WO2019116437A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2019116437A1
WO2019116437A1 PCT/JP2017/044473 JP2017044473W WO2019116437A1 WO 2019116437 A1 WO2019116437 A1 WO 2019116437A1 JP 2017044473 W JP2017044473 W JP 2017044473W WO 2019116437 A1 WO2019116437 A1 WO 2019116437A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
detection sensor
period
air conditioning
air conditioner
Prior art date
Application number
PCT/JP2017/044473
Other languages
English (en)
French (fr)
Inventor
佐々木 俊治
米山 裕康
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2017/044473 priority Critical patent/WO2019116437A1/ja
Priority to JP2019552301A priority patent/JP6656490B2/ja
Publication of WO2019116437A1 publication Critical patent/WO2019116437A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner.
  • refrigerant detection sensor When a refrigerant leak occurs, it is necessary to detect the refrigerant leak and take necessary measures to prevent the leaked refrigerant from burning, and there is an air conditioner provided with a refrigerant detection sensor that detects the refrigerant leak.
  • This refrigerant detection sensor has a life and needs to be replaced or maintained in a predetermined period.
  • the refrigeration cycle apparatus of Patent Document 1 is configured so as to notify the notification unit of an abnormality and operate the blower fan when “the integrated energization time to the refrigerant detection unit becomes equal to or more than the first threshold time. "Is described. Also, it is described that "the control unit stops the compressor of the refrigerant circuit when the integrated energization time becomes equal to or more than the first threshold time”.
  • Patent No. 6143977 gazette
  • the first threshold time is a time for notifying an abnormality
  • This invention is an invention for solving said subject, Comprising: It aims at providing the air conditioner which can consider the lifetime of a refrigerant
  • an air conditioner includes a refrigerant circuit in which a refrigerant circulates, a refrigerant detection sensor that detects leakage of the refrigerant, and a control unit that controls the refrigerant circuit.
  • the unit When it is necessary to replace the refrigerant detection sensor after the first period has elapsed, the unit notifies the air conditioning control terminal of the advance notice when the second period shorter than the first period has elapsed, and the first period has elapsed. After that, an abnormality of the refrigerant detection sensor is detected, and the air conditioning operation is forcibly stopped when a predetermined period has elapsed.
  • the life of the refrigerant detection sensor can be taken into consideration.
  • FIG. 1 is a diagram showing an overall configuration of an air conditioner.
  • the air conditioner AC includes an indoor unit 100 and an outdoor unit 200.
  • the indoor unit 100 and the outdoor unit 200 are connected by a refrigerant pipe and a control line.
  • the indoor unit 100 includes a control unit 60, an air conditioning control terminal 22 (remote control), and a refrigerant detection sensor 30 that detects refrigerant leakage.
  • the outdoor unit 200 has a control unit 50.
  • a slightly flammable (A2L) refrigerant such as R32, R1234yf, R1234ze or the like is used.
  • FIG. 2 is a diagram showing a refrigeration cycle system of the air conditioner.
  • the air conditioner AC is a device that performs air conditioning such as heating and cooling.
  • the air conditioner AC includes a refrigerant circuit 10, an outdoor fan Fo, an indoor fan Fi, stop valves PV1 and PV2, a refrigerant detection sensor 30, and control units 50 and 60. ing.
  • the refrigerant circuit 10 is a circuit in which a refrigerant circulates in a refrigeration cycle (heat pump cycle). As shown in FIG. 2, the refrigerant circuit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, and an indoor heat exchanger 15.
  • the compressor 11 is a device that compresses a gaseous refrigerant.
  • the type of the compressor 11 is not particularly limited, and a scroll type, a piston type, a rotary type, a screw type, a centrifugal type or the like is used.
  • an accumulator for separating the refrigerant into gas and liquid is provided on the suction side of the compressor 11.
  • the outdoor heat exchanger 13 is a heat exchanger in which heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) and the outside air fed from the outdoor fan Fo.
  • the outdoor fan Fo is a fan that sends outside air to the outdoor heat exchanger 13 and is installed near the outdoor heat exchanger 13.
  • the indoor heat exchanger 15 performs heat exchange between the refrigerant flowing through the heat transfer pipe 15a (see FIG. 4) and the indoor air (air in the space to be air-conditioned) fed from the indoor fan Fi. It is
  • the indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger 15, and is installed near the indoor heat exchanger 15.
  • the expansion valve 14 is a valve that depressurizes the refrigerant condensed by the “condenser” (one of the outdoor heat exchanger 13 and the indoor heat exchanger 15). The refrigerant decompressed by the expansion valve 14 is led to the “evaporator” (the other of the outdoor heat exchanger 13 and the indoor heat exchanger 15).
  • the four-way valve 12 is a valve that switches the flow path of the refrigerant according to the operation mode of the air conditioner AC. For example, during the cooling operation (see the broken arrow in FIG. 2), the compressor 11, the outdoor heat exchanger 13 (condenser), the expansion valve 14, and the indoor heat exchanger 15 (evaporator) The refrigerant circulates in the refrigeration cycle in the refrigerant circuit 10 sequentially connected in an annular fashion via the.
  • the compressor 11, the indoor heat exchanger 15 (condenser), the expansion valve 14, and the outdoor heat exchanger 13 (evaporator) The refrigerant circulates in the refrigeration cycle in the refrigerant circuit 10 sequentially connected in an annular fashion via the. As described above, in the refrigerant circuit 10, the refrigerant is circulated in the refrigeration cycle via the compressor 11, the "condenser", the expansion valve 14, and the "evaporator” sequentially.
  • the outdoor unit 200 is provided with a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion valve 14, an outdoor fan Fo, and a control unit 50 described later.
  • a refrigerant detection sensor 30 and a control unit 60 described later are provided in the indoor unit 100.
  • the blocking valves PV1 and PV2 are valves for opening the refrigerant after the installation work of the air conditioner AC, and for spreading the refrigerant that has been sealed in the outdoor unit 200 to the whole of the refrigerant circuit 10 so far.
  • the refrigerant detection sensor 30 is a sensor that detects the leakage of the refrigerant in the refrigerant circuit 10, and is installed in the indoor unit 100 at a predetermined location where the leakage of the refrigerant can be easily detected.
  • the refrigerant detection sensor 30 is configured to output, to the control unit 60, a refrigerant leakage detection signal (for example, the output voltage in FIG. 10) corresponding to the concentration of the refrigerant detected by itself.
  • the control units 50 and 60 are, for example, microcomputers (not shown), but include electronic circuits such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and various interfaces. It consists of Then, the program stored in the ROM is read and expanded in the RAM, and the CPU executes various processing.
  • the control unit 50 appropriately controls the compressor 11, the expansion valve 14, the outdoor fan Fo, and the like.
  • the control unit 60 is, for example, a microcomputer, and is connected to the control unit 50 via a control line.
  • the control unit 60 appropriately controls the indoor fan Fi and the like based on the detection result of the refrigerant detection sensor 30 and the like in addition to the signals input from the control unit 50 and the air conditioning control terminal 22 (see FIG. 3).
  • the configuration of the floor-standing indoor unit 100 will be described.
  • FIG. 3 is a front view of a floor-mounted indoor unit provided in the air conditioner.
  • the indoor unit 100 includes a cabinet 21 and an air conditioning control terminal 22 (remote control).
  • the cabinet 21 is a housing that accommodates the indoor heat exchanger 15 (see FIG. 4), the indoor fan Fi (see FIG. 4), and the like.
  • the cabinet 21 includes a front panel 21a, a bottom base 21b, an air inlet h1, and an air outlet h2.
  • the front panel 21 a is a part of the front plate of the cabinet 21 and is removable.
  • the bottom base 21 b is a bottom plate of the cabinet 21.
  • the air suction port h1 is an opening for introducing air to the inside of the cabinet 21, and is provided below the front panel 21a.
  • the air outlet h2 is an opening for blowing out the air whose temperature and humidity are adjusted to the air conditioning target space, and is provided on the upper side of the front panel 21a.
  • the air conditioning control terminal 22 is for performing switching of operation / stop, change of the set temperature, change of the operation mode, and the like by the operation of the user, and is provided at the central portion of the front panel 21a.
  • FIG. 4 is a figure which shows the longitudinal cross-section of the floor-standing type indoor unit with which an air conditioner is provided.
  • the indoor heat exchanger 15, the drain pan 23, the heat insulating plate 24 and the like are installed in the upper space in the cabinet 21.
  • an indoor fan Fi, a bellmouth 25, an electrical item box 44, and the like are installed in the lower space in the cabinet 21.
  • the drain pan 23 receives the condensed water dripping from the indoor heat exchanger 15.
  • the condensed water received by the drain pan 23 is discharged to the outside through the drain pipe K1 and the like.
  • another drain pipe (not shown) is connected to the downstream end k of the drain pipe K1 via a pipe intake hole i provided in a side plate or the like of the cabinet 21.
  • another refrigerant pipe is also connected to the connection portion j of the refrigerant pipe J1 that leads the refrigerant to the indoor heat exchanger 15 via the pipe intake hole i.
  • the heat insulating plate 24 is a plate for thermally insulating the space target space and the inside of the cabinet 21.
  • the heat insulating plate 24 is disposed between the indoor heat exchanger 15 and the front panel 21a.
  • the bell mouth 25 guides the flow of air from the indoor fan Fi (for example, a centrifugal fan), and is installed on the outlet side of the indoor fan Fi.
  • the electrical component box 44 is a box that accommodates the control unit 60 (see FIG. 1), and is installed below the drain pan 23.
  • the refrigerant detection sensor 30 described above is installed on the bottom base 21b.
  • the refrigerant detection sensor 30 includes a sensor case 31 that accommodates circuit components and the like. For example, when the refrigerant leaks out from the vicinity of the connection portion j (in the unconnected state in FIG. 3) of the refrigerant pipe J1, the gas refrigerant having a specific gravity larger than that of the air settles and accumulates at the bottom. When the concentration of the gas refrigerant is equal to or higher than the predetermined threshold value, the refrigerant detection sensor 30 detects refrigerant leakage.
  • FIG. 5 is a diagram showing the relationship between the refrigerant detection sensor and the control unit.
  • the refrigerant detection sensor 30 includes a sensor unit 30a and a sensor substrate 30b that outputs an output voltage or the like detected by the sensor unit 30a.
  • the sensor unit 30a is an element having sensitivity to the concentration of the refrigerant. That is, the sensor unit 30a is configured to output a signal (analog signal) indicating the concentration of the refrigerant. As such a sensor unit 30a, in addition to semiconductor type and infrared type, elements such as contact combustion type and electrochemical type can be used. Then, a gas refrigerant or the like is introduced into the inside of the sensor unit 30a via the network Q shown in FIG.
  • the sensor substrate 30b outputs a refrigerant detection signal (for example, the output voltage Vout in FIG. 10) based on a signal input from the sensor unit 30a, and the control unit 60 and the electric unit 60 are electrically connected via a plurality of wirings m. Connected.
  • the control unit 60 supplies a circuit voltage (for example, 5 V) to the sensor substrate 30b.
  • the control unit 60 determines that the refrigerant is leaked, It has a function of notifying by display or sound of the control terminal 22 (see FIG. 3).
  • the control unit 60 may drive the indoor fan Fi (see FIG. 4) even while the air conditioning operation is stopped. . Since the gas refrigerant which settled near the floor of air-conditioning object space is spread by this, it can control that concentration of a refrigerant becomes high locally.
  • FIG. 6 is a diagram showing the installation state of the refrigerant detection sensor.
  • the refrigerant detection sensor 30 is installed on the bottom base 21b.
  • a rib 211b is formed at a position where the refrigerant detection sensor 30 is installed.
  • the rib 211b extends upward from the bottom base 21b, and has a frame shape (for example, a square frame shape) in a plan view.
  • the sensor case 31 includes a flat base portion 31a and a side wall 31b extending downward from the periphery of the base portion 31a.
  • the refrigerant detection sensor 30 described above is installed on the back surface (inner surface) of the base portion 31a. In other words, the refrigerant detection sensor 30 is installed on the inner ceiling surface of the sensor case 31.
  • the sensor substrate 30b is fixed to the base portion 31a by a claw member (not shown) or a screw, but the sensor substrate 30b can be removed from the base portion 31a.
  • the sensor substrate 30b on which the sensor unit 30a is mounted can be removed from the sensor case 31 and replaced with a new one.
  • a predetermined gap is provided between the sensor case 31 and the rib 211 b in the horizontal direction and the vertical direction.
  • the side wall 31b of the sensor case 31 is provided with a plurality of slits 31c (refrigerant intake ports). In the example shown in FIG. 6, many slits 31c are provided over substantially the entire circumference of the side wall 31b.
  • the vaporized gas refrigerant enters into the sensor case 31 through the slit 31c. Further, even if a large amount of condensed water overflows from the drain pan 23 (see FIG. 3), the condensed water which has fallen to the bottom base 21b is blocked by the ribs 211b. By this, it can prevent that a condensed water adheres to the sensor part 30a mounted in the sensor board
  • the refrigerant detection sensor 30 is replaced before the end of the life of the sensor unit 30a.
  • a maintenance worker removes the sensor case 31 from the bottom base 21b, and further removes the coolant detection sensor 30 from the sensor case 31, and then a new coolant detection sensor 30 is used as the sensor case 31.
  • FIG. 7 is a diagram showing a configuration of a control unit of the indoor unit.
  • the control unit 60 performs air conditioning control according to an instruction of the air conditioning control terminal 22, a refrigerant leakage determination unit 62 that determines whether there is refrigerant leakage based on the output of the refrigerant detection sensor 30, and refrigerant detection
  • a refrigerant detection sensor life management unit 63 that manages the life of the sensor 30, a notification unit 66 that gives various notification instructions to the air conditioning control terminal 22, and a storage unit 69 that stores each setting value and the like.
  • the refrigerant detection sensor life management unit 63 includes an operation time integration unit 64 and a refrigerant detection sensor abnormality / failure monitor unit 65.
  • the storage unit 69 includes, for example, a read only memory (ROM), a random access memory (RAM), and the like.
  • the storage unit 69 includes the first period T1 and the second period T2 described in FIG. 8 and the predetermined period Tc, and the voltages V 1 , V 2 , V 3 , V 4 , V 5 and V 6 described in FIG. The determination value is stored.
  • FIG. 8 is a diagram showing period management by the control unit.
  • FIG. 8 shows the monitoring status until the end of the refrigerant detection sensor 30 and the sensor replacement timing after the indoor unit 100 starts operation.
  • the first period T1 (time Ts to Tb) is a period indicating the estimated life of the refrigerant detection sensor 30 at the beginning.
  • the second period T2 (time ts to ta) is a period shorter than the first period T1.
  • the time ta is a time for notifying that the refrigerant detection sensor 30 is approaching its life.
  • the predetermined period Tc is a period from the detection of sensor abnormality of the refrigerant detection sensor 30 (time tc) to the forcible stop of the operation after the first period has elapsed.
  • the third period T3 is a period from the start of the operation of the indoor unit 100 to the forcible stop of the operation.
  • the operation time is integrated.
  • the operation time increases, and the predetermined second period has elapsed (time ta)
  • the estimated life of the refrigerant detection sensor 30 is approaching, and it is necessary to prepare for the exchange of the refrigerant detection sensor 30,
  • the air conditioning control terminal Notice display on the 22 indicator.
  • the user confirms the display and arranges for replacement of the refrigerant detection sensor 30. Since the time during the first period after the second period (time ta to tb) is set to the time where arrangements necessary for replacing the refrigerant detection sensor 30 can be made, the user can afford the refrigerant detection sensor 30 with a margin. There is an effect that exchange can be carried out. Furthermore, it is desirable to replace the coolant detection sensor 30 before the operation time increases and the first predetermined period corresponding to the estimated life of the coolant detection sensor 30 is reached.
  • the first life notification that has reached the estimated life of the refrigerant detection sensor 30 is displayed on the display unit. Since the refrigerant detection sensor 30 is originally supposed to have an estimated life and the detection accuracy can not be guaranteed, the user must immediately replace the refrigerant detection sensor 30.
  • the second life notification is displayed on the indicator of the air conditioning control terminal 22. This urges sensor replacement as soon as possible.
  • the third period T3 elapses (time td) when a predetermined period Tc elapses after detecting a sensor abnormality (during the time td) the refrigerant is detected when a refrigerant leak should occur. Since there is a possibility that the sensor 30 can not detect, the operation of the air conditioner AC is forcibly stopped. Then, the user can be urged to replace the refrigerant detection sensor 30, and safety can be ensured.
  • Patent Document 1 describes that "the control unit stops the compressor of the refrigerant circuit when the integrated energization time becomes equal to or longer than the first threshold time".
  • the refrigerant It is characterized in that the operation of the air conditioner AC is not immediately stopped even if the detection sensor 30 reaches the expected life.
  • (1) There is variation in the life of the refrigerant detection sensor 30 for each individual, and the failure does not always occur at the assumed life. For example, even a sensor originally considered to have an estimated life of about five years may extend several years. (2) Give many replacement timings to the user. It is because it considered that.
  • the air conditioner AC of the present embodiment includes a refrigerant circuit 10 in which the refrigerant circulates, a refrigerant detection sensor 30 that detects the leakage of the refrigerant, and a control unit 60 that controls the refrigerant circuit. Then, the control unit 60 gives a notice to the air conditioning control terminal 22 when the second period T2, which is shorter than the first period T1, has elapsed, when the first period T1 has elapsed and replacement of the refrigerant detection sensor 30 is necessary. The notification can be made, and the abnormality of the refrigerant detection sensor 30 can be detected after the first period T1 has elapsed, and the air conditioning operation can be forcibly stopped when the predetermined period Tc has elapsed.
  • the advance notice is a notice that the air conditioning operation can not be performed. Further, the advance notice is a notice that there is a need to replace the refrigerant detection sensor 30.
  • the advance notice is displayed on the display unit of the air conditioning control terminal 22 of the air conditioner AC and notified, the light emission unit of the air conditioning control terminal 22 is notified by light emission, the sound unit of the air conditioning control terminal 22 is notified by voice At least one.
  • the control unit 60 can notify the air conditioning control terminal 22 of a notification that there is a need to replace the refrigerant detection sensor 30 when the first period T1 has elapsed. Further, the control unit 60 may not be able to operate the air conditioning operation after the second predetermined period Tc2 longer than the predetermined period Tc after the first period T1 has elapsed.
  • the control unit 60 detects an abnormality of the refrigerant detection sensor 30 after the first period T1 has elapsed, and can make the air conditioning operation impossible when the predetermined period Tc has elapsed.
  • the refrigerant detection sensor abnormality / failure monitor unit 65 detects a sensor abnormality or a sensor failure before the first period T1 elapses
  • the notification unit 66 indicates that there is a sensor abnormality via the air conditioning control terminal 22. Or notify that there is a sensor failure.
  • sensor abnormality it is preferable to wait for the user to replace the sensor without setting the air conditioning operation impossible immediately.
  • the air conditioning operation can not be performed immediately.
  • FIG. 9 is a flowchart showing the life management process of the refrigerant detection sensor.
  • the refrigerant detection sensor life management unit 63 executes the life management process of the refrigerant detection sensor 30.
  • the air conditioning operation starts (step S601)
  • the refrigerant detection sensor life management unit 63 integrates the operation time by the operation time integration unit 64.
  • the circuit voltage to the refrigerant detection sensor 30 is energized during the air conditioning operation.
  • the operation time integration unit 64 may integrate the operation time. This is to increase the accuracy of the life management of the refrigerant detection sensor 30.
  • the refrigerant detection sensor life management unit 63 determines whether the second period T2 has elapsed (step S602). If the second period T2 has elapsed (Yes at step S602), the process proceeds to step S603, and the second period If T2 has not elapsed (step S602, No), the process returns to step S602.
  • step S603 the notification unit 66 causes the display of the air conditioning control terminal 22 to display a notice.
  • the notice display indicates, for example, “The replacement time of the refrigerant detection sensor is approaching.
  • the contact information is xxxx.” Or the like. Then, the process proceeds to step S604.
  • step S605 the refrigerant detection sensor life management unit 63 determines whether the first period T1 has elapsed, and if the first period T1 has elapsed (Yes in step S605), the process proceeds to step S606, and the first period If T1 has not elapsed (step S605, No), the process returns to step S604.
  • step S606 the notification unit 66 displays the first life notification on the display of the air conditioning control terminal 22.
  • the first life notification “The replacement time of the refrigerant detection sensor has come. The contact point is xxxx.” Or the like. Then, the process proceeds to step S 607.
  • step S608 the refrigerant detection sensor life management unit 63 determines whether or not there is a detection of sensor abnormality. If there is a detection of sensor abnormality (Yes in step S608), the process proceeds to step S609, where the sensor abnormality is detected. If not (step S608, No), the process returns to step S607.
  • step S ⁇ b> 609 the notification unit 66 displays the second life notification on the display of the air conditioning control terminal 22.
  • the second life notification is, "There is a problem with the refrigerant detection sensor, please replace as soon as possible.
  • the contact information is xxxx.” Then, the process proceeds to step S610.
  • the refrigerant detection sensor life management unit 63 determines whether the sensor has been replaced (step S10), and if the sensor is not replaced (step S610, incomplete), the process proceeds to step S611, and the sensor is replaced
  • step S611 the refrigerant detection sensor life management unit 63 determines whether or not the predetermined period Tc has elapsed, and if the predetermined period Tc has not elapsed (No in step S611), the process returns to step S610.
  • the refrigerant detection sensor life management unit 63 forcibly stops the operation of the air conditioner AC and disables the operation (step S612).
  • the display of the air conditioning control terminal 22 displays a notification that the operation is not possible (step S613).
  • the notification that the operation is not possible includes, for example, "There is an abnormality in the refrigerant detection sensor. Operation can not be performed until the sensor replacement is completed.” The above is the life management process of the refrigerant detection sensor.
  • FIG. 10 is a diagram showing an example of the abnormality determination value of the refrigerant detection sensor. 7 and 9 will be referred to as appropriate.
  • the horizontal axis is the gas concentration, and the vertical axis is the output voltage Vout from the refrigerant detection sensor 30.
  • the voltage Vc is a circuit voltage of the refrigerant detection sensor 30.
  • refrigerant leakage determination unit 62, the output voltage Vout is the voltage V 3 or more, and, if the voltage V 4 or less, it is determined that the "refrigerant leakage".
  • the refrigerant detection sensor abnormality / failure monitor section 65 For the sensor abnormality detection in step S608 of FIG. 9, the refrigerant detection sensor abnormality / failure monitor section 65, the output voltage Vout is lower than the voltage V 2, or, when it exceeds the voltage V 5, the abnormality of the refrigerant detection sensor 30 Determine that there is. Further, it is determined that the refrigerant detection sensor abnormality / failure monitor section 65 is less than the output voltage Vout is the voltage V 1, or, if it exceeds voltage V 6, it is a failure of the coolant sensor 30. This is in consideration of the instability of the output voltage Vout when the refrigerant detection sensor 30 exceeds the expected life.
  • an upper limit for example, voltage V 5
  • a lower limit for example, voltage V 2
  • the output voltage Vout exceeds the upper limit value or when the output voltage Vout is less than the lower limit value, it may be determined that the refrigerant detection sensor is abnormal.
  • the indoor unit 100 (refer FIG. 3) being a floor-standing type, it does not restrict to this. That is, the indoor unit 100 may be ceiling-mounted or wall-mounted.
  • the refrigerant detection sensor 30 may be installed outside the indoor unit 100.
  • the coolant detection sensor 30 may be installed in the vicinity of the floor (near the floor of the space to be air-conditioned) .
  • each embodiment can be applied to a building multiple air conditioner (Variable Refrigerant Flow: VRF) and a packaged air conditioner (PAC) including a plurality of indoor units.
  • VRF Building Multiple Air conditioner
  • PAC packaged air conditioner
  • each embodiment can be applied to an integrated air conditioner in which the indoor unit and the outdoor unit are integrated.
  • each embodiment is described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to one having all the configurations described. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments. Further, the mechanisms and configurations described above indicate what is considered to be necessary for the description, and not all the mechanisms and configurations of the product are necessarily shown.
  • refrigerant circuit 11 compressor 12 four-way valve 13 outdoor heat exchanger (condenser / evaporator) 14 Expansion valve 15 Indoor heat exchanger (evaporator / condenser) 21 cabinet 22 air conditioning control terminal (remote control) Reference Signs List 30 refrigerant detection sensor 30a sensor portion 30b sensor substrate 31 sensor case 31a base portion 31b side wall 31c slit (refrigerant intake port) Reference Signs List 50, 60 control unit 44 electric product box 100 indoor unit 200 outdoor unit AC air conditioner Fo outdoor fan Fi indoor fan T1 first period T2 second period T3 third period Tc predetermined period Tc2 second predetermined period

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和機は、冷媒が循環する冷媒回路と、冷媒の漏洩を検知する冷媒検知センサと、冷媒回路を制御する制御部と、を備え、制御部は、第1期間(T1)が経過して冷媒検知センサの交換が必要となる場合に、第1期間(T1)よりも短い第2期間(T2)が経過したときに空調制御端末に予告報知をさせ、第1期間(T1)が経過したのち冷媒検知センサの異常を検知し、所定期間(Tc)が経過したときに空調運転を強制的に停止する。

Description

空気調和機
 本発明は、空気調和機に関する。
 地球温暖化防止のため、冷凍空調機器に使用する冷媒のGWP(Global Warming Potential;地球温暖化係数)値低減が求められている。GWP値が低い冷媒は、微燃性(可燃性)を有することとなるため、微燃性を有するA2L冷媒を安全に使用するために冷媒漏洩に備えた安全対策を求める法律、規格が制定されている。
 冷媒漏洩が発生した場合、冷媒漏洩を検知し漏洩した冷媒が燃焼しないための必要な処置を実施する必要があり、冷媒漏洩を検知する冷媒検知センサを備えた空気調和機がある。この冷媒検知センサには寿命があり、所定の期間で交換やメンテナンスをする必要がある。
 特許文献1の冷凍サイクル装置には、「冷媒検知手段への積算通電時間が第1の閾値時間以上になった場合には、報知部に異常を報知させるとともに送風ファンを運転するように構成されている」ことが記載されている。また、「制御部は、積算通電時間が第1の閾値時間以上になった場合には、冷媒回路の圧縮機を停止させる」ことが記載されている。
特許第6143977号公報
 特許文献1に記載の技術では、第1の閾値時間は、異常を報知する時間であるとしているが、実際に異常であるかを第1の閾値時間で定めるのは難しいのが実情である。これは、センサ類の寿命が第1の閾値時間で決定できるかが疑わしいためである。
 本発明は、前記の課題を解決するための発明であって、冷媒検知センサの寿命を考慮できる空気調和機を提供することを目的とする。
 前記した課題を解決するために、本発明に係る空気調和機は、冷媒が循環する冷媒回路と、冷媒の漏洩を検知する冷媒検知センサと、冷媒回路を制御する制御部と、を備え、制御部は、第1期間が経過して冷媒検知センサの交換が必要となる場合に、第1期間よりも短い第2期間が経過したときに空調制御端末に予告報知をさせ、第1期間が経過したのち冷媒検知センサの異常を検知し、所定期間が経過したときに空調運転を強制的に停止することを特徴とする。本発明のその他の態様については、後記する実施形態において説明する。
 本発明によれば、冷媒検知センサの寿命を考慮できる。
空気調和機の全体構成を示す図である。 空気調和機の冷凍サイクル系統を示す図である。 空気調和機が備える床置き式の室内機の正面を示す図である。 空気調和機が備える床置き式の室内機の縦断面を示す図である。 冷媒検知センサと制御部との関係を示す図である。 冷媒検知センサの設置状況を示す図である。 空気調和機の制御部の構成を示す図である。 制御部による期間管理を示す図である。 冷媒検知センサの寿命管理処理を示すフローチャートである。 冷媒検知センサの異常判定値の例を示す図である。
 本発明を実施するための実施形態について、適宜図面を参照しながら詳細に説明する。
 図1は、空気調和機の全体構成を示す図である。空気調和機ACは、室内機100と室外機200とで構成されている。室内機100と室外機200とは冷媒配管、制御線で結合されている。室内機100は、制御部60、空調制御端末22(リモコン)、及び冷媒漏洩を検知する冷媒検知センサ30を有している。室外機200は、制御部50を有している。室内機100と室外機200を循環する冷媒には、R32、R1234yf、R1234ze等の微燃性(A2L)冷媒が用いられる。
 図2は、空気調和機の冷凍サイクル系統を示す図である。なお、図2では、暖房運転中に冷媒が流れる向きを実線で示し、冷房運転中に冷媒が流れる向きを破線で示している。空気調和機ACは、暖房や冷房等の空調を行う機器である。図2に示すように、空気調和機ACは、冷媒回路10と、室外ファンFoと、室内ファンFiと、阻止弁PV1,PV2と、冷媒検知センサ30と、制御部50,60と、を備えている。
 冷媒回路10は、冷凍サイクル(ヒートポンプサイクル)で冷媒が循環する回路である。図2に示すように、冷媒回路10は、圧縮機11と、四方弁12と、室外熱交換器13と、膨張弁14と、室内熱交換器15と、を備えている。
 圧縮機11は、ガス状の冷媒を圧縮する機器である。圧縮機11の種類は特に限定されず、スクロール式、ピストン式、ロータリ式、スクリュー式、遠心式等の圧縮機が用いられる。なお、図1では図示を省略しているが、冷媒を気液分離するためのアキュムレータが、圧縮機11の吸込側に設けられている。
 室外熱交換器13は、その伝熱管(図示せず)を通流する冷媒と、室外ファンFoから送り込まれる外気と、の間で熱交換が行われる熱交換器である。室外ファンFoは、室外熱交換器13に外気を送り込むファンであり、室外熱交換器13の付近に設置されている。
 室内熱交換器15は、その伝熱管15a(図4参照)を通流する冷媒と、室内ファンFiから送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。室内ファンFiは、室内熱交換器15に室内空気を送り込むファンであり、室内熱交換器15の付近に設置されている。
 膨張弁14は、「凝縮器」(室外熱交換器13及び室内熱交換器15の一方)で凝縮した冷媒を減圧する弁である。膨張弁14によって減圧された冷媒は、「蒸発器」(室外熱交換器13及び室内熱交換器15の他方)に導かれる。
 四方弁12は、空気調和機ACの運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(図2の破線矢印を参照)には、圧縮機11、室外熱交換器13(凝縮器)、膨張弁14、及び室内熱交換器15(蒸発器)が、四方弁12を介して環状に順次接続されてなる冷媒回路10において、冷凍サイクルで冷媒が循環する。
 また、暖房運転時(図2の実線矢印を参照)には、圧縮機11、室内熱交換器15(凝縮器)、膨張弁14、及び室外熱交換器13(蒸発器)が、四方弁12を介して環状に順次接続されてなる冷媒回路10において、冷凍サイクルで冷媒が循環する。このように冷媒回路10では、圧縮機11、「凝縮器」、膨張弁14、及び「蒸発器」を順次に介して、冷凍サイクルで冷媒が循環するようになっている。
 なお、図2に示す例では、圧縮機11、四方弁12、室外熱交換器13、膨張弁14、室外ファンFoや、後記する制御部50が、室外機200に設けられている。一方、室内熱交換器15や室内ファンFiの他、後記する冷媒検知センサ30や制御部60が、室内機100に設けられている。
 阻止弁PV1,PV2は、空気調和機ACの据付作業後に開弁されることで、それまで室外機200に封入されていた冷媒を冷媒回路10の全体に行き渡らせるための弁である。
 冷媒検知センサ30は、冷媒回路10における冷媒の漏洩を検知するセンサであり、室内機100において、冷媒の漏洩を検知しやすい所定箇所に設置されている。冷媒検知センサ30は、自身が検出した冷媒の濃度に対応する冷媒漏れの検知信号(例えば、図10の出力電圧)を制御部60に出力するようになっている。
 制御部50,60は、例えば、マイコン(microcomputer)であり、図示はしないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。制御部50は、圧縮機11、膨張弁14、室外ファンFo等を適宜に制御する。
 制御部60は、例えば、マイコンであり、制御線を介して制御部50に接続されている。制御部60は、制御部50や空調制御端末22(図3参照)から入力される信号の他、冷媒検知センサ30の検知結果等に基づいて、室内ファンFi等を適宜に制御する。次に、一例として、床置き式の室内機100の構成について説明する。
 図3は、空気調和機が備える床置き式の室内機の正面を示す図である。図3に示すように、室内機100は、キャビネット21と、空調制御端末22(リモコン)と、を備えている。キャビネット21は、室内熱交換器15(図4参照)や室内ファンFi(図4参照)等を収容する筐体である。キャビネット21は、フロントパネル21aと、底ベース21bと、空気吸込口h1と、空気吹出口h2と、を備えている。
 フロントパネル21aは、キャビネット21の前板の一部であり、取外し可能になっている。底ベース21bは、キャビネット21の底板である。空気吸込口h1は、キャビネット21の内部に空気を導くための開口であり、フロントパネル21aの下側に設けられている。空気吹出口h2は、温湿度が調和された空気を空調対象空間に吹き出すための開口であり、フロントパネル21aの上側に設けられている。
 空調制御端末22は、運転/停止の切替え、設定温度の変更、運転モードの変更等をユーザの操作によって行うためのものであり、フロントパネル21aの中央部に設けられている。
 図4は、空気調和機が備える床置き式の室内機の縦断面を示す図である。図4に示す例では、室内熱交換器15、ドレンパン23、断熱板24等が、キャビネット21内の上部空間に設置されている。また、室内ファンFi、ベルマウス25、電気品箱44等が、キャビネット21内の下部空間に設置されている。
 ドレンパン23は、室内熱交換器15から滴り落ちる凝縮水を受けるものである。ドレンパン23で受けられた凝縮水は、ドレン配管K1等を介して外部に排出される。なお、ドレン配管K1の下流端kには、キャビネット21の側板等に設けられた配管取入孔iを介して、別のドレン配管(図示せず)が接続される。また、室内熱交換器15に冷媒を導く冷媒配管J1の接続部jにも、配管取入孔iを介して、別の冷媒配管が接続される。
 断熱板24は、空間対象空間とキャビネット21内との間を断熱するための板である。この断熱板24は、室内熱交換器15とフロントパネル21aとの間に設置されている。ベルマウス25は、室内ファンFi(例えば、遠心ファン)からの空気の流れを案内するものであり、室内ファンFiの吹出側に設置されている。
 電気品箱44は、制御部60(図1参照)を収容する箱であり、ドレンパン23の下側に設置されている。
 また、底ベース21bには、前記した冷媒検知センサ30が設置されている。この冷媒検知センサ30は、回路部品等を収容するセンサケース31を備えている。例えば、冷媒配管J1の接続部j(図3では未接続の状態)の付近から冷媒が漏れ出した場合、空気よりも比重が大きいガス冷媒が沈降して底に溜まる。そして、ガス冷媒の濃度が所定閾値以上である場合、冷媒検知センサ30が冷媒漏れを検知するようになっている。
 図5は、冷媒検知センサと制御部との関係を示す図である。なお、図5では、制御部60と他の機器(図1に示す制御部50や空調制御端末22等)との電気的接続の図示を省略している。冷媒検知センサ30は、センサ部30aと、センサ部30aで検知した出力電圧等を出力するセンサ基板30bと、を備えている。
 センサ部30aは、冷媒の濃度に感度を有する素子である。すなわち、センサ部30aは、冷媒の濃度の高さを示す信号(アナログ信号)を出力するようになっている。このようなセンサ部30aとして、半導体式や赤外線式の他、接触燃焼式、電気化学式等の素子を用いることができる。そして、図5に示す網Qを介して、センサ部30aの内部にガス冷媒等が取り入れられるようになっている。
 センサ基板30bは、センサ部30aから入力される信号に基づいて、冷媒の検知信号(例えば、図10の出力電圧Vout)を出力するものあり、複数の配線mを介して、制御部60と電気的に接続されている。制御部60は、センサ基板30bに対し、回路電圧(例えば、5V)を供給している。
 制御部60は、冷媒検知センサ30の出力電圧Voutが所定の範囲(例えば、図10の電圧V3以上、かつ、電圧V4以下)に入れば、冷媒の漏洩があるとして判定し、その旨を空調制御端末22(図3参照)の表示や音声によって報知する機能を有している。なお、可燃性の冷媒(例えば、冷媒R32)の漏洩が検知された場合、空調運転の停止中であっても、制御部60が室内ファンFi(図4参照)を駆動するようにしてもよい。これによって、空調対象空間の床面付近に沈降したガス冷媒が拡散されるため、冷媒の濃度が局所的に高くなることを抑制できる。
 図6は、冷媒検知センサの設置状況を示す図である。前記したように、床置き式の室内機100(図4参照)において、底ベース21bの上に冷媒検知センサ30が設置されている。なお、底ベース21bにおいて冷媒検知センサ30が設置される箇所には、リブ211bが形成されている。このリブ211bは、底ベース21bから上方に延びており、平面視で枠状(例えば、四角枠状)を呈している。
 そして、リブ211bを覆うように、薄蓋形状のセンサケース31がボルトFで固定されている。図6に示すように、センサケース31は、平板状のベース部31aと、このベース部31aの周縁から下方に延びる側壁31bと、を備えている。
 ベース部31aの裏面(内面)には、前記した冷媒検知センサ30が設置されている。言い換えると、センサケース31の内側天井面には、冷媒検知センサ30が設置されている。
 なお、センサ基板30bは、爪部材(図示せず)やネジ止め等によってベース部31aに固定されているが、ベース部31aからセンサ基板30bを取外し可能になっている。これによって、例えば、冷媒検知センサ30の寿命が尽きる前に、このセンサ部30aが実装されたセンサ基板30bをセンサケース31から取外して、新品のものに交換できる。
 図6に示すように、センサケース31とリブ211bとの間には、横方向・縦方向において所定の隙間が設けられている。また、センサケース31の側壁31bには、複数のスリット31c(冷媒取込口)が設けられている。図6に示す例では、側壁31bの略全周に亘って、多数のスリット31cが設けられている。
 そして、冷媒回路10(図2参照)から冷媒が漏れた場合には、気化したガス冷媒がスリット31cを介してセンサケース31の中に入り込むようになっている。また、仮に、多量の凝縮水がドレンパン23(図3参照)から溢れ出たとしても、底ベース21bに流れ落ちた凝縮水がリブ211bで堰き止められる。これによって、センサ基板30bに実装されたセンサ部30aに凝縮水が付くことを防止できる。
 ちなみに、冷媒の漏洩が生じたり、ドレンパン23(図3参照)から凝縮水が溢れ出たりすることは稀であるが、図5では説明を分かりやすくするために、「ガス冷媒」や「凝縮水」を記載している。
 前記したように、冷媒検知センサ30は、センサ部30aの寿命が尽きる前に交換される。冷媒検知センサ30を交換する際、メンテナンスの作業員は、底ベース21bからセンサケース31を取外し、さらに、センサケース31から冷媒検知センサ30を取外した後、新たな冷媒検知センサ30をセンサケース31に設置する。
 図7は、室内機の制御部の構成を示す図である。制御部60は、空調制御端末22の指示に応じて空調制御を行う空調制御部61、冷媒検知センサ30の出力に基づいて冷媒漏洩があるか否かを判定する冷媒漏洩判定部62、冷媒検知センサ30の寿命を管理する冷媒検知センサ寿命管理部63、空調制御端末22に各種報知指示を行う報知部66、各設定値等を記憶する記憶部69を有する。冷媒検知センサ寿命管理部63には、運転時間積算部64、冷媒検知センサ異常/故障監視部65を有している。
 記憶部69は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)等を含んで構成される。記憶部69には、図8で説明する第1期間T1、第2期間T2、所定期間Tc、図10で説明する電圧V,V,V,V,V,V等の判定値が記憶されている。
 図8は、制御部による期間管理を示す図である。図8は、室内機100が運転開始後、冷媒検知センサ30の寿命までの監視状況とセンサの交換時期を示している。第1期間T1(時刻Ts~Tb)は、当初の冷媒検知センサ30の想定寿命を示す期間である。第2期間T2(時刻ts~ta)は、第1期間T1よりも短い期間である。時刻taが冷媒検知センサ30が寿命に近づいていることを知らせるための時刻である。また、所定期間Tc(時刻tc~td)は、第1期間が経過後、冷媒検知センサ30のセンサ異常の検知(時刻tc)から運転を強制的に停止するまでの期間である。第3期間T3(時刻ts~td)は、室内機100の運転開始から運転を強制的に停止するまでの期間である。
 空調運転を開始すると運転時間が積算されていく。運転時間が増えていき、所定の第2期間が経過した場合(時刻ta)、冷媒検知センサ30の想定寿命が近づいており、冷媒検知センサ30の交換の準備が必要なことを、空調制御端末22の表示器に予告表示する。使用者は表示を確認し、冷媒検知センサ30の交換の手配を実施する。第2期間後第1期間の間の時間(時刻ta~tb)は、冷媒検知センサ30の交換に必要な手配が可能な時間に設定されているので、使用者は余裕をもって冷媒検知センサ30の交換を実施することができる効果がある。さらに、運転時間が増えていき冷媒検知センサ30の想定寿命に相当する所定の第1期間に達する前に冷媒検知センサ30を交換することが望ましい。
 運転時間が所定の第1期間を経過すると(時刻tb)、冷媒検知センサ30の想定寿命に達した第1寿命報知を表示機へ表示する。本来は冷媒検知センサ30の想定寿命となり、検知精度が保証できない状況にあるため、使用者は至急、冷媒検知センサ30の交換が必要となる。
 さらに運転時間が経過していき、冷媒検知センサ30のセンサ異常を検知した場合(時刻tc)には、第2寿命報知を空調制御端末22の表示器に表示する。これにより至急センサ交換を促す。
 さらに運転を継続した場合、センサ異常を検知したのち所定期間Tcを経過した場合の第3期間T3が経過すると(時刻td)、これ以上の運転は万一冷媒漏れが発生した際に、冷媒検知センサ30が検知できない恐れがあるため、空気調和機ACの運転を強制的に停止する。そして、使用者に冷媒検知センサ30の交換を促すとともに、安全を確保することが可能となる。
 特許文献1では、「制御部は、積算通電時間が第1の閾値時間以上になった場合には、冷媒回路の圧縮機を停止させる」ことが記載されているが、本実施形態では、冷媒検知センサ30が想定寿命に達しても、すぐに空気調和機ACの運転を停止させないことが特徴となっている。その理由として、
(1)冷媒検知センサ30の個体毎の寿命にはばらつきがあり、必ずしも想定寿命で不具合がでるとは限らない。例えば、当初5年程度の想定寿命と考えられたセンサでも、数年延びる場合がある。
(2)使用者への交換タイミングを多く与える。
ことを考慮したためである。
 本実施形態の空気調和機ACは、冷媒が循環する冷媒回路10と、冷媒の漏洩を検知する冷媒検知センサ30と、冷媒回路を制御する制御部60と、を備える。そして、制御部60は、第1期間T1が経過して冷媒検知センサ30の交換が必要となる場合に、第1期間T1よりも短い第2期間T2が経過したときに空調制御端末22に予告報知をさせ、第1期間T1が経過したのち冷媒検知センサ30の異常を検知し、所定期間Tcが経過したときに空調運転を強制的に停止することができる。
 予告報知は、空調運転ができなくなる旨の報知とする。また、予告報知は、冷媒検知センサ30の交換の必要性がある旨の報知とする。予告報知は、空気調和機ACの空調制御端末22の表示部に表示して報知する、空調制御端末22の発光部に発光で報知する、空調制御端末22の音声部から音声で報知する、の少なくともいずれかである。
 制御部60は、第1期間T1が経過したときに、冷媒検知センサ30の交換の必要性がある旨の報知を空調制御端末22に報知させることができる。また、制御部60は、第1期間T1が経過したのち、所定期間Tcよりも長い第2所定期間Tc2後に空調運転を運転できない状態としてもよい。
 制御部60は、第1期間T1が経過したのち、冷媒検知センサ30の異常を検知し、所定期間Tcが経過したときに空調運転できない状態とすることができる。なお、冷媒検知センサ異常/故障監視部65は、第1期間T1が経過する前にセンサ異常又はセンサ故障を検知したときは、報知部66が空調制御端末22を介して、センサ異常がある旨又はセンサ故障がある旨を報知する。センサ異常の場合、すぐに空調運転できない状態とせず、使用者のセンサ交換を待つとよい。センサ故障の場合、すぐに空調運転できない状態とするとよい。
 図9は、冷媒検知センサの寿命管理処理を示すフローチャートである。適宜図7を参照する。冷媒検知センサ寿命管理部63は、冷媒検知センサ30の寿命管理処理を実行する。冷媒検知センサ寿命管理部63は、空調運転が開始すると(ステップS601)、運転時間積算部64で運転時間の積算をする。本実施形態では、空調運転時には、冷媒検知センサ30への回路電圧が通電されている。なお、空調停止時に、冷媒検知センサ30に通電が行われる場合には、運転時間積算部64で運転時間の積算をするとよい。冷媒検知センサ30の寿命管理の精度を高めるためである。
 冷媒検知センサ寿命管理部63は、第2期間T2が経過したか否かを判定し(ステップS602)、第2期間T2が経過した場合(ステップS602,Yes)、ステップS603に進み、第2期間T2が経過していない場合(ステップS602,No)、ステップS602に戻る。
 ステップS603において、報知部66は、空調制御端末22の表示器に予告表示する。予告表示には、「冷媒検知センサの交換時期が近づいています。連絡先はxxxxです。」等である。そして、ステップS604に進む。
 冷媒検知センサ寿命管理部63は、センサが交換されたか否かを判定し(ステップS604)、センサが交換されていない場合(ステップS604,未完)、ステップS605に進み、センサが交換されている場合(ステップS604,完了)、積算時間を初期化(例えば、積算時間=0)して(ステップS620)、ステップS602に戻る。
 ステップS605において、冷媒検知センサ寿命管理部63は、第1期間T1が経過したか否かを判定し、第1期間T1が経過した場合(ステップS605,Yes)、ステップS606に進み、第1期間T1が経過していない場合(ステップS605,No)、ステップS604に戻る。
 ステップS606において、報知部66は、空調制御端末22の表示器に第1寿命報知を表示する。第1寿命報知には、「冷媒検知センサの交換時期が来ました。連絡先はxxxxです。」等である。そして、ステップS607に進む。
 冷媒検知センサ寿命管理部63は、センサが交換されたか否かを判定し(ステップS607)、センサが交換されていない場合(ステップS607,未完)、ステップS608に進み、センサが交換されている場合(ステップS607,完了)、積算時間を初期化(例えば、積算時間=0)して(ステップS620)、ステップS602に戻る。
 ステップS608において、冷媒検知センサ寿命管理部63は、センサ異常の検知があるか否かを判定し、センサ異常の検知がある場合(ステップS608,Yes)、ステップS609に進み、センサ異常の検知がない場合(ステップS608,No)、ステップS607に戻る。
 ステップS609において、報知部66は、空調制御端末22の表示器に第2寿命報知を表示する。第2寿命報知には、「冷媒検知センサの異常があり、至急交換して下さい。連絡先はxxxxです。」等である。そして、ステップS610に進む。
 冷媒検知センサ寿命管理部63は、センサが交換されたか否かを判定し(ステップS10)、センサが交換されていない場合(ステップS610,未完)、ステップS611に進み、センサが交換されている場合(ステップS610,完了)、積算時間を初期化(例えば、積算時間=0)して(ステップS620)、ステップS602に戻る。
 ステップS611において、冷媒検知センサ寿命管理部63は、所定期間Tcが経過したか否かを判定し、所定期間Tcが経過していない場合(ステップS611,No)、ステップS610に戻る。一方、所定期間Tcが経過した場合(ステップS611,Yes)、冷媒検知センサ寿命管理部63は、空気調和機ACの運転を強制的に停止して運転不可にし(ステップS612)、報知部66は、空調制御端末22の表示器に運転不可報知を表示する(ステップS613)。運転不可報知には、「冷媒検知センサに異常があります。センサ交換が済むまで運転ができません。」等である。
 以上が、冷媒検知センサの寿命管理処理である。
 図10は、冷媒検知センサの異常判定値の例を示す図である。適宜図7、図9を参照する。横軸がガス濃度であり、縦軸が冷媒検知センサ30からの出力電圧Voutである。電圧Vcは、冷媒検知センサ30の回路電圧である。通常、冷媒漏洩判定部62は、出力電圧Voutが電圧V以上、かつ、電圧V以下であれば、「冷媒漏洩」であると判定する。
 図9のステップS608でのセンサ異常検知の場合、冷媒検知センサ異常/故障監視部65が、出力電圧Voutが電圧V未満、または、電圧Vを超える場合に、冷媒検知センサ30の異常であると判定する。さらに、冷媒検知センサ異常/故障監視部65が、出力電圧Voutが電圧V未満、または、電圧Vを超える場合に、冷媒検知センサ30の故障であると判定する。これは、冷媒検知センサ30が想定寿命を超えた場合に、出力電圧Voutの不安定性を考慮したものである。
 即ち、冷媒検知センサ30の出力電圧について、冷媒検知センサ30の異常判定をするための上限値(例えば、電圧V)及び下限値(例えば、電圧V)が定められており、制御部60は、出力電圧Voutが上限値を超えた場合、または、出力電圧Voutが下限値未満の場合に、前記冷媒検知センサの異常であると判定するとよい。
 以上、実施形態では、室内機100(図3参照)が床置き式である構成について説明したが、これに限らない。すなわち、室内機100は、天井埋込式であってもよいし、また、壁掛式であってもよい。
 また、室内機100の外部に冷媒検知センサ30が設置されてもよい。例えば、天井埋込式の室内機100が設けられる構成において、漏洩した冷媒が沈降して溜まりやすい床付近(空調対象空間の床付近)に冷媒検知センサ30が設置される構成であってもよい。
 また、実施形態では、空気調和機AC(図1参照)が1台の室内機100を備える構成について説明したが、これに限らない。すなわち、複数台の室内機を備えるビル用マルチエアコン(Variable Refrigerant Flow:VRF)やパッケージエアコン(Packaged Air Conditioning systems:PAC)にも、各実施形態を適用できる。また、室内機・室外機が一体化された一体型の空気調和機にも、各実施形態を適用できる。
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
 10  冷媒回路
 11  圧縮機
 12  四方弁
 13  室外熱交換器(凝縮器/蒸発器)
 14  膨張弁
 15  室内熱交換器(蒸発器/凝縮器)
 21  キャビネット
 22  空調制御端末(リモコン)
 30  冷媒検知センサ
 30a  センサ部
 30b  センサ基板
 31  センサケース
 31a ベース部
 31b 側壁
 31c スリット(冷媒取込口)
 50,60  制御部
 44  電気品箱
 100 室内機
 200 室外機
 AC 空気調和機
 Fo  室外ファン
 Fi  室内ファン
 T1  第1期間
 T2  第2期間
 T3  第3期間
 Tc  所定期間
 Tc2  第2所定期間

Claims (9)

  1.  冷媒が循環する冷媒回路と、
     冷媒の漏洩を検知する冷媒検知センサと、
     前記冷媒回路を制御する制御部と、を備え、
     前記制御部は、第1期間が経過して前記冷媒検知センサの交換が必要となる場合に、前記第1期間よりも短い第2期間が経過したときに空調制御端末に予告報知をさせ、
     前記第1期間が経過したのち前記冷媒検知センサの異常を検知し、所定期間が経過したときに空調運転を強制的に停止する空気調和機。
  2.  前記予告報知は、空調運転ができなくなる旨の報知とする
     ことを特徴とする請求項1に記載の空気調和機。
  3.  前記予告報知は、前記冷媒検知センサの交換の必要性がある旨の報知とする
     ことを特徴とする請求項1に記載の空気調和機。
  4.  前記制御部は、前記第1期間が経過したときに、前記冷媒検知センサの交換の必要性がある旨の報知を前記空調制御端末に報知させる
     ことを特徴とする請求項1に記載の空気調和機。
  5.  前記制御部は、前記第1期間が経過したのち、前記所定期間よりも長い第2所定期間後に空調運転を運転できない状態とする
     ことを特徴とする請求項1に記載の空気調和機。
  6.  前記制御部は、前記第1期間が経過したのち、前記冷媒検知センサの異常を検知し、前記所定期間が経過したときに空調運転できない状態とする
     ことを特徴とする請求項1に記載の空気調和機。
  7.  前記冷媒検知センサは、前記空気調和機の外部に設置される
     ことを特徴とする請求項1に記載の空気調和機。
  8.  前記予告報知は、前記空気調和機の空調制御端末に表示して報知する、該空調制御端末の発光で報知する、該空調制御端末から音声で報知する、の少なくともいずれかである
     ことを特徴とする請求項1に記載の空気調和機。
  9.  前記冷媒検知センサの出力電圧について、異常判定をするための上限値及び下限値が定められており、前記制御部は、前記出力電圧が前記上限値を超えた場合、または、前記出力電圧が前記下限値未満の場合に、前記冷媒検知センサの異常であると判定する
     ことを特徴とする請求項1に記載の空気調和機。
PCT/JP2017/044473 2017-12-12 2017-12-12 空気調和機 WO2019116437A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/044473 WO2019116437A1 (ja) 2017-12-12 2017-12-12 空気調和機
JP2019552301A JP6656490B2 (ja) 2017-12-12 2017-12-12 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044473 WO2019116437A1 (ja) 2017-12-12 2017-12-12 空気調和機

Publications (1)

Publication Number Publication Date
WO2019116437A1 true WO2019116437A1 (ja) 2019-06-20

Family

ID=66819592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044473 WO2019116437A1 (ja) 2017-12-12 2017-12-12 空気調和機

Country Status (2)

Country Link
JP (1) JP6656490B2 (ja)
WO (1) WO2019116437A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432240A (zh) * 2021-06-30 2021-09-24 海信(广东)空调有限公司 检测冷媒泄露的方法及装置、空调器和存储介质
JPWO2021234857A1 (ja) * 2020-05-20 2021-11-25
CN115244339A (zh) * 2020-03-06 2022-10-25 大金工业株式会社 空调机、空调系统以及用于监控空调机的方法
EP4163560A1 (en) * 2021-10-05 2023-04-12 Carrier Corporation Frost remidiation and frost sensor
WO2024053174A1 (ja) * 2022-09-06 2024-03-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置、冷凍サイクル装置の制御方法、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288379A (ja) * 1997-04-10 1998-10-27 Hitachi Ltd 寿命予測装置付空気調和機
JP2000121211A (ja) * 1998-10-20 2000-04-28 Matsushita Refrig Co Ltd 冷蔵庫
JP2012229863A (ja) * 2011-04-26 2012-11-22 Hoshizaki Electric Co Ltd 製氷機の運転方法
JP2017053571A (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷媒漏えい検知器の点検システム、および空調システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288379A (ja) * 1997-04-10 1998-10-27 Hitachi Ltd 寿命予測装置付空気調和機
JP2000121211A (ja) * 1998-10-20 2000-04-28 Matsushita Refrig Co Ltd 冷蔵庫
JP2012229863A (ja) * 2011-04-26 2012-11-22 Hoshizaki Electric Co Ltd 製氷機の運転方法
JP2017053571A (ja) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 冷媒漏えい検知器の点検システム、および空調システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244339A (zh) * 2020-03-06 2022-10-25 大金工业株式会社 空调机、空调系统以及用于监控空调机的方法
JPWO2021234857A1 (ja) * 2020-05-20 2021-11-25
WO2021234857A1 (ja) * 2020-05-20 2021-11-25 ダイキン工業株式会社 冷凍サイクル装置
JP7336595B2 (ja) 2020-05-20 2023-08-31 ダイキン工業株式会社 冷凍サイクル装置
CN113432240A (zh) * 2021-06-30 2021-09-24 海信(广东)空调有限公司 检测冷媒泄露的方法及装置、空调器和存储介质
WO2023273270A1 (zh) * 2021-06-30 2023-01-05 海信(广东)空调有限公司 检测冷媒泄露的方法、空调器和存储介质
EP4163560A1 (en) * 2021-10-05 2023-04-12 Carrier Corporation Frost remidiation and frost sensor
WO2024053174A1 (ja) * 2022-09-06 2024-03-14 パナソニックIpマネジメント株式会社 冷凍サイクル装置、冷凍サイクル装置の制御方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2019116437A1 (ja) 2019-12-19
JP6656490B2 (ja) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2019116437A1 (ja) 空気調和機
US10408488B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
US10458689B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
EP3279591B1 (en) Indoor air conditioning unit
US20140163744A1 (en) Fault detection in a cooling system with a plurality of identical cooling circuits
US10794611B2 (en) Refrigeration cycle apparatus
JP6890188B2 (ja) 空気調和機
EP3318823B1 (en) Refrigeration cycle system
JPWO2017187562A1 (ja) 冷凍サイクル装置
WO2019244280A1 (ja) 空気調和装置および運転状態判定方法
KR20110001667A (ko) 공기조화기 및 그 동작방법
JP2007085686A (ja) 空気調和システム及びその運転方法
WO2021171448A1 (ja) 冷凍サイクル装置
JP2009047419A (ja) 空気調和システム及びその運転方法
KR20060132339A (ko) 공기조화기의 실외기 제어방법 및 제어장치
KR20140018782A (ko) 공기 조화기의 진단 제어 방법
US12031737B2 (en) Air conditioner
EP4317835A1 (en) Air conditioner
WO2024038532A1 (ja) 空気調和機
KR20050075104A (ko) 전류 감지기를 구비한 멀티형 공기조화기 및 그 제어 방법
KR100826601B1 (ko) 시스템 에어컨 및 그 제어 방법
KR20170025180A (ko) 공기 조화기
KR20060035024A (ko) 천정형 공기 조화기 및 그 고장감지방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552301

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934722

Country of ref document: EP

Kind code of ref document: A1