WO2019116868A1 - 半導体整流器 - Google Patents

半導体整流器 Download PDF

Info

Publication number
WO2019116868A1
WO2019116868A1 PCT/JP2018/043398 JP2018043398W WO2019116868A1 WO 2019116868 A1 WO2019116868 A1 WO 2019116868A1 JP 2018043398 W JP2018043398 W JP 2018043398W WO 2019116868 A1 WO2019116868 A1 WO 2019116868A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor rectifier
electrode
transistor
diode
semiconductor
Prior art date
Application number
PCT/JP2018/043398
Other languages
English (en)
French (fr)
Inventor
敦司 山口
淳一 柏木
洋平 森山
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US16/767,428 priority Critical patent/US11476247B2/en
Priority to CN201880079373.9A priority patent/CN111433897A/zh
Priority to DE112018006307.0T priority patent/DE112018006307T5/de
Priority to JP2019559523A priority patent/JPWO2019116868A1/ja
Publication of WO2019116868A1 publication Critical patent/WO2019116868A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Definitions

  • the present disclosure relates to semiconductor rectifiers.
  • a Schottky barrier diode which is one form of a semiconductor rectifier, has a Si semiconductor layer, a Schottky electrode, and an ohmic electrode.
  • a semiconductor rectifier provided by one aspect of the present disclosure comprises a transistor and a diode.
  • the transistor has a source electrode, a drain electrode and a gate electrode.
  • the diode has an anode electrode and a cathode electrode. The anode electrode is electrically connected to the gate electrode, and the cathode electrode is electrically connected to the source electrode.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • It is a circuit diagram showing a semiconductor rectifier concerning a 1st embodiment of this indication. It is a graph which shows the voltage current characteristic of the semiconductor rectifier concerning a 1st embodiment of this indication. It is a graph which shows the reverse recovery characteristic of the semiconductor rectifier concerning a 1st embodiment of this indication. It is a top view showing the 1st modification of the semiconductor rectifier concerning a 1st embodiment of this indication.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX of FIG. 8; It is a top view showing the 3rd modification of the semiconductor rectifier concerning a 1st embodiment of this indication. It is a top view showing a semiconductor rectifier concerning a 2nd embodiment of this indication. It is a circuit diagram showing a semiconductor rectifier concerning a 2nd embodiment of this indication. It is a top view showing a semiconductor rectifier concerning a 3rd embodiment of this indication. It is a circuit diagram showing a semiconductor rectifier concerning a 3rd embodiment of this indication.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII in FIG. 21. It is a top view showing the 1st modification of the semiconductor rectifier concerning a 4th embodiment of this indication. It is a top view showing the 2nd modification of the semiconductor rectifier concerning a 4th embodiment of this indication.
  • FIG. 25 is a cross-sectional view taken along the line XXV-XXV in FIG. 24. It is a top view showing a semiconductor rectifier concerning a 5th embodiment of this indication. It is a circuit diagram showing the semiconductor rectifier concerning a 5th embodiment of this indication. It is a top view showing a semiconductor rectifier concerning a 6th embodiment of this indication.
  • FIG. 22 is a cross-sectional view taken along the line XXII-XXII in FIG. 21. It is a top view showing the 1st modification of the semiconductor rectifier concerning a 4th embodiment of this indication. It is a top view showing the 2nd modification of the semiconductor rectifier concerning
  • FIG. 29 is a cross-sectional view taken along the line XXIX-XXIX of FIG. 28. It is a top view showing a semiconductor rectifier concerning a 7th embodiment of this indication.
  • FIG. 31 is a cross-sectional view taken along the line XXXI-XXXI of FIG. 30.
  • First Embodiment 1 to 4 show a semiconductor rectifier according to a first embodiment of the present disclosure.
  • the semiconductor rectifier A1 of the present embodiment includes a transistor 1, a diode 2, a lead frame 3 and a sealing resin 6.
  • FIG. 1 is a plan view showing a semiconductor rectifier A1.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is a circuit diagram showing the semiconductor rectifier A1.
  • the transistor 1 is, for example, a normally-on (depletion-type) transistor, and includes an element body 10, a source electrode 11S, a drain electrode 11D, and a gate electrode 11G.
  • the element body 10 includes a semiconductor layer, and in the present embodiment, includes a GaN semiconductor layer.
  • the transistor 1 is, for example, a GaN-MOSFET or a GaN-HEMT.
  • the source electrode 11S, the drain electrode 11D, and the gate electrode 11G are provided on the top surface of the device body 10, and all of them are located on the same side of the device body 10.
  • the source electrode 11S, the drain electrode 11D and the gate electrode 11G are made of metal and are formed by plating, for example. It is preferable that the surface layer of the source electrode 11S, the drain electrode 11D, and the gate electrode 11G be made of Au from the viewpoint of suitably performing the bonding and the solder bonding of the wire.
  • the portion of the source electrode 11S, the drain electrode 11D, and the gate electrode 11G covered by the surface layer is made of, for example, a metal such as Cu or Ni.
  • the diode 2 has an element body 20, an anode electrode 21A and a cathode electrode 21C.
  • the diode 2 is, for example, a Si Schottky barrier diode in which the element body 20 includes a Si semiconductor layer.
  • the threshold voltage of the diode 2 is preferably 0.8 V or less.
  • the lead frame 3 supports the transistor 1 and the diode 2 and constitutes a conduction path to the transistor 1 and the diode 2.
  • the lead frame 3 has an island portion 30, an anode terminal 31A, and a cathode terminal 31C. Further, the metal layer 32 and the insulating layer 33 are provided on the lead frame 3.
  • the material of the lead frame 3 is not particularly limited.
  • the lead frame 3 is formed by performing punching, bending, or the like using a metal plate material made of a metal such as Cu or Ni.
  • the island portion 30 is a portion that supports the transistor 1 and the diode 2.
  • the island portion 30 is rectangular in plan view having four sides along the x direction and the y direction, but the shape of the island portion 30 is not particularly limited.
  • the metal layer 32 is provided in the island portion 30.
  • the metal layer 32 is a layer made of, for example, a metal or an alloy appropriately selected from Al, Cu, Ni and the like.
  • the metal layer 32 is fixed to the island portion 30 via the insulating layer 33.
  • the insulating layer 33 is made of an insulating material, and for example, a resin or a ceramic is appropriately adopted.
  • the z-direction dimension of the metal layer 32 is smaller than the z-direction dimension of the island portion 30.
  • the method of forming the metal layer 32 is not particularly limited, and may be formed on the insulating layer 33 by a method such as plating, or the metal layer 32 formed in advance is joined to the island portion 30 by the insulating layer 33. It is also good.
  • the transistor 1 is bonded to the metal layer 32 by the bonding layer 19.
  • the cathode electrode 21 C of the diode 2 is bonded to the metal layer 32 by the bonding layer 29.
  • the bonding layer 19 may be insulating or conductive.
  • the bonding layer 29 is made of a conductive material, for example, a solder. Thereby, the cathode electrode 21C of the diode 2 is conducted to the metal layer 32.
  • the anode terminal 31A serves as a terminal of the semiconductor rectifier A1, and is an anode-connected terminal.
  • the anode terminal 31A is separated from the island portion 30.
  • the cathode terminal 31C serves as a terminal of the semiconductor rectifier A1, and is a terminal connected to the cathode. In the present embodiment, the cathode terminal 31C is connected to the island portion 30.
  • the semiconductor rectifier A1 has a plurality of anode wires 4A, a gate wire 4G, a plurality of source wires 4S, and a plurality of drain wires 4D.
  • the plurality of anode wires 4A are connected to the anode terminal 31A and the anode electrode 21A of the diode 2.
  • the gate wire 4G is connected to the anode electrode 21A of the diode 2 and the gate electrode 11G of the transistor 1.
  • the plurality of source wires 4S are connected to the metal layer 32 and the source electrode 11S of the transistor 1.
  • the plurality of drain wires 4D are connected to the drain electrode 11D of the transistor 1 and the island portion 30.
  • the plurality of anode wires 4A, the gate wire 4G, the plurality of source wires 4S, and the plurality of drain wires 4D are made of a metal such as Au, aluminum or Cu.
  • a metal such as Au, aluminum or Cu.
  • the case where the plurality of anode wires 4A, the gate wire 4G, the plurality of source wires 4S and the plurality of drain wires 4D are made of Au will be described as an example, but the number can be increased or decreased depending on the respective materials.
  • the semiconductor rectifier A1 constitutes the circuit shown in FIG.
  • the anode electrode 21A of the diode 2 is electrically connected to the gate electrode 11G through the gate wire 4G.
  • the cathode electrode 21C of the diode 2 is electrically connected to the source electrode 11S via the metal layer 32 and the plurality of source wires 4S.
  • the sealing resin 6 is for protecting the transistor 1, the diode 2, a part of the lead frame 3, the plurality of anode wires 4A, the gate wire 4G, the plurality of source wires 4S and the plurality of drain wires 4D. It is made of an insulating resin such as epoxy resin. In the illustrated example, the sealing resin 6 exposes the back surface of the island portion 30. The anode terminal 31A and the cathode terminal 31C project from the side surface of the sealing resin 6 in the same direction.
  • FIG. 5 shows the relationship between the voltage and the current applied between the anode terminal 31A and the cathode terminal 31C.
  • the threshold voltage at which a predetermined current starts to flow in the semiconductor rectifier A1 is lower than any threshold voltage of the semiconductor rectifier consisting of a single Si-FRD and the semiconductor rectifier consisting of a single SiC-SBD.
  • FIG. 6 shows reverse recovery characteristics of the semiconductor rectifier A1 and the semiconductor rectifier consisting of a single Si-FRD as a comparative example and the semiconductor rectifier consisting of a single SiC-SBD. Focusing on the reverse recovery time, which is the time when the current flows in the reverse direction when the on state is switched to the off state, the reverse recovery time of the semiconductor rectifier A1 is the reverse recovery time of the semiconductor rectifier consisting of a single SiC-SBD. It is comparable and significantly shorter than the reverse recovery time of the semiconductor rectifier consisting of Si-FRD alone. As described above, according to the semiconductor rectifier A1, the withstand voltage can be improved, the threshold voltage can be reduced, and the reverse recovery time can be shortened.
  • FIG. 7 shows a first modification of the semiconductor rectifier A1.
  • the semiconductor rectifier A11 of this modification is different from the above-described semiconductor rectifier A1 in the configuration of the lead frame 3.
  • the metal layer 32 and the insulating layer 33 described above are not formed in the island portion 30.
  • the element body 10 of the transistor 1 is bonded to the island 30 by the bonding layer 19, and the cathode electrode 21 C of the diode 2 is bonded to the island 30 by the bonding layer 29.
  • the island portion 30 has the same potential as the cathode electrode 21C.
  • the cathode terminal 31C is separated from the island portion 30.
  • the plurality of drain wires 4D are connected to the drain electrode 11D of the transistor 1 and the cathode terminal 31C.
  • the island portion 30 may be partially exposed from the sealing resin 6 or may be entirely covered with the sealing resin 6.
  • Such modification also makes it possible to improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time. Further, since the metal layer 32 and the insulating layer 33 are unnecessary, the cost can be reduced.
  • First Embodiment Second Modification 8 and 9 show a second modification of the semiconductor rectifier A1.
  • the semiconductor rectifier A12 of this modification differs from the above-described example in the mounting structure of the diode 2.
  • the cathode electrode 21C of the diode 2 is bonded to the source electrode 11S of the transistor 1 by the bonding layer 29.
  • a mounting structure in which the transistor 1 and the diode 2 are stacked is obtained.
  • Such modification also makes it possible to improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time.
  • the conduction path between the cathode electrode 21C of the diode 2 and the source electrode 11S of the transistor 1 is formed only by the bonding layer 29, and does not include the source wire 4S in the above-described example. Thereby, the resistance of the conduction path leading to the source electrode 11S can be reduced.
  • FIG. 10 shows a third modification of the semiconductor rectifier A1.
  • the semiconductor rectifier A13 of this modification is similar to the semiconductor rectifier A12 in the mounting structure of the transistor 1 and the diode 2, but differs in the configuration of the lead frame 3 from the semiconductor rectifier A12.
  • the island portion 30 and the cathode terminal 31C are integrally formed.
  • the plurality of drain wires 4D are connected to the drain electrode 11D and the island portion 30.
  • Such modification also makes it possible to improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time. Further, the lengths of the plurality of drain wires 4D can be shorter than the lengths of the plurality of drain wires 4D in the semiconductor rectifier A12. As a result, the resistance of the conduction path between the drain electrode 11D and the cathode terminal 31C can be reduced.
  • Second Embodiment 11 and 12 show a semiconductor rectifier according to a second embodiment of the present disclosure.
  • the semiconductor rectifier A2 of the present embodiment includes a first resistor 51 in addition to the transistor 1 and the diode 2.
  • the first resistor 51 intervenes in the conduction path between the anode terminal 31 A and the gate electrode 11 G of the transistor 1.
  • the first resistor 51 may be integrally formed with either the transistor 1 or the diode 2.
  • the metal layer 32 is divided into three regions of a first region 321, a second region 322, and a third region 323.
  • the transistor 1 and the diode 2 are joined to the first region 321.
  • the electrodes of the first resistor 51 are respectively joined to the second region 322 and the third region 323.
  • a wire 41 is connected to the anode electrode 21A of the diode 2 and the second region 322.
  • the gate wire 4G is connected to the third region 323 and the gate electrode 11G.
  • Such an embodiment can also improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time. Further, by providing the first resistor 51, if the resistance value of the first resistor 51 is set variously, the operating characteristics of the semiconductor rectifier A2 can be set variously.
  • Third Embodiment 13 and 14 show a semiconductor rectifier according to a third embodiment of the present disclosure.
  • the semiconductor rectifier A3 of the present embodiment includes a capacitor 55 in addition to the transistor 1 and the diode 2.
  • the capacitor 55 is connected in parallel to the diode 2.
  • the capacitor 55 may be integrally formed with either the transistor 1 or the diode 2.
  • the metal layer 32 has a first region 321 and a second region 322. In the first region 321, one electrode of the transistor 1, the diode 2, and the capacitor 55 is joined. The other electrode of the capacitor 55 is bonded to the second region 322. A plurality of wires 41 are connected to the anode terminal 31 ⁇ / b> A and the second region 322.
  • Such an embodiment can also improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time. Further, as described later, by providing the capacitor 55, the characteristics of the semiconductor rectifier A3 can be enhanced.
  • FIGS. 15 and 16 show a first modification of the semiconductor rectifier according to the third embodiment of the present disclosure.
  • a semiconductor rectifier A31 of the present modification includes a second resistor 52.
  • the second resistor 52 is connected in series to the capacitor 55, and is included in the conduction path between the capacitor 55 and the source electrode 11S.
  • the second resistor 52 may be integrally formed with either the transistor 1 or the diode 2.
  • the metal layer 32 includes a first area 321, a second area 322, a third area 323, and a fourth area 324.
  • the transistor 1 and the diode 2 are joined to the first region 321.
  • One electrode of the capacitor 55 is joined to the second region 322.
  • the third region 323, the other electrode of the capacitor 55 and one electrode of the second resistor 52 are joined.
  • the other electrode of the second resistor 52 is joined to the fourth region 324.
  • a plurality of wires 41 are connected to the anode terminal 31 ⁇ / b> A and the second region 322. Further, a plurality of wires 42 are connected to the fourth region 324 and the first region 321.
  • Such an embodiment can also improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time.
  • FIG. 17 Prior to describing the characteristics of the semiconductor rectifier A3 and the semiconductor rectifier A31, the characteristics of the semiconductor rectifier A1 described above will be described with reference to FIGS. 17 and 18.
  • FIG. 17 electrostatic capacitance is inherent according to the material of the element body 20, the anode electrode 21A, and the cathode electrode 21C and the bonding form of these.
  • the graph showing reverse recovery characteristics when the capacitance Cdi of the diode 2 is set to 300 pF, 840 pF, and 1200 pF is shown in FIG. 17, and the graph showing the voltage inside the diode 2 is shown in FIG. 17 and 18 show simulation results. As shown in FIG. 17, as the capacitance Cdi is smaller, the reverse recovery time can be shortened.
  • the capacitance Cds between the drain electrode 11D and the source electrode 11S of the transistor 1, the capacitance Cgs between the gate electrode 11G and the source electrode 11S, and the capacitance Cdi of the diode 2 It is preferable to satisfy the relationship 2Cds ⁇ Cdi + Cgs.
  • FIG. 19 shows reverse recovery characteristics
  • FIG. 20 shows the voltage of the diode 2.
  • the graphs shown in these figures show that the capacitance Cdi of each of the semiconductor rectifier A1, the semiconductor rectifier A3 and the semiconductor rectifier A31 is 300 pF, the capacitance Cxd of the capacitor 55 of the semiconductor rectifier A3 and the semiconductor rectifier A31 is 470 pF, and the semiconductor rectifier It is a simulation result on the conditions whose resistance value R2 of the 2nd resistor 52 of A31 is 100 (ohm).
  • the reverse recovery time of the semiconductor rectifier A3 is obviously longer than the reverse recovery time of the semiconductor rectifier A1. This means that adding only the capacitor 55 results in an increase in reverse recovery time.
  • the reverse recovery time of the semiconductor rectifier A31 is substantially equal to the reverse recovery time of the semiconductor rectifier A1, and apparently shorter than the reverse recovery time of the semiconductor rectifier A3. This means that the reverse recovery time can be shortened by adding not only the capacitor 55 but also the second resistor 52 connected in series with the capacitor 55.
  • the capacitance Cds between the drain electrode 11D and the source electrode 11S of the transistor 1, the capacitance Cgs between the gate electrode 11G and the source electrode 11S, the capacitance Cdi of the diode 2 and the capacitance of the capacitor 55 It is preferable that the capacitance Cxd satisfy the relationship 2Cds ⁇ Cdi + Cgs + Cxd.
  • Fourth Embodiment 21 and 22 illustrate a semiconductor rectifier according to a fourth embodiment of the present disclosure.
  • the semiconductor rectifier A4 of the present embodiment is different from the above-described embodiment in the configuration of the transistor 1.
  • the element body 10 includes a SiC semiconductor layer, and is a so-called vertical transistor.
  • the source electrode 11S and the gate electrode 11G are located on the upper surface of the element body 10, and the drain electrode 11D is located on the lower surface opposite to the source electrode 11S and the gate electrode 11G.
  • the transistor 1 D is bonded to the metal layer 32 by the bonding layer 19.
  • the bonding layer 19 is made of a conductive material, for example, a solder.
  • the island portion 30 and the cathode terminal 31C are integrally formed.
  • the plurality of wires 41 are connected to the metal layer 32 and the island portion 30.
  • the drain electrode 11D of the transistor 1 and the cathode terminal 31C are electrically connected through the bonding layer 19, the metal layer 32, the plurality of wires 41, and the island portion 30.
  • Such an embodiment can also improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time.
  • the semiconductor rectifier A4 is suitable for miniaturizing in the z direction.
  • FIG. 23 shows a first modification of the semiconductor rectifier A4.
  • the configuration of the metal layer 32 and the insulating layer 33 is different from that of the semiconductor rectifier A4 described above.
  • the metal layer 32 and the insulating layer 33 overlap the diode 2 in the z-direction view and do not overlap the transistor 1.
  • the cathode electrode 21 C of the diode 2 is conductively bonded to the metal layer 32 by the bonding layer 29.
  • the plurality of source wires 4S are connected to the metal layer 32 and the source electrode 11S of the transistor 1.
  • the drain electrode 11D of the transistor 1 is conductively connected to the island portion 30 by the bonding layer 19.
  • Such an embodiment can also improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time.
  • the drain electrode 11D and the cathode terminal 31C are electrically connected only through the bonding layer 19 and the island portion 30. As a result, the resistance of the conduction path between the drain electrode 11D and the cathode terminal 31C can be reduced.
  • Fourth Embodiment Second Modification 24 and 25 show a second modification of the semiconductor rectifier A4.
  • the semiconductor rectifier A42 of this modification has a mounting structure in which the transistor 1 and the diode 2 are stacked. That is, the cathode electrode 21 ⁇ / b> C of the diode 2 is conductively connected to the source electrode 11 ⁇ / b> S of the transistor 1 by the bonding layer 29. Further, the drain electrode 11 D of the transistor 1 is conductively joined to the island portion 30 by the joining layer 19.
  • Such an embodiment can also improve the breakdown voltage, reduce the threshold voltage, and shorten the reverse recovery time. Further, it is possible to reduce the resistance of the conduction path between the cathode electrode 21C and the source electrode 11S and to reduce the resistance of the conduction path between the drain electrode 11D and the cathode terminal 31C.
  • the semiconductor rectifier A5 of the present embodiment includes two transistors 1 and two diodes 2.
  • the two transistors 1 are both bonded to the island 30 by the bonding layer 19.
  • the cathode electrode 21 C of each diode 2 is conductively connected to the source electrode 11 S of each transistor 1 by the bonding layer 29.
  • the lead frame 3 has a cathode terminal 31C and two anode terminals 31A.
  • the cathode terminal 31C doubles as the island portion 30.
  • the two anode terminals 31A are spaced apart in the y direction from the cathode terminal 31C (island portion 30).
  • a plurality of anode wires 4A are connected to the anode terminals 31A and the anode electrodes 21A of the diodes 2, respectively.
  • a plurality of drain wires 4D are connected to the drain electrode 11D and the island portion 30 of each transistor 1, respectively. That is, the drain electrodes 11D of the two transistors 1 are electrically connected to each other.
  • the arrangement of the transistor 1, the diode 2, the anode terminal 31A, the plurality of anode wires 4A, the gate wire 4G and the plurality of drain wires 4D is line symmetrical about the x direction center of the semiconductor rectifier A5.
  • the semiconductor rectifier A5 can be used in applications such as selective use depending on the magnitude of current to be supplied to the circuit, and control of current in different systems.
  • FIG. 28 shows a semiconductor rectifier according to the sixth embodiment of the present disclosure.
  • the semiconductor rectifier A6 of the present embodiment is configured as a so-called surface mount semiconductor rectifier.
  • the lead frame 3 has a cathode terminal 31C and an anode terminal 31A which also serve as the island portion 30.
  • Each of the anode terminal 31A and the cathode terminal 31C has a rectangular shape in the z direction, and is separated from each other in the y direction.
  • the transistor 1 is mounted on the island portion 30 (cathode terminal 31C).
  • the diode 2 is mounted in a stacked manner on the transistor 1, and the cathode electrode 21C is conductively bonded to the source electrode 11S by the bonding layer 29.
  • the plurality of drain wires 4D are connected to the drain electrode 11D and the cathode terminal 31C.
  • the plurality of anode wires 4A are connected to the anode terminal 31A and the anode electrode 21A.
  • the semiconductor rectifier A6 can be mounted on a circuit board (not shown) or the like by a mounting method using, for example, a reflow furnace.
  • Seventh Embodiment 30 and 31 illustrate a semiconductor rectifier according to a seventh embodiment of the present disclosure.
  • the transistor 1 and the diode 2 are integrally formed with each other by a so-called monolithic structure, and share the same semiconductor substrate 15.
  • the semiconductor substrate 15 is made of, for example, Si.
  • the anode electrode 21A and the cathode electrode 21C of the diode 2 are formed on both sides of the semiconductor substrate 15.
  • the element body 10 is stacked on the semiconductor substrate 15.
  • the conduction modes of the transistor 1, the diode 2 and the lead frame 3 are similar to those of the semiconductor rectifier A1.
  • the semiconductor rectifier A1 is also suitable for miniaturization.
  • the semiconductor rectifier which concerns on this indication is not limited to embodiment mentioned above.
  • the specific configuration of each part of the semiconductor rectifier according to the present disclosure can be varied in design in many ways.
  • the present disclosure includes embodiments according to the following appendices.
  • a transistor having a source electrode, a drain electrode and a gate electrode; A diode having an anode electrode and a cathode electrode, wherein the anode electrode is electrically connected to the gate electrode, and the cathode electrode is electrically connected to the source electrode.
  • a diode having an anode electrode and a cathode electrode, wherein the anode electrode is electrically connected to the gate electrode, and the cathode electrode is electrically connected to the source electrode.
  • a first resistor interposed in a conduction path between the anode electrode and the gate electrode.
  • the capacitance Cds between the drain electrode and the source electrode of the transistor, the capacitance Cgs between the gate electrode and the source electrode, and the capacitance Cdi of the diode are: 2Cds ⁇ Cdi + Cgs 15.

Abstract

本開示の一側面によって提供される半導体整流器は、トランジスタおよびダイオードを備える。前記トランジスタは、ソース電極、ドレイン電極およびゲート電極を有する。前記ダイオードは、アノード電極およびカソード電極を有する。前記アノード電極は前記ゲート電極に導通し、前記カソード電極は前記ソース電極に導通する。

Description

半導体整流器
 本開示は、半導体整流器に関する。
 半導体整流器の一形態であるショットキーバリアダイオードは、Si半導体層と、ショットキー電極およびオーミック電極を有する。
 本開示の一側面によって提供される半導体整流器は、トランジスタおよびダイオードを備える。前記トランジスタは、ソース電極、ドレイン電極およびゲート電極を有する。前記ダイオードは、アノード電極およびカソード電極を有する。前記アノード電極は前記ゲート電極に導通し、前記カソード電極は前記ソース電極に導通する。
本開示の第1実施形態に係る半導体整流器を示す平面図である。 図1のII-II線に沿う断面図である。 図1のIII-III線に沿う断面図である。 本開示の第1実施形態に係る半導体整流器を示す回路図である。 本開示の第1実施形態に係る半導体整流器の電圧電流特性を示すグラフである。 本開示の第1実施形態に係る半導体整流器の逆回復特性を示すグラフである。 本開示の第1実施形態に係る半導体整流器の第1変形例を示す平面図である。 本開示の第1実施形態に係る半導体整流器の第2変形例を示す平面図である。 図8のIX-IX線に沿う断面図である。 本開示の第1実施形態に係る半導体整流器の第3変形例を示す平面図である。 本開示の第2実施形態に係る半導体整流器を示す平面図である。 本開示の第2実施形態に係る半導体整流器を示す回路図である。 本開示の第3実施形態に係る半導体整流器を示す平面図である。 本開示の第3実施形態に係る半導体整流器を示す回路図である。 本開示の第3実施形態に係る半導体整流器の第1変形例を示す平面図である。 本開示の第3実施形態に係る半導体整流器の第1変形例を示す回路図である。 本開示の第1実施形態に係る半導体整流器の逆回復特性を示すグラフである。 本開示の第1実施形態に係る半導体整流器のダイオード電圧を示すグラフである。 本開示の第3実施形態に係る半導体整流器の逆回復特性を示すグラフである。 本開示の第3実施形態に係る半導体整流器のダイオード電圧を示すグラフである。 本開示の第4実施形態に係る半導体整流器を示す平面図である。 図21のXXII-XXII線に沿う断面図である。 本開示の第4実施形態に係る半導体整流器の第1変形例を示す平面図である。 本開示の第4実施形態に係る半導体整流器の第2変形例を示す平面図である。 図24のXXV-XXV線に沿う断面図である。 本開示の第5実施形態に係る半導体整流器を示す平面図である。 本開示の第5実施形態に係る半導体整流器を示す回路図である。 本開示の第6実施形態に係る半導体整流器を示す平面図である。 図28のXXIX-XXIX線に沿う断面図である。 本開示の第7実施形態に係る半導体整流器を示す平面図である。 図30のXXXI-XXXI線に沿う断面図である。
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。
<第1実施形態>
 図1~図4は、本開示の第1実施形態に係る半導体整流器を示している。本実施形態の半導体整流器A1は、トランジスタ1、ダイオード2、リードフレーム3および封止樹脂6を備えている。
 図1は、半導体整流器A1を示す平面図である。図2は、図1のII-II線に沿う断面図である。図3は、図1のIII-III線に沿う断面図である。図4は、半導体整流器A1を示す回路図である。
 トランジスタ1は、たとえばノーマリーオン型(デプレッション型)のトランジスタであり、素子本体10、ソース電極11S、ドレイン電極11D及びゲート電極11Gを有する。
 素子本体10は、半導体層を含むものであり、本実施形態においては、GaN半導体層を含む。この場合、トランジスタ1は、たとえばGaN-MOSFETやGaN-HEMT等である。ソース電極11S、ドレイン電極11D及びゲート電極11Gは、素子本体10の上面に設けられており、すべてが素子本体10の同じ側に位置する。
 ソース電極11S、ドレイン電極11D及びゲート電極11Gは、金属からなり、たとえばめっきによって形成される。ワイヤのボンディングやはんだ接合を好適に行う観点から、ソース電極11S、ドレイン電極11Dおよびゲート電極11Gの表層は、Auによって構成されていることが好ましい。また、ソース電極11S、ドレイン電極11Dおよびゲート電極11Gのうち表層に覆われる部分は、たとえばCu、Ni等の金属からなる。
 ダイオード2は、素子本体20、アノード電極21A及びカソード電極21Cを有する。ダイオード2は、たとえば素子本体20がSi半導体層を含む、Siショットキーバリアダイオードである。ダイオード2の閾値電圧は、好ましくは、0.8V以下である。
 リードフレーム3は、トランジスタ1およびダイオード2を支持しており、トランジスタ1およびダイオード2への導通経路を構成している。本実施形態においては、リードフレーム3は、アイランド部30、アノード端子31Aおよびカソード端子31Cを有している。また、リードフレーム3には、金属層32および絶縁層33が設けられている。
 リードフレーム3の材質は特に限定されず、たとえば、Cu,Ni等の金属からなる金属板材料を用いて打ち抜き加工や折り曲げ加工等を施すことによって形成される。
 アイランド部30は、トランジスタ1およびダイオード2を支持する部分である。図示された例においては、アイランド部30は、x方向およびy方向に沿う四辺を有する平面視矩形状であるが、アイランド部30の形状は特に限定されない。
 また、本実施形態においては、アイランド部30に金属層32が設けられている。金属層32は、たとえばAl,Cu,Ni等から適宜選択される金属または合金からなる層である。図示された例においては、金属層32は、絶縁層33を介してアイランド部30に固定されている。絶縁層33は、絶縁材料からなり、たとえば樹脂やセラミックスが適宜採用される。また、金属層32のz方向視寸法は、アイランド部30のz方向視寸法よりも小さい。金属層32の形成手法は特に限定されず、メッキ等による手法によって絶縁層33上に形成してもよいし、予め形成しておいた金属層32を絶縁層33によってアイランド部30に接合してもよい。
 図示された例においては、トランジスタ1が、接合層19によって金属層32に接合されている。また、ダイオード2のカソード電極21Cが、接合層29によって金属層32に接合されている。本例の場合、接合層19は、絶縁性であってもよいし、導電性であってもよい。接合層29は、導電性材料からなり、たとえばはんだである。これにより、ダイオード2のカソード電極21Cは、金属層32に導通している。
 アノード端子31Aは、半導体整流器A1の端子となるものであり、アノード接続される端子である。アノード端子31Aは、アイランド部30から離間している。
 カソード端子31Cは、半導体整流器A1の端子となるものであり、カソード接続される端子である。本例においては、カソード端子31Cは、アイランド部30に繋がっている。
 図示された例においては、半導体整流器A1は、複数のアノードワイヤ4A、ゲートワイヤ4G、複数のソースワイヤ4S及び複数のドレインワイヤ4Dを有する。複数のアノードワイヤ4Aは、アノード端子31Aとダイオード2のアノード電極21Aとに接続されている。ゲートワイヤ4Gは、ダイオード2のアノード電極21Aとトランジスタ1のゲート電極11Gとに接続されている。複数のソースワイヤ4Sは、金属層32とトランジスタ1のソース電極11Sとに接続されている。複数のドレインワイヤ4Dは、トランジスタ1のドレイン電極11Dとアイランド部30とに接続されている。
 複数のアノードワイヤ4A、ゲートワイヤ4G、複数のソースワイヤ4S及び複数のドレインワイヤ4Dは、たとえばAu、アルミ、Cu等の金属からなる。以下においては、複数のアノードワイヤ4A、ゲートワイヤ4G、複数のソースワイヤ4S及び複数のドレインワイヤ4Dが、Auからなる場合を例に説明するが、それぞれの本数はそれぞれの材質によって増減しうる。
 以上に述べた構成により、半導体整流器A1は、図4に示す回路を構成している。ダイオード2のアノード電極21Aは、ゲートワイヤ4Gを介してゲート電極11Gに導通している。ダイオード2のカソード電極21Cは、金属層32および複数のソースワイヤ4Sを介してソース電極11Sに導通している。
 封止樹脂6は、トランジスタ1、ダイオード2、リードフレーム3の一部、複数のアノードワイヤ4A、ゲートワイヤ4G、複数のソースワイヤ4S及び複数のドレインワイヤ4Dを保護するためのものであり、たとえばエポキシ樹脂等の絶縁樹脂からなる。図示された例においては、封止樹脂6は、アイランド部30の裏面を露出させている。また、アノード端子31Aおよびカソード端子31Cは、封止樹脂6の側面から同じ方向に突出している。
 次に、半導体整流器A1の作用について説明する。
 本実施形態によれば、トランジスタ1を用いることにより、たとえば単体のダイオードからなる半導体整流器と比較して耐圧を向上させることが可能である。また、図5は、アノード端子31Aおよびカソード端子31C間に印加される電圧と電流の関係を示しており、半導体整流器A1との比較例として、Si-FRD(ファストリカバリダイオード)単体からなる半導体整流器とSiC-SBD(ショットキーバリアキーダイオード)単体からなる半導体整流器との電圧および電流の関係を示している。同図に示すように、半導体整流器A1に所定の電流が流れ始める閾値電圧は、Si-FRD単体からなる半導体整流器およびSiC-SBD単体からなる半導体整流器のいずれの閾値電圧よりも低い値となっている。また、図6は、半導体整流器A1と、比較例としてのSi-FRD単体からなる半導体整流器およびSiC-SBD単体からなる半導体整流器との、逆回復特性を示している。オン状態からオフ状態に切り替えられた際に、逆方向に電流が流れる時間である逆回復時間に着目すると、半導体整流器A1の逆回復時間は、SiC-SBD単体からなる半導体整流器の逆回復時間と同程度であり、Si-FRD単体からなる半導体整流器の逆回復時間よりも顕著に短い。以上より、半導体整流器A1によれば、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。
 図7~図31は、本開示の変形例および他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。
<第1実施形態 第1変形例>
 図7は、半導体整流器A1の第1変形例を示している。本変形例の半導体整流器A11は、リードフレーム3の構成が、上述した半導体整流器A1と異なっている。本変形例においては、アイランド部30には、上述した金属層32および絶縁層33は、形成されていない。トランジスタ1の素子本体10が接合層19によってアイランド部30に接合されており、ダイオード2のカソード電極21Cが接合層29によってアイランド部30に接合されている。これにより、アイランド部30は、カソード電極21Cと同電位となる。これに対応して、カソード端子31Cは、アイランド部30から離間している。複数のドレインワイヤ4Dは、トランジスタ1のドレイン電極11Dとカソード端子31Cとに接続されている。アイランド部30は、封止樹脂6から一部が露出していてもよいし、封止樹脂6によって全てが覆われていてもよい。
 このような変形例によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、金属層32および絶縁層33が不要であることにより、コスト低減を図ることができる。
<第1実施形態 第2変形例>
 図8および図9は、半導体整流器A1の第2変形例を示している。本変形例の半導体整流器A12は、ダイオード2の実装構造が、上述した例と異なっている。本変形例においては、ダイオード2のカソード電極21Cが、接合層29によってトランジスタ1のソース電極11Sに接合されている。これにより、トランジスタ1とダイオード2とが積層された実装構造となっている。
 このような変形例によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、ダイオード2のカソード電極21Cとトランジスタ1のソース電極11Sとの導通経路が、接合層29のみによって構成され、上述した例におけるソースワイヤ4Sを含まない。これにより、ソース電極11Sに至る導通経路の低抵抗化を図ることができる。また、z方向視における半導体整流器A12の小型化に有利である。
<第1実施形態 第3変形例>
 図10は、半導体整流器A1の第3変形例を示している。本変形例の半導体整流器A13は、トランジスタ1およびダイオード2の実装構造が、半導体整流器A12と類似しており、リードフレーム3の構成が半導体整流器A12と異なっている。本変形例においては、アイランド部30とカソード端子31Cとが一体的に形成されている。複数のドレインワイヤ4Dは、ドレイン電極11Dとアイランド部30とに接続されている。
 このような変形例によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、複数のドレインワイヤ4Dの長さを、半導体整流器A12における複数のドレインワイヤ4Dの長さよりも短くすることが可能である。これにより、ドレイン電極11Dとカソード端子31Cとの導通経路の低抵抗化を図ることができる。
<第2実施形態>
 図11および図12は、本開示の第2実施形態に係る半導体整流器を示している。本実施形態の半導体整流器A2は、トランジスタ1およびダイオード2に加えて、第1抵抗器51を備えている。第1抵抗器51は、アノード端子31Aとトランジスタ1のゲート電極11Gとの導通経路に介在している。なお、第1抵抗器51は、トランジスタ1およびダイオード2のいずれかと一体的に形成されていてもよい。
 図示された例においては、金属層32が、第1領域321、第2領域322および第3領域323の3つの領域に分割されている。第1領域321には、トランジスタ1およびダイオード2が接合されている。第2領域322および第3領域323には、第1抵抗器51の電極がそれぞれ接合されている。また、ダイオード2のアノード電極21Aと第2領域322には、ワイヤ41が接続されている。ゲートワイヤ4Gは、第3領域323とゲート電極11Gとに接続されている。
 このような実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、第1抵抗器51を備えることにより、第1抵抗器51の抵抗値を種々に設定すれば、半導体整流器A2の動作特性を様々に設定することができる。
<第3実施形態>
 図13および図14は、本開示の第3実施形態に係る半導体整流器を示している。本実施形態の半導体整流器A3は、トランジスタ1およびダイオード2に加えて、コンデンサ55を備えている。コンデンサ55は、ダイオード2に対して並列に接続されている。なおコンデンサ55は、トランジスタ1およびダイオード2のいずれかと一体的に形成されていてもよい。
 図示された例においては、金属層32が、第1領域321および第2領域322を有する。第1領域321には、トランジスタ1、ダイオード2およびコンデンサ55の一方の電極が接合されている。第2領域322には、コンデンサ55の他方の電極が接合されている。アノード端子31Aと第2領域322には、複数のワイヤ41が接続されている。
 このような実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、後述するように、コンデンサ55を備えることにより、半導体整流器A3の特性を高めることができる。
<第3実施形態 第1変形例>
 図15および図16は、本開示の第3実施形態に係る半導体整流器の第1変形例を示している。本変形例の半導体整流器A31は、第2抵抗器52を備えている。第2抵抗器52は、コンデンサ55に対して直列に接続されており、コンデンサ55とソース電極11Sとの導通経路に含まれている。なお、第2抵抗器52は、トランジスタ1およびダイオード2のいずれかと一体的に形成されていてもよい。
 図示された例においては、金属層32は、第1領域321、第2領域322、第3領域323および第4領域324を有する。第1領域321には、トランジスタ1およびダイオード2が接合されている。第2領域322には、コンデンサ55の一方の電極が接合されている。第3領域323には、コンデンサ55の他方の電極と第2抵抗器52の一方の電極が接合されている。第4領域324には、第2抵抗器52の他方の電極が接合されている。
 アノード端子31Aと第2領域322には、複数のワイヤ41が接続されている。また、第4領域324と第1領域321には、複数のワイヤ42が接続されている。
 このような実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。
 半導体整流器A3および半導体整流器A31の特性を説明するに先立ち、上述した半導体整流器A1の特性について、図17および図18を参照して説明する。ダイオード2には、素子本体20、アノード電極21Aおよびカソード電極21Cの材質やこれらの接合形態に応じて、静電容量が内在する。このダイオード2の静電容量Cdiを、300pF、840pF、1200pFと設定した場合の、逆回復特性を示すグラフが図17であり、ダイオード2の内部における電圧を示すグラフが図18である。図17および図18は、シミュレーション結果である。図17に示すように、静電容量Cdiが小さいほど、逆回復時間を短縮することができる。一方、図18に示すように、静電容量Cdiが小さいほど、ダイオード2の電圧が大きいという背反事項がある。ダイオード2に使用されるダイオードは、耐圧が低いほど立ち上がり電圧が小さい傾向がある。この立ち上がり電圧が、半導体整流器A1の立ち上がり電圧を決定する主な要因である。このため、半導体整流器A1において立ち上がり電圧を低く抑えながら高耐圧を実現するには、ダイオード2に発生する電圧を低く抑えつつ、トランジスタ1の分圧を高めることが必要である。トランジスタ1の分圧を高めるためには、トランジスタ1のドレイン電極11Dおよびソース電極11S間の静電容量Cds、ゲート電極11Gおよびソース電極11S間の静電容量Cgsおよびダイオード2の静電容量Cdiが、2Cds≦Cdi+Cgsの関係を満たすことが好ましい。
 次に、図19および図20を参照して、半導体整流器A1、半導体整流器A3および半導体整流器A31の特性について説明する。図19は、逆回復特性を示し、図20は、ダイオード2の電圧を示す。これらの図に示すグラフは、半導体整流器A1、半導体整流器A3および半導体整流器A31それぞれの静電容量Cdiが300pFであり、半導体整流器A3および半導体整流器A31のコンデンサ55の静電容量Cxdが470pF、半導体整流器A31の第2抵抗器52の抵抗値R2が100Ωである条件でのシミュレーション結果である。
 図19に示すように、半導体整流器A3の逆回復時間は、半導体整流器A1の逆回復時間よりも明らかに長い。これは、コンデンサ55のみを付加すると、逆回復時間の延長を生じることを意味する。一方、半導体整流器A31の逆回復時間は、半導体整流器A1の逆回復時間とほぼ同等であり、半導体整流器A3の逆回復時間よりも明らかに短い。これは、コンデンサ55のみではなく、コンデンサ55と直列に接続される第2抵抗器52をさらに付加することによって、逆回復時間の短縮を図ることができることを意味する。
 また、図20に示すように、半導体整流器A1のダイオード2の電圧が時間とともに顕著に増加するのに対し、半導体整流器A3の電圧は、明らかに低い。また、半導体整流器A31の電圧は、半導体整流器A3の電圧よりもさらに低い。これは、コンデンサ55を付加することにより、ダイオード2の分圧を効果的に低減させることができることを意味する。このような観点から、トランジスタ1のドレイン電極11Dおよびソース電極11S間の静電容量Cds、ゲート電極11Gおよびソース電極11S間の静電容量Cgs、ダイオード2の静電容量Cdiおよびコンデンサ55の静電容量Cxdが、2Cds≦Cdi+Cgs+Cxdの関係を満たすことが好ましい。
<第4実施形態>
 図21および図22は、本開示の第4実施形態に係る半導体整流器を示している。本実施形態の半導体整流器A4は、トランジスタ1の構成が、上述した実施形態と異なっている。本実施形態のトランジスタ1は、素子本体10がSiC半導体層を含んでおり、いわゆる縦型のトランジスタである。ソース電極11Sおよびゲート電極11Gは、素子本体10の上面に位置しており、ドレイン電極11Dは、ソース電極11Sおよびゲート電極11Gとは反対側の下面に位置している。トランジスタ1の1Dは、接合層19によって金属層32に接合されている。接合層19は、導電性の材料からなり、たとえばはんだである。
 アイランド部30とカソード端子31Cとは、一体的に形成されている。複数のワイヤ41は、金属層32とアイランド部30とに接続されている。これにより、トランジスタ1のドレイン電極11Dとカソード端子31Cとは、接合層19、金属層32、複数のワイヤ41およびアイランド部30を介して導通している。
 このような実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、半導体整流器A4は、z方向視における小型化を図るのに適している。
<第4実施形態 第1変形例>
 図23は、半導体整流器A4の第1変形例を示している。本変形例の半導体整流器A41においては、金属層32および絶縁層33の構成が、上述した半導体整流器A4と異なっている。本変形例においては、金属層32および絶縁層33は、z方向視においてダイオード2と重なっており、且つトランジスタ1とは重なっていない。
 ダイオード2のカソード電極21Cは、接合層29によって金属層32に導通接合されている。複数のソースワイヤ4Sは、金属層32とトランジスタ1のソース電極11Sとに接続されている。トランジスタ1のドレイン電極11Dは、接合層19によってアイランド部30に導通接合されている。
 このような実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、ドレイン電極11Dとカソード端子31Cとは、接合層19およびアイランド部30のみを介して導通している。これにより、ドレイン電極11Dとカソード端子31Cとの導通経路の低抵抗化を図ることができる。
<第4実施形態 第2変形例>
 図24および図25は、半導体整流器A4の第2変形例を示している。本変形例の半導体整流器A42は、トランジスタ1とダイオード2とが積層された実装構造となっている。すなわち、ダイオード2のカソード電極21Cが、接合層29によってトランジスタ1のソース電極11Sに導通接合されている。また、トランジスタ1のドレイン電極11Dは、接合層19によってアイランド部30に導通接合されている。
 このような実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、カソード電極21Cとソース電極11Sとの間の導通経路の低抵抗化、およびドレイン電極11Dとカソード端子31Cとの間の導通経路の低抵抗化、を図ることができる。
<第5実施形態>
 図26および図27は、本開示の第5実施形態に係る半導体整流器を示している。本実施形態の半導体整流器A5は、トランジスタ1およびダイオード2を2つずつ備えている。
 2つのトランジスタ1は、いずれも接合層19によってアイランド部30に接合されている。各ダイオード2のカソード電極21Cは、接合層29によって各トランジスタ1のソース電極11Sに導通接合されている。
 リードフレーム3は、カソード端子31Cと2つのアノード端子31Aとを有している。カソード端子31Cは、アイランド部30を兼ねている。2つのアノード端子31Aは、カソード端子31C(アイランド部30)に対してy方向に離間している。各アノード端子31Aと各ダイオード2のアノード電極21Aとには、複数のアノードワイヤ4Aがそれぞれ接続されている。各トランジスタ1のドレイン電極11Dとアイランド部30とには、複数のドレインワイヤ4Dがそれぞれ接続されている。すなわち、2つのトランジスタ1のドレイン電極11D同士は、互いに導通している。
 また、図示された例においては、トランジスタ1、ダイオード2、アノード端子31A、複数のアノードワイヤ4A、ゲートワイヤ4Gおよび複数のドレインワイヤ4Dの配置が、半導体整流器A5のx方向中心を挟んで線対称の配置とされている。
 本実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、一方のアノード端子31Aおよびカソード端子31Cのみを使用する形態と、両方のアノード端子31Aおよびカソード端子31Cを使用する形態とを、使い分けることが可能である。これにより、回路に流すべき電流の大きさによる使い分けや、異なる系統の電流を制御する等の用途に、半導体整流器A5を用いることができる。
<第6実施形態>
 図28は、本開示の第6実施形態に基づく半導体整流器を示している。本実施形態の半導体整流器A6は、いわゆる面実装型の半導体整流器として構成されている。
 本実施形態においては、リードフレーム3は、アイランド部30を兼ねるカソード端子31Cとアノード端子31Aとを有している。アノード端子31Aおよびカソード端子31Cは、いずれもz方向視矩形状であり、y方向に互いに離間している。
 トランジスタ1は、アイランド部30(カソード端子31C)に実装されている。ダイオード2は、トランジスタ1に積層して実装されており、カソード電極21Cが接合層29によってソース電極11Sに導通接合されている。複数のドレインワイヤ4Dは、ドレイン電極11Dとカソード端子31Cとに接続されている。複数のアノードワイヤ4Aは、アノード端子31Aとアノード電極21Aとに接続されている。
 本実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、半導体整流器A6は、たとえばリフロー炉を用いた実装手法によって回路基板等(図示略)に実装することができる。
<第7実施形態>
 図30および図31は、本開示の第7実施形態に係る半導体整流器を示している。本実施形態の半導体整流器A7は、トランジスタ1とダイオード2とが、いわゆるモノリシック構造によって互いに一体的に形成されており、同一の半導体基板15を共有しているいる。半導体基板15は、たとえばSiからなる。半導体基板15の両側には、ダイオード2のアノード電極21Aおよびカソード電極21Cが形成されている。素子本体10は、半導体基板15上に積層されている。トランジスタ1、ダイオード2およびリードフレーム3の導通形態は、半導体整流器A1と同様である。
 本実施形態によっても、耐圧の向上、閾値電圧の低減及び逆回復時間の短縮を図ることができる。また、半導体整流器A1は、小型化に適している。
 本開示に係る半導体整流器は、上述した実施形態に限定されるものではない。本開示に係る半導体整流器の各部の具体的な構成は、種々に設計変更自在である。
 本開示は、以下の付記にかかる実施形態を含む。
[付記1]
 ソース電極、ドレイン電極およびゲート電極を有するトランジスタと、
 アノード電極およびカソード電極を有するダイオードであって、前記アノード電極は前記ゲート電極に導通し、前記カソード電極は前記ソース電極に導通するダイオードと、を備える、半導体整流器。
[付記2]
 前記トランジスタは、ノーマーリーオン型である、付記1に記載の半導体整流器。
[付記3]
 前記アノード電極と前記ゲート電極との導通経路に介在する第1抵抗器を備える、付記1または2に記載の半導体整流器。
[付記4]
 前記第1抵抗器は、前記トランジスタおよび前記ダイオードの少なくともいずれかと一体的に形成されている、付記3に記載の半導体整流器。
[付記5]
 前記ダイオードに対して並列に接続されたコンデンサを備える、付記1ないし4のいずれかに記載の半導体整流器。
[付記6]
 前記コンデンサに対して直列に接続された第2抵抗器を備える、付記5に記載の半導体整流器。
[付記7]
 前記第2抵抗器は、前記トランジスタおよび前記ダイオードの少なくともいずれかと一体的に形成されている、付記6に記載の半導体整流器。
[付記8]
 前記トランジスタは、GaN半導体層またはSiC半導体層を有する、付記1ないし7のいずれかに記載の半導体整流器。
[付記9]
 前記ダイオードは、Siショットキーバリアダイオードである、付記1ないし8のいずれかに記載の半導体整流器。
[付記10]
 前記トランジスタの耐圧は、前記ダイオードの耐圧よりも高い、付記1ないし9のいずれかに記載の半導体整流器。
[付記11]
 前記トランジスタと前記ダイオードとが、同一の半導体基板を共有している、付記1ないし10のいずれかに記載の半導体整流器。
[付記12]
 前記ダイオードの閾値電圧が、0.8V以下である、付記1ないし11のいずれかに記載の半導体整流器。
[付記13]
 前記トランジスタの前記ドレイン電極および前記ソース電極間の静電容量Cds、前記ゲート電極および前記ソース電極間の静電容量Cgsおよび前記ダイオードの静電容量Cdiが、
 2Cds≦Cdi+Cgs
の関係を満たす、付記1ないし12のいずれかに記載の半導体整流器。
[付記14]
 前記トランジスタの前記ドレイン電極および前記ソース電極間の静電容量Cds、前記ゲート電極および前記ソース電極間の静電容量Cgs、前記ダイオードの静電容量Cdiおよび前記コンデンサの静電容量Cxdが、
 2Cds≦Cdi+Cgs+Cxd
の関係を満たす、付記5ないし7のいずれかに記載の半導体整流器。
[付記15]
 前記トランジスタは、GaN半導体層を有し、且つ前記ソース電極、前記ドレイン電極および前記ゲート電極が、同じ側に位置する、付記1ないし14のいずれかに記載の半導体整流器。
[付記16]
 前記トランジスタは、SiC半導体層を有し、且つ前記ソース電極および前記ゲート電極と前記ドレイン電極とが、互いに反対側に位置する、付記1ないし14のいずれかに記載の半導体整流器。
[付記17]
 前記トランジスタの前記ソース電極に、前記トランジスタの前記カソード電極が導通接合されている、付記1ないし16のいずれかに記載の半導体整流器。

Claims (17)

  1.  ソース電極、ドレイン電極およびゲート電極を有するトランジスタと、
     アノード電極およびカソード電極を有するダイオードであって、前記アノード電極は前記ゲート電極に導通し、前記カソード電極は前記ソース電極に導通するダイオードと、を備える、半導体整流器。
  2.  前記トランジスタは、ノーマーリーオン型である、請求項1に記載の半導体整流器。
  3.  前記アノード電極と前記ゲート電極との導通経路に介在する第1抵抗器を備える、請求項1または2に記載の半導体整流器。
  4.  前記第1抵抗器は、前記トランジスタおよび前記ダイオードの少なくともいずれかと一体的に形成されている、請求項3に記載の半導体整流器。
  5.  前記ダイオードに対して並列に接続されたコンデンサを備える、請求項1ないし4のいずれかに記載の半導体整流器。
  6.  前記コンデンサに対して直列に接続された第2抵抗器を備える、請求項5に記載の半導体整流器。
  7.  前記第2抵抗器は、前記トランジスタおよび前記ダイオードの少なくともいずれかと一体的に形成されている、請求項6に記載の半導体整流器。
  8.  前記トランジスタは、GaN半導体層またはSiC半導体層を有する、請求項1ないし7のいずれかに記載の半導体整流器。
  9.  前記ダイオードは、Siショットキーバリアダイオードである、請求項1ないし8のいずれかに記載の半導体整流器。
  10.  前記トランジスタの耐圧は、前記ダイオードの耐圧よりも高い、請求項1ないし9のいずれかに記載の半導体整流器。
  11.  前記トランジスタと前記ダイオードとが、同一の半導体基板を共有している、請求項1ないし10のいずれかに記載の半導体整流器。
  12.  前記ダイオードの閾値電圧が、0.8V以下である、請求項1ないし11のいずれかに記載の半導体整流器。
  13.  前記トランジスタの前記ドレイン電極および前記ソース電極間の静電容量Cds、前記ゲート電極および前記ソース電極間の静電容量Cgsおよび前記ダイオードの静電容量Cdiが、
     2Cds≦Cdi+Cgs
    の関係を満たす、請求項1ないし12のいずれかに記載の半導体整流器。
  14.  前記トランジスタの前記ドレイン電極および前記ソース電極間の静電容量Cds、前記ゲート電極および前記ソース電極間の静電容量Cgs、前記ダイオードの静電容量Cdiおよび前記コンデンサの静電容量Cxdが、
     2Cds≦Cdi+Cgs+Cxd
    の関係を満たす、請求項5ないし7のいずれかに記載の半導体整流器。
  15.  前記トランジスタは、GaN半導体層を有し、且つ前記ソース電極、前記ドレイン電極および前記ゲート電極が、同じ側に位置する、請求項1ないし14のいずれかに記載の半導体整流器。
  16.  前記トランジスタは、SiC半導体層を有し、且つ前記ソース電極および前記ゲート電極と前記ドレイン電極とが、互いに反対側に位置する、請求項1ないし14のいずれかに記載の半導体整流器。
  17.  前記トランジスタの前記ソース電極に、前記トランジスタの前記カソード電極が導通接合されている、請求項1ないし16のいずれかに記載の半導体整流器。
PCT/JP2018/043398 2017-12-11 2018-11-26 半導体整流器 WO2019116868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/767,428 US11476247B2 (en) 2017-12-11 2018-11-26 Semiconductor rectifier
CN201880079373.9A CN111433897A (zh) 2017-12-11 2018-11-26 半导体整流器
DE112018006307.0T DE112018006307T5 (de) 2017-12-11 2018-11-26 Halbleitergleichrichter
JP2019559523A JPWO2019116868A1 (ja) 2017-12-11 2018-11-26 半導体整流器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017236708 2017-12-11
JP2017-236708 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019116868A1 true WO2019116868A1 (ja) 2019-06-20

Family

ID=66819632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043398 WO2019116868A1 (ja) 2017-12-11 2018-11-26 半導体整流器

Country Status (5)

Country Link
US (1) US11476247B2 (ja)
JP (1) JPWO2019116868A1 (ja)
CN (1) CN111433897A (ja)
DE (1) DE112018006307T5 (ja)
WO (1) WO2019116868A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112992834B (zh) * 2021-02-09 2022-02-18 捷捷微电(上海)科技有限公司 一种源栅间接电连接的先进二极管封装结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143779A (en) * 1976-05-25 1977-11-30 Toshiba Corp Input protection circuit
JPS6451664A (en) * 1987-08-24 1989-02-27 Fujitsu Ltd Semiconductor device
JP2016134435A (ja) * 2015-01-16 2016-07-25 三菱電機株式会社 半導体装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10374505B2 (en) * 2004-12-16 2019-08-06 John Wood Power coupler
JP5358882B2 (ja) * 2007-02-09 2013-12-04 サンケン電気株式会社 整流素子を含む複合半導体装置
JP2009182107A (ja) * 2008-01-30 2009-08-13 Furukawa Electric Co Ltd:The 半導体装置
JP2010103288A (ja) * 2008-10-23 2010-05-06 Nec Electronics Corp 半導体装置及び半導体装置の製造方法
US9755630B2 (en) * 2009-04-30 2017-09-05 The United States of America as represented by the Secretary of the Government Solid-state circuit breakers and related circuits
US8963338B2 (en) * 2011-03-02 2015-02-24 International Rectifier Corporation III-nitride transistor stacked with diode in a package
US9859882B2 (en) * 2011-03-21 2018-01-02 Infineon Technologies Americas Corp. High voltage composite semiconductor device with protection for a low voltage device
US20120256190A1 (en) * 2011-04-11 2012-10-11 International Rectifier Corporation Stacked Composite Device Including a Group III-V Transistor and a Group IV Diode
JP2014027253A (ja) * 2012-06-22 2014-02-06 Toshiba Corp 整流回路
JP2014078570A (ja) * 2012-10-09 2014-05-01 Toshiba Corp 整流回路及び半導体装置
JP2014187086A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 半導体装置
US9887619B2 (en) * 2014-06-23 2018-02-06 Infineon Technologies Austria Ag System and method for a normally-on switched mode power supply
JP6975530B2 (ja) 2015-12-25 2021-12-01 出光興産株式会社 半導体素子及びそれを用いた電気機器
US10510800B2 (en) * 2016-02-09 2019-12-17 The Penn State Research Foundation Device comprising a light-emitting diode and a Schottky barrier diode rectifier, and method of fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143779A (en) * 1976-05-25 1977-11-30 Toshiba Corp Input protection circuit
JPS6451664A (en) * 1987-08-24 1989-02-27 Fujitsu Ltd Semiconductor device
JP2016134435A (ja) * 2015-01-16 2016-07-25 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
US20200388610A1 (en) 2020-12-10
JPWO2019116868A1 (ja) 2020-12-24
DE112018006307T5 (de) 2020-08-27
US11476247B2 (en) 2022-10-18
CN111433897A (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
US7405469B2 (en) Semiconductor device and method of manufacturing the same
US9659912B2 (en) Low-inductance circuit arrangement comprising load current collecting conductor track
US9196572B2 (en) Power semiconductor module
US9653386B2 (en) Compact multi-die power semiconductor package
JP2013069782A (ja) 半導体装置
US20200029455A1 (en) Power module structure
US20230187431A1 (en) Semiconductor module
US20220320054A1 (en) Semiconductor device
JP4349364B2 (ja) 半導体装置
JP2020188177A (ja) 半導体装置
JP4061551B2 (ja) 半導体装置
WO2019116868A1 (ja) 半導体整流器
US6740902B2 (en) Semiconductor package for series-connected diodes
JP2016195223A (ja) 半導体装置及びその製造方法
JP7010036B2 (ja) 半導体モジュール
US11107739B2 (en) Power semiconductor module arrangement
US20190258302A1 (en) Power supply module
US9362221B2 (en) Surface mountable power components
US20230014848A1 (en) Semiconductor device
JP7252248B2 (ja) 半導体装置
JP2008054495A (ja) 電流印加されたパワー回路のための低インダクタンスのパワー半導体モジュール
JP2016201442A (ja) 半導体装置及び三端子コンデンサ
JP2023041166A (ja) 半導体装置
CN116230673A (zh) 用于横向功率晶体管的封装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559523

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18889170

Country of ref document: EP

Kind code of ref document: A1