WO2019123833A1 - 電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙 - Google Patents

電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙 Download PDF

Info

Publication number
WO2019123833A1
WO2019123833A1 PCT/JP2018/039746 JP2018039746W WO2019123833A1 WO 2019123833 A1 WO2019123833 A1 WO 2019123833A1 JP 2018039746 W JP2018039746 W JP 2018039746W WO 2019123833 A1 WO2019123833 A1 WO 2019123833A1
Authority
WO
WIPO (PCT)
Prior art keywords
fused alumina
content
tungsten
molybdenum
terms
Prior art date
Application number
PCT/JP2018/039746
Other languages
English (en)
French (fr)
Inventor
壮 宮石
高野 和明
智 山岡
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020207006841A priority Critical patent/KR102179722B1/ko
Priority to EP18892483.1A priority patent/EP3674274B1/en
Priority to JP2019560842A priority patent/JP6725772B2/ja
Priority to SI201830592T priority patent/SI3674274T1/sl
Priority to US16/649,758 priority patent/US20200239369A1/en
Priority to CN201880067843.XA priority patent/CN111511700B/zh
Publication of WO2019123833A1 publication Critical patent/WO2019123833A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/106Refractories from grain sized mixtures containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/34Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • C04B35/109Refractories by fusion casting containing zirconium oxide or zircon (ZrSiO4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • C09K3/1427Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the present invention relates to a fused alumina particle and a method for producing the fused alumina particle, and a grinding wheel and a coated abrasive using the fused alumina particle.
  • Alumina-based abrasives specified in JIS R 6111-2005 are called artificial abrasives, and are used as components such as grinding wheels and coated abrasives.
  • These conventional alumina abrasives may not have sufficient grinding performance in applications of grinding of difficult-to-cut materials. For this reason, improvement of the grinding performance of an alumina grinding material is tried (patent documents 1, 2 grade).
  • Patent Document 1 describes a method for improving the grinding performance of alumina abrasives by heat treating high purity fused alumina abrasive grains having an alumina content of 99.0% or more at 1600 to 1850 ° C. for 30 minutes to 2 hours. It is done. During grinding of ingots of molten alumina, defects, fine scratches and cracks occur in the abrasive grains, and the crushing strength of the abrasive grains decreases.
  • the abrasive grains are heat-treated under predetermined conditions The crush strength of the abrasive is improved by promoting the diffusion and rearrangement of atoms and volatilizing Na 2 O contained in the abrasive.
  • sufficient grinding performance can not be obtained yet, and higher grinding performance is required.
  • Patent Document 2 the surface of the fused alumina particles is coated with aluminum titanate formed by subjecting the fused alumina particles containing titanium oxide to a heat treatment, and the strength and toughness of the fused alumina particles are determined. It is stated that it improves.
  • the document discloses that the fused alumina particles produced by this method have a reduced C coefficient (that is, improved toughness) and improved micro Vickers hardness. ing. Also, it is disclosed in the same document that by using this fused alumina particle as a grinding wheel, superior grinding performance can be obtained as compared with conventional white fused alumina abrasives and single crystal fused alumina abrasives. It is done.
  • the present invention is capable of suppressing the formation of particles during manufacturing and realizing high grinding performance, a method of producing the electrofused alumina particles, and a grinding stone and a coated paper using the electrofused alumina particles. Intended to be provided.
  • the present inventors have found that inclusion of at least one of tungsten and molybdenum in fused alumina particles can suppress particle formation during production and achieve high grinding performance. Completed the invention. That is, the present invention is as follows.
  • a fused alumina particle containing at least one of tungsten and molybdenum [2] The electrofused alumina according to the above [1], wherein the sum of the content of the tungsten in terms of WO 3 and the content of the molybdenum in terms of MoO 3 is 0.05 to 3.00 mass%. grain. [3] The fused alumina particle according to the above [1] or [2], which contains zirconium. [4] The electrofused alumina particle according to the above [3], wherein the content of the zirconium in terms of ZrO 2 is 0.01 to 2.00 mass% in the electrofused alumina particle.
  • the content of said zirconium in terms of ZrO 2 is 40 mol to 67 mol with respect to 100 mol in total of the content of said tungsten in terms of WO 3 and the content of said molybdenum in terms of MoO 3 .
  • the fused alumina particle as described in said [3] or [4]. [6] Any one of the above [1] to [5] which satisfies the following formula (1), where x is the C-stage bulk specific gravity of the fused alumina particles and y is the C coefficient of the fused alumina particles.
  • a method for producing fused alumina particles comprising the step (E) of obtaining fused alumina particles by heat treatment with [8]
  • the compounding amount of the tungsten compound and the molybdenum compound in the step (A) of producing the mixture raw material is such that the content of the tungsten compound and the molybdenum compound in terms of WO 3 and MoO 3 in the ingot is 0 .
  • step (A) of preparing the mixture material is a process of mixing an alumina material, a zirconium compound, and at least one of a tungsten compound and a molybdenum compound to prepare a mixture material.
  • the content of the zirconium compound in terms of ZrO 2 in the ingot is 0.01 to 2.00 mass% of the content of the zirconium compound in the ingot in the step (A) of producing the mixture raw material
  • the manufacturing method of the fused alumina particle as described in said [9] which is the compounding quantity converted as mentioned above.
  • the content of the zirconium in terms of ZrO 2 in the ingot is the content of the tungsten in terms of WO 3 and the content of the zirconium in terms of WO 3 in the step (A) of producing the mixture raw material
  • a coated abrasive comprising the fused alumina particles according to any one of the above [1] to [6].
  • fused alumina particles which do not form agglomerates at the time of production and which are excellent in grinding performance, a method of producing the fused alumina particles, and a grindstone and a coated cloth using the fused alumina particles Can be provided.
  • the SA abrasive contains 99.6% by mass of Al 2 O 3 , 0.03% by mass of SiO 2 , 0.03% by mass of Fe 2 O 3 and 0.3% by mass of TiO 2 .
  • 7 is a photograph showing the results of elemental mapping analysis by energy dispersive X-ray spectrometry in Example 4.
  • a to B indicating numerical ranges indicate numerical ranges including A and B which are end points. That is, it means “more than A and less than B" (when A ⁇ B) or "more than A and less than B" (when A> B).
  • fused alumina particles refer to alumina particles obtained by pulverizing and sizing an ingot obtained by melting and solidifying a raw material such as alumina purified by the Bayer method in an electric furnace such as an arc furnace. Or alumina particles obtained by crushing and sizing the ingot.
  • the fused alumina particles of the present invention contain at least one of tungsten and molybdenum. As a result, it is possible to obtain electrofused alumina particles which are free of grain formation at the time of production and which are excellent in grinding performance.
  • the fused alumina particles of the present invention preferably further contain zirconium.
  • the sum total of content of said tungsten in WO 3 conversion and content of said molybdenum in MoO 3 conversion is 0.05 to 3.00 mass%, and 0.10 to 2.50 mass%.
  • the content is more preferably 0.20 to 2.00% by mass.
  • the content means one measured by the analysis method described in the examples described later.
  • the effect of tungsten and molybdenum on the prevention of agglomeration The inclusion of at least one of tungsten and molybdenum in the fused alumina particles is believed to be capable of avoiding the generation of grain formation during the production due to the following principle.
  • a titanium compound having a relatively high reactivity with alumina precipitates on the surface at the time of heat treatment, and as a result, particle formation occurs.
  • the present invention since at least one of tungsten and molybdenum having relatively low reactivity with alumina is contained, it is expected that no grain formation will occur after heat treatment, and high hardness and high toughness are compatible. As a result, the grinding performance is excellent.
  • the zirconium content of fused alumina grains in is from 0.01 to 2.00 wt% in terms of ZrO 2, more preferably from 0.02 to 1.75 wt%, more preferably 0. It is 03 to 1.50% by mass.
  • the content means one measured by the analysis method described in the examples described later.
  • the content of the zirconium in terms of ZrO 2 is preferably 40 to 67 mol based on the total content 100 mol of the content of the tungsten in terms of WO 3 and the content of the molybdenum in terms of MoO 3 , More preferably, it is 42 to 63 mol, further preferably 43 to 59 mol.
  • the content of zirconium is 40 mol or more with respect to the total content 100 mol of the content of the tungsten in the WO 3 conversion and the content of the molybdenum in the MoO 3 conversion, sufficient toughness improvement by co-addition Can be confirmed.
  • tungsten and molybdenum The effect of tungsten and molybdenum on the improvement of grinding performance
  • the inclusion of at least one of tungsten and molybdenum in the fused alumina grains is thought to improve the grinding performance of the fused alumina grains according to the following principle. It is predicted that some of tungsten and molybdenum present in grain, grain boundary and surface of fused alumina grain are present in the state of ZrW 2 O 8 and ZrMo 2 O 8 having negative thermal expansion coefficient. Ru. It is believed that this causes compressive stress to act on the fused alumina particles after the heat treatment to make the toughness high. In addition, since tungsten and molybdenum hardly form a solid solution in alumina, the hardness does not decrease either.
  • the C coefficient is the same as the C coefficient defined in JIS R 6128-1987 (Test method of toughness of man-made abrasive (ball mill method)). The method of measuring the C coefficient will be described in detail in the section of the embodiment described later.
  • the C-stage bulk specific gravity is the bulk specific gravity of the sample retained on the third screen sieved by using a standard sieve specified in JIS R6001-1987 when measuring the C coefficient, according to the method prescribed in JIS R 6126-1970. Define as a measured value.
  • the measurement method of C-stage bulk specific gravity is demonstrated in detail by the item of the below-mentioned Example.
  • the value of C-stage bulk specific gravity changes depending on the shape of the particles.
  • the filling rate by free fall is lower as the number of sharp grains and flat grains is larger, the value of C-stage bulk specific gravity is smaller, and the filling rate by free-falling is higher as the number of grains closer to a sphere is C-stage bulk
  • the specific gravity value increases.
  • the fused alumina particles of the present invention preferably satisfy the above-mentioned formula (1).
  • the region of x (C-step bulk specific gravity) -y (C coefficient) plane satisfying the above equation (1) is also the value of x (C-step bulk specific gravity) , Y (C coefficient) are also regions of small values.
  • the fused alumina grains of the present invention are sharp grains or flat grains, and the toughness of the fused alumina grains of the present invention is high.
  • the present invention satisfies the above-mentioned formula (1) because the grinding performance is higher for the sharp or flat grains than for the near-spherical grains, and the grinding performance is higher for the grains having high toughness. It can be seen that the grinding performance of the fused alumina particles is higher.
  • the fused alumina particles of the present invention may contain elements other than aluminum, oxygen, zirconium, tungsten and molybdenum.
  • the total content of elements other than aluminum, oxygen, zirconium, tungsten and molybdenum in the fused alumina grain of the present invention is preferably 1.5 atomic mole% or less in terms of oxide.
  • the electrofused alumina grains of the present invention have sufficient grinding performance when the total content of elements other than aluminum, oxygen, zirconium, tungsten and molybdenum is 1.5 atomic mol% or less in terms of oxide.
  • the total content of elements other than aluminum, oxygen, zirconium, tungsten and molybdenum is more preferably 1.0 atomic mol% or less in terms of oxide, and still more preferably 0.5 in terms of oxide. It is at most atomic mole%, and most preferably 0 atomic mole% in terms of oxide.
  • Elements other than aluminum, oxygen, zirconium, tungsten and molybdenum include, for example, sodium, silicon, calcium, iron, chromium and the like.
  • a step (A) of preparing a mixture material by mixing an alumina material and a material containing at least one of a tungsten compound and a molybdenum compound from the mixture material by the electric melting method A step (B) of producing an ingot, a step (C) of pulverizing the ingot to produce a pulverized powder, a step (D) of granulating the pulverized powder to a predetermined particle size, and a granulated powder; It includes a step (E) of obtaining fused alumina particles by heat treatment at a heating temperature of 1000 ° C. or more.
  • Step (A) In the step (A), an alumina raw material and a raw material containing at least one of a tungsten compound and a molybdenum compound are mixed to produce a mixture raw material.
  • alumina raw material weighed to a predetermined compounding ratio and a raw material containing at least one of a tungsten compound and a molybdenum compound are mechanically mixed using a mixer, a ball mill or the like, or a human hand using a scoop or the like.
  • Mix with it is preferable to prepare a mixture raw material by mixing an alumina raw material, a zirconium compound, and at least one of a tungsten compound and a molybdenum compound.
  • ⁇ Alumina raw material> As an alumina raw material used for the manufacturing method of the fused alumina particle of this invention, the alumina refine
  • tungsten oxide, tungsten, tungsten sulfide, ammonium tungstate, tungstic acid etc. are mentioned, for example.
  • tungsten trioxide of tungsten oxide is preferably used.
  • molybdenum compound used for the manufacturing method of the fused alumina grain of the present invention molybdenum oxide, molybdenum, sulfurized molybdenum, ammonium molybdate, ammonium dimolybdate, six ammonium heptamolybdates, molybdic acid etc. are mentioned, for example .
  • the compounding amounts of the tungsten compound and the molybdenum compound in the step (A) are converted so that the content of tungsten and molybdenum in terms of WO 3 and MoO 3 in the ingot is 0.05 to 3.00 mass%.
  • the compounding amount is preferably calculated so as to be 0.10 to 2.50% by mass, more preferably converted to 0.20 to 2.00% by mass. It is a compounding amount.
  • zirconium compounds As a zirconium compound used for the manufacturing method of the fused alumina particle of this invention, a zirconium oxide, a zirconium, a zirconium carbonate, a zirconium sulfate, a zirconium sulfide etc. are mentioned, for example. Among them, it is particularly preferable to use zirconium oxide.
  • the compounding amount of the zirconium compound in the step (A) is preferably the compounding amount converted such that the content of zirconium in terms of ZrO 2 in the ingot is 0.01 to 2.00 mass%. More preferably, it is a compounding amount converted so as to be 0.02 to 2.00% by mass, and even more preferably a compounding amount converted so as to be 0.03 to 1.75% by mass.
  • the content of the zirconium in terms of ZrO 2 in the ingot is the content of the tungsten in terms of WO 3 and the content of molybdenum in terms of MoO 3 .
  • the compounding amount is preferably 40 to 67 mol, more preferably 42 to 63 mol, more preferably 43 to 67 mol, based on 100 mol of the total content. It is a compounding amount converted to be 59 mol, and particularly preferably a compounding amount converted to be 45 to 56 mol.
  • Step (B) At a process (B), an ingot is produced from a mixture raw material by the electric melting method.
  • the electric melting method is a method of melting a mixed material at a heating temperature of, for example, about 2000 to about 2500 ° C. using an electric melting furnace such as an electric arc furnace.
  • an electric melting furnace such as an electric arc furnace.
  • the electric melting furnace is inclined, and the molten material is poured out from a pouring port provided on the furnace wall and poured into a previously prepared mold or the like to produce an ingot.
  • the ingot is a polycrystalline alumina.
  • Step (C) In the step (C), the ingot is crushed to prepare crushed powder.
  • the ingot is roughly divided using, for example, a roll breaker and a drop hammer, and after naked-eye sorting, crushed using a grinder such as an impeller breaker, a jaw crusher, a roll crusher, an edge runner, and a conical ball mill.
  • the particle size of the pulverized powder is preferably in the range of 50 ⁇ m to 8 mm, depending on the particle size required for each product.
  • the pulverized powder is sized to a predetermined particle size to prepare sized particles.
  • the pulverized powder is sized to a predetermined particle size through a sieving process.
  • the pulverized powder is finely pulverized using a ball mill, air mill or the like, and then the pulverized powder is subjected to a purification process. Regulate to particle size.
  • Step (E) In the step (E), the sized particles are heat-treated at a heating temperature of 1000 to 1900 ° C. to obtain fused alumina particles. Thereby, the strength and toughness of the fused alumina particles can be increased.
  • the sized particles are placed in a container such as a box and sheath, and heat treated in an electric furnace such as a muffle furnace or a tunnel type continuous firing furnace, or the sized particles are heat treated directly in a firing device such as a rotary kiln.
  • a container such as a box and sheath
  • an electric furnace such as a muffle furnace or a tunnel type continuous firing furnace
  • the sized particles are heat treated directly in a firing device such as a rotary kiln.
  • the heating temperature in the step (E) is 1000 to 1900 ° C., preferably 1000 to 1800 ° C., more preferably 1200 to 1600 ° C., and still more preferably 1300 to 1500 ° C.
  • the heating temperature is 1000 ° C. or more, the strength of the fused alumina becomes high.
  • the heating temperature is 1900 ° C. or less, the heat treatment can be performed without the sized particles being sintered.
  • the holding time of heating at the time of heat treatment is preferably 60 minutes or more.
  • the atmosphere at the time of heat treatment is preferably an air atmosphere.
  • step (Other process) Even if a step of removing impurities such as fine powder and magnetic substances generated in step (C) between step (C) and step (D) and optionally performing pickling and / or washing with water is added Good. Thereby, in the heat treatment of the step (E), the diffusion of impurities into the sized particles can be suppressed.
  • the obtained fused alumina particles may be further sized.
  • the method of particle sizing may be, for example, the same method as step (D). This makes it possible to obtain fused alumina particles having a more refined particle size.
  • the grindstone of the present invention contains the fused alumina particles of the present invention. Thereby, the grindstone excellent in grinding performance can be obtained.
  • the grindstone of the present invention is obtained by solidifying the fused alumina particles of the present invention with a binder, and mainly comprises fused alumina particles, a binder and pores.
  • the grindstone is manufactured, for example, by shape-hardening fused alumina particles with a binder such as vitrified bond, metal bond or resin bond.
  • the binder is preferably a vitrified bond.
  • the vitrified bond is generally referred to as a frit prepared by appropriately mixing feldspar, ceramic stone, borax, clay and the like, and its component is, for example, SiO 2 , B 2 O 3 , Al 2 O 3 , Fe 2 O 3 , CaO, MgO, Na 2 O, K 2 O and the like.
  • a grindstone (vitrified grindstone) using vitrified bond is produced by adding some forming aids such as dextrin and phenol resin to vitrified bond, mixing with electrofused alumina particles, pressing, and firing.
  • the firing temperature is preferably 950 to 1150 ° C.
  • the fused alumina particles of the present invention can be used as abrasive grains of grindstones such as resinoid grindstone, rubber grindstone, silicate grindstone, shellac grindstone, magnesia grindstone, etc. other than vitrified grindstone.
  • grindstones such as resinoid grindstone, rubber grindstone, silicate grindstone, shellac grindstone, magnesia grindstone, etc. other than vitrified grindstone.
  • the coated abrasive of the present invention contains the fused alumina particles of the present invention. This makes it possible to obtain coated abrasives with excellent grinding performance.
  • the coated abrasive is produced by adhering fused alumina particles to a substrate using an adhesive.
  • a preferred adhesive is a phenolic resin adhesive because of its excellent polishing performance and excellent water resistance. The curing conditions of the phenolic resin adhesive can also be relaxed by using resorcinol or a derivative thereof in combination with the phenolic resin adhesive.
  • the substrate include paper, woven fabric and non-woven fabric.
  • a woven fabric of polyester fibers is also used for a grinding belt or the like for heavy grinding, and in addition, a nonwoven fabric of synthetic fibers such as nylon is used as a base material for the polishing nonwoven fabric.
  • Abrasive cloths Abrasive cloth (R6251-2006), abrasive paper (R6252-2006), water-resistant abrasive paper (R6253-2006), abrasive disc (R6255-2014) as being established in JIS as a product standard Polishing belt (R6256-2006) and cylindrical polishing sleeve (R6257-2006).
  • the coated abrasive of the present invention is not limited to these.
  • a polished nonwoven fabric An important application for the coated coated paper of the present invention in applications where there is no establishment of JIS is a polished nonwoven fabric.
  • This is a flexible polishing material (abrasive cloth) configured as a non-woven fabric for polishing with three components of an abrasive, fibers (nylon, polyester fibers, etc.) and an adhesive. It has a three-dimensional network of irregularly interspersed component fibers and a large volume of communication space, and has a thickness of about 2 to 8 mm and has structural properties excellent in flexibility and compression recovery.
  • C-stage bulk density The C-stage bulk specific gravity was measured according to the following procedure using an apparatus comprising a funnel, a stopper, a cylinder and a support thereof according to JIS R 6126-1970.
  • (4) Repeat the operations of (2) and (3) for the same sample to obtain three measured values W1 (g), W2 (g), and W3 (g).
  • Micro Vickers hardness As a device, using the model name “MVK-VL, Hardness Tester”, manufactured by Akashi Co., Ltd., the measurement is performed under the condition of 0.98 N load, 10 seconds indwelling time of indenter, and the average of 15 measured values is microvickers It was hardness.
  • the fused alumina particles before heat treatment which had been sized to F60 specified in JIS R6001-1998, were put in a box sheath and heat treated at 1500 ° C. for 1 hour.
  • 500 g of the obtained fused alumina abrasive grains were sieved for 1 minute while being shocked by a low tap tester using a sieve of 500 ⁇ m aperture. Thereafter, the mass of the fused alumina abrasive on the sieve was measured, and when it was 5 g or more, it was judged that there was particle agglomeration.
  • Example 4 (Elemental mapping by energy dispersive X-ray spectroscopy) A transparent resin powder (manufactured by Refintech Co., Ltd., acrylic resin: 95 to 100% by mass, methyl methacrylate: 0 to 5% by mass, dibenzoyl peroxide: 0 to 1% by mass) is used as the composite sintered body prepared in Example 4 The resin was incorporated into the resin, and the resin was cut after heat curing and molding, and the cut surface was mirror-polished and subjected to platinum deposition, and elemental mapping analysis was performed on a cross section including the sample surface. The distribution of tungsten and zirconium elements on the polished surface of Example 4 was measured by element mapping analysis using an energy dispersive X-ray spectrometer (manufactured by JEOL Ltd., model name JED-2300).
  • the fused alumina particle of the example and the relative example Each raw material was mix
  • Tianium oxide (IV) rutile type standard "special grade” Zirconium oxide: “Zirconium oxide, 3N” manufactured by Kanto Chemical Co., Ltd., standard “High purity reagent” Molybdenum oxide: “Molybdenum oxide (VI)” manufactured by Kanto Chemical Co., Ltd., standard “Deka special grade” Tungsten oxide: “Tungsten oxide (VI)” manufactured by Kanto Chemical Co., Ltd., standard “Deka Class 1"
  • the obtained ingot was roughly crushed using a jaw crusher, and then crushed by a roll mill to produce a ground powder. Then, the crushed powder was sized using a sieve mesh having an opening corresponding to the particle size F80 defined in the particle size of the abrasive according to JIS R 6001-1998 to prepare sized particles.
  • Comparative Example 1 is SA abrasive grains manufactured by Showa Denko K.K. having a particle size of F80.
  • the SA abrasive is an alumina single crystal abrasive and is an abrasive mainly used for grinding of difficult-to-cut materials.
  • the SA abrasive contains 99.6% by mass of Al 2 O 3 , 0.03% by mass of SiO 2 , 0.03% by mass of Fe 2 O 3 and 0.3% by mass of TiO 2 .
  • Comparative Example 2 is WA abrasive grains manufactured by Showa Denko KK having a particle size of F80.
  • WA abrasive grains are white fused alumina abrasive grains, and are abrasives suitable for applications that dislike heat generation.
  • the WA abrasive contains 99.8% by mass of Al 2 O 3 , 0.02% by mass of SiO 2 , 0.02% by mass of Fe 2 O 3 and the balance of 0.16% by mass of Na 2 O
  • Example 7 From the comparison of Example 2 and Example 7, it can be confirmed that the co-addition of molybdenum and zirconium lowers the C coefficient compared to the case of the addition of molybdenum alone, that is, the fused alumina grains become robust.
  • FIG. 2 shows an approximate linear function obtained from the results of measurement at 20 points for each particle size using SA abrasive grains (manufactured by Showa Denko KK) of three types of particle sizes F36, F80 and F120.
  • the fact that the fused alumina particles of Examples 1 to 10 satisfy the above-mentioned equation (1) means that the fused alumina particles of Examples 1 to 10 are sharper than the above-mentioned SA abrasive grains (high performance products). It is a high-performance abrasive with many grains and flat grains and excellent toughness, which means that the grinding performance is superior to that of the above-mentioned SA abrasive (high-performance product). This is considered to be correct because Comparative Example 2 and Comparative Example 3 do not fall within the range satisfying the formula (1) in FIG.
  • Example 4 The result of element mapping by energy dispersive X-ray spectrometry of Example 4 is shown in FIG. From these results, it was found that some of tungsten and zirconium were present in the same region, and were suggested to be present in the state of a tungsten-zirconium compound.

Abstract

製造時の結粒を抑制でき、かつ、高い研削性能を実現できる電融アルミナ粒を提供する。 本発明の電融アルミナ粒はタングステン及びモリブデンのうち少なくとも一方を含有する。

Description

電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙
 本発明は、電融アルミナ粒及びその電融アルミナ粒の製造方法、並びにその電融アルミナ粒を用いた砥石及び研磨布紙に関する。
 JIS R 6111-2005に規定されるアルミナ質研削材は人造研削材と呼ばれており、研削砥石や研磨布紙等の構成要素として使用される。JIS R6111-2005に規定されるようにアルミナ質研削材には、白色アルミナ研削材(WA)、淡紅色アルミナ研削材(PA)及び解砕形アルミナ研削材(HA)等がある。これらは、バイヤー法で精製したアルミナからなるアルミナ質原料を電気炉で溶融(すわなち、電融)し、凝固させた塊を粉砕し整粒したもの、又は解砕し整粒したものである。これらの靭性はHA>PA>WAの関係にある。
 これら従来のアルミナ研削材は、難被削材の研削加工の用途には、その研削性能が十分でない場合がある。このため、アルミナ研削材の研削性能の改善が試みられている(特許文献1、2等)。
 特許文献1には、アルミナ含有量が99.0%以上の高純度の溶融アルミナ砥粒を1600~1850℃で30分~2時間加熱処理してアルミナ研削材の研削性能を改善する方法が記載されている。溶融アルミナのインゴットの粉砕時には、砥粒に欠陥や、微細な傷及びクラックが発生し、砥粒の圧壊強度が低下するが、特許文献1の技術では、砥粒を所定条件で加熱処理して原子の拡散や再配列を促したり、砥粒に含まれるNaOを揮散させることで、砥粒の圧壊強度を改善している。しかし、この技術による砥粒を用いた砥石によっても未だ十分満足すべき研削性能を得られず、更に高い研削性能が求められている。
 同文献には、TiO、SiO等の不純物の含有量が多い溶融アルミナ砥粒の場合、1000~1300℃程度の温度で焼成することによって砥粒のひび割れが消滅し、砥粒の圧壊強度が増す一方、不純物の含有量が多い溶融アルミナ砥粒を1400℃以上で高温処理すると強度がかえって低下することや、不純物の含有量が多い砥粒を高温処理すると砥粒同士の焼結(以下、結粒)が発生して、解砕操作が必要となり厄介であることが記載されている。
 特許文献2には、酸化チタンを含有する電融アルミナ粒に加熱処理を施すことによって生成するチタン酸アルミニウムで該電融アルミナ粒の表面を被覆して、該電融アルミナ粒の強度及び靱性を向上させることが記載されている。同文献には、この手法で製造された電融アルミナ粒は、C係数が小さくなっていること(すなわち靭性が向上していること)、及び、マイクロビッカース硬度が向上していることが開示されている。また、同文献には、この電融アルミナ粒を研削砥石として使用することで、従来の白色電融アルミナ研削材や単結晶電融アルミナ研削材と比べて優れた研削性能が得られることが開示されている。このことから、電融アルミナ粒の靱性及びマイクロビッカース硬度を高めることが研削性能向上に効果的であることがわかる。しかし、同文献の実施例に記載のように、酸化チタンを含有する電融アルミナ粒を加熱処理すると粒同士が固着(すなわち結粒が発生)する。このため解砕操作が必要となり手間がかかる問題や、またこの解砕操作によって狙いの粒度の電融アルミナ粒の収率が低くなるという問題がある。
特開昭50-80305号公報 特開平7-215717号公報
 上記のように、従来技術では、製造時の結粒を抑制でき、かつ、高い研削性能を実現できる電融アルミナ粒は得られていない。本発明は、製造時の結粒を抑制でき、かつ、高い研削性能を実現できる電融アルミナ粒及びその電融アルミナ粒の製造方法、並びにその電融アルミナ粒を用いた砥石及び研磨布紙を提供することを目的とする。
 本発明者らは、鋭意研究の結果、電融アルミナ粒にタングステン及びモリブデンのうち少なくとも一方を含有させることにより、製造時の結粒を抑制でき、かつ、高い研削性能を実現できることを見出し、本発明を完成させた。すなわち、本発明は以下のとおりである。
[1]タングステン及びモリブデンのうち少なくとも一方を含有する、電融アルミナ粒。
[2]WO換算での前記タングステンの含有量とMoO換算での前記モリブデンの含有量の合計が、0.05~3.00質量%である、上記[1]に記載の電融アルミナ粒。
[3]ジルコニウムを含有する、上記[1]又は[2]に記載の電融アルミナ粒。
[4]ZrO換算での前記ジルコニウムの含有量が、電融アルミナ粒中で、0.01~2.00質量%である、上記[3]に記載の電融アルミナ粒。
[5]ZrO換算での前記ジルコニウムの含有量が、WO換算での前記タングステンの含有量及びMoO換算での前記モリブデンの含有量の合計含有量100molに対し、40mol~67molである、上記[3]又は[4]に記載の電融アルミナ粒。
[6]前記電融アルミナ粒のC段かさ比重をx、及び前記電融アルミナ粒のC係数をyとしたとき、以下の式(1)を満たす、上記[1]~[5]のいずれか1つに記載の電融アルミナ粒。
 y<-1.506x+3.605          (1)
[7]アルミナ原料と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を含む原料を混合して混合物原料を作製する工程(A)、電気溶融法によって前記混合物原料からインゴットを作製する工程(B)、前記インゴットを粉砕して粉砕粉を作製する工程(C)、前記粉砕粉を所定粒度に整粒して整粒粒子を作製する工程(D)、及び前記整粒粒子を1000℃以上の加熱温度で加熱処理して電融アルミナ粒を得る工程(E)を含む、電融アルミナ粒の製造方法。
[8]前記混合物原料を作製する工程(A)における前記タングステン化合物及びモリブデン化合物の配合量が、前記インゴット中で、WO及びMoO換算での前記タングステン化合物及びモリブデン化合物の含有量が、0.05~3.00質量%となるように換算した配合量である、上記[7]に記載の電融アルミナ粒の製造方法。
[9]前記混合物原料を作製する工程(A)が、アルミナ原料と、ジルコニウム化合物と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を混合して混合物原料を作製する工程である、上記[7]又は[8]に記載の電融アルミナ粒の製造方法。
[10]前記混合物原料を作製する工程(A)における前記ジルコニウム化合物の配合量が、前記インゴット中で、ZrO換算での前記ジルコニウムの含有量が、0.01~2.00質量%となるように換算した配合量である、上記[9]に記載の電融アルミナ粒の製造方法。
[11]前記混合物原料を作製する工程(A)における前記ジルコニウム化合物の配合量が、前記インゴット中で、ZrO換算での前記ジルコニウムの含有量が、WO換算での前記タングステンの含有量及びMoO換算でのモリブデンの含有量の合計含有量100molに対し、40mol~67molとなるように換算した配合量である、上記[9]又は[10]に記載の電融アルミナ粒の製造方法。
[12]前記電融アルミナ粒を得る工程(E)の加熱温度が1200℃以上1700℃以下である、上記[7]~[11]のいずれか1つに記載の電融アルミナ粒の製造方法。
[13]上記[1]~[6]のいずれか1つに記載の電融アルミナ粒を含む砥石。
[14]上記[1]~[6]のいずれか1つに記載の電融アルミナ粒を含む研磨布紙。
 本発明によれば、製造時に結粒が生じず、かつ、研削性能に優れた電融アルミナ粒及びその電融アルミナ粒の製造方法、並びにその電融アルミナ粒を用いた砥石及び研磨布紙を提供することができる。
横軸を電融アルミナ粒のC段かさ比重、縦軸を電融アルミナ粒のC係数として、実施例1~8及び比較例1~3のC段かさ比重及びC係数をプロットしたグラフである。 JIS R 6001-1998に規定されているF36、F80、F120の3種の粒度のSA砥粒(昭和電工(株)製)を用いて、各粒度につき、20点測定した結果から得た近似一次関数を示すグラフである。SA砥粒は、アルミナ単結晶砥粒であり、主に難被削材の研削加工に使用される研削材である。SA砥粒は、99.6質量%のAl、0.03質量%のSiO、0.03質量%のFe及び0.3質量%のTiOを含有する。 実施例4のエネルギー分散型X線分光分析による元素マッピング分析の結果を示す写真である。
 以下、本発明を詳細に説明するが、本発明は下記の実施形態に限定されるものではない。なお、以下の説明において、数値範囲を示す「A~B」の記載は、端点であるA及びBを含む数値範囲を示す。すなわち、「A以上B以下」(A<Bである場合)、又は「A以下B以上」(A>Bである場合)を意味する。
[電融アルミナ粒]
 本明細書において、電融アルミナ粒とは、バイヤー法で精製したアルミナ等の原料をアーク炉等の電気炉で溶融し凝固させて得られたインゴットを粉砕し整粒して得られたアルミナ粒、又は前記インゴットを解砕し整粒して得られたアルミナ粒である。
 本発明の電融アルミナ粒は、タングステン及びモリブデンのうち少なくとも一方を含有する。これにより、製造時に結粒が生じず、かつ、研削性能に優れた電融アルミナ粒を得ることができる。
 本発明の電融アルミナ粒は、更に、ジルコニウムを含有することが好ましい。
(タングステン及びモリブデンの含有量)
 WO換算での前記タングステンの含有量とMoO換算での前記モリブデンの含有量の合計が、0.05~3.00質量%であることが好ましく、0.10~2.50質量%であることがより好ましく、0.20~2.00質量%であることが更に好ましい。ここで含有量とは、後述する実施例に記載の分析方法で測定したものを意味する。
 WO換算での前記タングステンの含有量とMoO換算での前記モリブデンの含有量の合計を、0.05質量%以上とすることで、高靭性化が達成できる。
 WO換算での前記タングステンの含有量とMoO換算での前記モリブデンの含有量の合計を、3.00質量%以下とすることで、アルミナ本来の高い硬度を保つことができる。
 WO換算での前記タングステンの含有量とMoO換算での前記モリブデンの含有量の合計を、0.05~3.00質量%の範囲とすることで、高い硬度と高い靭性を両立することができる。そして高い硬度と高い靭性の両立により、優れた研削性能を実現することができる。
(結粒防止に対するタングステン及びモリブデンの効果)
 電融アルミナ粒にタングステン及びモリブデンのうち少なくとも一方を含有させると、製造時に結粒の発生が回避できるのは、以下の原理によるものと推測される。特許文献2に記載されるような電融アルミナ粒は、熱処理時にアルミナとの反応性が比較的高いチタン化合物が表面に析出するため、結果として結粒が生じる。一方で本発明ではアルミナとの反応性が比較的低いタングステン及びモリブデンのうち少なくとも一方を含有させているため、熱処理後に結粒が生じないことが予想されるとともに、高い硬度と高い靭性を両立した結果、研削性能が優れる。
(ジルコニウムの含有量)
 電融アルミナ粒中のジルコニウムの含有量がZrO換算で0.01~2.00質量%であることが好ましく、より好ましくは0.02~1.75質量%であり、さらに好ましくは0.03~1.50質量%である。ここで含有量とは、後述する実施例に記載の分析方法で測定したものを意味する。
 ジルコニウムの含有量を、ZrO換算で0.01質量%以上とすることで、共添加による高靭性化が達成できる。
 ジルコニウムの含有量を、ZrO換算で2.00質量%以下とすることで、アルミナ本来の高い硬度を保つことができる。
 ZrO換算での前記ジルコニウムの含有量が、WO換算での前記タングステンの含有量及びMoO換算での前記モリブデンの含有量の合計含有量100molに対し、40~67molであることが好ましく、より好ましくは42~63molであり、さらに好ましくは43~59molである。
 ジルコニウムの含有量を、WO換算での前記タングステンの含有量及びMoO換算での前記モリブデンの含有量の合計含有量100molに対し、40mol以上とすることで、共添加による十分な高靭性化が確認できる。
 ジルコニウムの含有量を、WO換算での前記タングステンの含有量及びMoO換算での前記モリブデンの含有量の合計含有量100molに対し、67mol以下とすることで、製造時に結粒が生じず、さらにアルミナ本来の高いビッカース硬度を保持することができる。
(研削性能の改善に対するタングステン及びモリブデンの効果)
 電融アルミナ粒にタングステン及びモリブデンのうち少なくとも一方を含有させると、電融アルミナ粒の研削性能が改善するのは、以下の原理によるものと推測される。電融アルミナ粒の粒内、粒界、表面に存在するタングステン及びモリブデンのうち一部は、負の熱膨張係数をもつZrW及びZrMoの状態で存在していると予想される。これによって、熱処理後の電融アルミナ粒に圧縮応力がはたらき、高靭性化すると考えられる。また、タングステン及びモリブデンはアルミナ中にほとんど固溶しないため、硬度も低下しない。
(C係数及びC段かさ比重)
 本発明の電融アルミナ粒は、x=電融アルミナ粒のC段かさ比重、及びy=電融アルミナ粒のC係数、としたとき、以下の式(1)を満たすことが好ましく、以下の式(2)を満たすことがより好ましく、以下の式(3)を満たすことがさらに好ましく、以下の式(4)を満たすことが特に好ましく、以下の式(5)を満たすことが最も好ましい。これにより、本発明の電融アルミナ粒の研削性能を高めることができる。
 y<-1.506x+3.605          (1)
 y<-1.506x+3.595          (2)
 y<-1.506x+3.585          (3)
 y<-1.506x+3.575          (4)
 y<-1.506x+3.565          (5)
 C係数は、JIS R6128-1987(人造研削材の靭性の試験方法(ボールミル法))に定義されているC係数と同じものである。C係数の測定方法は、後述の実施例の項目で詳細に説明する。
 C段かさ比重は、C係数測定時にJIS R6001-1987に規定される標準篩を用いて篩い分けた3段目の篩に留まった試料のかさ比重を、JIS R6126-1970に規定される方法よって測定した値として定義する。C段かさ比重の測定方法については、後述の実施例の項目で詳細に説明する。
 一般に粒度が細かいほどC段かさ比重の値は小さく、粒度が粗いほどC段かさ比重の値は大きくなる。しかし、電融アルミナ粒のように整粒して同程度の粒度に揃えられた試料の場合は、粒の形状によってC段かさ比重の値が変わる。そして、尖った粒や扁平な粒が多いほど自由落下による充填率が低くなるためC段かさ比重の値は小さくなり、球に近い粒が多いほど自由落下による充填率が高くなるためC段かさ比重の値は大きくなる。
 C係数とC段かさ比重の値との間には負の相関がある(図2参照)。前述の通りC段かさ比重が小さい試料には尖った粒や扁平な粒が多い。このため、これらを用いてC係数を測定すると、ボールミルによる粉砕が容易に進行し、これによりC係数の値は大きく(低靱性)なる。一方、C段かさ比重が大きい試料には球に近い形状の粒が多い。このため、これらを用いてC係数を測定すると、ボールミルによる粉砕が進行しづらく、C係数の値は小さく(高靱性)なる。
 上述したように、本発明の電融アルミナ粒は、上述の式(1)を満たすことが好ましい。x>0及びy>0であることを考慮すると、上述の式(1)を満たすx(C段かさ比重)-y(C係数)平面の領域は、x(C段かさ比重)の値も、y(C係数)の値も小さな値の領域である。このことは、本発明の電融アルミナ粒は尖った粒又は扁平な粒であり、本発明の電融アルミナ粒の靱性は高いことを示している。球に近い形状の粒よりも尖った粒又は扁平な粒の方が、研削性能が高いこと、及び靱性が高い粒の方が研削性能が高いことから、上述の式(1)を満たす本発明の電融アルミナ粒の研削性能はより高いことがわかる。
(アルミニウム、酸素、チタン及びマグネシウム以外の元素)
 本発明の電融アルミナ粒は、アルミニウム、酸素、ジルコニウム、タングステン及びモリブデン以外の元素を含んでもよい。本発明の電融アルミナ粒におけるアルミニウム、酸素、ジルコニウム、タングステン及びモリブデン以外の元素の含有量の合計は、好ましくは、酸化物に換算して1.5原子モル%以下である。アルミニウム、酸素、ジルコニウム、タングステン及びモリブデン以外の元素の含有量の合計が酸化物に換算して1.5原子モル%以下であると、本発明の電融アルミナ粒は十分な研削性能を有する。アルミニウム、酸素、ジルコニウム、タングステン及びモリブデン以外の元素の含有量の合計は、より好ましくは酸化物に換算して1.0原子モル%以下であり、更に好ましくは酸化物に換算して0.5原子モル%以下であり、最も好ましくは酸化物に換算して0原子モル%である。アルミニウム、酸素、ジルコニウム、タングステン及びモリブデン以外の元素には、たとえば、ナトリウム、ケイ素、カルシウム、鉄、クロム等がある。
[電融アルミナ粒の製造方法]
 本発明の電融アルミナ粒の製造方法は、アルミナ原料と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を含む原料を混合して混合物原料を作製する工程(A)、電気溶融法によって前記混合物原料からインゴットを作製する工程(B)、インゴットを粉砕して粉砕粉を作製する工程(C)、粉砕粉を所定粒度に整粒して整粒粒子を作製する工程(D)、及び整粒粒子を1000℃以上の加熱温度で加熱処理して電融アルミナ粒を得る工程(E)を含む。これにより、製造時に結粒の発生を回避することができ、研削性能の優れた本発明の電融アルミナ粒を製造することができる。
(工程(A))
 工程(A)では、アルミナ原料と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を含む原料を混合して混合物原料を作製する。例えば、所定の配合比率に秤量したアルミナ原料と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を含む原料を、混合機やボールミルなどを用いて機械的に混合したり、スコップ等を用いて人の手で混合したりする。
 工程(A)では、アルミナ原料と、ジルコニウム化合物と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を混合して混合物原料を作製することが好ましい。
<アルミナ原料>
 本発明の電融アルミナ粒の製造方法に使用されるアルミナ原料として、例えばバイヤー法で精製したアルミナが挙げられる。
<タングステン化合物及びモリブデン化合物>
 本発明の電融アルミナ粒の製造方法に使用されるタングステン化合物としては、例えば、酸化タングステン、タングステン、硫化タングステン、タングステン酸アンモニウム、タングステン酸などが挙げられる。このうち、特に、酸化タングステンの三酸化タングステンを使用することが好ましい。
 本発明の電融アルミナ粒の製造方法に使用されるモリブデン化合物としては、例えば、酸化モリブデン、モリブデン、硫化モリブデン、モリブデン酸アンモニウム、二モリブデン酸アンモニウム、七モリブデン酸六アンモニウム、モリブデン酸などが挙げられる。このうち、特に、酸化モリブデンの三酸化モリブデンを使用することが好ましい。
 工程(A)におけるタングステン化合物及びモリブデン化合物の配合量は、前記インゴット中で、WO及びMoO換算でのタングステン及びモリブデンの含有量が、0.05~3.00質量%となるように換算した配合量であることが好ましく、より好ましくは0.10~2.50質量%となるように換算した配合量であり、さらに好ましくは0.20~2.00質量%となるように換算した配合量である。
<ジルコニウム化合物>
 本発明の電融アルミナ粒の製造方法に使用されるジルコニウム化合物として、例えば、酸化ジルコニウム、ジルコニウム、炭酸ジルコニウム、硫酸ジルコニウム、硫化ジルコニウム等が挙げられる。のうち、特に、酸化ジルコニウムを使用することが好ましい。
 工程(A)におけるジルコニウム化合物の配合量は、前記インゴット中で、ZrO換算でのジルコニウムの含有量が、0.01~2.00質量%となるように換算した配合量であることが好ましく、より好ましくは0.02~2.00質量%となるように換算した配合量であり、さらに好ましくは0.03~1.75質量%となるように換算した配合量である。
 工程(A)におけるジルコニウム化合物の配合量は、前記インゴット中で、ZrO換算での前記ジルコニウムの含有量が、WO換算での前記タングステンの含有量及びMoO換算でのモリブデンの含有量の合計含有量100molに対し、40~67molとなるように換算した配合量であるであることが好ましく、より好ましくは、42~63molとなるように換算した配合量であり、さらに好ましくは、43~59molとなるように換算した配合量であり、特に好ましくは、45~56molとなるように換算した配合量である。
(工程(B))
 工程(B)では、電気溶融法によって混合物原料からインゴットを作製する。電気溶融法とは、電気アーク炉等の電気溶融炉を使用して混合原料を、例えば約2000~約2500℃の加熱温度で溶融する方法である。溶融が完了すると、例えば、電気溶融炉を傾け、炉壁に設けた注出口より溶融物を流し出し、予め準備された鋳型等に注入して、インゴットを作製する。インゴットはアルミナの多結晶体である。
(工程(C))
 工程(C)では、インゴットを粉砕して粉砕粉を作製する。インゴットは、例えば、ロールブレーカー及びドロップハンマー等を用いて荒割りし、肉眼選別の後、インペラーブレーカー、ジョークラッシャー、ロールクラッシャー、エッジランナー及びコニカルボールミル等の粉砕機を用いて粉砕する。粉砕粉の粒径は、各製品で求められる粒度に応じて、50μm~8mmの範囲とすることが好ましい。
(工程(D))
 工程(D)では、粉砕粉を所定粒度に整粒して整粒粒子を作製する。例えば、製造される電融アルミナ粒がJIS R 6001-1998に規定されている粗粒に該当する場合は、ふるい分け工程を経て粉砕粉を所定粒度に整粒する。また、製造される電融アルミナ粒がJIS R 6001-1998に規定されている微粉に該当する場合は、粉砕粉をボールミル及びエアミル等を用いて微粉砕した後、精製工程を経て粉砕粉を所定粒度に整粒する。
(工程(E))
 工程(E)では、整粒粒子を1000~1900℃の加熱温度で加熱処理して電融アルミナ粒を得る。これにより、電融アルミナ粒の強度及び靱性を高くすることができる。
 例えば、整粒粒子を箱さや等の容器に入れマッフル炉等の電気炉又はトンネル式連続焼成炉で加熱処理するか、又は整粒粒子をロータリーキルン等の焼成装置で直接、加熱処理する。
 工程(E)における加熱温度は、1000~1900℃であり、好ましくは1000~1800℃であり、より好ましくは1200~1600℃であり、さらに好ましくは1300~1500℃である。
 加熱温度が1000℃以上であると、電融アルミナの強度が高くなる。加熱温度が1900℃以下であると、整粒粒子同士が焼結することなく加熱処理を施すことができる。加熱処理時の加熱の保持時間は、好ましくは60分以上である。加熱処理時の雰囲気は、好ましくは大気雰囲気である。
(その他の工程)
 工程(C)と工程(D)との間に、工程(C)で生じた微粉及び磁性物等の不純物を除去し、必要に応じて酸洗及び/又は水洗を行う工程を追加してもよい。これにより、工程(E)の加熱処理で、整粒粒子内に不純物が拡散することを抑制できる。
 工程(E)の後に、得られた電融アルミナ粒をさらに整粒してもよい。整粒の方法は、例えば、工程(D)と同じ方法であってもよい。これにより、粒度がさらに整った電融アルミナ粒を得ることができる。
[砥石]
 本発明の砥石は、本発明の電融アルミナ粒を含む。これにより、研削性能が優れた砥石を得ることができる。具体的には、本発明の砥石は、本発明の電融アルミナ粒を結合剤で固めたものであり、主に、電融アルミナ粒、結合剤及び気孔から成り立っている。砥石は、例えば、ビトリファイドボンド、メタルボンド又はレジンボンド等の結合剤で電融アルミナ粒を成形硬化させることによって製造される。結合剤は、好ましくはビトリファイドボンドである。ビトリファイドボンドは長石、陶石、ホウ砂、粘土等を適宜混合して調製される一般的にフリットといわれるもので、その成分は、例えばSiO、B、Al、Fe、CaO、MgO、NaO及びKO等である。ビトリファイドボンドを用いた砥石(ビトリファイド砥石)は、ビトリファイドボンドに若干のデキストリンやフェノール樹脂等の成形助剤を入れて、電融アルミナ粒と混合し、プレス成形した後、焼成して製造される。この焼成温度は950~1150℃が好ましい。本発明の電融アルミナ粒は、ビトリファイド砥石以外にも、レジノイド砥石、ゴム砥石、シリケート砥石、シェラック砥石、マグネシア砥石等の砥石の砥粒として用いることができる。
[研磨布紙]
 本発明の研磨布紙は、本発明の電融アルミナ粒を含む。これにより、研削性能の優れた研磨布紙を得ることができる。研磨布紙は、電融アルミナ粒を基材に、接着剤を用いて接着させることにより製造される。優れた研磨性能を得られること及び耐水性が優れていることから好ましい接着剤はフェノール樹脂系接着剤である。また、レゾルシノール又はその誘導体をフェノール樹脂系接着剤と併用することによりフェノール樹脂系接着剤の硬化条件を緩和することもできる。基材には、例えば紙、織布及び不織布等が挙げられる。重研削用の研削ベルト等に対しては、ポリエステル繊維による織布も用いられ、その他、研磨不織布にはナイロン等合成繊維による不織布が基材として用いられる。研磨布紙には、製品規格としてJISに制定されているものとして、研磨布(R6251-2006)、研磨紙(R6252-2006)、耐水研磨紙(R6253-2006)、研磨ディスク(R6255-2014)、研磨ベルト(R6256-2006)及び円筒研磨スリーブ(R6257-2006)等が挙げられる。しかし、本発明の研磨布紙はこれらに限定されるものではない。JISの制定がない用途で本発明の研磨布紙にとって重要な用途は研磨不織布である。これは、研磨材、繊維(ナイロン、ポリエステル繊維等)及び接着剤の3構成要素によって、研磨用の不織布として構成された可撓性研磨材料(研磨布)である。これは、不規則に交錯する構成要素繊維の三次元網状組織と大きな容積の連通空隙を持ち、厚さ2~8mm程度で可撓性及び圧縮復元性に優れた構造特性を具備している。
 以下、実施例及び比較例によって本発明をより具体的に説明するが、本発明はこれらの実施例によってなんら制限されるものではない。
[実施例及び比較例の電融アルミナ粒の評価]
 実施例及び比較例の電融アルミナ粒に対して以下の評価を実施した。
(C段かさ比重)
 JIS R6126-1970に従って、漏斗、ストッパー、シリンダー及びその支持台からなる装置を用いて、以下の手順でC段かさ比重を測定した。
(1)シリンダーの容積V(ml)を測定。
(2)漏斗の出口をストッパーでふさぎ、試料約120mlを漏斗内に入れた後、シリンダーを漏斗の真下に配置。
(3)ストッパーを引き抜き、試料の全量をシリンダー内に落とし、シリンダーの上面に盛り上がった試料を軽くすくい取るようにして除いた後、シリンダーに入った試料の重さを測定。
(4)同一試料について(2)及び(3)の操作を繰り返して、3つの測定値W1(g)、W2(g)、及びW3(g)を取得。
(5)(1)で得られたシリンダーの容積V(ml)と、(4)で得られた3つの測定値W1(g)、W2(g)、及びW3(g)とから、下記の式(7)を用いてC段かさ比重を算出。
 C段かさ比重(g/ml)={(W1+W2+W3)/3}/V  (7)
(C係数)
 電融アルミナ粒250gをJIS R6001-1987に規定される標準篩を用いてロータップ試験機によって10分間篩い分けた。3段目の篩に留まった試料の全量をさらに10分間篩い分け、再び3段目の篩に留まった電融アルミナ粒100gを供試試料とした。この供試試料をJIS R6128-1975に規定される方法でボールミル粉砕して粉砕試料を作製した。標準篩を用いて粉砕試料を5分間篩い分け、4段目の篩に留まった粉砕試料の重量をR(x)とした。また、標準試料としてJIS R6128-1975に規定される黒色炭化ケイ素質研削材のF60を用いて同様の操作を行い、ボールミル粉砕後4段目に留まったF60の重量をR(s)とし、次式(6)によりC係数を算出した。
C係数=log(100/R(x))/log(100/R(s))   (6)
 なお、ボールミルによって粉砕される程度が小さいほど(靱性が高いほど)R(x)が大きくなるため、靱性が高いほどC係数の値は小さくなる。
(マイクロビッカース硬度)
 装置として(株)アカシ製、機種名「MVK-VL、Hardness Tester」を用い、測定は、荷重0.98N、圧子の打ち込み時間10秒の条件とし、15点の測定値の平均値をマイクロビッカース硬度とした。
(結粒)
 JIS R6001-1998に規定されているF60に整粒した加熱処理前の電融アルミナ粒を箱さやに入れ、1500℃で1時間加熱処理をした。500gの得られた電融アルミナ砥粒を目開き500μmの篩を用いてロータップ試験機によって衝撃を加えながら1分間ふるい分けた。その後、篩上の電融アルミナ砥粒の質量を計りとり、5g以上であった場合に結粒ありと判断した。
(エネルギー分散型X線分光分析による元素マッピング)
 実施例4で作製した複合焼結体を透明樹脂粉末(リファインテック株式会社製、アクリル樹脂:95~100質量%、メタクリル酸メチル:0~5質量%、ジベンゾイルペルオキシド:0~1質量%)中に含ませ、この樹脂を熱硬化成形後に切断し、切断面を鏡面研磨処理し、白金蒸着処理を行い、試料表面を含む断面について元素マッピング分析を行った。実施例4の研磨面におけるタングステンおよびジルコニウム元素の分布状態を、エネルギー分散型X線分光器(日本電子(株)社製、機種名JED-2300)を用いて元素マッピング分析により測定した。
[実施例及び比較例の電融アルミナ粒]
 各原料を、その含有量が表1に示す値となるように配合し、バイヤー法アルミナ粉末と混合して混合原料を作製した。そして、混合原料を電気アーク炉で溶融し(溶融条件:電気アーク炉の消費電力:9.0kWh、加熱時間:20分、雰囲気ガス:大気)、得られた溶湯を冷却することによりインゴットを得た。
 各原料は、以下のものを用いた。
 酸化チタン:関東化学株式会社製、「酸化チタン(IV)ルチル型」、規格「特級」
 酸化ジルコニウム:関東化学株式会社製、「酸化ジルコニウム、3N」、規格「高純度試薬」
 酸化モリブデン:関東化学株式会社製、「酸化モリブデン(VI)」、規格「鹿特級」
 酸化タングステン:関東化学株式会社製、「酸化タングステン(VI)」、規格「鹿1級」
 ジョークラッシャーを用いて得られたインゴットを粗粉砕し、その後ロールミルで粉砕して粉砕粉を作製した。そして、JISR6001-1998の研磨材の粒度に規定されている粒度F80に対応する目開きの篩網を用いて粉砕粉を整粒して整粒粒子を作製した。
 粒度F80の整粒粒子を300gアルミナ坩堝に入れ、電気炉(大気雰囲気)内で1500℃まで3時間かけて昇温し、1500℃にて1時間保持し、加熱を停止し炉内で放冷した。室温まで冷却後、250~150μmの篩網を用いて整粒し、粒同士が固着して粗くなった粒や微細粒を取り除き、F80のアルミナ研削材に相当する実施例1~10の電融アルミナ粒及び比較例1~3の電融アルミナ粒を得た。
 比較例1は、粒度F80の昭和電工(株)製SA砥粒である。SA砥粒は、アルミナ単結晶砥粒であり、主に難被削材の研削加工に使用される研削材である。SA砥粒は、99.6質量%のAl、0.03質量%のSiO、0.03質量%のFe及び0.3質量%のTiOを含有する。
 比較例2は、粒度F80の昭和電工(株)製WA砥粒である。WA砥粒は、白色電融アルミナ砥粒であり、発熱を嫌う用途に適した研削材である。WA砥粒は、99.8質量%のAl、0.02質量%のSiO、0.02質量%のFeを含有し、残部の0.16質量%は、NaOである。
(化学分析)
 実施例及び比較例の電融アルミナ粒におけるWO換算のタングステン含有量、MoO換算のモリブデン含有量、ZrO換算のジルコニウム含有量、TiO換算のチタン含有量を、蛍光X線元素分析法によって測定した。測定機器は、(株)リガク製「ZSX Primus」を用いた。
 測定結果を表1に示す。
 表1における質量比は、全て、アルミナ粒に対する重量比を意味する。
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 実施例1~10の電融アルミナ粒及び比較例1~3の電融アルミナ粒のC段かさ比重(表中「C段カサ」)、C係数、マイクロビッカース硬度、結粒の評価結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~10と比較例1~3の比較から、タングステン及びモリブデンの少なくとも一方を含有することによって、電融アルミナ粒の製造時の熱処理によっても結粒が生じず、かつ、研削性能が優れた電融アルミナ粒を得ることが確認できた。
 実施例1と実施例4の比較から、タングステンとジルコニウムの共添加によって、タングステン単独添加よりもC係数が低下すること、すなわち電融アルミナ粒が頑丈になることが確認できた。
 実施例2と実施例7の比較から、モリブデンとジルコニウムの共添加によって、モリブデン単独添加の場合よりもC係数が低下すること、すなわち電融アルミナ粒が頑丈になることが確認できた。
 横軸を電融アルミナ粒のC段かさ比重、縦軸を電融アルミナ粒のC係数として、実施例1~10及び比較例1~3のC段かさ比重及びC係数をプロットしたグラフを図1に示す。このグラフから、実施例1~10の電融アルミナ粒は、上述の式(1)を満たし、研削性能に優れるものであることが確認できる。
 前記のように、C係数とC段かさ比重の値には負の相関がある。これらの相関は横軸をC段かさ比重、縦軸をC係数としてグラフにすると、傾きが負、切片が正の一次関数で表すことができ、同一の砥材であれば異なる粒度やC段かさ比重の試料を測定してもおおよそ同一直線付近に分布する。例として、F36、F80、F120の3種の粒度のSA砥粒(昭和電工(株)製)を用いて、各粒度につき、20点測定した結果から得た近似一次関数を図2に示す。
 ここで、「高性能の砥粒」を、尖った形状(=かさ比重が小さい)かつ高靱性(=C係数の値も小さい)と定義する。つまり、図2のグラフにおいて左下にある砥粒ほど高性能であることを意味する。具体的には、酸化チタンをTiO換算で0.30質量%含有する解砕型電融アルミナ研削材(昭和電工(株)製SA)が図2に示す相関関係にあり、その近似一次関数の式は次の式(9)である。
  y=-1.506x+3.605     (9)
  (x=C段かさ比重、y=C係数)
 実施例1~10の電融アルミナ粒が上述の式(1)を満たすということは、実施例1~10の電融アルミナ粒は、上述のSA砥粒(高性能品)に比べて尖った粒や扁平な粒が多く、靱性も優れる高性能の砥粒であり、上述のSA砥粒(高性能品)よりも研削性能が優れていることを意味する。このことは、図1において、比較例2及び比較例3が式(1)を満たす範囲内にないことからも正しいと考えられる。
 図3に実施例4のエネルギー分散型X線分光分析による元素マッピングの結果を示す。この結果より、タングステンとジルコニウムのうち一部は、同一領域に存在していることが分かり、タングステン-ジルコニウム化合物の状態で存在していることが示唆された。

Claims (14)

  1.  タングステン及びモリブデンのうち少なくとも一方を含有する、電融アルミナ粒。
  2.  WO換算での前記タングステンの含有量とMoO換算での前記モリブデンの含有量の合計が、0.05~3.00質量%である、請求項1に記載の電融アルミナ粒。
  3.  ジルコニウムを含有する、請求項1又は2に記載の電融アルミナ粒。
  4.  ZrO換算での前記ジルコニウムの含有量が、電融アルミナ粒中で、0.01~2.00質量%である、請求項3に記載の電融アルミナ粒。
  5.  ZrO換算での前記ジルコニウムの含有量が、WO換算での前記タングステンの含有量及びMoO換算での前記モリブデンの含有量の合計含有量100molに対し、40mol~67molである、請求項3又は4に記載の電融アルミナ粒。
  6.  前記電融アルミナ粒のC段かさ比重をx、及び前記電融アルミナ粒のC係数をyとしたとき、以下の式(1)を満たす、請求項1~5のいずれか1項に記載の電融アルミナ粒。
     y<-1.506x+3.605          (1)
  7.  アルミナ原料と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を含む原料を混合して混合物原料を作製する工程(A)、
     電気溶融法によって前記混合物原料からインゴットを作製する工程(B)、
     前記インゴットを粉砕して粉砕粉を作製する工程(C)、
     前記粉砕粉を所定粒度に整粒して整粒粒子を作製する工程(D)、及び
     前記整粒粒子を1000℃以上1900℃以下の加熱温度で加熱処理して電融アルミナ粒を得る工程(E)を含む、電融アルミナ粒の製造方法。
  8.  前記混合物原料を作製する工程(A)における前記タングステン化合物及びモリブデン化合物の配合量が、前記インゴット中で、WO及びMoO換算での前記タングステン化合物及びモリブデン化合物の含有量が、0.05~3.00質量%となるように換算した配合量である、請求項7に記載の電融アルミナ粒の製造方法。
  9.  前記混合物原料を作製する工程(A)が、アルミナ原料と、ジルコニウム化合物と、タングステン化合物及びモリブデン化合物のうち少なくとも一方を混合して混合物原料を作製する工程である、請求項7又は8に記載の電融アルミナ粒の製造方法。
  10.  前記混合物原料を作製する工程(A)における前記ジルコニウム化合物の配合量が、前記インゴット中で、ZrO換算での前記ジルコニウムの含有量が、0.01~2.00質量%となるように換算した配合量である、請求項9に記載の電融アルミナ粒の製造方法。
  11.  前記混合物原料を作製する工程(A)における前記ジルコニウム化合物の配合量が、前記インゴット中で、ZrO換算での前記ジルコニウムの含有量が、WO換算での前記タングステンの含有量及びMoO換算でのモリブデンの含有量の合計含有量100molに対し、40mol~67molとなるように換算した配合量である、請求項9又は10に記載の電融アルミナ粒の製造方法。
  12.  前記電融アルミナ粒を得る工程(E)の加熱温度が1200℃以上1700℃以下である、請求項7~11のいずれか1項に記載の電融アルミナ粒の製造方法。
  13.  請求項1~6のいずれか1項に記載の電融アルミナ粒を含む砥石。
  14.  請求項1~6のいずれか1項に記載の電融アルミナ粒を含む研磨布紙。
PCT/JP2018/039746 2017-12-19 2018-10-25 電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙 WO2019123833A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207006841A KR102179722B1 (ko) 2017-12-19 2018-10-25 전융 알루미나립, 전융 알루미나립의 제조 방법, 숫돌 및 연마포지
EP18892483.1A EP3674274B1 (en) 2017-12-19 2018-10-25 Fused alumina grains, method for producing fused alumina grains, grindstone, and coated abrasive
JP2019560842A JP6725772B2 (ja) 2017-12-19 2018-10-25 電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙
SI201830592T SI3674274T1 (sl) 2017-12-19 2018-10-25 Taljena zrna aluminijevega oksida, postopek za izdelavo taljenih zrn aluminijevega oksida, brusilni kamen in oplaščeno abrazivno sredstvo
US16/649,758 US20200239369A1 (en) 2017-12-19 2018-10-25 Fused alumina grains, method for producing fused alumina grains, grindstone, and coated abrasive
CN201880067843.XA CN111511700B (zh) 2017-12-19 2018-10-25 电熔氧化铝粒、电熔氧化铝粒的制造方法、磨石、砂布和砂纸

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017243237 2017-12-19
JP2017-243237 2017-12-19

Publications (1)

Publication Number Publication Date
WO2019123833A1 true WO2019123833A1 (ja) 2019-06-27

Family

ID=66993229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/039746 WO2019123833A1 (ja) 2017-12-19 2018-10-25 電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙

Country Status (8)

Country Link
US (1) US20200239369A1 (ja)
EP (1) EP3674274B1 (ja)
JP (1) JP6725772B2 (ja)
KR (1) KR102179722B1 (ja)
CN (1) CN111511700B (ja)
SI (1) SI3674274T1 (ja)
TW (1) TWI688546B (ja)
WO (1) WO2019123833A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465137B2 (ja) 2020-04-08 2024-04-10 アイカ工業株式会社 水溶性フェノール樹脂組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080305A (ja) 1973-11-20 1975-06-30
JPS62278121A (ja) * 1986-05-27 1987-12-03 Hiroshi Matsuno 溶融アルミナの製造方法
JPH0796164A (ja) * 1993-04-28 1995-04-11 Showa Denko Kk 被覆電融アルミナ粒およびその製造方法
JPH07215717A (ja) 1994-02-07 1995-08-15 Showa Denko Kk 被覆電融アルミナ粒の製造方法
JPH1157957A (ja) * 1997-08-19 1999-03-02 Kawasaki Refract Co Ltd スライディングノズルプレートおよびその製造方法
JP2006111508A (ja) * 2004-10-18 2006-04-27 Fujimi Inc 酸化アルミニウム粉末の製造法
WO2016024624A1 (ja) * 2014-08-15 2016-02-18 Dic株式会社 研磨材、その製造方法および研磨材組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL109236A (en) * 1993-04-13 1998-01-04 Sumitomo Chemical Co A-alumina powder and its production
JP4920141B2 (ja) * 2001-05-30 2012-04-18 昭和電工株式会社 アルミナ粒子及びその製造方法
CN102814745B (zh) * 2012-07-31 2015-09-30 安徽威铭耐磨材料有限公司 一种锆刚玉树脂砂轮及其制备方法
JP5975182B2 (ja) * 2013-10-24 2016-08-23 Dic株式会社 樹脂組成物、樹脂成形体、放熱材料及び放熱部材、並びにこれらの製造方法
CN107235741A (zh) * 2017-06-30 2017-10-10 长兴泓矿炉料有限公司 一种新型轻质耐火材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5080305A (ja) 1973-11-20 1975-06-30
JPS62278121A (ja) * 1986-05-27 1987-12-03 Hiroshi Matsuno 溶融アルミナの製造方法
JPH0796164A (ja) * 1993-04-28 1995-04-11 Showa Denko Kk 被覆電融アルミナ粒およびその製造方法
JPH07215717A (ja) 1994-02-07 1995-08-15 Showa Denko Kk 被覆電融アルミナ粒の製造方法
JPH1157957A (ja) * 1997-08-19 1999-03-02 Kawasaki Refract Co Ltd スライディングノズルプレートおよびその製造方法
JP2006111508A (ja) * 2004-10-18 2006-04-27 Fujimi Inc 酸化アルミニウム粉末の製造法
WO2016024624A1 (ja) * 2014-08-15 2016-02-18 Dic株式会社 研磨材、その製造方法および研磨材組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674274A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465137B2 (ja) 2020-04-08 2024-04-10 アイカ工業株式会社 水溶性フェノール樹脂組成物

Also Published As

Publication number Publication date
KR102179722B1 (ko) 2020-11-17
TWI688546B (zh) 2020-03-21
SI3674274T1 (sl) 2022-04-29
JPWO2019123833A1 (ja) 2020-07-16
EP3674274B1 (en) 2022-02-16
JP6725772B2 (ja) 2020-07-22
US20200239369A1 (en) 2020-07-30
EP3674274A1 (en) 2020-07-01
CN111511700B (zh) 2021-06-18
KR20200033344A (ko) 2020-03-27
TW201927694A (zh) 2019-07-16
EP3674274A4 (en) 2020-10-21
CN111511700A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN105793002B (zh) 用于回收粉末状碳化硅废物的方法
KR102184303B1 (ko) 전기용융 알루미나 입자, 전기용융 알루미나 입자의 제조방법, 숫돌 및 연마포지
CA1298322C (en) Sintered alumina-zirconia ceramic bodies
JP5739425B2 (ja) 融解されたアルミナ−ジルコニアグリット
CN102892856B (zh) 基于锆刚玉的磨粒
JP3280056B2 (ja) 焼結微晶質セラミック材料およびその製造方法
KR20100098644A (ko) 용융 세라믹 제품, 및 그 제조 방법 및 용도
WO2019123833A1 (ja) 電融アルミナ粒、電融アルミナ粒の製造方法、砥石及び研磨布紙
US9505663B2 (en) Method for manufacturing refractory grains containing chromium(III) oxide
KR20200031631A (ko) 소결 지르콘 비즈
CN102093843A (zh) 一种α-氧化铝抛光粉的制备方法
US1240491A (en) Aluminous abrasive and method of preparing the same.
JP6367122B2 (ja) アルミナ焼結体、砥粒、砥石、研磨布、及びアルミナ焼結体の製造方法
JP2790029B2 (ja) 被覆電融アルミナ粒の製造方法
KR101481730B1 (ko) 연마액과 그 제조 방법 및 연마석과 그 제조 방법
JP6979024B2 (ja) 溶融アルミナ−ジルコニア粒子
JP2023553022A (ja) アルミナベースの溶融されたグレイン
JP2004284849A (ja) セラミックス原料及びセラミックス焼結体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18892483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560842

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006841

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018892483

Country of ref document: EP

Effective date: 20200327

NENP Non-entry into the national phase

Ref country code: DE