WO2019119903A1 - 无人机 - Google Patents

无人机 Download PDF

Info

Publication number
WO2019119903A1
WO2019119903A1 PCT/CN2018/106013 CN2018106013W WO2019119903A1 WO 2019119903 A1 WO2019119903 A1 WO 2019119903A1 CN 2018106013 W CN2018106013 W CN 2018106013W WO 2019119903 A1 WO2019119903 A1 WO 2019119903A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
drone
fuselage
power device
heat dissipation
Prior art date
Application number
PCT/CN2018/106013
Other languages
English (en)
French (fr)
Inventor
王佳迪
黄华
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2019119903A1 publication Critical patent/WO2019119903A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/20Structural association with auxiliary dynamo-electric machines, e.g. with electric starter motors or exciters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters

Definitions

  • Embodiments of the present invention relate to the field of drone technology, and in particular, to a drone capable of optimizing a heat dissipation effect.
  • the conventional means of dissipating heat of these electronic components mainly include: increasing the heat dissipation area and introducing convective air where heat is required.
  • increasing the heat dissipation area usually requires adding a fin-shaped metal heat sink on the surface of the electronic component; and introducing air convection usually needs to be realized by adding a fan.
  • Both of the above heat dissipation methods require the introduction of a new auxiliary heat sink component, which adds extra weight. For drones, it is very sensitive to weight, and each additional weight will result in a decrease in battery life.
  • the embodiment of the invention provides a drone that improves the heat dissipation effect to solve the above technical problem.
  • a drone comprising: a body, a propeller, and an electric unit disposed inside the fuselage, the electric unit including a power device, the propeller being disposed on the body
  • the drone further includes a heat dissipating structure disposed on the body and in proximity to or in contact with the power device, the heat dissipating structure being at least partially within a range affected by the flowing gas caused by the rotation of the propeller .
  • the airframe includes a body portion, and an arm for connecting the propeller, the propeller is mounted at a free end of the arm, and the propeller is located above or obliquely above the heat dissipation structure, The flowing gas caused by the rotation of the propeller flows through the heat dissipation structure.
  • the heat dissipation structure is a metal case.
  • the main body portion includes a receiving space for receiving the electric unit, and an opening that is open on the outer surface of the main body portion and communicates with the receiving space, and the metal shell is mounted at the opening position.
  • the power device is mounted adjacent to the opening.
  • the opening is opened at a top of the fuselage, wherein an upper surface of the metal casing is flush with or protrudes from an outer surface of the fuselage after the metal casing is mounted to the open position The outer surface of the fuselage.
  • the power device is installed in the receiving space and below the metal housing.
  • the drone further includes a GPS module, and the metal casing is provided with an opening; wherein the GPS module protrudes through the opening to protrude the metal casing.
  • the propellers are four and are evenly arranged around the metal casing.
  • the heat dissipation structure is an air guiding channel disposed on the air body, and the air guiding channel guides the flowing gas to the power device.
  • a housing is protruded from the top of the fuselage, and at least two sets of the air guiding channels are symmetrically opened on the housing.
  • the embodiment of the invention designs a novel heat dissipating structure drone, and the airframe of the drone is provided with a heat dissipating structure close to or in contact with the electric unit, and the heat dissipating structure is at least partially located in the flowing gas caused by the rotation of the propeller Within the affected range, the power device is dissipated by the flowing gas caused by the propeller, so that the electric unit can be efficiently dissipated without adding extra weight.
  • FIG. 1 is a schematic overall structural view of a drone according to an exemplary embodiment of the present invention.
  • FIG. 2 is a partially exploded structural view of a drone according to an exemplary embodiment of the present invention.
  • FIG. 3 is a schematic overall structural view of a drone according to still another exemplary embodiment of the present invention.
  • FIG. 4 is a schematic side view showing a structure of a drone according to still another exemplary embodiment of the present invention.
  • the drone 100 of the embodiment of the present invention includes a body 1, a propeller 2, and an electric unit 3 disposed inside the body 1.
  • the electrical unit 3 comprises a power device 31 on which the propeller 2 is arranged.
  • the drone 100 further includes a heat dissipation structure 4 disposed on the body 1 and in proximity to or in contact with the power device 31.
  • the heat dissipation structure 4 can be used to assist heat dissipation for the power device 31, and the heat dissipation structure 4 is at least partially located in the rotation of the propeller 2.
  • the power device 31 is dissipated by the flowing gas caused by the propeller 2, so that the purpose of dissipating heat for the power device 31 is achieved without adding extra weight.
  • the body 1 includes a body portion 11 and an arm 12 for connecting the propeller 2.
  • the propeller 2 is mounted at the free end of the arm 12, and the propeller 2 is located above or obliquely above the heat dissipating structure 4 so that the flowing gas caused by the rotation of the propeller 2 flows through the heat dissipating structure 4.
  • the propeller 2 is a power source of the drone 100, and the propeller 2 forms a downward and side airflow when rotated by the power unit, so that the flight of the drone 100 can be driven.
  • the propeller 2 is located above or obliquely above the heat dissipating structure 4, so that the heat dissipating structure 4 can be located within the range affected by the flowing airflow formed by the propeller 2.
  • the heat dissipation structure 4 is a metal casing, and the metal casing has better thermal conductivity.
  • the metal casing is disposed on the power device 31, so that the power device 31 can be better dissipated.
  • the power device 31 can be a processor of the drone 100.
  • the main body portion 11 includes a receiving space 111 for receiving the electric unit 3, and an opening 112 opening on the outer surface of the main body portion 11 and communicating with the receiving space 111.
  • the metal housing is mounted at the position of the opening 112.
  • One side of the metal housing corresponds to the electrical unit 3, and the electrical unit 3 (ie, the power device 31) is mounted in the receiving space 111 and located under the metal housing.
  • the opposite side of the body is in contact with the outside, so that the heat dissipation of the electric unit 3 can be facilitated.
  • the metal has good thermal conductivity, so that the heat generated by the power device 31 can be well derived.
  • the flowing gas caused by the propeller 2 in the embodiment of the present invention can further accelerate the heat dissipation speed, and achieve the purpose of improving the heat dissipation efficiency by using its own resources.
  • the opening 112 is opened at the top of the body 1, and the power device 31 is mounted at a position close to the opening 112.
  • the upper surface of the metal casing is flush with the outer surface of the fuselage 1 or protrudes from the outer surface of the fuselage 1 such that the metal casing constitutes the outer casing of the drone 100.
  • the opening 112 can also be disposed at other positions such as the side of the body 1, and the opening 112 is located at a position with the propeller 2 airflow disturbance to meet the heat dissipation requirement of the electric unit 3.
  • the number of the propellers 2 on the drone 100 is four, and is evenly arranged around the metal casing, and the airflow caused by each of the propellers 2 flows at least partially to the metal casing, thereby improving the pair.
  • the center connections of the four propellers 2 form a square with the metal housing at a central location of the square.
  • the number of the propellers 2 in the unmanned aerial vehicle 100 of the embodiment of the present invention is not limited to four, and the number of the propellers 2 may be any number, and any number of the propellers 2 are evenly arranged around the metal casing, and each Each of the propellers 2 has a heat dissipation effect on the metal casing.
  • the UAV 100 of the embodiment of the present invention further includes a GPS (Global Positioning System) module, and the metal casing is provided with an opening 41.
  • the GPS module 5 protrudes through the opening 41 to protrude the metal casing.
  • the GPS module is fixed in the body portion 11 and can be electrically connected to the control circuit board in the body 1 of the drone 100, and partially protrudes outside the metal casing, so that interference with the GPS module 5 can be reduced. The factor improves the signal transmission effect of the GPS module 5.
  • the GPS module 5 includes a GPS antenna 51 and a GPS housing 52.
  • the GPS antenna 51 is electrically connected to the control circuit board in the body 1 of the drone 100, and the GPS housing 52 is mounted on the GPS antenna 51 protruding from the metal casing. external.
  • the drone 100 of the present embodiment includes a body 1, a propeller 2, and an electric unit 3 disposed inside the body 1.
  • the electrical unit 3 comprises a power device 31 on which the propeller 2 is arranged.
  • the drone 100 further includes a heat dissipation structure 4 disposed on the body 1 and in proximity to or in contact with the power device 31.
  • the heat dissipation structure 4 can be used to assist heat dissipation for the power device 31, and the heat dissipation structure 4 is at least partially located in the rotation of the propeller 2.
  • the power device 31 is dissipated by the flowing gas caused by the propeller 2, so that the purpose of dissipating heat for the power device 31 is achieved without adding extra weight.
  • the body 1 includes a body portion 11 and an arm 12 for connecting the propeller 2.
  • the propeller 2 is mounted at the free end of the arm 12, and the propeller 2 is located above or obliquely above the heat dissipating structure 4 so that the flowing gas caused by the rotation of the propeller 2 flows through the heat dissipating structure 4.
  • the propeller 2 provides lift to the drone 100, and the propeller 2 forms a downward and side airflow when rotated by the power unit, so that the flight of the drone 100 can be driven.
  • the propeller 2 is located above or obliquely above the heat dissipating structure 4, so that the heat dissipating structure 4 can be located within the range affected by the flowing airflow formed by the propeller 2.
  • the heat dissipation structure 4 is an air guiding passage 42 disposed on the body 1 for guiding the flowing gas to the power device 31, so that the heat dissipation of the power device 31 can be achieved.
  • the air guiding passage 42 is located below or obliquely below the propeller 2.
  • a fuselage is protruded from the top of the fuselage 1 , and at least two sets of air guiding passages 42 are symmetrically opened on the casing, so that the air guiding passage 42 on the casing forms convection, which is beneficial to
  • the power device 31 dissipates heat.
  • the power device 31 is disposed adjacent to the air guiding passage 42.
  • the power device 31 is located between the two sets of air guiding passages 42.
  • the two sets of air guiding passages 42 are located below or obliquely below the propeller 2 so that a part of the downward airflow and the side airflow of the propeller 2 can flow to the air guiding passage 42.
  • the air guiding passage 42 can be covered on the circumferential side of the casing, so that the air guiding area can be increased, and the heat dissipation efficiency can be improved.
  • the airflow flowing from the propeller 2 to the fuselage 1 flows through the air guiding passage to the power device 31, achieving power reaching without adding extra weight.
  • the purpose of heat dissipation of device 31 is required.
  • the drone 100 further includes a rack 13 and a photographing device 20 mounted on the body 1.
  • the rack 13 is two, and the two racks 13 are oppositely disposed.
  • the two frames 13 can cooperate to support the drone 100, and the photographing device 20 is disposed between the two brackets 13.
  • the embodiment of the invention designs a novel heat dissipating structure drone, and the airframe of the drone is provided with a heat dissipating structure close to or in contact with the electric unit, and the heat dissipating structure is at least partially located in the flowing gas caused by the rotation of the propeller Within the affected range, the power device is dissipated by the flowing gas caused by the propeller, so that the electric unit can be efficiently dissipated without adding extra weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Toys (AREA)

Abstract

一种无人机(100),包括:机身(1),螺旋桨(2)以及设置于机身(1)内部的电气单元(3)。电气单元(3)包括功率器件(31),螺旋桨(2)设置于机身(1)上;无人机(100)还包括设置在机身(1)上且与功率器件(31)靠近或接触的散热结构(4),散热结构(4)至少部分位于螺旋桨(2)旋转引起的流动气体所影响的范围之内。该无人机实现了在不增加额外重量的情况下,能够为电气单元高效地散热。

Description

无人机 技术领域
本发明实施例涉及无人机技术领域,特别涉及一种能够优化散热效果的无人机。
背景技术
通常情况下,所有的电子元器件都有一个稳定的工作温度范围。由于电子元器件自身工作时会产生发热,通常都需要采取措施以将热量导出到外界环境,使得电子元器件表面温度在要求范围内。
该些电子元器件的散热常规手段主要有:增大散热面积和在需要散热的地方引入对流的空气。其中,增大散热面积通常需要在电子元器件的表面增设长有鳍片的金属散热板;而引入空气对流通常需要通过增设风扇来实现。以上两种散热方式,均需要引入新的辅助散热器件,会增加额外的重量。对于无人机来说,对重量非常敏感,每增加一点点重量,都会导致续航时间的下降。
发明内容
本发明实施例提出一种提高优化散热效果的无人机以解决上述技术问题。
根据本发明的实施例,提供了一种无人机,包括:机身、螺旋桨以及设置于所述机身内部的电气单元,所述电气单元包括功率器件,所述螺旋桨设置于所述机身上;其中,所述无人机还包括设置在机身上且与所述功率器件靠近或接触的散热结构,所述散热结构至少部分位于所述螺旋桨旋转引起的流动气体所影响的范围之内。
进一步地,所述机身包括本体部、以及用于连接所述螺旋桨的机臂,所述螺旋桨安装在所述机臂的自由端,且所述螺旋桨位于所述散热结构的上方或斜上方,以使所述螺旋桨旋转引起的流动气体流经所述散热结构。
进一步地,所述散热结构为金属壳体。
进一步地,所述本体部包括用以收容所述电气单元的收容空间、以及开设在所述本体部外表面并与所述收容空间连通的开口,所述金属壳体安装于所述开口位置处,所述功率器件安装于靠近所述开口的位置。
进一步地,所述开口开设于所述机身的顶部,其中,在所述金属壳体安装到所述开口位置后,所述金属壳体的上表面与所述机身外表面齐平或突出所述机身外表面。
进一步地,所述功率器件安装在所述收容空间内且位于所述金属壳体的下方。
进一步地,所述无人机还包括GPS模块,所述金属壳体上设有开孔;其中,所述GPS模块穿过所述开孔而突出所述金属壳体。
进一步地,所述螺旋桨为四个,且均匀排布于所述金属壳体的四周。
进一步地,所述散热结构为设置在机身上的导风通道,所述导风通道引导所述流动气体到所述功率器件。
进一步地,所述机身顶部凸设有壳体,所述壳体上对称开设至少两组所述导风通道。
本发明实施例设计了一种新型散热结构的无人机,该无人机的机身上设有与电气单元靠近或接触的散热结构,通过将该散热结构至少部分位于螺旋桨旋转引起的流动气体所影响的范围之内,如此以通过螺旋桨引起的流动气体对功率器件进行散热,从而实现了在不增加额外重量的情况下,能够为电气单元高效地散热。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一示例性实施例示出的一种无人机的整体结构示意图;
图2是本发明一示例性实施例示出的一种无人机的部分分解结构图;
图3是本发明又一示例性实施例示出的一种无人机的整体结构示意图;
图4是本发明又一示例性实施例示出的一种无人机的侧面结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明实施例无人机的结构作详细说明,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1和图2所示,本发明实施例的无人机100包括:机身1、螺旋桨2以及设置于机身1内部的电气单元3。该电气单元3包括功率器件31,螺旋桨2设置于机身1上。其中,无人机100还包括设置在机身1上且与功率器件31靠近或接触的散热结构4,散热结构4可以用于为功率器件31辅助散热,该散热结构4至少部分位于螺旋桨2旋转引起的流动气体所影响的范围之内,如此以通过螺旋桨2引起的流动气体对功率器件31进行散热,实现了在不增加额外重量的情况下,达到为功率器件31散热的目的需求。
进一步地,该机身1包括本体部11、以及用于连接螺旋桨2的机臂12。螺旋桨2安装在机臂12的自由端,且螺旋桨2位于散热结构4的上方或斜上方,以使螺旋桨2旋转引起的流动气体流经散热结构4。众所周知,螺旋桨2为无人机100的动力源,螺旋桨2在动力装置的驱动下转动时形成向下和旁侧的气流,从而可以驱动无人机100的飞行。本实施例中,螺旋桨2位于散热结构4的上方或斜上方,从而可以使该散热结构4位于螺旋桨2形成的流动气流所影响的范围之内。
优选地,该散热结构4为金属壳体,金属壳体具有较好的导热性。其中,该金属壳体罩设于功率器件31,从而可以更好地为功率器件31进行散热。在一实施例中,该功率器件31可以为无人机100的处理器。
在一实施例中,该本体部11包括用以收容电气单元3的收容空间111、 以及开设在本体部11外表面并与收容空间111连通的开口112。其中,该金属壳体安装于开口112位置处,该金属壳体的一面对应于电气单元3,电气单元3(即功率器件31)安装在收容空间111内且位于金属壳体的下方,金属壳体相对的另一面与外界接触,从而可以有利于对该电气单元3的散热,此外,金属有较好的热传导性,故可很好地将功率器件31产生的热量导出。进一步地,通过本发明实施例螺旋桨2引起的流动气体,可以进一步地加快散热速度,实现了利用自身资源提高散热效率的目的。
进一步地,该开口112开设于机身1的顶部,功率器件31安装于靠近该开口112的位置。其中,在金属壳体安装到开口112位置后,金属壳体的上表面与机身1外表面齐平或突出机身1外表面,如此以使金属壳体构成了无人机100的外壳的一部分,从而无需对无人机100增加额外的结构,而且解决了为电气单元3散热的问题。另外,在其他实施例中,该开口112还可以设于机身1的侧面等其他位置,该开口112位于具有螺旋桨2气流扰动的位置均可以满足对电气单元3的散热需求。
在一实施例中,无人机100上的螺旋桨2为四个,且均匀排布于金属壳体的四周,每个螺旋桨2引起的气流均会至少部分流向该金属壳体,从而可以提高对电气单元3的散热效率。一实例性实施例中,该四个螺旋桨2的中心连接形成正方形,金属壳体位于该正方形的中心位置。当然,本发明实施例的无人机100中螺旋桨2的数量并不限于四个,该螺旋桨2的数量可以为任意数量,任意数量的螺旋桨2均匀地排布于金属壳体的四周,且每个螺旋桨2均对金属壳体具有散热作用。
本发明实施例的无人机100还包括GPS(Global Positioning System,全球定位系统)模块,金属壳体上设有开孔41。其中,GPS模块5穿过开孔41而突出金属壳体。本实施例中,该GPS模块固定于本体部11内,可以与无人机100的机身1内的控制电路板电性连接,而且部分突出金属壳体外,如此可以减少对GPS模块5的干扰因素,提高GPS模块5的信号传输的效果。
在一实施例中,该GPS模块5包括GPS天线51、以及GPS外壳52。其中,该GPS天线51穿过开孔41,该GPS天线51可以电性连接于无人机100的机身1内的控制电路板上,GPS外壳52安装在突出金属壳体的 GPS天线51的外部。
如图3和图4所示,在本发明的又一实施例中,本实施例的无人机100包括:机身1、螺旋桨2以及设置于机身1内部的电气单元3。该电气单元3包括功率器件31,螺旋桨2设置于机身1上。其中,无人机100还包括设置在机身1上且与功率器件31靠近或接触的散热结构4,散热结构4可以用于为功率器件31辅助散热,该散热结构4至少部分位于螺旋桨2旋转引起的流动气体所影响的范围之内,如此以通过螺旋桨2引起的流动气体对功率器件31进行散热,实现了在不增加额外重量的情况下,达到为功率器件31散热的目的需求。
进一步地,该机身1包括本体部11、以及用于连接螺旋桨2的机臂12。螺旋桨2安装在机臂12的自由端,且螺旋桨2位于散热结构4的上方或斜上方,以使螺旋桨2旋转引起的流动气体流经散热结构4。众所周知,螺旋桨2为无人机100提供升力,螺旋桨2在动力装置的驱动下转动时形成向下和旁侧的气流,从而可以驱动无人机100的飞行。本实施例中,螺旋桨2位于散热结构4的上方或斜上方,从而可以使该散热结构4位于螺旋桨2形成的流动气流所影响的范围之内。
该散热结构4为设置在机身1上的导风通道42,该导风通道42用于引导流动气体到功率器件31,从而可以实现为功率器件31散热的目的。优选地,导风通道42位于螺旋桨2的下方或者斜下方。
在一实施例中,该机身1顶部凸伸有壳体,该壳体上对称开设有至少两组导风通道42,如此以使该壳体上的导风通道42形成对流,有利于对功率器件31散热。该实施例中,功率器件31靠近导风通道42设置。优选地,该功率器件31位于两组导风通道42之间。
进一步地,该两组导风通道42位于螺旋桨2下方或者斜下方,以使螺旋桨2的部分向下气流和旁侧气流可以流向该导风通道42。另外,在又一实施例中,该导风通道42可以布满壳体的周侧面上,如此可以增加导风面积,提高散热效率。
本实施例中,通过对机身1的外壳结构的设计,以使螺旋桨2流向机身1的气流经过该导风通道流向功率器件31,实现了在不增加额外重量的情况下,达到为功率器件31散热的目的需求。
进一步地,如图1和图3所示,该无人机100还包括安装于机身1的机架13和拍摄装置20,该机架13为两个,且两个机架13相对设置,两个机架13可以配合起到支撑该无人机100的作用,该拍摄装置20设于两个支架13之间。
本发明实施例设计了一种新型散热结构的无人机,该无人机的机身上设有与电气单元靠近或接触的散热结构,通过将该散热结构至少部分位于螺旋桨旋转引起的流动气体所影响的范围之内,如此以通过螺旋桨引起的流动气体对功率器件进行散热,从而实现了在不增加额外重量的情况下,能够为电气单元高效地散热。
本领域技术人员在考虑说明书及实践这里公开的发明实施例后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本发明实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由本申请的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种无人机,其特征在于,包括:机身、螺旋桨以及设置于所述机身内部的电气单元,所述电气单元包括功率器件,所述螺旋桨设置于所述机身上;其中,所述无人机还包括设置在机身上且与所述功率器件靠近或接触的散热结构,所述散热结构至少部分位于所述螺旋桨旋转引起的流动气体所影响的范围之内。
  2. 根据权利要求1所述的无人机,其特征在于,所述机身包括本体部、以及用于连接所述螺旋桨的机臂,所述螺旋桨安装在所述机臂的自由端,且所述螺旋桨位于所述散热结构的上方或斜上方,以使所述螺旋桨旋转引起的流动气体流经所述散热结构。
  3. 根据权利要求2所述的无人机,其特征在于,所述散热结构为金属壳体。
  4. 根据权利要求3所述的无人机,其特征在于,所述本体部包括用以收容所述电气单元的收容空间、以及开设在所述本体部外表面并与所述收容空间连通的开口,所述金属壳体安装于所述开口位置处,所述功率器件安装于靠近所述开口的位置。
  5. 根据权利要求4所述的无人机,其特征在于,所述开口开设于所述机身的顶部,其中,在所述金属壳体安装到所述开口位置后,所述金属壳体的上表面与所述机身外表面齐平或突出所述机身外表面。
  6. 根据权利要求4所述的无人机,其特征在于,所述功率器件安装在所述收容空间内且位于所述金属壳体的下方。
  7. 根据权利要求6所述的无人机,其特征在于,所述无人机还包括GPS模块,所述金属壳体上设有开孔;其中,所述GPS模块穿过所述开孔而突出所述金属壳体。
  8. 根据权利要求5所述的无人机,其特征在于,所述螺旋桨为四个,且均匀排布于所述金属壳体的四周。
  9. 根据权利要求1或2所述的无人机,其特征在于,所述散热结构为设置在机身上的导风通道,所述导风通道引导所述流动气体到所述功率器件。
  10. 根据权利要求9所述的无人机,其特征在于,所述机身顶部凸设有壳体,所述壳体上对称开设至少两组所述导风通道。
PCT/CN2018/106013 2017-12-18 2018-09-17 无人机 WO2019119903A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721778355.9U CN207773451U (zh) 2017-12-18 2017-12-18 无人机
CN201721778355.9 2017-12-18

Publications (1)

Publication Number Publication Date
WO2019119903A1 true WO2019119903A1 (zh) 2019-06-27

Family

ID=63226636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106013 WO2019119903A1 (zh) 2017-12-18 2018-09-17 无人机

Country Status (2)

Country Link
CN (1) CN207773451U (zh)
WO (1) WO2019119903A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117842406A (zh) * 2024-03-07 2024-04-09 中国空气动力研究与发展中心空天技术研究所 一种散热系统及油电混合无人机
CN117842406B (zh) * 2024-03-07 2024-05-28 中国空气动力研究与发展中心空天技术研究所 一种散热系统及油电混合无人机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207773451U (zh) * 2017-12-18 2018-08-28 深圳市大疆创新科技有限公司 无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329991A (ja) * 2001-04-26 2002-11-15 Olympus Optical Co Ltd 冷却構造を備える電子機器
WO2015025687A1 (ja) * 2013-08-19 2015-02-26 株式会社日立国際電気 電子装置
CN105939930A (zh) * 2015-04-30 2016-09-14 深圳市大疆创新科技有限公司 热管理系统及热管理方法,及应用该热管理系统的无人机
CN107472523A (zh) * 2017-09-20 2017-12-15 湖南基石信息技术有限公司 涵道推进器及小型无人飞机
CN107472501A (zh) * 2017-09-20 2017-12-15 湖南基石信息技术有限公司 超声波防干扰结构及小型无人飞机
CN207773451U (zh) * 2017-12-18 2018-08-28 深圳市大疆创新科技有限公司 无人机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329991A (ja) * 2001-04-26 2002-11-15 Olympus Optical Co Ltd 冷却構造を備える電子機器
WO2015025687A1 (ja) * 2013-08-19 2015-02-26 株式会社日立国際電気 電子装置
CN105939930A (zh) * 2015-04-30 2016-09-14 深圳市大疆创新科技有限公司 热管理系统及热管理方法,及应用该热管理系统的无人机
CN107472523A (zh) * 2017-09-20 2017-12-15 湖南基石信息技术有限公司 涵道推进器及小型无人飞机
CN107472501A (zh) * 2017-09-20 2017-12-15 湖南基石信息技术有限公司 超声波防干扰结构及小型无人飞机
CN207773451U (zh) * 2017-12-18 2018-08-28 深圳市大疆创新科技有限公司 无人机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117842406A (zh) * 2024-03-07 2024-04-09 中国空气动力研究与发展中心空天技术研究所 一种散热系统及油电混合无人机
CN117842406B (zh) * 2024-03-07 2024-05-28 中国空气动力研究与发展中心空天技术研究所 一种散热系统及油电混合无人机

Also Published As

Publication number Publication date
CN207773451U (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
CN110139544B (zh) 散热机构及具有该散热机构的无人飞行器
US20220089271A1 (en) Unmanned aerial vehicle and heat dissipation structure
US10906652B2 (en) Thermal management systems for unmanned aerial vehicles
WO2019134399A1 (zh) 无人机及其机壳
CN112909409A (zh) 无人飞行器
WO2020118629A1 (zh) 电子设备
WO2021115005A1 (zh) 电子设备
WO2020001273A1 (zh) 散热结构及无人飞行器
CN110401001B (zh) 风冷散热机载天线
CN110382356B (zh) 无人机的动力组件和无人机
CN110313226B (zh) 散热组件、散热模组和无人飞行器
JPWO2014118900A1 (ja) 電子機器
WO2019119903A1 (zh) 无人机
WO2020000182A1 (zh) 散热装置及具有该散热装置的无人机
WO2017202223A1 (zh) 一种飞行器及其动力装置、动力组件
CN108882614B (zh) 无人飞行器风路散热系统
CN209609091U (zh) 电子设备
CN210555610U (zh) 一种无人机的散热结构
CN113038781A (zh) 一种具有独立风道结构的伺服驱动器
CN102958326A (zh) 散热装置
WO2021056194A1 (zh) 无人机
JP2001257494A (ja) 電子機器
WO2022062194A1 (zh) 无人飞行器
CN111086619A (zh) 散热装置及飞行器
CN104883863A (zh) 无人机铜管散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893006

Country of ref document: EP

Kind code of ref document: A1