WO2022062194A1 - 无人飞行器 - Google Patents

无人飞行器 Download PDF

Info

Publication number
WO2022062194A1
WO2022062194A1 PCT/CN2020/135308 CN2020135308W WO2022062194A1 WO 2022062194 A1 WO2022062194 A1 WO 2022062194A1 CN 2020135308 W CN2020135308 W CN 2020135308W WO 2022062194 A1 WO2022062194 A1 WO 2022062194A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
unmanned aerial
aerial vehicle
heat dissipation
fuselage
Prior art date
Application number
PCT/CN2020/135308
Other languages
English (en)
French (fr)
Inventor
伍振兴
张雅文
才志伟
顾令东
黎裕熙
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080071048.5A priority Critical patent/CN114514802A/zh
Publication of WO2022062194A1 publication Critical patent/WO2022062194A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to an unmanned aerial vehicle.
  • circuit boards With the development of electronic technology, the degree of integration of circuit boards is getting higher and higher, the size of circuit boards is getting smaller and smaller, and the heat flux density of circuit boards is also getting higher and higher.
  • these circuit boards are applied to miniaturized products (such as unmanned aerial vehicles)
  • the narrow space structure inside the product is not conducive to the heat dissipation of the circuit boards.
  • Temperature is a key factor affecting the reliability of the circuit board.
  • the unmanned aerial vehicle flies violently, the heating power of the ESC is high. As the temperature increases, the failure rate of the circuit board increases geometrically. Therefore, how to quickly and effectively dissipate heat from the circuit board is an important factor determining the reliability of the product.
  • the present application proposes an unmanned aerial vehicle, which can effectively dissipate heat to an ESC.
  • Embodiments of the present application provide an unmanned aerial vehicle, including a body, an electrical panel mounted on the fuselage, and a radiator for dissipating heat from the electrical panel, and the fuselage includes a unit that forms an accommodating space a casing, the upper surface and/or side of the casing is provided with an opening, the opening communicates with the accommodating space, the ESC is located in the accommodating space, and the radiator is installed in the opening and is exposed on the fuselage.
  • a further improvement of the unmanned aerial vehicle of the present application is that the opening is provided on the front side of the casing or the rear side of the casing.
  • a further improvement of the unmanned aerial vehicle of the present application is that the opening is provided above the front part of the casing or the upper surface of the tail part of the casing.
  • a further improvement of the unmanned aerial vehicle of the present application is that the unmanned aerial vehicle further comprises an arm connected to the fuselage and a rotor assembly assembled on the arm, wherein the rotor assembly includes a propeller and a propeller that drives the propeller to rotate.
  • a motor wherein the opening is provided on the upper surface of the tail portion of the fuselage, and the radiator is located above the tail portion of the fuselage and at least partially below the propeller.
  • a further improvement of the unmanned aerial vehicle of the present application is that the opening and the radiator are located above the tail of the fuselage, the casing includes a front casing assembled above the front of the fuselage, and the front casing includes a The air flow is guided to the drainage surface of the radiator, and the drainage surface is arranged at one end of the upper surface of the front shell close to the radiator; wherein, in the direction of the front part of the fuselage toward the tail, the drainage surface is opposite to The height of the bearing surface on which the unmanned aerial vehicle rests is reduced.
  • the radiator includes a heat dissipation plate and a plurality of heat dissipation fins disposed on the heat dissipation plate, and the plurality of heat dissipation fins are located on the surface of the fuselage.
  • the plurality of heat dissipation fins include a plurality of first fins, a plurality of second fins, a plurality of third fins and a plurality of fourth fins;
  • a plurality of the first fins are arranged in parallel
  • a plurality of the second fins are arranged in parallel and are located on one side of the first fins
  • a plurality of the third fins are arranged in parallel.
  • the fins are arranged side by side and located on the other side of the plurality of first fins, and one end of the second fins away from the front part of the fuselage is bent and extended in a direction away from the first fins.
  • One end of the three fins away from the front part of the fuselage is bent and extended in a direction away from the first fin, and the fourth fin is juxtaposed on a plurality of the second fins and a plurality of the third fins One end of the fin away from the front part of the fuselage.
  • a further improvement of the unmanned aerial vehicle of the present application is that the casing further includes a decorative shell assembled on the tail of the fuselage, and the decorative shell includes a hollow part; wherein, the decorative shell covers the edge of the heat dissipation plate, A plurality of the heat dissipation fins protrude out of the decorative shell from the hollow portion.
  • a further improvement of the unmanned aerial vehicle of the present application is that the unmanned aerial vehicle further comprises a sealing member assembled between the decorative shell and the heat dissipation plate.
  • a further improvement of the unmanned aerial vehicle of the present application lies in that the unmanned aerial vehicle further comprises a thermally conductive pad disposed between the ESC and the radiator, and the thermal pad is connected to the ESC and the radiator. thermally conductive contact.
  • the present application matches the radiator to the ESC, and exposes the radiator on the upper surface and/or side surface of the casing, by coupling the various components of the unmanned aerial vehicle.
  • the flight attitude, matching the incoming flow during flight, can take away the heat on the ESC, so as to achieve the purpose of heat dissipation.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle according to an exemplary embodiment of the present application.
  • FIG. 2 is a partially exploded schematic diagram of an unmanned aerial vehicle shown in an exemplary embodiment of the present application
  • FIG. 3 is a top view of an unmanned aerial vehicle according to an exemplary embodiment of the present application.
  • FIG. 4 is a state schematic diagram of an unmanned aerial vehicle when it flies forward according to an exemplary embodiment of the present application
  • FIG. 5 is an unmanned aerial vehicle shown in an exemplary embodiment of the present application.
  • FIG. 6 is an unmanned aerial vehicle shown in an exemplary embodiment of the present application.
  • FIG. 7 is an unmanned aerial vehicle shown in an exemplary embodiment of the present application.
  • an unmanned aerial vehicle 100 includes a fuselage 10 , an ESC 21 assembled on the fuselage 10 , and a radiator 22 for dissipating heat from the ESC 21 .
  • the ESC 21 is provided with a plurality of electronic components for controlling the flight, photography, line detection and signal transmission of the unmanned aerial vehicle 100 .
  • the heat sink 22 is used to dissipate heat for a plurality of electronic components on the ESC 21 .
  • the fuselage 10 includes a casing 11 that constitutes an accommodating space.
  • the upper surface and/or the side surface of the casing 11 is provided with an opening 111.
  • the opening 111 communicates with the accommodating space.
  • the ESC 21 is located in the accommodating space.
  • 22 is installed in the opening 111 and exposed to the body 10 .
  • the radiator 22 is matched with the ESC 21, and the radiator 22 is exposed.
  • the unmanned aerial vehicle 100 of the present application is a flying drone or a consumer drone.
  • the miniaturized time-travelling aircraft has high requirements on speed and maneuverability, and the resulting ESC 21 generates high heat, especially when the unmanned aerial vehicle 100 flies violently.
  • the fan only relying on the core board of the fuselage 10 can no longer meet the heat dissipation requirements of the chip on the ESC 21. If the ESC 21 is placed inside the fuselage 10 , a fan with a larger volume and a heavier heat sink are required to dissipate heat from the ESC 21 , which will increase the cost, weight and volume of the UAV 100 . However, it cannot be achieved under the current space and weight constraints.
  • the space of a fan in the fuselage 10 can be saved under the same heat dissipation capacity, which is lighter than the forced convection scheme of the fan. Lighter, longer battery life, and lower cost.
  • the opening 111 may be provided on the upper surface of the casing 11 , or may be provided on the side surface of the casing 11 .
  • openings 111 may be provided on both the upper surface of the casing 11 and the side surface of the casing 11 .
  • the ESC 21 is disposed at the position of the opening 111 , and the heat sink 22 is installed in the opening 111 and exposed to the body 10 .
  • the opening 111 may be provided on the front side of the case 11 or the rear side of the case 11 .
  • the number of the openings 111 can also be two, and the two openings 111 are arranged on opposite sides of the casing 11 , so that the overall contact area can be increased, and the purpose of heat dissipation can be further achieved.
  • the opening 111 is disposed on the upper surface of the casing 11
  • the opening 111 is disposed above the front of the casing 11 or on the upper surface of the rear of the casing 11, and the ESC 21 and the heat sink 22 are correspondingly installed in the opening 111 places.
  • Different settings of the positions of the openings 111 satisfy the coupling of the various flight attitudes of the unmanned aerial vehicle 100 to match the incoming flow during flight, so as to achieve the purpose of dissipating heat for the ESC 21 .
  • the opening 111 and the heat sink 22 are located above the aft portion of the fuselage 10 .
  • the casing 11 includes a front case 112 mounted above the front of the fuselage 10 , and the front case 112 includes a drainage surface 1121 for guiding the air flow to the radiator 22 ,
  • the drainage surface 1121 is disposed on one end of the upper surface of the front case 112 close to the heat sink 22 .
  • the drainage surface 1121 may be an inclined surface or an arcuate surface.
  • the head of the unmanned aerial vehicle 100 is inclined downward at a predetermined angle so that the heat sink 21 of the electric control board 21 faces the wind, so as to meet the incoming flow of the flight for perfect heat dissipation.
  • the higher the power consumption in forward flight the larger the flight inclination angle, the faster the flight speed, and the larger the windward area of the ESC 21.
  • the UAV 100 also includes an arm 30 connected to the fuselage 10 and a rotor assembly 40 assembled to the arm 30 .
  • the rotor assembly 40 includes a propeller 41 and a motor 42 that drives the propeller 41 to rotate.
  • the opening 111 is disposed on the upper surface of the rear of the fuselage 10
  • the radiator 22 is located above the rear of the fuselage 10 and at least partially below the propeller 41 .
  • the unmanned aerial vehicle 100 includes a plurality of arms 30 and a helical assembly correspondingly assembled with the arms 30 , such as a two-rotor aircraft, a quad-rotor aircraft, and the like.
  • the unmanned aerial vehicle 100 of the present application further includes a thermal pad 24 disposed between the ESC 21 and the radiator 22 .
  • the thermal pad 24 is in thermal contact with the ESC 21 and the radiator 22 . Heat transfer between the ESC 21 and the heat sink 22 .
  • the heat sink 22 includes a heat dissipation plate 221 and a plurality of heat dissipation fins 222 disposed on the heat dissipation plate 221 .
  • the plurality of heat dissipation fins 222 are located on the surface of the fuselage 10 .
  • the setting of 222 can speed up the heat dissipation on the heat dissipation plate 221 .
  • the plurality of heat dissipation fins 222 include a plurality of first fins 2221 , a plurality of second fins 2222 , a plurality of third fins 2223 and a plurality of fourth fins 2224 .
  • the shapes of the different heat dissipation fins 222 meet the heat dissipation requirements under various flight attitudes.
  • a plurality of first fins 2221 are arranged side by side
  • a plurality of second fins 2222 are arranged side by side and are located on one side of the plurality of first fins 2221
  • the plurality of third fins 2223 are arranged side by side and are located on the other side of the plurality of first fins 2221.
  • One end of the second fins 2222 away from the front of the fuselage 10 is bent and extended in a direction away from the first fins 2221.
  • One end of the three fins 2223 away from the front of the fuselage 10 is bent and extended in a direction away from the first fin 2221, and the fourth fins 2224 are juxtaposed on the plurality of second fins 2222 and the plurality of third fins 2223 away from the machine.
  • the second fins 2222 and the third fins 2223 can be bent and arranged to guide the airflow to different directions, and can meet the heat dissipation requirements of the UAV 100 under conditions such as violent ascent and violent brushing.
  • the upward flow can also allow the wind to pass through the heat dissipation fins 222 of the radiator 22 .
  • the increase in heat dissipation capacity and the increase in power consumption can be matched to ensure that the devices on the ESC 21 will not overheat.
  • the lateral inclination of the UAV 100 can also allow the wind to pass through the cooling fins 222 of the radiator 22 and take away the ESC 21 . heat.
  • the external flow field caused by the propeller 41 blows directly to the cooling fins 222 of the radiator 22 from top to bottom, taking away the radiating fins 222 on the ESC 21 . heat.
  • the casing 11 further includes a decorative shell 113 assembled at the rear of the fuselage 10, and the decorative shell 113 includes a hollow portion 1131.
  • the decorative shell 113 covers the edge of the heat dissipation plate 221 , and the plurality of heat dissipation fins 222 protrude from the hollow portion 1131 and protrude from the decorative shell 113 .
  • the hollow portion 1131 of the decorative shell 113 is U-shaped, and the opening 111 of the decorative shell 113 faces the front shell 112 .
  • the unmanned aerial vehicle 100 further includes a sealing member 23 assembled between the decorative shell 113 and the heat dissipation plate 221 .
  • a sealing member 23 assembled between the decorative shell 113 and the heat dissipation plate 221 .
  • the heat dissipation plate 221 and the fuselage 10 are sealedly connected, so that the heat dissipation plate 221 is exposed while ensuring the waterproofness of the fuselage 10 of the UAV 100 .
  • the radiator is matched to the ESC, and the radiator is exposed on the upper surface and/or side of the casing.
  • the ESC can be The heat on the board is taken away, so as to achieve the purpose of heat dissipation.
  • the existing heat dissipation design solution under the same heat dissipation capacity, it can save the space of a fan in the fuselage, which is lighter in weight, longer in battery life, and lower in cost than the fan forced convection solution.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请公开了一种无人飞行器,包括机身、装配于所述机身的电调板以及用以为所述电调板散热的散热器,所述机身包括构成容纳空间的机壳,所述机壳的上表面和/或侧面设有开口,所述开口与所述容纳空间连通,所述电调板位于所述容纳空间内,所述散热器安装于所述开口且裸露于所述机身。本申请将散热器配合于电调板,并将散热器外露设置在机壳的上表面和/或侧面,通过耦合无人飞行器的各个飞行姿态,匹配好飞行时的来流,可以将电调板上的热量带走,从而达到散热的目的。

Description

无人飞行器 技术领域
本申请涉及一种无人飞行器。
背景技术
随着电子技术的发展,电路板的集成化程度越来越高,电路板尺寸越来越小,电路板的热流密度也随之越来越高。当这些电路板应用到小型化的产品(如无人飞行器)时,产品内部狭小的空间结构,不利于电路板的散热。温度是影响电路板信赖性的关键因素,在无人飞行器暴力飞行时,电调板发热功率高。随着温度的升高,电路板的失效率会几何倍数的关系增加。因此,如何快速有效地给电路板进行散热,是决定产品可信赖性的重要因素。
发明内容
有鉴于此,本申请提出一种无人飞行器,能够有效给电调板进行散热。
本申请的实施例提供了一种无人飞行器,包括机身、装配于所述机身的电调板及用以为所述电调板散热的散热器,所述机身包括构成容纳空间的机壳,所述机壳的上表面和/或侧面设有开口,所述开口与所述容纳空间连通,所述电调板位于所述容纳空间内,所述散热器安装于所述开口且裸露于所述机身。
本申请无人飞行器的进一步改进在于,所述开口设置于所述机壳的前部侧面或者所述机壳的尾部侧面。
本申请无人飞行器的进一步改进在于,所述开口设置于所述机壳的前部上方或者所述机壳的尾部上表面。
本申请无人飞行器的进一步改进在于,所述无人飞行器还包括连接于所述机身的机臂以及装配于所述机臂的旋翼组件,所述旋翼组件包括螺旋桨以及驱动所述螺旋桨转动的电机;其中,所述开口设置于所述机身的尾部上表面,所述散热器位于所述机身的尾部上方且至少部分位于所述螺旋桨的下方。
本申请无人飞行器的进一步改进在于,所述开口和所述散热器位于所述机身的尾部上方,所述机壳包括装配于机身前部上方的前壳,所述前壳包括用以将气流引导向所 述散热器的引流面,所述引流面设置于所述前壳的上表面靠近散热器的一端;其中,在机身的前部朝向尾部的方向上,所述引流面相对所述无人飞行器所静置的承载面高度减小。
本申请无人飞行器的进一步改进在于,所述散热器包括散热板及设置于所述散热板上的多个散热鳍片,多个所述散热鳍片位于所述机身的表面。
本申请无人飞行器的进一步改进在于,多个散热鳍片包括多个第一鳍片、多个第二鳍片、多个第三鳍片和多个第四鳍片;其中,在机身的前部朝向尾部的方向上,多个所述第一鳍片并列设置,多个所述第二鳍片并列设置且位于多个所述第一鳍片的一侧,多个所述第三鳍片并列设置且位于多个所述第一鳍片的另一侧,所述第二鳍片远离所述机身前部的一端向远离所述第一鳍片的方向弯折延伸,所述第三鳍片远离所述机身前部的一端向远离所述第一鳍片的方向弯折延伸,所述第四鳍片并列设置于多个所述第二鳍片和多个所述第三鳍片远离所述机身前部的一端。
本申请无人飞行器的进一步改进在于,所述机壳还包括装配于所述机身尾部的装饰壳,所述装饰壳包括镂空部;其中,所述装饰壳覆盖于所述散热板的边缘,多个所述散热鳍片从所述镂空部凸伸出所述装饰壳。
本申请无人飞行器的进一步改进在于,所述无人飞行器还包括装配于所述装饰壳与所述散热板之间的密封件。
本申请无人飞行器的进一步改进在于,所述无人飞行器还包括设置在所述电调板与所述散热器之间的导热垫,所述导热垫与所述电调板、所述散热器导热接触。
本申请的实施例提供的技术方案可以包括以下有益效果:本申请将散热器配合于电调板,并将散热器外露设置在机壳的上表面和/或侧面,通过耦合无人飞行器的各个飞行姿态,匹配好飞行时的来流,可以将电调板上的热量带走,从而达到散热的目的。
附图说明
图1是本申请一示例性实施例示出的一种无人飞行器的结构示意图;
图2是本申请一示例性实施例示出的一种无人飞行器的部分分解示意图;
图3是本申请一示例性实施例示出的一种无人飞行器的俯视图;
图4是本申请一示例性实施例示出的一种无人飞行器前飞时的状态示意图;
图5是本申请一示例性实施例示出的一种无人飞行器;
图6是本申请一示例性实施例示出的一种无人飞行器;
图7是本申请一示例性实施例示出的一种无人飞行器。
具体实施方式
以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面结合附图,对本申请的一些实施方式作详细说明,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参照图1和图2,本申请实施例的无人飞行器100包括机身10、装配于机身10的电调板21及用以为电调板21散热的散热器22。电调板21上设有多个电子元件,用于控制无人飞行器100的飞行、拍摄、线路检测以及信号传输等。散热器22用于对电调板21上的多个电子元件进行散热处理。
本实施例中,机身10包括构成容纳空间的机壳11,机壳11的上表面和/或侧面设有开口111,开口111与容纳空间连通,电调板21位于容纳空间内,散热器22安装于开口111且裸露于机身10。该实施例中,将散热器22配合于电调板21,并将散热器22外露设置,通过耦合无人飞行器100的各个飞行姿态,匹配好飞行时的来流,将电调板21上的热量带走,从而达到散热的目的。
本申请的无人飞行器100为穿越机或消费类无人机。小型化穿越机对速度以及机动性的要求很高,随之带来的电调板21发热量也很高,尤其在无人飞行器100暴力飞行时。目前功耗下,单纯靠机身10核心板的风机已经无法满足电调板21上芯片的散热要求。若将电调板21放置于机身10内部,则需要更大体积的风扇、更重的散热片给电调板21散热,如此会造成无人飞行器100的成本、重量、体积均会增加,而当前空间以及重量约束下无法得到实现。而本申请中,通过将散热器22配合于电调板21,并将 散热器22外露设置,在相同散热能力下,可以节省机身10内一个风扇的空间,比风扇强制对流方案,重量更轻,续航更长,且成本也更低。
其中,该开口111可以设置在机壳11的上表面,也可以设置在机壳11的侧面。此外,也可以在机壳11的上表面和机壳11的侧面均设置有开口111。相对应地,将电调板21设置在开口111的位置,并将散热器22安装在开口111且裸露于机身10。
在开口111设置在机壳11的侧面的实施例中,开口111可以设置于机壳11的前部侧面或者机壳11的尾部侧面。该开口111也可以设置为两个,两个开口111设置在机壳11的相对两侧面,如此可以增加整体的接触面积,可以进一步达到散热目的。
在开口111设置在机壳11的上表面的实施例中,该开口111设置于机壳11的前部上方或者机壳11的尾部上表面,电调板21及散热器22对应地安装在开口111处。对于开口111位置的不同设置均满足耦合无人飞行器100的各个飞行姿态匹配飞行时的来流,从而达到为电调板21散热的目的。
在一些实施例中,该开口111和散热器22位于机身10的尾部上方。相对应地,为将气流引导向该散热器22,该机壳11包括装配于机身10前部上方的前壳112,前壳112包括用以将气流引导向散热器22的引流面1121,该引流面1121设置于前壳112的上表面靠近散热器22的一端。其中,在机身10的前部朝向尾部的方向上,引流面1121相对无人飞行器100所静置的承载面高度减小。该引流面1121可以为倾斜面也可以为弧形面。
无人飞行器100在前飞时,无人飞行器100的头部向下倾斜预定角度让电调板21散热片迎风,迎合飞行来流进行完美散热。其中,前飞功耗越高,飞行倾角就会越大,飞行速度也会越快,电调板21迎风面积也会增大,散热能力的增加与功耗的增加刚好完美匹配。
无人飞行器100还包括连接于机身10的机臂30以及装配于机臂30的旋翼组件40。该旋翼组件40包括螺旋桨41以及驱动螺旋桨41转动的电机42。其中,开口111设置于机身10的尾部上表面,散热器22位于机身10的尾部上方且至少部分位于螺旋桨41的下方。如此在无人飞行器100处理飞行或者悬停工况,螺旋桨41引起的外流场从上到下直接吹向散热板221,从而通过散热板221带走电调板21上的热量。在本实施例中,无人飞行器100中包括多个机臂30以及和与机臂30对应装配的螺旋组件,例如:两旋翼飞行器、四旋翼飞行器等。
本申请的无人飞行器100还包括设置在电调板21与散热器22之间的导热垫24,导热垫24与电调板21、散热器22导热接触,通过导热垫24的设置,可以加快电调板21与散热器22之间的热量传递。
如图1至图3所示,该散热器22包括散热板221及设置于散热板221上的多个散热鳍片222,多个散热鳍片222位于机身10的表面,通过该散热鳍片222的设置,可以加快散热板221上热量的散发。
其中,多个散热鳍片222包括多个第一鳍片2221、多个第二鳍片2222、多个第三鳍片2223和多个第四鳍片2224。该不同散热鳍片222的形状以满足各飞行姿态下的散热需求。该实施例中,在机身10的前部朝向尾部的方向上,多个第一鳍片2221并列设置,多个第二鳍片2222并列设置且位于多个第一鳍片2221的一侧,多个第三鳍片2223并列设置且位于多个第一鳍片2221的另一侧,第二鳍片2222远离机身10前部的一端向远离第一鳍片2221的方向弯折延伸,第三鳍片2223远离机身10前部的一端向远离第一鳍片2221的方向弯折延伸,第四鳍片2224并列设置于多个第二鳍片2222和多个第三鳍片2223远离机身10前部的一端。该第二鳍片2222和第三鳍片2223通过弯折设置,可以将气流引导向不同的方向,而且可以满足无人飞行器100在暴力上升、暴力刷锅等工况的散热需求。
如图4和图5结合图2所示,在无人飞行器100前飞时,无人飞行器100倾角让散热器22迎风,迎合飞行来流进行散热。前飞功耗越高,飞行倾角就会越大,飞行速度也会越快,电调板21功耗也越大,散热器22迎风面积也会增大,散热能力的增加与电调板21功耗的增加刚好匹配。
如图6结合图2所示,在无人飞行器100暴力上升时,上升来流也能够让风从散热器22的散热鳍片222走过。电调板21发热量越大,上升速度越快,对应的上升来流也会越大,散热能力的增加与功耗的增加能够实现匹配,保证电调板21上器件不会超温。
如图7结合图2所示,在无人飞行器100暴力刷锅时,无人飞行器100侧向倾角也能够让风从散热器22的散热鳍片222间走过,带走电调板21上热量。
如图6结合图2所示,在无人飞行器100悬停工况,螺旋桨41引起的外流场从上到下直接吹向散热器22的散热鳍片222,带走电调板21上的热量。
再次参照图1和图2,该机壳11还包括装配于机身10尾部的装饰壳113,装饰壳 113包括镂空部1131。其中,装饰壳113覆盖于散热板221的边缘,多个散热鳍片222从镂空部1131凸伸出装饰壳113。该实施例中,装饰壳113的镂空部1131呈U字型,该装饰壳113的开口111朝向前壳112,在装饰壳113在装配于机身10后,该镂空壳与前壳112衔接。
进一步地,该无人飞行器100还包括装配于装饰壳113与散热板221之间的密封件23。通过该密封件23的装配,以使散热板221与机身10实现密封连接,从而散热板221在外露设置的同时,同时保证无人飞行器100的机身10的防水性。
本申请将散热器配合于电调板,并将散热器外露设置在机壳的上表面和/或侧面,通过耦合无人飞行器的各个飞行姿态,匹配好飞行时的来流,可以将电调板上的热量带走,从而达到散热的目的。相对现有散热设计的方案,在相同散热能力下,可以节省机身内一个风扇的空间,比风扇强制对流方案、重量更轻、续航更长、且成本也更低。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由本申请的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种无人飞行器(100),其特征在于,包括机身(10)、装配于所述机身(10)的电调板(21)及用以为所述电调板(21)散热的散热器(22),所述机身(10)包括构成容纳空间的机壳(11),所述机壳(11)的上表面和/或侧面设有开口(111),所述开口(111)与所述容纳空间连通,所述电调板(21)位于所述容纳空间内,所述散热器(22)安装于所述开口(111)且裸露于所述机身(10)。
  2. 根据权利要求1所述的无人飞行器(100),其特征在于,所述开口(111)设置于所述机壳(11)的前部侧面或者所述机壳(11)的尾部侧面。
  3. 根据权利要求1所述的无人飞行器(100),其特征在于,所述开口(111)设置于所述机壳(11)的前部上方或者所述机壳(11)的尾部上表面。
  4. 根据权利要求3所述的无人飞行器(100),其特征在于,所述无人飞行器(100)还包括连接于所述机身(10)的机臂(30)以及装配于所述机臂(30)的旋翼组件(40),所述旋翼组件(40)包括螺旋桨(41)以及驱动所述螺旋桨(41)转动的电机(42);
    其中,所述开口(111)设置于所述机身(10)的尾部上表面,所述散热器(22)位于所述机身(10)的尾部上方且至少部分位于所述螺旋桨(41)的下方。
  5. 根据权利要求3所述的无人飞行器(100),其特征在于,所述开口(111)和所述散热器(22)位于所述机身(10)的尾部上方,所述机壳(11)包括装配于机身(10)前部上方的前壳(112),所述前壳(112)包括用以将气流引导向所述散热器(22)的引流面(1121),所述引流面(1121)设置于所述前壳(112)的上表面靠近散热器(22)的一端;其中,在机身(10)的前部朝向尾部的方向上,所述引流面(1121)相对所述无人飞行器(100)所静置的承载面高度减小。
  6. 根据权利要求1所述的无人飞行器(100),其特征在于,所述散热器(22)包括散热板(221)及设置于所述散热板(221)上的多个散热鳍片(222),多个所述散热鳍片(222)位于所述机身(10)的表面。
  7. 根据权利要求6所述的无人飞行器(100),其特征在于,多个散热鳍片(222)包括多个第一鳍片(2221)、多个第二鳍片(2222)、多个第三鳍片(2223)和多个第四鳍片(2224);其中,在机身(10)的前部朝向尾部的方向上,多个所述第一鳍片(2221)并列设置,多个所述第二鳍片(2222)并列设置且位于多个所述第一鳍片(2221)的一侧,多个所述第三鳍片(2223)并列设置且位于多个所述第一鳍片(2221)的另一侧,所述第二鳍片(2222)远离所述机身(10)前部的一端向远离所述第一鳍片(2221)的方向弯折延伸,所述第三鳍片(2223)远离所述机身(10)前部的一端向远离所述第一 鳍片(2221)的方向弯折延伸,所述第四鳍片(2224)并列设置于多个所述第二鳍片(2222)和多个所述第三鳍片(2223)远离所述机身(10)前部的一端。
  8. 根据权利要求6所述的无人飞行器(100),其特征在于,所述机壳(11)还包括装配于所述机身(10)尾部的装饰壳(113),所述装饰壳(113)包括镂空部(1131);其中,所述装饰壳(113)覆盖于所述散热板(221)的边缘,多个所述散热鳍片(222)从所述镂空部(1131)凸伸出所述装饰壳(113)。
  9. 根据权利要求8所述的无人飞行器(100),其特征在于,所述无人飞行器(100)还包括装配于所述装饰壳(113)与所述散热板(221)之间的密封件(23)。
  10. 根据权利要求1所述的无人飞行器(100),其特征在于,所述无人飞行器(100)还包括设置在所述电调板(21)与所述散热器(22)之间的导热垫(24),所述导热垫(24)与所述电调板(21)、所述散热器(22)导热接触。
PCT/CN2020/135308 2020-09-27 2020-12-10 无人飞行器 WO2022062194A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080071048.5A CN114514802A (zh) 2020-09-27 2020-12-10 无人飞行器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022165409.2U CN213073460U (zh) 2020-09-27 2020-09-27 无人飞行器
CN202022165409.2 2020-09-27

Publications (1)

Publication Number Publication Date
WO2022062194A1 true WO2022062194A1 (zh) 2022-03-31

Family

ID=75560835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135308 WO2022062194A1 (zh) 2020-09-27 2020-12-10 无人飞行器

Country Status (2)

Country Link
CN (2) CN213073460U (zh)
WO (1) WO2022062194A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275366A (zh) * 2016-08-30 2017-01-04 北京奇正数元科技股份有限公司 一种散热性能优良的轻小型无人机
CN207354799U (zh) * 2017-10-16 2018-05-11 广州极飞科技有限公司 电调装置及具有其的无人机
CN208813501U (zh) * 2018-08-27 2019-05-03 青岛欧森系统技术有限公司 系留四旋翼无人机
JP2020111326A (ja) * 2020-03-24 2020-07-27 株式会社ザクティ 空撮カメラ及び電子機器並びにそれを備えた無人飛行体
CN211252980U (zh) * 2019-07-24 2020-08-14 广州极飞科技有限公司 飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106275366A (zh) * 2016-08-30 2017-01-04 北京奇正数元科技股份有限公司 一种散热性能优良的轻小型无人机
CN207354799U (zh) * 2017-10-16 2018-05-11 广州极飞科技有限公司 电调装置及具有其的无人机
CN208813501U (zh) * 2018-08-27 2019-05-03 青岛欧森系统技术有限公司 系留四旋翼无人机
CN211252980U (zh) * 2019-07-24 2020-08-14 广州极飞科技有限公司 飞行器
JP2020111326A (ja) * 2020-03-24 2020-07-27 株式会社ザクティ 空撮カメラ及び電子機器並びにそれを備えた無人飛行体

Also Published As

Publication number Publication date
CN114514802A (zh) 2022-05-17
CN213073460U (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN107113997B (zh) 散热机构及具有该散热机构的无人飞行器
WO2019134399A1 (zh) 无人机及其机壳
CN110382356B (zh) 无人机的动力组件和无人机
US20240083571A1 (en) Heat dissipation structure, heat dissipation method and device, aerial vehicle, and readable storage medium
WO2019140660A1 (zh) 机身及包括该机身的无人机
WO2020034160A1 (zh) 散热组件、散热模组和无人飞行器
WO2020001273A1 (zh) 散热结构及无人飞行器
CN206068124U (zh) 无人飞行器
WO2020000182A1 (zh) 散热装置及具有该散热装置的无人机
WO2022062194A1 (zh) 无人飞行器
CN210555610U (zh) 一种无人机的散热结构
WO2023051463A1 (zh) 一种无人飞行器
CN215496843U (zh) 一种无人机电池散热结构及无人机
CN215098210U (zh) 一种机臂及无人机
CN210882606U (zh) 无人机
CN210653613U (zh) 一种无人机骨架及其无人机
JP3038538U (ja) 超薄型直流無ブラシ式ファン
WO2023178688A1 (zh) 无人机
CN220586684U (zh) 一种机载电子设备风冷结构组件
CN221214636U (zh) 一种无人机机体总成及无人机
CN217825747U (zh) 车载监控设备
CN217864729U (zh) 一种无人机机臂用的散热机构
CN220662869U (zh) 一种无人机可拆式外壳
CN210440257U (zh) 一种具有良好散热性能的便携风扇
CN213768943U (zh) 无人机机头及无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955036

Country of ref document: EP

Kind code of ref document: A1