaturated bond.
  • R in the above formula (B1) represents an alkenyl group having 2 to 13 carbon atoms having a double bond at the ⁇ position and ⁇ position of the adjacent carbonyl group.
  • examples of the compound giving the repeating unit (b) include glycidyl acrylate, glycidyl methacrylate and the like.
  • the compound giving the repeating unit (c) is vinyl acetate, vinyl propionate such as vinyl propionate, or methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, etc. And ethylenically unsaturated esters such as ⁇ -unsaturated carboxylic acid alkyl esters.
  • vinyl acetate, methyl acrylate and ethyl acrylate are preferable as the compound giving the repeating unit (c).
  • Examples of the olefin copolymer according to the liquid crystal polyester composition of the present embodiment include A copolymer comprising a repeating unit derived from ethylene as the repeating unit (a) and a repeating unit derived from glycidyl methacrylate as the repeating unit (b), A copolymer comprising a repeating unit derived from ethylene as the repeating unit (a), a repeating unit derived from glycidyl methacrylate as the repeating unit (b), and a repeating unit derived from methyl acrylate as the repeating unit (c) , A copolymer comprising a repeating unit derived from ethylene as the repeating unit (a), a repeating unit derived from glycidyl methacrylate as the repeating unit (b), and a repeating unit derived from ethyl acrylate as the repeating unit (c) , A copolymer comprising a repeating unit derived from ethylene as the repeating unit (a),
  • the “plate-like filler” refers to one having an aspect ratio of 5 to 200.
  • the liquid crystal polyester composition of the present embodiment preferably contains a plate-like filler.
  • the plate-like filler which concerns on this embodiment is not specifically limited, For example, a talc, mica
  • the plate-like filler according to the present embodiment is preferably talc or mica, and more preferably mica. Thereby, the impact strength of the molded object obtained using a liquid-crystal polyester composition improves.
  • the particle size of the plate-like filler according to the present embodiment is not particularly limited.
  • the volume average particle diameter of the plate-like filler is preferably 15 ⁇ m to 40 ⁇ m, more preferably 20 ⁇ m to 35 ⁇ m, still more preferably 20 ⁇ m to 30 ⁇ m, and still more preferably 22 ⁇ m to 30 ⁇ m.
  • the volume average particle diameter of the plate-like filler is 15 ⁇ m or more, the impact resistance of the molded article formed from the liquid crystal polyester composition tends to be further improved.
  • the volume average particle size of the plate-like filler can be measured using a laser diffraction method. In addition, it is known that the volume average particle diameter of the plate-like filler does not substantially change by melt-kneading described later. Therefore, the volume average particle diameter of the plate-like filler can also be determined by measuring the volume average particle diameter of the plate-like filler before being melt-kneaded in the liquid crystal polyester composition.
  • the content of the liquid crystal polyester in the liquid crystal polyester composition of the present embodiment is more than 80% by mass and 95% by mass or less, where the total content of the liquid crystal polyester and the olefin copolymer is 100% by mass.
  • the content of the liquid crystal polyester exceeds 80% by mass, the flowability and the heat resistance of the liquid crystal polyester composition are improved.
  • the content of the liquid crystal polyester exceeds 80% by mass, the impact strength of the molded product obtained from the liquid crystal polyester composition is improved.
  • mold a liquid-crystal polyester composition as content of liquid-crystal polyester is 95 mass% or less.
  • the content of the liquid crystal polyester in the liquid crystal polyester composition of the present embodiment is preferably 83% by mass or more, and 85% by mass or more, based on 100% by mass of the total of the contents of the liquid crystal polyester and the olefin copolymer. More preferable.
  • the content of the liquid crystal polyester is preferably 95% by mass or less, and more preferably 90% by mass or less, based on 100% by mass of the total of the contents of the liquid crystal polyester and the olefin copolymer.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the content of the liquid crystal polyester is preferably 83% by mass to 95% by mass, and is 85% by mass to 90%. % Or less is more preferable.
  • the content of the liquid crystal polyester is more than 80% by mass and 95% by mass or less, preferably 83% by mass or more and 95% by mass or less, more preferably 85% by mass with respect to the total mass of the liquid crystal polyester composition. It is mass% or more and 90 mass% or less.
  • the content of the olefin copolymer in the liquid crystal polyester composition of the present embodiment is 5% by mass or more and less than 20% by mass when the total content of the liquid crystal polyester and the olefin copolymer is 100% by mass. is there.
  • the impact strength of the molded object obtained from a liquid-crystal polyester composition improves that content of an olefin type copolymer is 5 mass% or more.
  • the content of the olefin copolymer is less than 20% by mass, the flowability of the liquid crystal polyester composition is sufficiently improved.
  • the content of the olefin copolymer in the liquid crystal polyester composition of the present embodiment is preferably 5% by mass or more, based on 100% by mass of the total of the contents of the liquid crystal polyester and the olefin copolymer. % Or more is more preferable, and 8 mass% or more is more preferable.
  • the content of the olefin copolymer is preferably 18% by mass or less, more preferably 15% by mass or less, based on 100% by mass of the total of the contents of the liquid crystal polyester and the olefin copolymer. % Or less is more preferable.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the content of the olefin-based copolymer is preferably 5% by mass to 18% by mass, and 6% by mass, based on 100% by mass of the total of the contents of the liquid crystal polyester and the olefin-based copolymer. 15 mass% or less is more preferable, and 8 mass% or more and 10 mass% or less is more preferable.
  • the content of the olefin copolymer is 5% by mass or more and less than 20% by mass, preferably 5% by mass or more and 18% by mass or less, based on the total mass of the liquid crystal polyester composition. Is 6% by mass or more and 15% by mass or less, more preferably 8% by mass or more and 10% by mass or less.
  • the liquid crystal polyester composition of the present embodiment may further contain a plate-like filler.
  • the content of the plate-like filler is 15% by mass or more and 30% by mass or less, when the total of the contents of the liquid crystal polyester, the olefin copolymer and the plate-like filler is 100% by mass. Is preferred.
  • the anisotropy of a liquid crystalline polyester is suppressed as content of a plate-like filler is 15 mass% or more, and it becomes easy to shape
  • the content of the plate-like filler is 30% by mass or less, the content of the liquid crystal polyester relatively increases sufficiently, and the impact strength of the molded body obtained from the liquid crystal polyester composition is improved.
  • the content of the plate-like filler in the liquid crystal polyester composition is preferably 20% by mass or more, and 23% by mass or more, based on 100% by mass of the total of the contents of the liquid crystal polyester, the olefin copolymer and the plate-like filler. Is more preferred.
  • the content of the plate-like filler is preferably 28% by mass or less, and more preferably 25% by mass or less, based on 100% by mass of the total of the contents of the liquid crystalline polyester, the olefin copolymer and the plate-like filler.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the content of the plate-like filler is preferably 20% by mass or more and 28% by mass or less, when the total of the contents of the liquid crystal polyester, the olefin copolymer and the plate-like filler is 100% by mass. 23 mass% or more and 25 mass% or less are more preferable.
  • the content of the plate-like filler is 15% by mass or more and 30% by mass or less, preferably 20% by mass or more and 28% by mass or less, based on the total mass of the liquid crystal polyester composition. It is 23% by mass or more and 25% by mass or less.
  • the “plate-like filler” refers to one having an aspect ratio of 5 to 200.
  • dispersion diameter of olefin-based copolymer is defined as one of the indices indicating the dispersion state of the olefin-based copolymer in the liquid crystal polyester composition of the present embodiment.
  • the liquid crystalline polyester and the olefin copolymer are melt-kneaded at a predetermined shear rate at a processing temperature that is 10 ° C. to 20 ° C. higher than the flow start temperature of the liquid crystalline polyester, and pelletized liquid crystal is obtained.
  • a polyester composition is made.
  • cross-sectional sample preparation apparatus (“Cross Section Polisher SM-09010" manufactured by Nippon Denshi Co., Ltd.)
  • cross-sectional processing of the pelletized liquid crystal polyester composition is performed under the conditions of an accelerating voltage of 4.5 kV for 20 hours.
  • the dispersion diameter of the olefin copolymer in the liquid crystal polyester composition of the present embodiment tends to decrease as the shear rate increases.
  • the dispersion diameter of the olefin copolymer in the liquid crystal polyester composition of the present embodiment tends to increase as the shear rate decreases.
  • the region including the liquid crystal polyester and the region of the olefin copolymer are binarized.
  • the average value of the obtained measured values is calculated to be the dispersion diameter of the olefin copolymer.
  • the "equivalent circle diameter" is the diameter of a true circle corresponding to the area of the object to be measured (olefin copolymer) observed on the image after processing.
  • the dispersion diameter of the olefin copolymer in the liquid crystal polyester composition of the present embodiment measured by the above-mentioned measuring method is less than 0.8 ⁇ m. Further, the dispersion diameter of the olefin copolymer is, for example, 0.01 ⁇ m or more.
  • the dispersion diameter of the olefin copolymer is preferably 0.6 ⁇ m or less, and more preferably 0.5 ⁇ m or less. Further, in the liquid crystal polyester composition of the present embodiment, the dispersion diameter of the olefin copolymer is preferably 0.05 ⁇ m or more, and more preferably 0.2 ⁇ m or more. The upper limit value and the lower limit value can be arbitrarily combined.
  • the dispersion diameter of the olefin copolymer is 0.01 ⁇ m or more and less than 0.8 ⁇ m, preferably 0.05 ⁇ m or more and 0.6 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 0.5 ⁇ m or less.
  • the molded article obtained from the liquid crystal polyester composition of the present embodiment it is considered that a substantially spherical olefin copolymer is present in the liquid crystal polyester. If the dispersion diameter of the olefin copolymer is less than 0.8 ⁇ m, the dispersion of the olefin copolymer proceeds in the liquid crystal polyester, and a large number of olefin copolymers having a small particle diameter exist in the liquid crystal polyester. It can be said that In such a shaped product, it is considered that the distance between particles of the olefin copolymer decreases. As a result, it is considered that the above-mentioned molded body can suppress the propagation of a crack and improve the impact strength.
  • the improvement effect of the impact strength in the molded body is high, the content of the olefin copolymer which is the impact absorbing material can be reduced.
  • the flowability is improved more than that of the conventional liquid crystal polyester composition containing an olefin copolymer, which is used to obtain a molded article having equivalent impact strength. It is thought that.
  • the flowability of the liquid crystal polyester composition refers to the length in the flow direction of the resin (sometimes referred to as the flow length) for a molded product obtained from the liquid crystal polyester composition using a mold for flow length measurement. Can be evaluated by measuring In this evaluation, it can be said that the flowability of the liquid crystal polyester composition is higher as the flow length is longer.
  • the flow length is preferably 800 mm or more when the flow length is measured by the method described in ⁇ Flow length of liquid crystal polyester composition> described later, It is more preferable to have the characteristic of 810 mm or more and 900 mm or less.
  • the liquid crystal polyester composition may further contain at least one other component such as a filler other than the plate-like filler, an additive, and a resin other than the liquid crystal polyester.
  • the liquid crystal polyester composition of the present embodiment comprises an olefin co-polymer comprising a liquid crystal polyester, a repeating unit derived from an ⁇ -olefin, and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid.
  • a plate-like filler and another component a filler other than the plate-like filler, an additive, and at least one component selected from the group consisting of resins other than the liquid crystalline polyester
  • the content of the other components is preferably 0.01 to 30% by mass with respect to the total mass of the liquid crystal polyester composition.
  • the filler may be a fibrous filler, or may be a spherical or other granular filler other than fibrous and plate-like.
  • the filler may be an inorganic filler or an organic filler.
  • fibrous inorganic fillers include glass fibers; carbon fibers such as bread carbon fibers and pitch carbon fibers; ceramic fibers such as silica fibers, alumina fibers and silica alumina fibers; and metal fibers such as stainless steel fibers
  • whiskers such as potassium titanate whisker, barium titanate whisker, wollastonite whisker, aluminum borate whisker, silicon nitride whisker, silicon carbide whisker and the like can also be mentioned.
  • fibrous organic fillers include polyester fibers and aramid fibers.
  • particulate inorganic fillers include silica, alumina, titanium oxide, glass beads, glass balloons, boron nitride, silicon carbide and calcium carbonate.
  • the content of the filler other than the plate-like filler is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • additives include antioxidants, heat stabilizers, ultraviolet light absorbers, antistatic agents, surfactants, flame retardants and colorants.
  • the content of the additive is preferably 0 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • resins other than liquid crystal polyesters include thermoplastic resins other than liquid crystal polyesters such as polypropylene, polyamide, polyesters other than liquid crystal polyester, polysulfone, polyphenylene sulfide, polyether ketone, polycarbonate, polyphenylene ether, polyetherimide; and phenol resin And thermosetting resins such as epoxy resins, polyimide resins and cyanate resins.
  • the content of the resin other than the liquid crystal polyester is preferably 0 to 20 parts by mass with respect to 100 parts by mass of the liquid crystal polyester.
  • the liquid crystal polyester composition of the present embodiment is prepared by melt-kneading the above-mentioned liquid crystal polyester, olefin copolymer, and optionally plate-like filler and other components using an extruder, and extruding into pellets. Is preferred. In the present invention, such a step is referred to as "melt-kneading step".
  • one having a cylinder, at least one screw disposed in the cylinder, and at least one supply port provided in the cylinder is preferably used, and further, the cylinder What has at least one vent part provided in is used more preferably.
  • the melt-kneading conditions may be set by preliminary experiments so that the dispersion diameter of the olefin copolymer in the liquid crystal polyester composition is less than 0.8 ⁇ m.
  • melt-kneading is performed at a shear rate of 3000 s ⁇ 1 or more and 10000 s ⁇ 1 or less at a processing temperature included in a temperature range of 10 ° C. or more and 20 ° C. or less set with respect to the flow start temperature of liquid crystal polyester Methods are included.
  • the olefin copolymer can be well dispersed in the liquid crystal polyester.
  • good dispersion means that a large number of olefin copolymers having a dispersion diameter of less than 0.8 ⁇ m measured by the above-mentioned measurement method are present in the liquid crystal polyester.
  • shear rate is 10000 s -1 or less, the heat generated at the time of melt-kneading can be suppressed, and the liquid polyester can be suppressed from being thermally deteriorated.
  • the shear rate is preferably 3000 s -1 or more, 5000 s -1 or more is more preferable.
  • the shear rate is preferably 10000 s -1 or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the shear rate is preferably 3000 s -1 or more 10000s -1 or less, 5000 s -1 or more 10000s -1 or less is more preferable.
  • one having a cylinder, at least one screw disposed in the cylinder, and at least one supply port provided in the cylinder is preferably used and those having at least one vent portion provided in the cylinder are more preferably used.
  • the molded body of the present embodiment can be obtained from the liquid crystal polyester resin composition by a known molding method.
  • a melt molding method is preferable, and examples thereof include an injection molding method, an extrusion molding method such as a T-die method and an inflation method, a compression molding method, a blow molding method Molding methods and press molding can be mentioned. Among them, injection molding is preferred.
  • the flowability of the liquid crystal polyester composition is high, and the impact strength of the resulting molded article is high. Therefore, the molded article of the present embodiment is generally applicable to any use to which the liquid crystal polyester resin can be applied.
  • thickness 7 mm or less is preferable, and thickness 5 mm or less is more preferable.
  • injection moldings for automobile interior materials injection moldings for ceiling materials, injection moldings for wheel house covers, injection moldings for trunk linings, injection moldings for instrument panel facings, handle covers
  • injection molded body injection molded body for armrest, injection molded body for headrest, injection molded body for seat belt cover, injection molded body for shift lever boot, injection molded body for console box, injection molded body for horn pad, injection molded body for knob Body, injection molded body for airbag cover, injection molded body for various trims, injection molded body for various pillars, injection molded body for door lock bezel, injection molded body for glove box, injection molded body for defroster nozzle, injection molded body for defroster nozzle, injection molded for scuff plate Body, injection molded body for steering wheel, injection molded body for steering column cover, etc. And the like.
  • injection moldings for automobile exterior materials include injection moldings for bumpers, injection moldings for spoilers, injection moldings for mud guards, injection moldings for side moldings, and the like.
  • injection moldings for automobile parts injection moldings for automobile headlamps, injection moldings for glass run channels, injection moldings for weather strip, injection moldings for drain hoses, injection moldings for drain hoses, injection moldings for window washer tubes, etc.
  • injection molded bodies for tubes injection molded bodies for rack and pinion boots, injection molded bodies for gaskets, and the like.
  • sensors LED lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, varicon cases, optical pickups, oscillators, various terminal boards, transformers, plugs, printed circuit boards, tuners, speakers, microphones, Headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystal displays, FDD carriages, FDD chassis, motor brush holders, parabola antennas, computer related parts, microwave oven parts, sound and audio equipment parts, lighting parts, air conditioner parts, Office computer related parts, telephone / fax related parts, and copier related parts.
  • the impact strength of the molded body is measured in accordance with ASTM D256.
  • the Izod impact strength of the molded article is measured by the method described in ⁇ Izod impact strength of the molded article> described later, the Izod impact strength is 800 J / m or more. It is preferably 1400 J / m or more and 1900 J / m or less, more preferably 1600 J / m or more and 1900 J / m or less, and still more preferably 1700 J / m or more and 1900 J / m or less.
  • liquid crystal polyester composition and a molded body capable of forming a molded body having high impact strength and having high fluidity are provided.
  • the liquid crystal polyester composition which is an embodiment of the present invention is Liquid crystalline polyester and olefin copolymer;
  • the liquid crystal polyester is a liquid crystal polyester having the repeating unit (1), the repeating unit (2) and the repeating unit (3), Preferably, a repeating unit derived from p-hydroxybenzoic acid, a repeating unit derived from 4,4'-dihydroxybiphenyl, a repeating unit derived from terephthalic acid, a repeating unit derived from isophthalic acid and 4,4'- A liquid crystalline polyester having a repeating unit derived from dihydroxybiphenyl;
  • the olefin copolymer is a repeating unit derived from an ⁇ -olefin-derived repeating unit (the above-mentioned repeating unit (a)) and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid (the above-mentioned repeating unit (b))
  • the liquid crystalline polyester composition comprises With respect to the total mass of the liquid crystal polyester composition, The content of the liquid crystal polyester is more than 80% by mass and 95% by mass or less, preferably 83% by mass or more and 95% by mass or less, more preferably 85% by mass or more and 90% by mass or less.
  • the content of the combination is 5% by mass or more and less than 20% by mass, preferably 5% by mass or more and 18% by mass or less, more preferably 6% by mass or more and 15% by mass or less, still more preferably 8% by mass or more and 10% by mass Less than
  • the total content of the liquid crystal polyester and the olefin copolymer does not exceed 100% by mass. It is a liquid crystal polyester composition.
  • the flow length of the liquid crystal polyester composition is measured by the method described in ⁇ Flow length of liquid crystal polyester composition> described later, the flow length is preferably 800 mm or more, and 810 mm or more and 900 mm or less.
  • the Izod impact strength of the molded body measured by the method described in ⁇ Izod impact strength of the molded body> described later Preferably 800 J / m or more, may be 1400 J / m or more and 1900 J / m or less, and may be 1600 J / m or more and 1900 J / m or less and 1700 J / m or more and 1900 J / m or less.
  • the liquid crystal polyester composition is When the deflection temperature under load is measured by the method described in ⁇ Load deflection temperature of liquid crystal polyester composition> described later, the liquid crystal polyester composition has a characteristic that the deflection temperature under load is 227 ° C. or more and 233 ° C. or less.
  • the molded product according to an embodiment of the present invention is A molded body formed from the liquid crystal polyester composition;
  • the liquid crystal polyester composition preferably has an Izod impact strength of 800 J / m or more, more preferably 1400 J / m or more and 1900 J / m or less, as measured by the method described in ⁇ Izod impact strength of molded article> described later.
  • tensile strength and tensile elongation are measured by the method described in ⁇ Tensile strength and tensile elongation of molded body> described later, It is a composition that gives a tensile strength that is preferably 104 MPa or more and 138 MPa or less, A composition which gives a tensile elongation which is preferably 6.2% or more and 7.2% or less;
  • flexural strength and flexural modulus are measured by the method described in ⁇ Flexural strength and flexural modulus of molded body> described later, It is a composition which gives bending strength which is preferably 73 MPa or more and 76 MPa or less, It is a composition that gives a flexural modulus that is preferably 3200 MPa
  • Flow start temperature of liquid crystalline polyester First, using a flow tester (“CFT-500 type” manufactured by Shimadzu Corporation), about 2 g of liquid crystal polyester was filled in a cylinder attached with a die having a nozzle with an inner diameter of 1 mm and a length of 10 mm. Next, the liquid crystal polyester is melted while raising the temperature at a rate of 4 ° C./min under a load of 9.8 MPa (100 kg / cm 2 ), and extruded from a nozzle, and a temperature showing a viscosity of 4800 Pa ⁇ s (48000 poise) (Flow start temperature) was measured, and it was set as the flow start temperature of liquid crystalline polyester.
  • CFT-500 type manufactured by Shimadzu Corporation
  • a liquid crystal polyester composition is molded using an injection molding machine ("UH1000" manufactured by Nissei Resin Industries Co., Ltd.) under the following conditions, using a mold for flow length measurement of 1 mm thickness and 10 mm width used in this example. did. The length of the resin in the flow direction was measured for the molded body taken out. This test was performed on 10 molded articles, and the average value of the obtained measured values was taken as the flow length of the liquid crystal polyester composition. The results are shown in Table 2.
  • Cylinder temperature (nozzle side) 340 ° C; 350 ° C; 340 ° C; 330 ° C; 80 ° C (hopper side) Mold temperature: 80 ° C
  • the liquid crystal polyester composition is 127 mm ⁇ 12.7 mm ⁇ at a molding temperature of 340 ° C., a mold temperature of 130 ° C., and an injection speed of 50% using an injection molding machine (“PNX40-5A” manufactured by Nissei Resin Co., Ltd.) It was molded into a 6.4 mmt test piece.
  • the deflection temperature under load of the obtained test piece was measured twice at a temperature rising rate of 4 ° C./min under a load of 1.82 MPa according to ASTM D648.
  • the deflection temperature under load of the liquid crystal polyester composition was the average of the obtained measured values. The results are shown in Table 2.
  • the dispersion diameter of the olefin copolymer was determined by the following analysis method.
  • the liquid crystal polyester composition was molded using an injection molding machine ("PNX40-5A" manufactured by Nissei Resin Co., Ltd.) at a molding temperature of 340 ° C, a mold temperature of 130 ° C, an injection speed of 50%, and a thickness of 2.5 mm. It molded into an ASTM No. 4 test piece. The tensile strength and the tensile elongation of the obtained test piece were measured five times in accordance with ASTM D638. The tensile strength and tensile elongation rate of the molded body were the average of the obtained measured values. The results are shown in Table 2.
  • the liquid crystal polyester composition is 127 mm ⁇ 12.7 mm ⁇ at a molding temperature of 340 ° C., a mold temperature of 130 ° C., and an injection speed of 50% using an injection molding machine (“PNX40-5A” manufactured by Nissei Resin Co., Ltd. It was molded into a 6.4 mmt test piece.
  • the flexural strength and flexural modulus of the obtained test piece were measured three times in accordance with ASTM D790.
  • the flexural strength and flexural modulus of the molded body were the average of the obtained measured values. The results are shown in Table 2.
  • ⁇ Izod impact strength of molded body> A liquid crystal polyester composition was measured by using an injection molding machine (“PNX40-5A” manufactured by Nissei Resin Co., Ltd.) at a molding temperature of 340 ° C. and a mold temperature of 130 ° C. at an injection speed of 50% 127 mm ⁇ 12. It shape
  • the Izod impact strength of the obtained test piece was measured 10 times in accordance with ASTM D256. At this time, the molded body was tested without a notch. The Izod impact strength of the molded body was an average of the obtained measured values. The results are shown in Table 2.
  • ethylene ratio refers to the content of repeating units derived from ⁇ -olefin (ethylene) with respect to the total mass of the olefin copolymer
  • glycolycidyl methacrylate ratio refers to the total of the olefin copolymer It represents the content of repeating units derived from glycidyl ester (glycidyl methacrylate) of ⁇ , ⁇ -unsaturated acid with respect to mass
  • methyl acrylate ratio means ethylenically unsaturated ester with respect to the total mass of the olefin copolymer Represents a repeating unit derived from (methyl acrylate).
  • Olefin-based copolymer Olefin-based copolymer: ethylene ratio: 70.2% by mass, glycidyl methacrylate ratio: 2.9% by mass, methyl acrylate ratio: 26.9% by mass, apparent melt viscosity 11.7 Pa ⁇ s
  • the obtained liquid crystal polyester composition was comprehensively judged according to the following criteria.
  • the dispersion diameter of the olefin copolymer is in the range of less than 0.8 ⁇ m, and in Comparative Example 1-1, the dispersion diameter is 0.8 ⁇ m. there were.
  • liquid crystal polyester compositions of Examples 1-1 to 1-3 all had high fluidity, and the resulting molded articles had high impact strength.
  • a liquid crystalline polyester composition capable of forming a molded article having high impact strength and having a high flowability, a molded article and a method for producing the liquid crystalline polyester composition can be provided, which is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

液晶ポリエステルと、α-オレフィンに由来する繰返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰返し単位を含むオレフィン系共重合体と、を含み、この液晶ポリエステルおよびこのオレフィン系共重合体の含有量の合計を100質量%としたとき、この液晶ポリエステルの含有量が、80質量%を超え95質量%以下であり、このオレフィン系共重合体の含有量が、5質量%以上20質量%未満であり、下記測定方法で測定されるこのオレフィン系共重合体の分散径が、0.8μm未満である液晶ポリエステル組成物。 [測定方法] この液晶ポリエステル組成物の走査型電子顕微鏡画像において、100個のこのオレフィン系共重合体の円相当径を測定し、得られた測定値の平均値を算出する。

Description

液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法
 本発明は、液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法に関するものである。
 本願は、2017年12月18日に、日本に出願された特願2017-242144号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルは、流動性、耐熱性が高く、寸法精度の高い成形品が成形できることが知られている。液晶ポリエステルは通常、単体で用いられることは少なく、各種用途における要求特性(例えば、曲げ強度)を満たすために、充填材を含有させた液晶ポリエステル組成物として用いられている。このような液晶ポリエステル組成物から得られる成形体は、軽量でありながら強度が高いことが知られている。
 近年では、上述したような液晶ポリエステルの特長を活かし、高強度が要求される自動車用の外板部材の形成材料として、現行の金属材料の代わりに液晶ポリエステルを用いることが検討されている。液晶ポリエステルを自動車用の外板部材の形成材料として用いることにより、現行品よりも軽量な自動車用の外板部材が得られる。
 しかしながら、上述の液晶ポリエステル組成物から得られる成形体は、液晶ポリエステル単体から得られる成形体と比べて衝撃強度が低いという問題がある。
 このような問題を解決するため、ゴムのような衝撃改質材を含有させた液晶ポリエステル組成物を用いることが考えられる。特許文献1および特許文献2には、衝撃改質材を含有させた液晶性樹脂組成物が記載されている。
 特許文献1に記載の液晶性樹脂組成物は、液晶性樹脂に、ガラス繊維等の繊維状充填材及びタルク等の非繊維状充填材から選択される少なくとも1種以上の無機充填剤と、オレフィン系共重合体及びスチレン系共重合体から選択される少なくとも1種の共重合体とを、前記液晶性樹脂が65~93質量%、前記無機充填剤が5~20質量%、前記共重合体が2~10質量%になるように配合されている。
 特許文献2に記載の液晶性樹脂組成物は、液晶性樹脂に、マイカ、タルク及びガラスフレーク等の板状充填剤と、オレフィン系共重合体及びスチレン系共重合体から選択される少なくとも1種の共重合体とを、前記液晶性樹脂が64~78質量%、前記板状充填剤が20~30質量%、前記共重合体が2~6質量%になるように配合されている。
日本国特許第5680788号公報 特開2015-021110号公報
 しかしながら、特許文献1および特許文献2に記載されている液晶性樹脂組成物を自動車用の外板部材のような大型の成形体の形成材料に用いるためには、さらなる流動性の向上が必要である。
 本発明はこのような事情に鑑みてなされたものであって、衝撃強度が高い成形体を成形可能であり、かつ流動性が高い液晶ポリエステル組成物、成形体、および液晶ポリエステル組成物の製造方法を提供することを目的とする。
 上記の課題を解決するため、本発明は以下の態様を含む。
[1]液晶ポリエステルと、
 α-オレフィンに由来する繰返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰返し単位とを含むオレフィン系共重合体と、を含み、
 前記液晶ポリエステルおよび前記オレフィン系共重合体の含有量の合計を100質量%としたとき、
 前記液晶ポリエステルの含有量が、前記80質量%を超え95質量%以下であり、
 前記オレフィン系共重合体の含有量が、5質量%以上20質量%未満であり、
 下記測定方法で測定される前記オレフィン系共重合体の分散径が、0.8μm未満である、
 液晶ポリエステル組成物。
 [測定方法]
 前記液晶ポリエステル組成物の走査型電子顕微鏡画像において、100個の前記オレフィン系共重合体の円相当径を測定し、得られた測定値の平均値を算出する。
[2]前記液晶ポリエステルは、下記一般式(1)で表される繰返し単位を、前記液晶ポリエステルを構成する全繰返し単位の合計量に対して、30モル%以上80モル%以下有する、[1]に記載の液晶ポリエステル組成物。
 (1)-O-Ar-CO-
 (Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。Arで表される基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
[3][1]又は[2]に記載の液晶ポリエステル組成物から形成される成形体。
[4]液晶ポリエステルと、α-オレフィンに由来する繰返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰返し単位とを含むオレフィン系共重合体と、を溶融混練することを含み、
 前記溶融混練は、前記液晶ポリエステルの流動開始温度に対して10℃以上20℃以下の温度域に含まれる加工温度で、せん断速度3000s-1以上10000s-1以下にて行われる、
 液晶ポリエステル組成物の製造方法。
 本発明の一態様によれば、衝撃強度が高い成形体を成形可能であり、かつ流動性が高い液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法が提供される。
<液晶ポリエステル組成物>
 本実施形態の液晶ポリエステル組成物は、液晶ポリエステルと、オレフィン系共重合体と、を含む。
 なお、本明細書においては、液晶ポリエステルと、オレフィン系共重合体と、を含む混合物をペレット状に成形したものを「液晶ポリエステル組成物」と称する場合がある。
 本実施形態の液晶ポリエステル組成物は、後述する成形体の形成材料として用いられる。
[液晶ポリエステル]
 本実施形態に係る液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、250℃以上450℃以下の温度で溶融するものであることが好ましい。なお、本実施形態に係る液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。本実施形態に係る液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 本実施形態に係る液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合(重縮合)させてなるもの;複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの;芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物とを重合させてなるもの;およびポリエチレンテレフタレートなどのポリエステルと、芳香族ヒドロキシカルボン酸とを重合させてなるものが挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンは、それぞれ独立に、その一部または全部に代えて、その重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基またはアリールオキシカルボニル基に変換してなるもの(すなわち、エステル)、カルボキシル基をハロホルミル基に変換してなるもの(すなわち、酸ハロゲン化物)、およびカルボキシル基をアシルオキシカルボニル基に変換してなるもの(すなわち、酸無水物)が挙げられる。芳香族ヒドロキシカルボン酸、芳香族ジオールおよび芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換してなるもの(すなわち、ヒドロキシル基のアシル化物)が挙げられる。芳香族ヒドロキシアミンおよび芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(すなわち、アミノ基のアシル化物)が挙げられる。
 本実施形態に係る液晶ポリエステルは、下記式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)とを有することがより好ましい。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
 前記アルキル基としては、炭素数1~10のアルキル基が好ましく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基およびn-デシル基が挙げられる。
 前記アリール基としては、炭素数6~20のアリール基が好ましく、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基および2-ナフチル基が挙げられる。前記水素原子がこれらの基で置換されている場合、その数は、Ar、ArまたはArで表される前記基毎に、それぞれ独立に、2個以下が好ましく、1個がより好ましい。
 前記アルキリデン基としては、炭素数1~10のアルキリデン基が好ましく、例えば、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基および2-エチルヘキシリデン基が挙げられる。
 繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arがp-フェニレン基であるもの(例えば、p-ヒドロキシ安息香酸に由来する繰返し単位)、およびArが2,6-ナフチレン基であるもの(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。
 なお、本明細書において「由来」とは、原料モノマーが重合するために、重合に寄与する官能基の化学構造が変化し、その他の構造変化を生じないことを意味する。
 繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp-フェニレン基であるもの(例えば、テレフタル酸に由来する繰返し単位)、Arがm-フェニレン基であるもの(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基であるもの(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)、およびArがジフェニルエ-テル-4,4’-ジイル基であるもの(例えば、ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。
 繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミンまたは芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp-フェニレン基であるもの(例えば、ヒドロキノン、p-アミノフェノールまたはp-フェニレンジアミンに由来する繰返し単位)、およびArが4,4’-ビフェニリレン基であるもの(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルまたは4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 前記液晶ポリエステルにおける繰返し単位(1)の含有量は、前記液晶ポリエステルを構成する全繰返し単位の合計量(すなわち、前記液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、30モル%以上が好ましく、30モル%以上80モル%以下がより好ましく、40モル%以上70モル%以下がさらに好ましく、45モル%以上65モル%以下がとりわけ好ましい。
 前記液晶ポリエステルにおける繰返し単位(2)の含有量は、前記液晶ポリエステルを構成する全繰返し単位の合計量に対して、35モル%以下が好ましく、10モル%以上35モル%以下がより好ましく、15モル%以上30モル%以下がさらに好ましく、17.5モル%以上27.5モル%以下がとりわけ好ましい。
 前記液晶ポリエステルにおける繰返し単位(3)の含有量は、前記液晶ポリエステルを構成する全繰返し単位の合計量に対して、35モル%以下が好ましく、10モル%以上35モル%以下がより好ましく、15モル%以上30モル%以下がさらに好ましく、17.5モル%以上27.5モル%以下がとりわけ好ましい。
 1つの側面として、本実施形態に係る液晶ポリエステルは、前記液晶ポリエステルを構成する全繰返し単位の合計量に対して、繰返し単位(1)の含有量が、30~80モル%、好ましくは40~70モル%、より好ましくは45~65モル%であり;繰返し単位(2)の含有量が、10~35モル%、好ましくは15~30モル%、より好ましくは17.5~27.5モル%であり;繰返し単位(3)の含有量が、10~35モル%、好ましくは15~30モル%、より好ましくは17.5~27.5モル%である。
 但し、繰返し単位(1)、繰返し単位(2)および繰返し単位(3)の合計含有量は100モル%を超えない。
 繰返し単位(1)の含有量が多いほど、溶融流動性や耐熱性や強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。すなわち、繰返し単位(1)の含有量が上記範囲内であれば、溶融流動性や耐熱性が向上し易く、成形体にしたときに強度・剛性が向上し易くなり、かつ溶融温度や溶融粘度が高くなりすぎず、成形に必要な温度も高くなりすぎない。
 繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、0.9/1~1/0.9が好ましく、0.95/1~1/0.95がより好ましく、0.98/1~1/0.98がさらに好ましい。
 なお、本実施形態に係る液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ独立に、2種以上有してもよい。また、前記液晶ポリエステルは、さらに繰返し単位(1)~(3)以外の繰返し単位を有してもよい。繰返し単位(1)~(3)以外の繰返し単位の含有量は、前記液晶ポリエステルを構成する全繰返し単位の合計量に対して、0モル%以上10モル%以下が好ましく、0モル%以上5モル%以下がより好ましい。
 本実施形態に係る液晶ポリエステルは、繰返し単位(3)として、XおよびYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが、溶融粘度が低くなり易いので、好ましく、繰返し単位(3)として、XおよびYがそれぞれ酸素原子であるもののみを有することが、より好ましい。
 本実施形態に係る液晶ポリエステルは、それを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(以下、「プレポリマー」ということがある。)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性良く製造することができる。溶融重合は、触媒の存在下に行ってもよく、この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾールなどの含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。
 本実施形態に係る液晶ポリエステルの流動開始温度は、270℃以上が好ましく、270℃以上400℃以下がより好ましく、280℃以上380℃以下がさらに好ましい。
 本実施形態に係る液晶ポリエステルの流動開始温度が高いほど、液晶ポリエステルの耐熱性や強度・剛性が向上する傾向がある。一方で、液晶ポリエステルの流動開始温度が400℃を超えると、液晶ポリエステルの溶融温度や溶融粘度が高くなる傾向がある。そのため、液晶ポリエステルの成形に必要な温度が高くなる傾向がある。すなわち、前記液晶ポリエステルの流動開始温度が上記範囲内であれば、液晶ポリエステルの耐熱性や強度・剛性が向上し、かつ液晶ポリエステルの溶融温度や溶融粘度は高くなりすぎず、液晶ポリエステルの成形に必要な温度も高くなりすぎない。
 本明細書において、液晶ポリエステルの流動開始温度は、フロー温度または流動温度とも呼ばれ、液晶ポリエステルの分子量の目安となる温度である(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。流動開始温度は、毛細管レオメーターを用いて、液晶ポリエステルを9.8MPa(100kg/cm)の荷重下4℃/分の速度で昇温しながら溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度である。
[オレフィン系共重合体]
 本実施形態に係るオレフィン系共重合体は、液晶ポリエステル中に分散され、衝撃吸収材(衝撃改質材ともいう)としての機能を有する。衝撃吸収材は、成形体外部からの衝撃を吸収する。
 1つの側面として、本発明の液晶ポリエステル組成物では、液晶ポリエステルが連続相を形成し、オレフィン系共重合体が分散相を形成している。
 別の側面として、本発明の液晶ポリエステル組成物では、オレフィン系共重合体が分散しているため、前記液晶ポリエステル組成物からに任意に採取する複数の試料において単位質量中のオレフィン系共重合体の含有量が同じである。
 本実施形態に係るオレフィン系共重合体は、(a)α-オレフィンに由来する繰返し単位(以下、繰返し単位(a)と称する)と、(b)α,β-不飽和酸のグリシジルエステルに由来する繰返し単位(以下、繰返し単位(b)と称する)と、を含む。
 前記繰返し単位(a)の含有量は、前記オレフィン系共重合体の総質量に対して、50質量%以上99質量%以下であることが好ましい。
 前記繰返し単位(b)の含有量は、前記オレフィン系共重合体の総質量に対して、0.1質量%以上30質量%以下であることが好ましく、0.5質量%以上20質量%以下であることがより好ましく、2質量%以上4質量%以下であることがさらに好ましい。
 また、繰返し単位(a)の含有量と、繰返し単位(b)の含有量とは、オレフィン系共重合体の総質量に対する繰返し単位(a)および繰返し単位(b)の合計の含有量が100質量%以下となるように、組み合わせられる。
 1つの側面として、繰返し単位(a)および繰返し単位(b)の合計の含有量は、オレフィン系共重合体の総質量に対して、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。
 オレフィン系共重合体は、さらに(c)エチレン系不飽和エステルに由来する繰返し単位(以下、繰返し単位(c)と称する)を含むことが好ましい。
 ここでいう「エチレン系不飽和エステル」とは、化学式R-CO-O-Rで示される化合物であり、RおよびRはそれぞれ独立に、ビニル基、ビニル基の誘導体、メチル基、またはエチル基であり、かつRおよびRの少なくとも一方が、前記ビニル基または前記ビニル基の誘導体である化合物である。
 ここでいう「ビニル基の誘導体」とは、ビニル基中の二つの炭素に結合する一つ以上の水素原子をそれぞれ独立にメチル基またはエチル基にて置換したものである。
 前記繰返し単位(c)を含む場合、前記繰返し単位(c)の含有量は、前記オレフィン系共重合体の総質量に対して、0質量%を超え50質量%以下であることが好ましい。
 また、繰返し単位(a)の含有量と、繰返し単位(b)の含有量と、繰返し単位(c)の含有量とは、オレフィン系共重合体の総質量に対する繰返し単位(a)~(c)の合計の含有量が100質量%以下となるように、組み合わせられる。
 1つの側面として、繰返し単位(a)~(c)の合計の含有量は、オレフィン系共重合体の総質量に対して、80質量%以上100質量%以下であることが好ましく、90質量%以上100質量%以下であることがより好ましい。
 オレフィン系共重合体は、さらに繰返し単位(a)~(c)以外の繰返し単位を含んでもよい。
 1つの側面として、本実施形態に係るオレフィン系共重合体は、α-オレフィンに由来する繰返し単位(繰返し単位(a))と、α,β-不飽和酸のグリシジルエステルに由来する繰返し単位(繰返し単位(b))と、所望によりエチレン系不飽和エステルに由来する繰返し単位(繰返し単位(c))とを含む。
 また別の側面として、本実施形態に係るオレフィン系共重合体は、α-オレフィンに由来する繰返し単位(繰返し単位(a))と、α,β-不飽和酸のグリシジルエステルに由来する繰返し単位(繰返し単位(b))と、所望によりエチレン系不飽和エステルに由来する繰返し単位(繰返し単位(c))と、前記繰返し単位(a)~(c)以外の繰返し単位とを含む。
 繰返し単位(a)を与える化合物としては、特に限定されず、炭素数2~13のα―オレフィンが挙げられ、例えば、エチレン、プロピレン、ブテンなどのα―オレフィンが挙げられる。
 繰返し単位(b)を与える化合物としては、炭素数2~13のα,β-不飽和酸のグリシジルエステルが挙げられ、例えば、下記一般式(B1)で表されるα,β-不飽和酸のグリシジルエステルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(Rは、エチレン系不飽和結合を有する炭素数2~13の炭化水素基である。)
 換言すると、上記式(B1)中のRは隣接するカルボニル基のα位およびβ位において二重結合を有する炭素数2~13のアルケニル基を表す。
 繰返し単位(b)を与える化合物としては、より具体的には、グリシジルアクリレート、グリシジルメタクリレートなどが例示される。
 繰返し単位(c)を与える化合物としては、酢酸ビニル、プロピオン酸ビニルなどカルボン酸ビニルエステル、またはアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのα、β-不飽和カルボン酸アルキルエステルなどのエチレン系不飽和エステルが挙げられる。なかでも、繰返し単位(c)を与える化合物としては、酢酸ビニル、アクリル酸メチル、アクリル酸エチルが好ましい。
 本実施形態の液晶ポリエステル組成物に係るオレフィン系共重合体としては、例えば、
 繰返し単位(a)としてエチレンに由来する繰返し単位と、繰返し単位(b)としてグリシジルメタクリレートに由来する繰返し単位と、からなる共重合体、
 繰返し単位(a)としてエチレンに由来する繰返し単位と、繰返し単位(b)としてグリシジルメタクリレートに由来する繰返し単位と、繰返し単位(c)としてアクリル酸メチルに由来する繰返し単位と、からなる共重合体、
 繰返し単位(a)としてエチレンに由来する繰返し単位と、繰返し単位(b)としてグリシジルメタクリレートに由来する繰返し単位と、繰返し単位(c)としてアクリル酸エチルに由来する繰返し単位と、からなる共重合体、
 繰返し単位(a)としてエチレンに由来する繰返し単位と、繰返し単位(b)としてグリシジルメタクリレートに由来する繰返し単位と、繰返し単位(c)として酢酸ビニルに由来する繰返し単位と、からなる共重合体などが挙げられる。
[板状フィラー]
 本発明において「板状フィラー」とは、アスペクト比が5~200であるものをいう。
 本実施形態の液晶ポリエステル組成物は、板状フィラーを含むことが好ましい。本実施形態に係る板状フィラーは、特に限定されないが、例えばタルク、マイカ、グラファイト、ウォラストナイト、ガラスフレーク、硫酸バリウムまたは炭酸カルシウムが挙げられる。マイカは、白雲母であってもよいし、金雲母であってもよいし、フッ素金雲母であってもよいし、四ケイ素雲母であってもよい。
 本実施形態に係る板状フィラーは、タルクまたはマイカであることが好ましく、マイカであることが好ましい。これにより、液晶ポリエステル組成物を用いて得られる成形体の衝撃強度が向上する。
 本実施形態に係る板状フィラーの粒径は特に制限されない。例えば板状フィラーの体積平均粒径は、15μm以上40μm以下が好ましく、20μm以上35μm以下がより好ましく、20μm以上30μm以下がさらに好ましく、22μm以上30μm以下がよりさらに好ましい。板状フィラーの体積平均粒径が15μm以上であると、液晶ポリエステル組成物から成形される成形体の耐衝撃性がより向上する傾向がある。また、板状フィラーの体積平均粒径が40μm以下であると、成形体の変形がより抑制される傾向がある。
 板状フィラーの体積平均粒径は、レーザー回折法を用いて、測定することができる。
 なお、板状フィラーの体積平均粒径は、後述の溶融混練によって実質上変化しないことがわかっている。そのため、板状フィラーの体積平均粒径は、液晶ポリエステル組成物に溶融混練される前の板状フィラーの体積平均粒径を測定することによっても求めることができる。
[液晶ポリエステル組成物]
 本実施形態の液晶ポリエステル組成物中の液晶ポリエステルの含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、80質量%を超え95質量%以下である。液晶ポリエステルの含有量が80質量%を超えると、液晶ポリエステル組成物の流動性や耐熱性が向上する。また、液晶ポリエステルの含有量が80質量%を超えると、液晶ポリエステル組成物から得られる成形体の衝撃強度が向上する。一方、液晶ポリエステルの含有量が95質量%以下であると、液晶ポリエステル組成物を成形しやすくなる。
 本実施形態の液晶ポリエステル組成物中の液晶ポリエステルの含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、83質量%以上が好ましく、85質量%以上がより好ましい。また、液晶ポリエステルの含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、95質量%以下が好ましく、90質量%以下がより好ましい。
 上記上限値および下限値は任意に組み合わせることができる。
 1つの側面として、前記液晶ポリエステルの含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、83質量%以上95質量%以下が好ましく、85質量%以上90質量%以下がより好ましい。
 別の側面として、前記液晶ポリエステルの含有量は、液晶ポリエステル組成物の総質量に対して、80質量%超え95質量%以下であり、好ましくは83質量%以上95質量%以下、より好ましくは85質量%以上90質量%以下である。
 本実施形態の液晶ポリエステル組成物中のオレフィン系共重合体の含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、5質量%以上20質量%未満である。オレフィン系共重合体の含有量が5質量%以上であると、液晶ポリエステル組成物から得られる成形体の衝撃強度が向上する。一方、オレフィン系共重合体の含有量が20質量%未満であると、液晶ポリエステル組成物の流動性が十分向上する。
 本実施形態の液晶ポリエステル組成物中のオレフィン系共重合体の含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、5質量%以上が好ましく、6質量%以上がより好ましく、8質量%以上がさらに好ましい。また、オレフィン系共重合体の含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、18質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
 上記上限値および下限値は任意に組み合わせることができる。
 1つの側面として、オレフィン系共重合体の含有量は、液晶ポリエステルおよびオレフィン系共重合体の含有量の合計を100質量%としたとき、5質量%以上18質量%以下が好ましく、6質量%以上15質量%以下がより好ましく、8質量%以上10質量%以下がさらに好ましい。
 別の側面として、オレフィン系共重合体の含有量は、液晶ポリエステル組成物の総質量に対して、5質量%以上20質量%未満であり、好ましくは5質量%以上18質量%以下、より好ましくは6質量%以上15質量%以下、さらに好ましくは8質量%以上10質量%以下である。
 本実施形態の液晶ポリエステル組成物中は、さらに板状フィラーを含んでもよい。板状フィラーを含む場合、前記板状フィラーの含有量は、液晶ポリエステル、オレフィン系共重合体および板状フィラーの含有量の合計を100質量%としたとき、15質量%以上30質量%以下であることが好ましい。板状フィラーの含有量が15質量%以上であると、液晶ポリエステルの異方性が抑えられ、液晶ポリエステル組成物を成形しやすくなる。一方、板状フィラーの含有量が30質量%以下であると、相対的に液晶ポリエステルの含有量が十分多くなり、液晶ポリエステル組成物から得られる成形体の衝撃強度が向上する。
 液晶ポリエステル組成物中の板状フィラーの含有量は、液晶ポリエステル、オレフィン系共重合体および板状フィラーの含有量の合計を100質量%としたとき、20質量%以上が好ましく、23質量%以上がより好ましい。また、板状フィラーの含有量は、液晶ポリエステル、オレフィン系共重合体および板状フィラーの含有量の合計を100質量%としたとき、28質量%以下が好ましく、25質量%以下が好ましい。
 上記上限値および下限値は任意に組み合わせることができる。
 1つの側面として、前記板状フィラーの含有量は、液晶ポリエステル、オレフィン系共重合体および板状フィラーの含有量の合計を100質量%としたとき、20質量%以上28質量%以下が好ましく、23質量%以上25質量%以下がより好ましい。
 別の側面として、前記板状フィラーの含有量は、液晶ポリエステル組成物の総質量に対して、15質量%以上30質量%以下であり、好ましくは20質量%以上28質量%以下、より好ましくは23質量%以上25質量%以下である。
 本発明において「板状フィラー」とは、アスペクト比が5~200であるものをいう。
 ここで、本実施形態の液晶ポリエステル組成物中でのオレフィン系共重合体の分散状態を表す指標の一つとして、「オレフィン系共重合体の分散径」を定義する。
 まず、液晶ポリエステルの流動開始温度に対して、10℃以上20℃以下高い加工温度で、所定のせん断速度にて、液晶ポリエステルと、オレフィン系共重合体と、を溶融混練し、ペレット状の液晶ポリエステル組成物を作製する。次に、断面試料作製装置(日本電子株式会社製、「クロスセクションポリッシャ SM-09010」を用いて、加速電圧4.5kV、20時間の条件で、ペレット状の液晶ポリエステル組成物の断面加工処理を行う。次に、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、「S-4800」)を用いて、加速電圧10kVの条件で、ペレット状の液晶ポリエステル組成物の断面画像を撮像する。断面画像の撮像は、付属のYAG型反射電子検出器を用いて、観察倍率5000倍の条件下で行う。次に、画像解析ソフト(三谷商事株式会社製、「WinROOF」 Ver.3.54)を用い、下記解析方法によりオレフィン系共重合体の分散径を求める。
 本実施形態の液晶ポリエステル組成物中のオレフィン系共重合体の分散径は、せん断速度が速いほど小さくなる傾向がある。また、本実施形態の液晶ポリエステル組成物中のオレフィン系共重合体の分散径は、せん断速度が遅いほど大きくなる傾向がある。
 [解析方法]
 得られた小片の断面の画像を用い、フィルタサイズ5×5のメディアン処理を行った後、液晶ポリエステルを含む領域とオレフィン系共重合体の領域と、を二値化処理する。処理後の画像を用い、ノイズや画像端の途中で切断された領域を除去した後、オレフィン系共重合体の領域の100個以上(例えば100個)のオレフィン系共重合体の円相当径を測定する。得られた測定値の平均値を算出し、オレフィン系共重合体の分散径とする。
 なお「円相当径」とは、処理後の画像上で観測される測定対象(オレフィン系共重合体)の面積に相当する真円の直径である。
 上記測定方法で測定される本実施形態の液晶ポリエステル組成物中のオレフィン系共重合体の分散径は、0.8μm未満である。また、オレフィン系共重合体の分散径は、例えば0.01μm以上である。
 本実施形態の液晶ポリエステル組成物においては、オレフィン系共重合体の分散径が0.6μm以下が好ましく、0.5μm以下がより好ましい。また、本実施形態の液晶ポリエステル組成物においては、オレフィン系共重合体の分散径が0.05μm以上が好ましく、0.2μm以上がより好ましい。
 上記上限値および下限値は任意に組み合わせることができる。
 1つの側面として、前記オレフィン系共重合体の分散径は、0.01μm以上0.8μm未満であり、0.05μm以上0.6μm以下が好ましく、0.2μm以上0.5μm以下がより好ましい。
 本実施形態の液晶ポリエステル組成物から得られる成形体では、液晶ポリエステル中に略球状のオレフィン系共重合体が存在していると考えられる。上記オレフィン系共重合体の分散径が0.8μm未満であると、液晶ポリエステル中において、オレフィン系共重合体の分散が進み、液晶ポリエステル中に粒子径の小さなオレフィン系共重合体が多数存在していると言える。このような成形体では、オレフィン系共重合体の粒子間の距離が小さくなると考えられる。その結果、上記成形体は、クラックの伝播が抑えられ、衝撃強度が向上すると考えられる。
 また、本実施形態の液晶ポリエステル組成物によれば、成形体における衝撃強度の向上効果が高いので、衝撃吸収材であるオレフィン系共重合体の含有量を低減させることができる。その結果、本実施形態の液晶ポリエステル組成物は、同等の衝撃強度を有する成形体を得るために用いられる、オレフィン系共重合体を含有させた従来の液晶ポリエステル組成物よりも、流動性が向上すると考えられる。
 本明細書において、液晶ポリエステル組成物の流動性は、流動長測定用の金型を用い、液晶ポリエステル組成物から得られる成形体について、樹脂の流れ方向の長さ(流動長ということがある)を測定することにより評価できる。この評価において、流動長の長さが長いほど液晶ポリエステル組成物の流動性が高いと言える。
 1つの側面として、本実施形態の液晶ポリエステル組成物は、後述の<液晶ポリエステル組成物の流動長>に記載の方法で流動長を測定したとき、前記流動長が800mm以上であることが好ましく、810mm以上900mm以下である特性を有することがより好ましい。
[その他の成分]
 液晶ポリエステル組成物は、さらに、板状フィラー以外の充填材、添加剤、液晶ポリエステル以外の樹脂などの他の成分を少なくとも1種含んでもよい。
 1つの側面として、本実施形態の液晶ポリエステル組成物は、液晶ポリエステルと、α-オレフィンに由来する繰返し単位とα,β-不飽和酸のグリシジルエステルとに由来する繰返し単位とを含むオレフィン系共重合体と、所望により、板状フィラーおよび他の成分(前記板状フィラー以外の充填材、添加剤および前記液晶ポリエステル以外の樹脂からなる群から選択される少なくとも1つの成分)からなる群から選択される少なくとも1つの成分と、を含んでもよい。
 前記他の成分の含有量は、液晶ポリエステル組成物の総質量に対して、0.01~30質量%が好ましい。
 前記充填材は、繊維状充填材であってもよいし、繊維状および板状以外で、球状その他の粒状充填材であってもよい。また、充填材は、無機充填材であってもよいし、有機充填材であってもよい。繊維状無機充填材の例としては、ガラス繊維;パン系炭素繊維、ピッチ系炭素繊維などの炭素繊維;シリカ繊維、アルミナ繊維、シリカアルミナ繊維などのセラミック繊維;およびステンレス繊維などの金属繊維が挙げられる。また、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ウォラストナイトウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、炭化ケイ素ウイスカーなどのウイスカーも挙げられる。繊維状有機充填材の例としては、ポリエステル繊維およびアラミド繊維が挙げられる。粒状無機充填材の例としては、シリカ、アルミナ、酸化チタン、ガラスビーズ、ガラスバルーン、窒化ホウ素、炭化ケイ素および炭酸カルシウムが挙げられる。前記板状フィラー以外の充填材の含有量は、液晶ポリエステル100質量部に対して、0~100質量部が好ましい。
 添加剤の例としては、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤および着色剤が挙げられる。添加剤の含有量は、液晶ポリエステル100質量部に対して、0~5質量部が好ましい。
 液晶ポリエステル以外の樹脂の例としては、ポリプロピレン、ポリアミド、液晶ポリエステル以外のポリエステル、ポリスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルイミドなどの液晶ポリエステル以外の熱可塑性樹脂;およびフェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂などの熱硬化性樹脂が挙げられる。液晶ポリエステル以外の樹脂の含有量は、液晶ポリエステル100質量部に対して、0~20質量部が好ましい。
<液晶ポリエステル組成物の製造方法>
 本実施形態の液晶ポリエステル組成物は、上述した液晶ポリエステル、オレフィン系共重合体、および所望により板状フィラーや他の成分を、押出機を用いて溶融混練し、ペレット状に押し出すことにより調製することが好ましい。本発明では、このような工程を「溶融混練する工程」と称する。
 溶融混練する工程に用いる押出機としては、シリンダーと、シリンダー内に配置された少なくとも1本のスクリュウと、シリンダーに設けられた少なくとも1箇所の供給口とを有するものが、好ましく用いられ、さらにシリンダーに設けられた少なくとも1箇所のベント部を有するものが、より好ましく用いられる。
 本実施形態の溶融混練する工程においては、液晶ポリエステル組成物におけるオレフィン系共重合体の分散径が0.8μm未満となるように、溶融混練条件を予備実験により設定するとよい。
 また、別の方法としては、液晶ポリエステルの流動開始温度に対して設定される10℃以上20℃以下の温度域に含まれる加工温度で、せん断速度3000s-1以上10000s-1以下にて溶融混練する方法が挙げられる。せん断速度3000s-1以上であると、得られる液晶ポリエステル組成物において、液晶ポリエステル中にオレフィン系共重合体を良好に分散させることができる。
 ここで、「良好な分散」とは、液晶ポリエステル中に、上述の測定方法で測定される分散径が0.8μm未満であるオレフィン系共重合体が多数存在していることを言う。一方、せん断速度10000s-1以下であると、溶融混練時に発生する熱を抑えられ、液晶ポリエステルが熱劣化するのを抑制できる。
 上記せん断速度は、3000s-1以上が好ましく、5000s-1以上がより好ましい。また、上記せん断速度は、10000s-1以下が好ましい。
 上記上限値および下限値は任意に組み合わせることができる。
 1つの側面として、上記せん断速度は、3000s-1以上10000s-1以下が好ましく、5000s-1以上10000s-1以下がより好ましい。
 本実施形態の溶融混練する工程に用いる押出機としては、シリンダーと、シリンダー内に配置された少なくとも1本のスクリュウと、シリンダーに設けられた少なくとも1箇所の供給口とを有するものが、好ましく用いられ、さらにシリンダーに設けられた少なくとも1箇所のベント部を有するものが、より好ましく用いられる。
<成形体>
 本実施形態の成形体は、液晶ポリエステル樹脂組成物から、公知の成形法により得ることができる。
 本実施形態の液晶ポリエステル組成物の成形法としては、溶融成形法が好ましく、その例としては、射出成形法、Tダイ法やインフレーション法などの押出成形法、圧縮成形法、ブロー成形法、真空成形法およびプレス成形が挙げられる。中でも射出成形法が好ましい。
 本実施形態によれば、液晶ポリエステル組成物の流動性が高く、また得られる成形体の衝撃強度が高い。そのため、本実施形態の成形体は、一般に液晶ポリエステル樹脂が適用し得るあらゆる用途に適用可能である。
 1つの側面として、本実施形態の成形体は、厚さ7mm以下が好ましく、厚さ5mm以下がより好ましい。
 例えば、自動車分野としては、自動車内装材用射出成形体として、天井材用射出成形体、ホイールハウスカバー用射出成形体、トランクルーム内張用射出成形体、インパネ表皮材用射出成形体、ハンドルカバー用射出成形体、アームレスト用射出成形体、ヘッドレスト用射出成形体、シートベルトカバー用射出成形体、シフトレバーブーツ用射出成形体、コンソールボックス用射出成形体、ホーンパッド用射出成形体、ノブ用射出成形体、エアバッグカバー用射出成形体、各種トリム用射出成形体、各種ピラー用射出成形体、ドアロックベゼル用射出成形体、グラブボックス用射出成形体、デフロスタノズル用射出成形体、スカッフプレート用射出成形体、ステアリングホイール用射出成形体、ステアリングコラムカバー用射出成形体などが挙げられる。
 自動車外装材用射出成形体として、バンパー用射出成形体、スポイラー用射出成形体、マッドガード用射出成形体、サイドモール用射出成形体などが挙げられる。
 その他の自動車部品用射出成形体としては、自動車ヘッドランプ用射出成形体、グラスランチャンネル用射出成形体、ウェザーストリップ用射出成形体、ドレーンホース用射出成形体、ウィンドウォッシャーチューブ用射出成形体などのホース用射出成形体、チューブ類用射出成形体、ラックアンドピニオンブーツ用射出成形体、ガスケット用射出成形体などが挙げられる。
 その他、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶ディスプレイ、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品、電子レンジ部品、音響・音声機器部品、照明部品、エアコン部品、オフィスコンピューター関連部品、電話・FAX関連部品、および複写機関連部品などが挙げられる。
 本明細書において、成形体の衝撃強度は、ASTM D256に準拠して測定される。
 1つの側面として本実施形態の成形体は、後述の<成形体のアイゾット衝撃強度>に記載の方法で前記成形体のアイゾット衝撃強度を測定したとき、前記アイゾット衝撃強度が、800J/m以上であり、好ましくは1400J/m以上1900J/m以下、より好ましくは1600J/m以上以上1900J/m以下、さらに好ましくは1700J/m以上1900J/m以下である。
 本実施形態によれば、衝撃強度が高い成形体を成形可能であり、かつ流動性が高い液晶ポリエステル組成物および成形体が提供される。
 1つの側面として、本発明の1実施形態である液晶ポリエステル組成物は、
 液晶ポリエステルと、オレフィン系共重合体とを含み;
 前記液晶ポリエステルは、前記繰返し単位(1)と前記繰返し単位(2)と前記繰返し単位(3)とを有する液晶ポリエステルであり、
 好ましくはp-ヒドロキシ安息香酸に由来する繰返し単位と、4,4’-ジヒドロキシビフェニルに由来する繰り返し単位と、テレフタル酸に由来する繰返し単位と、イソフタル酸に由来する繰返し単位と4,4’-ジヒドロキシビフェニルに由来する繰り返し単位を有する液晶ポリエステルであり;
 前記オレフィン系共重合体は、α-オレフィンに由来する繰り返し単位(前記繰返し単位(a))と、α,β-不飽和酸のグリシジルエステルとに由来する繰返し単位(前記繰返し単位(b))とを含み;
 前記液晶ポリエステルおよび前記オレフィン系共重合体の含有量の合計を100質量%としたとき、
 前記液晶ポリエステルの含有量は、80質量%超え95質量%以下であり、好ましくは83質量%以上95質量%以下、より好ましくは85質量%以上90質量%以下であり、かつ
 前記オレフィン系共重合体の含有量は、5質量%以上20質量%未満であり、好ましくは5質量%以上18質量%以下、より好ましくは6質量%以上15質量%以下、さらに好ましくは8質量%以上10質量%以下であり;
 上記測定方法で測定される前記オレフィン系共重合体の分散径が、0.8μm未満であり、好ましくは0.4μm以上0.6μm以下である、
 液晶ポリエステル組成物である。
 別の側面として、前記液晶ポリエステル組成物は、
 前記液晶ポリエステル組成物の総質量に対して、
 前記液晶ポリエステルの含有量が、80質量%超え95質量%以下であり、好ましくは83質量%以上95質量%以下、より好ましくは85質量%以上90質量%以下であり、かつ
 前記オレフィン系共重合体の含有量が、5質量%以上20質量%未満であり、好ましくは5質量%以上18質量%以下、より好ましくは6質量%以上15質量%以下、さらに好ましくは8質量%以上10質量%以下であり、
 但し、前記液晶ポリエステルと前記オレフィン系共重合体の合計含有量は100質量%を超えない、
 液晶ポリエステル組成物である。
 さらに前記液晶ポリエステル組成物は、後述の<液晶ポリエステル組成物の流動長>に記載の方法で流動長を測定したとき、前記流動長が800mm以上であることが好ましく、810mm以上900mm以下であってもよく;かつ
 前記液晶ポリエステル組成物は、前記液晶ポリエステル組成物から成形体を形成したとき、後述の<成形体のアイゾット衝撃強度>に記載の方法で測定される前記成形体のアイゾット衝撃強度が、800J/m以上であることが好ましく、1400J/m以上1900J/m以下であってもよく、1600J/m以上以上1900J/m以下であってもよく、1700J/m以上1900J/m以下であってもよい、
 液晶ポリエステル組成物である。
 また別の側面として、前記液晶ポリエステル組成物は、
 後述の<液晶ポリエステル組成物の荷重たわみ温度>に記載の方法で荷重たわみ温度を測定したとき、前記荷重たわみ温度が227℃以上233℃以下である特性を有する、液晶ポリエステル組成物である。
 本発明の1実施形態である成形体は、
 前記液晶ポリエステル組成物から形成される成形体であり;
 前記液晶ポリエステル組成物は、後述の<成形体のアイゾット衝撃強度>に記載の方法でアイゾット衝撃強度を測定したとき、好ましくは800J/m以上、より好ましくは1400J/m以上1900J/m以下、さらに好ましくは1600J/m以上1900J/m以下、特に好ましくは1700J/m以上1900J/m以下であるアイゾット衝撃強度を与える組成物であり;
 後述の<成形体の引張強度および引張伸び率>に記載の方法で引張強度及び引張伸び率を測定したとき、
 好ましくは104MPa以上138MPa以下である引張強度を与える組成物であり、
 好ましくは6.2%以上7.2%以下である引張伸び率を与える組成物であり;
 後述の<成形体の曲げ強度および曲げ弾性率>に記載の方法で曲げ強度および曲げ弾性率を測定したとき、
 好ましくは73MPa以上76MPa以下である曲げ強度を与える組成物であり、
 好ましくは3200MPa以上3400MPa以下である曲げ弾性率を与える組成物である、
 成形体である。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。各測定は以下のようにして行った。
<製造例1〔液晶ポリエステルの製造〕>
 攪拌装置、トルクメータ、窒素ガス導入管、温度計および還流冷却器を備えた反応器に、p-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸299.0g(1.8モル)、イソフタル酸99.7g(0.6モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)および無水酢酸1347.6g(13.2モル)を入れ、反応器内のガスを窒素ガスで置換した後、1-メチルイミダゾール0.18gを加え、窒素ガス気流下、攪拌しながら、室温から150℃まで30分間かけて昇温し、150℃で30分間還流させた。次いで、1-メチルイミダゾール2.4gを加え、副生酢酸および未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、トルクの上昇が認められた時点で、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕し、窒素ガス雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持することにより、固相重合させた後、冷却して、粉末状の液晶ポリエステルを得た。この液晶ポリエステルの流動開始温度は、327℃であった。また見かけの溶融粘度は5.9Pa・sであった。
<液晶ポリエステルの流動開始温度>
 まず、フローテスター((株)島津製作所の「CFT-500型」)を用いて、液晶ポリエステル約2gを、内径1mmおよび長さ10mmのノズルを有するダイを取り付けたシリンダーに充填した。次に、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000ポイズ)の粘度を示す温度(流動開始温度)を測定し、液晶ポリエステルの流動開始温度とした。
<オレフィン系共重合体のみかけ溶融粘度>
 液晶ポリエステルの流動開始温度より10℃高い温度に設定したキャピラリーレオメーター(株式会社東洋精機製作所製、「キャピログラフ1B」)の炉内にオレフィン系共重合体を10分間放置した後、上記温度に保持した状態でせん断速度10000s-1であるときの溶融粘度をそれぞれ測定した。
<液晶ポリエステル組成物の流動長>
 本実施例で用いる厚さ1mm、幅10mmの流動長測定用の金型を用い、液晶ポリエステル組成物を、射出成形機(日精樹脂工業株式会社製、「UH1000」)にて下記条件下で成形した。取り出した成形体について、樹脂の流れ方向の長さを測定した。この試験を10個の成形体について行い、得られた測定値の平均値を液晶ポリエステル組成物の流動長とした。結果を表2に示す。 
[条件]
 シリンダー温度:(ノズル側)340℃;350℃;340℃;330℃;80℃(ホッパー側)
 金型温度:80℃
 計量値:25mm
 射出速度:100mm/秒
 VP切替:100MPa、にて圧力切替
 保圧:100MPa
<液晶ポリエステル組成物の荷重たわみ温度>
 液晶ポリエステル組成物を、射出成形機(日精樹脂工業株式会社製、「PNX40-5A」)を用いて、成形温度340℃、金型温度130℃、射出速度50%で、127mm×12.7mm×6.4mmtの試験片に成形した。得られた試験片の荷重たわみ温度を、ASTM D648に準拠し、1.82MPaの荷重下、昇温速度4℃/分にて2回測定した。液晶ポリエステル組成物の荷重たわみ温度は、得られた測定値の平均値を採用した。結果を表2に示す。
<オレフィン系共重合体の分散径>
 後述する製造方法を用いて、ペレット状の液晶ポリエステル組成物を作製した。
 次に、断面試料作製装置(日本電子株式会社製、「クロスセクションポリッシャ SM-09010」を用いて、加速電圧4.5kV、20時間の条件で、ペレット状の液晶ポリエステル組成物の断面加工処理を行った。
 次に、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、「S-4800」)を用いて、加速電圧10kVの条件で、ペレット状の液晶ポリエステル組成物の断面画像を撮像した。断面画像の撮像は、付属のYAG型反射電子検出器を用いて、観察倍率5000倍の条件下で行った。
 次に、画像解析ソフト(三谷商事株式会社製、「WinROOF」 Ver.3.54)を用い、下記解析方法によりオレフィン系共重合体の分散径を求めた。
 [解析方法]
 得られた小片の断面の画像を用い、フィルタサイズ5×5のメディアン処理を行った後、液晶ポリエステルを含む領域とオレフィン系共重合体の領域と、を二値化処理した。処理後の画像を用い、ノイズや画像端の途中で切断された領域を除去した後、オレフィン系共重合体の領域の円相当径100個を測定した。得られた測定値の平均値を算出し、オレフィン系共重合体の分散径とした。
<成形体の引張強度および引張伸び率>
 液晶ポリエステル組成物を、射出成形機(日精樹脂工業株式会社製、「PNX40-5A」)を用いて、成形温度340℃、金型温度130℃、射出速度50%で、厚さ2.5mmのASTM4号試験片に成形した。得られた試験片の引張強度および引張伸び率を、ASTM D638に準拠し、5回測定した。成形体の引張強度および引張伸び率は、得られた測定値の平均値を採用した。結果を表2に示す。
<成形体の曲げ強度および曲げ弾性率>
 液晶ポリエステル組成物を、射出成形機(日精樹脂工業株式会社製、「PNX40-5A」)を用いて、成形温度340℃、金型温度130℃、射出速度50%で、127mm×12.7mm×6.4mmtの試験片に成形した。得られた試験片の曲げ強度および曲げ弾性率を、ASTM D790に準拠し、3回測定した。成形体の曲げ強度および曲げ弾性率は、得られた測定値の平均値を採用した。結果を表2に示す。
<成形体のアイゾット衝撃強度>
 液晶ポリエステル組成物を、射出成形機(日精樹脂工業株式会社製、「PNX40-5A」)を用いて、成形温度340℃、金型温度130℃で、射出速度50%にて、127mm×12.7mm×6.4mmtの試験片に成形した。得られた試験片のアイゾット衝撃強度を、ASTM D256に準拠し、10回測定した。この際、成形体にはノッチをつけずに試験を実施した。成形体のアイゾット衝撃強度は、得られた測定値の平均値を採用した。結果を表2に示す。
<液晶ポリエステル組成物の製造>
[実施例1-1~1-3、比較例1-1および参考例1-1]
 液晶ポリエステルおよびオレフィン系共重合体を、表1に示す割合で二軸押出機(池貝鉄工株式会社製、「PCM-30HS」)を用いて、シリンダー温度340℃で、せん断速度を種々変更して溶融混練し、ペレット状の液晶ポリエステル組成物を得た。なお、表1に示す全ての割合は、液晶ポリエステルおよびオレフィン系共重合体の合計含有量100質量%に対する割合(質量%)である。
[参考例1-1]
 液晶ポリエステルを、表1に示す割合で二軸押出機(池貝鉄工株式会社製、「PCM-30HS」)を用いて、シリンダー温度340℃、せん断速度1000s-1で溶融混練し、ペレット状の液晶ポリエステル組成物を得た。
 全てのペレット状の液晶ポリエステル組成物を130℃で4時間、熱風乾燥した。
Figure JPOXMLDOC01-appb-T000002
 なお、液晶ポリエステル組成物で用いたオレフィン共重合体は、以下の材料を用いた。なお、「エチレン比率」とは、オレフィン系共重合体の総質量に対するα‐オレフィン(エチレン)に由来する繰返し単位の含有量を表し、「グリシジルメタクリレート比率」とは、オレフィン系共重合体の総質量に対するα,β-不飽和酸のグリシジルエステル(グリシジルメタクリレート)に由来する繰返し単位の含有量を表し、「アクリル酸メチル比率」とは、オレフィン系共重合体の総質量に対するエチレン系不飽和エステル(アクリル酸メチル)に由来する繰返し単位を表す。
(オレフィン系共重合体)
 オレフィン系共重合体:エチレン比率:70.2質量%、グリシジルメタクリレート比率:2.9質量%、アクリル酸メチル比率:26.9質量%、みかけ溶融粘度11.7Pa・s
 得られた液晶ポリエステル組成物について、以下の基準で総合的に判定した。
 A…流動長が800mm以上であり、かつIzod衝撃強度が800J/m以上
 B…上記以外
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、本発明を適用した実施例1-1~1-3の液晶ポリエステル組成物は、流動性が高く、かつ得られる成形体の衝撃強度が高かった。
 具体的には、実施例1-1~1-3の液晶ポリエステル組成物は、オレフィン系共重合体の分散径が0.8μm未満の範囲であり、比較例1-1は、0.8μmであった。
 実施例1-1~1-3の液晶ポリエステル組成物は、いずれも流動性が高く、かつ得られる成形体の衝撃強度が高かった。
 以上の結果により、本発明が有用であることが確かめられた。
 本発明によれば、衝撃強度が高い成形体を成形可能であり、かつ流動性が高い液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法が提供できるので、産業上極めて有用である。

Claims (4)

  1.  液晶ポリエステルと、
     α-オレフィンに由来する繰返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰返し単位とを含むオレフィン系共重合体と、を含み、
     前記液晶ポリエステルおよび前記オレフィン系共重合体の含有量の合計を100質量%としたとき、
     前記液晶ポリエステルの含有量が、80質量%を超え95質量%以下であり、
     前記オレフィン系共重合体の含有量が、5質量%以上20質量%未満であり、
     下記測定方法で測定される前記オレフィン系共重合体の分散径が、0.8μm未満である液晶ポリエステル組成物。
     [測定方法]
     前記液晶ポリエステル組成物の走査型電子顕微鏡画像において、100個の前記オレフィン系共重合体の円相当径を測定し、得られた測定値の平均値を算出する。
  2.  前記液晶ポリエステルは、下記一般式(1)で表される繰返し単位を、前記液晶ポリエステルを構成する全繰り返し単位の合計量に対して、30モル%以上80モル%以下有する、請求項1に記載の液晶ポリエステル組成物。
     (1)-O-Ar-CO-
     (Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。Arで表される基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
  3.  請求項1または2に記載の液晶ポリエステル組成物から形成される成形体。
  4.  液晶ポリエステルと、α-オレフィンに由来する繰返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰返し単位とを含むオレフィン系共重合体と、を溶融混練することを含み、
     前記溶融混練は、前記液晶ポリエステルの流動開始温度に対して10℃以上20℃以下の温度域に含まれる加工温度で、せん断速度3000s-1以上10000s-1以下にて行われる、
     液晶ポリエステル組成物の製造方法。
PCT/JP2018/046105 2017-12-18 2018-12-14 液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法 WO2019124249A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-242144 2017-12-18
JP2017242144 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019124249A1 true WO2019124249A1 (ja) 2019-06-27

Family

ID=66994678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046105 WO2019124249A1 (ja) 2017-12-18 2018-12-14 液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法

Country Status (2)

Country Link
TW (1) TW201932534A (ja)
WO (1) WO2019124249A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304936A (ja) * 1994-03-16 1995-11-21 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JPH09286907A (ja) * 1996-02-19 1997-11-04 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物、それよりなる射出成形品およびフィルム
JP2006117731A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Works Ltd 液晶性ポリエステル樹脂組成物、成形体、成形回路基板
WO2017030788A1 (en) * 2015-08-17 2017-02-23 Ticona Llc Liquid crystalline polymer composition for camera modules
JP2017193704A (ja) * 2016-04-15 2017-10-26 東レ株式会社 液晶ポリエステル樹脂組成物およびそれからなる成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304936A (ja) * 1994-03-16 1995-11-21 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JPH09286907A (ja) * 1996-02-19 1997-11-04 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物、それよりなる射出成形品およびフィルム
JP2006117731A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Works Ltd 液晶性ポリエステル樹脂組成物、成形体、成形回路基板
WO2017030788A1 (en) * 2015-08-17 2017-02-23 Ticona Llc Liquid crystalline polymer composition for camera modules
JP2017193704A (ja) * 2016-04-15 2017-10-26 東レ株式会社 液晶ポリエステル樹脂組成物およびそれからなる成形品

Also Published As

Publication number Publication date
TW201932534A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
JP6439027B1 (ja) 液晶ポリエステル樹脂組成物および成形体
JP6473796B1 (ja) 液晶ポリエステル樹脂組成物および成形体
EP2540777B1 (en) Liquid-crystalline polyester resin composition, method for producing same, and molded article made thereof
JP5088160B2 (ja) 液晶性樹脂組成物および成形品
JP2016094615A (ja) 熱伝導性で寸法安定性の液晶性ポリマー組成物
US20200115546A1 (en) Liquid crystal polyester resin composition and molded article
JP5556223B2 (ja) 液晶高分子組成物、その製造方法及び成形体
JP2019094489A (ja) 液晶ポリエステル樹脂組成物および成形体
JP2019094497A (ja) 液晶ポリエステル樹脂組成物および成形体
TW201922862A (zh) 液晶聚酯組成物及樹脂成形體
KR20200115502A (ko) 수지 조성물
JP7398814B2 (ja) 液晶ポリエステル樹脂組成物
JP2688534B2 (ja) 成形用ポリアリーレンサルファイド樹脂組成物
WO2019124256A1 (ja) 液晶ポリエステル組成物および成形体
WO2019124249A1 (ja) 液晶ポリエステル組成物、成形体および液晶ポリエステル組成物の製造方法
JP2018104527A (ja) 液晶ポリエステル樹脂組成物およびそれからなる成形品
JP7243103B2 (ja) 樹脂組成物、及び樹脂成形体
JPH03247436A (ja) ポリアリーレンサルファイド系樹脂中空成形品及びその製造法
JP5407988B2 (ja) 液晶性樹脂組成物及びその成形体
WO2022153945A1 (ja) 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法及び射出成形体の製造方法
WO2022113845A1 (ja) ペレット、ペレットの製造方法及び射出成形体の製造方法
JP2006265392A (ja) 液晶性ポリエステル樹脂および液晶性ポリエステル樹脂組成物
JPH041255A (ja) 熱可塑性樹脂組成物
JPH0819240B2 (ja) 改良ポリブチレンテレフタレート樹脂組成物の製造法
JP2012193304A (ja) 液晶ポリエステル樹脂組成物、成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18892543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP