WO2023273270A1 - 检测冷媒泄露的方法、空调器和存储介质 - Google Patents

检测冷媒泄露的方法、空调器和存储介质 Download PDF

Info

Publication number
WO2023273270A1
WO2023273270A1 PCT/CN2021/143421 CN2021143421W WO2023273270A1 WO 2023273270 A1 WO2023273270 A1 WO 2023273270A1 CN 2021143421 W CN2021143421 W CN 2021143421W WO 2023273270 A1 WO2023273270 A1 WO 2023273270A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
air conditioner
time
compressor
sub
Prior art date
Application number
PCT/CN2021/143421
Other languages
English (en)
French (fr)
Inventor
张书铭
袁兴建
Original Assignee
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信(广东)空调有限公司 filed Critical 海信(广东)空调有限公司
Priority to CN202180055409.1A priority Critical patent/CN116194718A/zh
Publication of WO2023273270A1 publication Critical patent/WO2023273270A1/zh
Priority to US18/113,499 priority patent/US20230258350A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air treatment, and in particular to a method for detecting refrigerant leakage, an air conditioner and a storage medium.
  • the air conditioner performs a refrigeration cycle of the air conditioner by using a compressor, a condenser, an expansion valve, and an evaporator.
  • the refrigeration cycle consists of a series of processes involving compression, condensation, expansion and evaporation.
  • the refrigeration cycle of the air conditioner is inseparable from the refrigerant.
  • the refrigerant releases heat when it condenses and liquefies, and absorbs heat when it evaporates and gasifies, so as to realize the exchange and transfer of heat.
  • a method for detecting refrigerant leakage comprising: after the air conditioner receives a cooling or dehumidification instruction, a controller controls the air conditioner for cooling or dehumidification, and during the cooling or dehumidification process, controls The air conditioner executes a preset first control strategy for the first time to determine whether the air conditioner satisfies a preset condition, and the preset condition includes a plurality of sub-preset conditions; if the air conditioner simultaneously satisfies The plurality of sub-preset conditions, the controller controls the air conditioner to execute the preset second control strategy for the first time; after the first execution of the second control strategy, the controller controls all The air conditioner executes the first control strategy for the second time to determine whether the air conditioner simultaneously satisfies the multiple sub-preset conditions for the second time; if the air conditioner simultaneously satisfies the multiple sub-preset conditions for the second time conditions, the controller controls the air conditioner to issue an alarm message indicating that there may be refriger
  • an air conditioner including a memory and a controller.
  • one or more computer programs are stored in the memory, and the one or more computer programs include instructions.
  • the controller executes the detection of refrigerant leakage.
  • a computer-readable storage medium is provided.
  • Computer program instructions are stored on the computer-readable storage medium.
  • the controller executes the detection of refrigerant leaked method.
  • FIG. 1 is a schematic diagram of an air conditioner according to some embodiments
  • Fig. 2 is another schematic diagram of an air conditioner according to some embodiments.
  • Fig. 3 is a flowchart of a method for detecting refrigerant leakage according to some embodiments
  • FIG. 4 is another flowchart of a method for detecting refrigerant leakage according to some embodiments
  • FIG. 5 is a block diagram of a device for detecting refrigerant leakage according to some embodiments.
  • Figure 6 is a block diagram of an air conditioner according to some embodiments.
  • FIG. 7 is another block diagram of an air conditioner according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that" or “if [the stated condition or event] is detected” are optionally construed to mean “when determining" or “in response to determining" depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • the air conditioner 1 is a split air conditioner composed of an outdoor unit 10 and an indoor unit 20 .
  • the outdoor unit 10 and the indoor unit 20 are connected through pipelines to transmit refrigerant.
  • the outdoor unit 10 includes a compressor 11 , a four-way valve 12 , an outdoor heat exchanger 13 , a second fan 14 (such as an outdoor fan) and an expansion valve 15 .
  • the indoor unit 20 includes an indoor heat exchanger 21 and a first fan 22 (such as an indoor fan).
  • the compressor 11, the outdoor heat exchanger 13, the expansion valve 15 and the indoor heat exchanger 21 connected in sequence form a refrigerant circuit, and the refrigerant circulates in the refrigerant circuit and passes through the outdoor heat exchanger 13 and the indoor heat exchanger 21 to communicate with the air respectively. Perform heat exchange to realize the cooling mode or heating mode of the air conditioner 1 .
  • the compressor 11 is configured to compress refrigerant so that the low-pressure refrigerant is compressed to form high-pressure refrigerant.
  • the outdoor heat exchanger 13 is configured to exchange heat between the outdoor air and the refrigerant conveyed in the outdoor heat exchanger 13 .
  • the outdoor heat exchanger 13 works as a condenser in the cooling mode of the air conditioner 1, so that the refrigerant compressed by the compressor 11 dissipates heat to the outdoor air through the outdoor heat exchanger 13 to condense;
  • the air conditioner 1 works as an evaporator in the heating mode, so that the decompressed refrigerant absorbs the heat of the outdoor air through the outdoor heat exchanger 13 and evaporates.
  • the outdoor heat exchanger 13 also includes heat exchange fins to expand the contact area between the outdoor air and the refrigerant transported in the outdoor heat exchanger 13, thereby improving the heat exchange efficiency between the outdoor air and the refrigerant .
  • the second fan 14 is configured to suck outdoor air into the outdoor unit 10 through the outdoor air inlet of the outdoor unit 10 , and send out the outdoor air after exchanging heat with the outdoor heat exchanger 13 through the outdoor air outlet of the outdoor unit 10 .
  • the second fan 14 powers the flow of outside air.
  • the expansion valve 15 is connected between the outdoor heat exchanger 13 and the indoor heat exchanger 21, and the pressure of the refrigerant flowing through the outdoor heat exchanger 13 and the indoor heat exchanger 21 is adjusted by the opening of the expansion valve 15, so as to regulate the circulation in the outdoor The refrigerant flow rate between the heat exchanger 13 and the indoor heat exchanger 21.
  • the flow rate and pressure of the refrigerant circulating between the outdoor heat exchanger 13 and the indoor heat exchanger 21 will affect the heat exchange performance of the outdoor heat exchanger 13 and the indoor heat exchanger 21 .
  • the expansion valve 15 may be an electronic valve.
  • the opening of the expansion valve 15 is adjustable to control the flow and pressure of the refrigerant flowing through the expansion valve 15 .
  • the four-way valve 12 is connected in the refrigerant circuit, and the four-way valve 12 is controlled by the controller 32 to switch the flow direction of the refrigerant in the refrigerant circuit so that the air conditioner 1 performs cooling mode or heating mode.
  • the indoor heat exchanger 21 is configured to exchange heat between indoor air and the refrigerant conveyed in the indoor heat exchanger 21 .
  • the indoor heat exchanger 21 works as an evaporator in the cooling mode of the air conditioner 1, so that the refrigerant that has dissipated heat through the outdoor heat exchanger 13 absorbs the heat of the indoor air through the indoor heat exchanger 21 and evaporates; 21 works as a condenser in the heating mode of the air conditioner 1 , so that the refrigerant absorbed by the outdoor heat exchanger 13 dissipates heat to the indoor air through the indoor heat exchanger 21 to be condensed.
  • the indoor heat exchanger 21 also includes heat exchange fins to expand the contact area between the indoor air and the refrigerant transported in the indoor heat exchanger 21, thereby improving the heat exchange efficiency between the indoor air and the refrigerant .
  • the first fan 22 is configured to suck indoor air into the indoor unit 20 through the indoor air inlet of the indoor unit 20 , and send out the indoor air after exchanging heat with the indoor heat exchanger 21 through the indoor air outlet of the indoor unit 20 .
  • the first fan 22 provides power for the flow of indoor air.
  • the controller 32 is configured to control the operating frequency of the compressor 11 , the opening degree of the expansion valve 15 , the rotation speed of the outdoor fan 14 and the rotation speed of the indoor fan 22 .
  • the controller 32 is connected with the compressor 11, the expansion valve 15, the outdoor fan 14 and the first fan 22 through data lines to transmit communication information.
  • Controller 32 includes processor 50 .
  • the processor 50 may include a central processing unit (central processing unit, CPU)), a microprocessor (microprocessor), an application specific integrated circuit (application specific integrated circuit, ASIC), and may be configured to be stored in a memory coupled to When the program in the non-transitory computer readable medium of the controller 32 is used, the corresponding operations described in the controller 32 are performed.
  • Non-transitory computer-readable storage media may include magnetic storage devices (e.g., hard disks, floppy disks, or magnetic tape), smart cards, or flash memory devices (e.g., erasable programmable read-only memory (EPROM) , card, stick, or keyboard drive).
  • the air conditioner 1 is a split type air conditioner, but the present disclosure is not limited thereto.
  • the air conditioner 1 can also be an integrated air conditioner (eg, a mobile air conditioner).
  • the air conditioner 1 is an integrated air conditioner, including a box body 1001 , a first fan 22 , a second fan 14 and a display device 24 .
  • the first fan 22 is arranged on the upper part of the box body 1001 and configured to discharge the air after heat exchange with the indoor heat exchanger 21 .
  • the second fan 14 is arranged at the lower part of the box body 1001 and configured to reduce the temperature of the compressor 11 in the box body 1001 to prevent overheating.
  • the display device 24 is configured to display information such as the operating mode and operating temperature of the air conditioner 1 .
  • the refrigeration cycle of the air conditioner is inseparable from the refrigerant.
  • the refrigerant releases heat when it condenses and liquefies, and absorbs heat when it evaporates and gasifies, so as to realize the exchange and transfer of heat.
  • a method for detecting refrigerant leakage collects the ambient temperature value and the temperature value of the indoor heat exchanger 21 based on the ambient temperature sensor 41 and the temperature sensor 42 of the indoor heat exchanger 21 . According to the ambient temperature value and the temperature value of the indoor heat exchanger 21, the refrigerant leakage state of the compressor 11 is detected, and when the refrigerant leakage occurs in the compressor 11, the air conditioner 1 sends an alarm message that there may be refrigerant leakage; for example, The fault code is displayed by the display device of the air conditioner 1 .
  • the method for detecting refrigerant leakage in some embodiments of the present disclosure includes Step 1 to Step 4 .
  • step 1 after receiving the cooling or dehumidification instruction, the controller 32 controls the air conditioner 1 to cool or dehumidify, and in the process of cooling or dehumidifying, controls the air conditioner 1 to execute the preset first control strategy for the first time, to It is judged whether the air conditioner 1 satisfies the preset condition.
  • the preset condition includes multiple sub-preset conditions. For ease of description, as shown in FIG. 4 , some embodiments of the present disclosure are mainly described by taking the preset condition including a first sub-preset condition, a second sub-preset condition, and a third sub-preset condition as an example. However, , which should not be construed as a limitation of the present disclosure.
  • the controller 32 controls the air conditioner 1 to execute a preset first control strategy for the first time, and the first control strategy is mainly used to determine whether the air conditioner 1 satisfies the first sub-preset condition, the The second sub-preset condition and the third sub-preset condition.
  • the controller 32 judges whether the air conditioner 1 satisfies the first sub-preset condition. For example, the controller 32 judges whether the cumulative running time of the compressor 11 reaches a second preset time (for example, 20 minutes), and, after determining that the cumulative running time of the compressor 11 reaches the second preset time, the controller 32 It is judged whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 satisfies a preset temperature difference (eg, 2° C.).
  • a preset temperature difference eg, 2° C.
  • the controller 32 includes a timer 321 , that is, the timer 321 can time the running state of the compressor 11 , so as to obtain the accumulated running time of the compressor 11 .
  • the ambient temperature sensor 41 sends the detected ambient temperature to the controller 32, and the temperature sensor 42 of the indoor heat exchanger 21 sends the detected temperature of the indoor heat exchanger 21 to the controller 32, and the controller 32 calculates the difference between the ambient temperature and the indoor temperature. The first temperature difference between the temperatures of the heat exchanger 21 .
  • the method for the controller 32 to judge whether the air conditioner 1 satisfies the second sub-preset condition or the third sub-preset condition is substantially the same as the above-mentioned method for judging whether the air conditioner 1 satisfies the first sub-preset condition. Under the sub-preset condition, it is judged whether the cumulative running time of the compressor 11 reaches the fourth preset time (for example, 15 minutes); under the third sub-preset condition, it is judged whether the cumulative running time of the compressor 11 reaches the sixth preset time time (eg 10 minutes).
  • the controller 32 judges whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition, the second preset time, the fourth The preset time and the sixth preset time satisfy: the second preset time is greater than the fourth preset time, and the fourth preset time is greater than the sixth preset time, so as to reduce the compressor 11, so as to improve the accuracy of judging whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition.
  • the total accumulated running time of the compressor 11 under the preset conditions is generally not more than 2 hours.
  • the controller 32 needs to control the air conditioner 1 to continue to execute the corresponding control strategy, so as to further detect the refrigerant leakage problem of the compressor 11 .
  • the running state of the compressor 11 is detected every 5 minutes, so that the timer 321 stops counting when the compressor 11 stops, and starts counting or keeps counting when the compressor 11 starts, thereby increasing the cycle of the compressor 11 Logical judgment is convenient for improving the accuracy of judging the accumulative running time of the compressor 11 .
  • the user can issue cooling or dehumidification instructions through the air conditioner remote control.
  • the user may issue a cooling or dehumidification command through the relevant buttons on the operation interface of the air conditioner 1 , which is not limited in the present disclosure.
  • the controller 32 controls the air conditioner 1 to operate in the cooling mode or the dehumidification mode, and in the process of cooling or dehumidification, controls the air conditioner 1 to execute the first control strategy to determine whether the air conditioner 1
  • the above preset conditions are met, so that the process of detecting refrigerant leakage of the compressor 11 is controlled accordingly.
  • step 2 if the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition, the air conditioner 1 is controlled to execute the preset second control strategy for the first time.
  • the accumulated running time of the compressor 11 respectively reaches the second preset time, the fourth preset time and the sixth preset time, and after the accumulative running time of the compressor 11 reaches the second preset time, the fourth preset time and the sixth preset time, the ambient temperature If the temperature difference between the indoor heat exchanger 21 and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference (such as 2°C), then the air conditioner 1 is considered to meet the first sub-preset condition, the second The second sub-preset condition and the third sub-preset condition.
  • the preset temperature difference such as 2°C
  • the air conditioner 1 instead of detecting the temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21, the air conditioner 1 is controlled to execute the preset second control strategy for the first time, so that the air conditioner 1 normally operates in cooling mode or dehumidification Mode eighth preset time (eg, 90 minutes). Therefore, the stability of the operation of the air conditioner 1 is increased, and the influence of the air conditioner 1 on the temperature difference detection results when the air conditioner 1 works under special working conditions (for example, the ambient temperature is greater than 30° C.) is beneficial to improve the accuracy of refrigerant leakage detection .
  • step 3 after executing the second control strategy for the first time, the controller 32 controls the air conditioner 1 to execute the first control strategy for the second time to determine whether the air conditioner 1 satisfies the first control strategy for the second time.
  • a sub-preset condition, the second sub-preset condition, and the third sub-preset condition are sub-preset condition, the third sub-preset condition.
  • the controller 32 after executing the first control strategy and the second control strategy, the controller 32 believes that there may be a risk of refrigerant leakage in the compressor 11.
  • the air conditioner 1 may not immediately issue a fault alarm signal that there may be refrigerant leakage (for example, it may be issued by the alarm of the air conditioner 1), and the controller 32 may control the air conditioner 1 to execute the first control strategy for the second time to determine whether the air conditioner 1 Whether the first sub-preset condition, the second sub-preset condition, and the third sub-preset condition are satisfied.
  • the method for the controller 32 to determine whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition, and the third sub-preset condition is the same as described above, and will not be repeated here.
  • step 4 if the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition for the second time, the controller 32 controls the air conditioner 1 to issue a possible There is an alarm message of refrigerant leakage. For example, the controller 32 controls the display device 24 to blink and display a fault code corresponding to refrigerant leakage.
  • the air conditioner 1 executes the first control strategy for the second time, if the accumulative running time of the compressor 11 under the corresponding sub-preset conditions respectively reaches the preset time, and, when it is determined that the compressor 11 After the cumulative running time reaches the corresponding preset time, and the temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 satisfies the preset temperature difference, the air conditioner 1 is considered to meet the above preset condition again.
  • the display device 24 of the air conditioner 1 can be controlled to flash and display a fault code (such as E9) to remind the user that there is a risk of refrigerant leakage in the compressor 11, so that the user can take countermeasures in time (for example, turn off the air conditioner) 1).
  • a fault code such as E9
  • the controller 32 controls the air conditioner 1 to execute the first control strategy for the first time to determine whether the air conditioner 1 meets the first control strategy.
  • the sub-preset condition, the second sub-preset condition and the third sub-preset condition and when it is judged that the air conditioner 1 meets the above preset conditions, the air conditioner 1 is controlled to execute the second control strategy for the first time, thereby increasing the loop logic Judging the running time of the air conditioner 1 improves the operation stability of the air conditioner 1 and reduces the influence of the air conditioner 1 on the temperature difference detection results when the air conditioner 1 works under special working conditions (for example, the ambient temperature is greater than 30°C), which is beneficial to Improve the accuracy of detecting refrigerant leakage.
  • the controller 32 controls the air conditioner 1 to execute the first control strategy again to judge again whether the air conditioner 1 satisfies the above-mentioned preset condition; condition, the controller 32 controls the air conditioner 1 to issue an alarm message that there may be refrigerant leakage.
  • the controller 32 controls the display device 24 to flash and display the fault code corresponding to the leakage of the refrigerant, so as to remind the user that the compressor 11 may have the risk of refrigerant leakage, so that the user can take countermeasures in time, thereby effectively reducing the false alarm rate and improving detection.
  • the accuracy of refrigerant leakage is a display device 24 to flash and display the fault code corresponding to the leakage of the refrigerant, so as to remind the user that the compressor 11 may have the risk of refrigerant leakage, so that the user can take countermeasures in time, thereby effectively reducing the false alarm rate and improving detection.
  • the method for detecting refrigerant leakage further includes: the controller 32 controls the air conditioner 1 to execute the first control for the third time strategy to determine whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition, and the third sub-preset condition for the third time.
  • the controller 32 controls the air conditioner 1 to perform the second sub-preset condition. 2. Control strategies.
  • the controller 32 controls the air conditioner 1 to execute the first control strategy for the fourth time to determine whether the air conditioner 1 satisfies the first sub-preset condition for the fourth time , the second sub-preset condition and the third sub-preset condition.
  • the controller 32 may determine that refrigerant leakage occurs.
  • the air conditioner 1 will execute the final failsafe mode, and the controller 32 controls the air conditioner 1 to shut down.
  • the controller 32 controls the compressor 11 to be forced to stop, controls the display device 24 to constantly display the fault code, and controls the first fan 22 of the air conditioner 1 to stop, and the second fan 14 of the air conditioner 1 will run at the rated minimum wind speed.
  • Shutdown after preset time (eg 5 minutes).
  • the controller 32 can quickly reduce the heat in the box 1001 of the air conditioner 1 by controlling the second fan 14 to continue to run for a period of time, so as to avoid damage to the compressor 11 due to excessive temperature and improve the performance of the compressor 11. The safety of compressor 11 operation is ensured.
  • the controller 32 controls the air conditioner 1 to execute the first control strategy and the second control strategy again after the fault code corresponding to the leakage of the refrigerant is flashed on the display device 24 of the air conditioner 1, and the cycle is increased again.
  • the logic judgment and the running time of the air conditioner 1 can improve the accuracy of detecting refrigerant leakage of the compressor 11 .
  • the first control strategy includes: the controller 32 judges whether the compressor 11 is turned on, and if the compressor 11 is turned on, the controller 32 judges that the air conditioner 1 Whether the first sub-preset condition is met.
  • the controller 32 controls the compressor 11 to be forced to stop for a third preset time; and after the third preset time, the controller 32 determines whether the compressor 11 is turned on . If the compressor 11 is turned on, the controller 32 determines whether the air conditioner 1 satisfies the second sub-preset condition after the compressor 11 runs for a fourth preset time.
  • the controller 32 controls the compressor 11 to be forced to stop for a fifth preset time; and after the fifth preset time, the controller 32 determines whether the compressor 11 is turned on . If the compressor 11 is turned on, the controller 32 determines whether the air conditioner 1 satisfies the third sub-preset condition after the compressor 11 has run for a sixth preset time.
  • the controller 32 controls the compressor 11 to forcibly stop for a seventh preset time.
  • the controller 32 when the controller 32 controls the air conditioner 1 to execute the first control strategy, it needs to determine whether the compressor 11 is turned on, and if the compressor 11 is turned on, the timer 321 starts to control the The running time of the compressor 11 is timed, and during the running of the compressor 11, the running state of the compressor 11 is detected at regular intervals (for example, every 5 minutes) to determine the current running state of the compressor 11 , and after the accumulative operation of the compressor 11 for the second preset time (for example, 20 minutes), it is judged whether the air conditioner 1 satisfies the first sub-preset condition.
  • the controller 32 controls the compressor 11 to be forced to stop for the third preset time (for example, the compressor 11 is controlled to stop for 3 minutes); and the compressor 11 is forced to stop for the third preset time; After a preset time, the operating state of the compressor 11 is judged. That is, the controller 32 judges whether the compressor 11 is turned on, if the compressor 11 is turned on, then starts timing, and during the operation of the compressor 11, the running state of the compressor 11 is checked at regular intervals (for example, every 5 minutes). Detect to determine the current operating state of the compressor 11, and determine whether the air conditioner 1 satisfies the second sub-preset condition after the compressor 11 has been running for the fourth preset time (for example, 15 minutes).
  • the controller 32 controls the compressor 11 to forcibly stop the fifth preset time (for example, 3 minutes); after controlling the compressor 11 to forcibly stop the fifth preset time, It is judged whether the compressor 11 is turned on. If the compressor 11 is turned on, the timer 321 starts counting after the compressor 11 is started, and during the operation of the compressor 11, the controller 32 checks the operating state of the compressor 11 at regular intervals (for example, every 5 minutes). Detect to determine the current operating state of the compressor 11, and determine whether the air conditioner 1 satisfies the third sub-preset condition after the compressor 11 has been running for the sixth preset time (for example, 10 minutes).
  • the controller 32 controls the compressor 11 to forcibly stop for the seventh preset time (for example, 3 minutes).
  • the third preset time, the fifth preset time and the seventh preset time may be equal or unequal.
  • the third preset time, the fifth preset time and the seventh preset time may all be 3 minutes.
  • the third preset time may be 3 minutes
  • the fifth preset time may be 4 minutes
  • the seventh preset time may be 5 minutes, and so on.
  • the compressor 11 does not need to run continuously. That is, the compressor 11 can be shut down without being always on, and when the compressor 11 is shut down, the timer 321 stops counting, and during the operation of the compressor 11, the running state of the compressor 11 is met every 5 minutes. When the detection is performed, it is enough that the compressor 11 is in an on state.
  • the controller 32 obtains the ambient temperature and indoor temperature every preset time (for example, 30 seconds, 60 seconds or 90 seconds).
  • the first temperature difference between the temperatures of the heat exchanger 21 When the first temperature difference acquired for a preset number of times (such as 3 times, 4 times or 5 times, etc.) The first sub-preset condition.
  • Judging whether the air conditioner 1 satisfies the second sub-preset condition or the third sub-preset condition is roughly the same as the above-mentioned method of judging whether the air conditioner 1 satisfies the first sub-preset condition, except that: under the second sub-preset condition , judging whether the cumulative running time of the compressor 11 reaches the fourth preset time (for example, 15 minutes); under the third sub-preset condition, judging whether the cumulative running time of the compressor 11 reaches the sixth preset time (for example, 10 minutes) ).
  • the second preset time, the fourth preset time and the sixth preset time are gradually reduced to reduce the total cumulative running time of the compressor 11, thereby improving the judgment of the air conditioner. 1 Whether the first sub-preset condition, the second sub-preset condition and the accuracy of the third sub-preset condition are satisfied.
  • the second control strategy includes: controlling the air conditioner 1 to run normally for an eighth preset time.
  • the eighth preset time is longer than any one of the first preset time to the seventh preset time.
  • the controller 32 controls the air conditioner 1 to run the second control strategy, it can control the air conditioner 1 to run normally for the eighth preset time.
  • the controller 32 controls the air conditioner 1 to operate in cooling or dehumidifying mode for 90 minutes. Therefore, the operation stability of the air conditioner 1 is increased, and the influence of the air conditioner 1 on the temperature difference detection result when the air conditioner 1 works under special working conditions (for example, the ambient temperature is greater than 30° C.), is beneficial to improve the accuracy of refrigerant leakage detection.
  • the first control strategy further includes: if it is judged that the air conditioner 1 does not satisfy at least one of the first sub-preset condition, the second sub-preset condition or the third sub-preset condition, re-executing the The first control strategy.
  • the controller 32 when the air conditioner 1 executes the first control strategy, when the temperature difference between the obtained ambient temperature and the temperature of the indoor heat exchanger 21 (such as 3°C, 4°C or 5°C, etc.) is greater than the preset When the temperature difference is set (for example, 2° C.), the controller 32 will control the air conditioner 1 to re-execute the first control strategy to avoid continuing to execute the previous control strategy, thereby improving the accuracy of refrigerant leakage detection.
  • the temperature difference such as 3°C, 4°C or 5°C, etc.
  • the first control strategy further includes: re-executing the first control strategy after the air conditioner 1 receives a power-off command, a shutdown command or a preset mode switching command.
  • the air conditioner 1 is controlled to re-execute the first control strategy. In this way, false alarms of refrigerant leakage caused by continuing to execute the previous control strategy can be avoided, thereby improving the accuracy of detecting refrigerant leakage.
  • Some embodiments of the present disclosure detect refrigerant leakage according to the flowchart of the method for detecting refrigerant leakage shown in FIG. 4 , and the method includes steps 101 to 245 .
  • Step 101 the air conditioner 1 operates in cooling or dehumidification mode.
  • Step 102 judge whether the compressor 11 is turned on, if yes, execute step 103, if not, do not count.
  • Step 103 the compressor 11 is turned on, and timing starts.
  • Step 104 check whether the compressor 11 is running every 5 minutes, if yes, execute step 105 , if not, execute step 113 .
  • Step 105 continue timing.
  • Step 106 judge whether the accumulative running time of the compressor 11 reaches 20 minutes, if yes, execute step 107, if not, execute step 104.
  • Step 107 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 108, if not, go to step 102 again.
  • Step 108 delay for 30 seconds.
  • Step 109 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 110, if not, execute step 102 again.
  • Step 110 delay for 30 seconds.
  • Step 111 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 112, if not, execute step 102 again.
  • Step 112 the compressor 11 is controlled to be forced to stop for 3 minutes.
  • Step 113 suspend timing.
  • Step 114 judge whether the compressor 11 is turned on, if yes, execute step 115, if not, do not count.
  • Step 115 the compressor 11 is turned on, and timing starts.
  • Step 116 detecting whether the compressor 11 is running every 5 minutes. If yes, execute step 117; if not, execute step 125.
  • Step 117 continue timing.
  • Step 118 judging whether the accumulative running time of the compressor 11 reaches 15 minutes, if yes, go to step 119 , if not, go to step 116 .
  • Step 119 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 120, if not, execute step 102 again.
  • Step 120 delay for 30 seconds.
  • Step 121 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 122, if not, execute step 102 again.
  • Step 122 delay for 30 seconds.
  • Step 123 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 124, if not, execute step 102 again.
  • Step 124 the compressor 11 is forced to stop for 3 minutes.
  • Step 125 suspend timing.
  • Step 126 judge whether the compressor 11 is turned on, if yes, execute step 127, if not, do not count.
  • Step 127 the compressor 11 is turned on, and timing starts.
  • Step 128 check whether the compressor 11 is running every 5 minutes, if yes, go to step 129 , if not, go to step 138 .
  • Step 129 continue timing.
  • Step 130 judging whether the accumulative running time of the compressor 11 reaches 10 minutes, if yes, execute step 131 , if not, execute step 128 .
  • Step 131 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 132, if not, execute step 102 again.
  • Step 132 delay for 30 seconds.
  • Step 133 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 134, if not, execute step 102 again.
  • Step 134 delay for 30 seconds.
  • Step 135 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 136, if not, execute step 102 again.
  • Step 136 the compressor 11 is forced to stop for 3 minutes.
  • Step 137 the air conditioner 1 runs normally for 90 minutes.
  • Step 138 suspend timing.
  • Step 139 judge whether the compressor 11 is turned on, if yes, execute step 140, if not, do not count.
  • Step 140 the compressor 11 is turned on, and timing is started.
  • Step 141 check whether the compressor 11 is running every 5 minutes, if yes, execute step 142, if not, execute step 150'.
  • Step 142 continue timing.
  • Step 143 judging whether the accumulative running time of the compressor 11 reaches 20 minutes, if yes, execute step 144 , if not, execute step 141 .
  • Step 144 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 145, if not, execute step 102 again.
  • Step 145 delay for 30 seconds.
  • Step 146 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 147, if not, go to step 102 again.
  • Step 147 delay for 30 seconds.
  • Step 148 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 149, if not, execute step 102 again.
  • Step 149 the compressor 11 is forced to stop for 3 minutes.
  • Step 150' stop timing.
  • Step 150 determine whether the compressor 11 is turned on, if yes, execute step 151, if not, do not count.
  • Step 151 the compressor 11 is turned on, and timing starts.
  • Step 152 check whether the compressor 11 is running every 5 minutes, if yes, execute step 153 , if not, execute step 161 .
  • Step 153 continue timing.
  • Step 154 judge whether the accumulative running time of the compressor 11 reaches 15 minutes, if yes, execute step 155, if not, execute step 152.
  • Step 155 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 156, if not, execute step 102 again.
  • Step 156 delay for 30 seconds.
  • Step 157 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 158, if not, go to step 102 again.
  • Step 158 delay for 30 seconds.
  • Step 159 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 160, if not, execute step 102 again.
  • Step 160 the compressor 11 is forced to stop for 3 minutes.
  • Step 161 suspend timing.
  • Step 162 judge whether the compressor 11 is turned on, if yes, execute step 163, if not, do not count.
  • step 163 the compressor 11 is turned on, and timing is started.
  • Step 164 check whether the compressor 11 is running every 5 minutes, if yes, go to step 165 , if not, go to step 174 .
  • Step 165 continue timing.
  • Step 166 judge whether the accumulative running time of the compressor 11 reaches 10 minutes, if yes, execute step 167, if not, execute step 164.
  • Step 167 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 168, if not, go to step 102 again.
  • Step 168 delay for 30 seconds.
  • Step 169 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 170, if not, execute step 102 again.
  • Step 170 delay for 30 seconds.
  • Step 171 determine whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 172, if not, execute step 102 again.
  • Step 172 the compressor 11 is forced to stop for 3 minutes.
  • step 173 the display device 24 blinks to display the fault code.
  • Step 174 suspend timing.
  • Step 175 judge whether the compressor 11 is turned on, if yes, execute step 176, if not, do not count.
  • step 176 the compressor 11 is turned on, and timing is started.
  • Step 177 detecting whether the compressor 11 is running every 5 minutes. If yes, go to step 178, if not, go to step 186.
  • Step 178 continue timing.
  • Step 179 judge whether the accumulative running time of the compressor 11 reaches 20 minutes, if yes, execute step 180, if not, execute step 177.
  • Step 180 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 181, if not, execute step 102 again.
  • Step 181 delay for 30 seconds.
  • Step 182 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 183, if not, go to step 102 again.
  • Step 183 delay for 30 seconds.
  • Step 184 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 185, if not, go to step 102 again.
  • Step 185 the compressor 11 is forced to stop for 3 minutes.
  • Step 186 suspend timing.
  • Step 187 judge whether the compressor 11 is turned on, if yes, execute step 188, if not, do not count.
  • step 188 the compressor 11 is turned on, and timing is started.
  • Step 189 check whether the compressor 11 is running every 5 minutes, if yes, go to step 190 , if not, go to step 198 .
  • Step 190 continue timing.
  • Step 191 judging whether the accumulative running time of the compressor 11 reaches 15 minutes, if yes, execute step 192 , if not, execute step 189 .
  • Step 192 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 193, if not, go to step 102 again.
  • Step 193 delay for 30 seconds.
  • Step 194 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 195, if not, go to step 102 again.
  • Step 195 delay for 30 seconds.
  • Step 196 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 197, if not, go to step 102 again.
  • Step 197 the compressor 11 is forced to stop for 3 minutes.
  • Step 198 suspend timing.
  • Step 199 judge whether the compressor 11 is turned on, if yes, execute step 200, if not, do not count.
  • step 200 the compressor 11 is turned on, and timing is started.
  • Step 201 check whether the compressor 11 is running every 5 minutes, if yes, go to step 202 , if not, go to step 211 .
  • Step 202 continue timing.
  • Step 203 judging whether the accumulative running time of the compressor 11 reaches 10 minutes, if yes, execute step 204 , if not, execute step 201 .
  • Step 204 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 205, if not, execute step 102 again.
  • Step 205 delay for 30 seconds.
  • Step 206 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 207, if not, execute step 102 again.
  • Step 207 delay for 30 seconds.
  • Step 208 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 209, if not, execute step 102 again.
  • Step 209 the compressor 11 is forced to stop for 3 minutes.
  • Step 210 the air conditioner 1 runs normally for 90 minutes.
  • Step 211 suspend timing.
  • Step 212 judge whether the compressor 11 is turned on, if yes, execute step 213, if not, do not count.
  • Step 213 the compressor 11 is turned on, and timing starts.
  • Step 214 check whether the compressor 11 is running every 5 minutes, if yes, execute step 215, if not, execute step 222'.
  • Step 215, continue timing.
  • Step 216 judge whether the accumulative running time of the compressor 11 reaches 20 minutes, if yes, execute step 217 , if not, execute step 214 .
  • Step 217 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 218, if not, go to step 102 again.
  • Step 219 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 220, if not, execute step 102 again.
  • Step 220 delay for 30 seconds.
  • Step 221 judge whether the first temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 222, if not, execute step 102 again.
  • Step 222 the compressor 11 is forced to stop for 3 minutes.
  • Step 222' suspend timing.
  • Step 223 judge whether the compressor 11 is turned on, if yes, execute step 224, if not, do not count.
  • step 224 the compressor 11 is turned on, and timing is started.
  • Step 225 check whether the compressor 11 is running every 5 minutes, if yes, execute step 226, if not, execute step 234.
  • Step 226, continue timing.
  • Step 227 judge whether the accumulative running time of the compressor 11 reaches 15 minutes, if yes, execute step 228, if not, execute step 225.
  • Step 228, judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, go to step 229, if not, go to step 102 again.
  • Step 229 delay for 30 seconds.
  • Step 230 determine whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 231, if not, execute step 102 again.
  • Step 231 delay for 30 seconds.
  • Step 232 judge whether the second temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 233, if not, execute step 102 again.
  • Step 233 the compressor 11 is forced to stop for 3 minutes.
  • Step 234 suspend timing.
  • Step 235 judge whether the compressor 11 is turned on, if yes, execute step 236, if not, do not count.
  • step 2366 the compressor 11 is turned on, and timing is started.
  • Step 237 check whether the compressor 11 is running every 5 minutes, if yes, go to step 238 , if not, go to step 246 .
  • Step 238, continue timing.
  • Step 239 judge whether the accumulative running time of the compressor 11 reaches 10 minutes, if yes, execute step 240, if not, execute step 237.
  • Step 240 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 241, if not, execute step 102 again.
  • Step 241 delay for 30 seconds.
  • Step 242 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 243, if not, execute step 102 again.
  • Step 243 delay for 30 seconds.
  • Step 244 judge whether the third temperature difference between the ambient temperature and the temperature of the indoor heat exchanger 21 is less than or equal to the preset temperature difference, if yes, execute step 245, if not, execute step 102 again.
  • Step 245 determine that refrigerant leakage occurs, the controller 32 controls the compressor 11 to stop forcibly, controls the display device 24 to constantly display the fault code, and controls the first fan 22 to stop. Shutdown after set time.
  • the air conditioner 1 in the process of controlling the air conditioner 1 to operate cooling or dehumidification, the air conditioner 1 is controlled to execute the first control strategy for the first time to determine whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-precondition and the third sub-precondition.
  • the air conditioner 1 is controlled to execute the second control strategy for the first time. Therefore, the loop logic judgment and the running time of the air conditioner 1 are increased, and the running stability of the air conditioner 1 can be improved.
  • control the air conditioner 1 After executing the second control strategy for the first time, control the air conditioner 1 to execute the first control strategy again to judge whether the air conditioner 1 satisfies the above-mentioned preset condition again, and when the air conditioner 1 satisfies the above-mentioned preset condition again,
  • the control display device 24 displays a fault code corresponding to refrigerant leakage to remind the user that the compressor 11 may have the risk of refrigerant leakage, so that the user can take countermeasures in time, thereby effectively reducing the probability of false alarms and improving the accuracy of refrigerant leakage detection.
  • the device 30 for detecting refrigerant leakage includes a receiver 31 and a controller 32 .
  • the receiver 31 is configured to receive a cooling instruction or a dehumidification instruction issued by a user.
  • the receiver 31 is an infrared receiver, so as to receive a cooling instruction or a dehumidification instruction sent by a user through a remote controller.
  • the controller 32 such as an MCU (Micro Control Unit, Micro Control Unit) controller, is configured to control the cooling or dehumidification of the air conditioner 1 according to the cooling or dehumidification instruction, and in the process of cooling or dehumidification of the air conditioner 1, control
  • the air conditioner 1 executes the preset first control strategy for the first time to determine whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition;
  • the air conditioner 1 is controlled to execute the preset second control strategy for the first time;
  • the air conditioner 1 is controlled to execute the first control strategy for the second time to determine whether the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition for the second time.
  • control display device 24 flashes and displays a fault code corresponding to refrigerant leakage.
  • the controller 32 is further configured to control the air conditioner 1 to execute the first control strategy for the third time, so as to determine whether the air conditioner 1 satisfies the first sub-preset condition and the second sub-preset condition for the third time. condition and the third sub-precondition. If the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition for the third time, the air conditioner 1 is controlled to execute the second control strategy for the second time. After executing the second control strategy for the second time, control the air conditioner 1 to execute the first control strategy for the fourth time to determine whether the air conditioner 1 satisfies the first sub-preset condition and the second sub-preset condition for the fourth time.
  • the controller 32 will control the compressor 11 to stop forcibly, and the control display
  • the device 24 constantly displays the fault code, and controls the first fan 22 to stop, and the second fan 14 runs at the rated minimum wind speed for a first preset time and then stops.
  • the controller 32 controls the air conditioner 1 to execute the first control strategy for the third time, so as to judge the above preset conditions, And after the air conditioner 1 satisfies the first sub-preset condition, the second sub-preset condition and the third sub-preset condition for the third time, the air conditioner 1 is controlled to execute the second control strategy for the second time.
  • the air conditioner 1 After executing the second control strategy for the second time, the air conditioner 1 is controlled to enter the first control strategy for the fourth time, and the above-mentioned preset conditions are judged again. If the above-mentioned preset conditions are met, it is determined that the compressor 11 generates refrigerant Give way.
  • the controller 32 controls the air conditioner 1 to execute the final failsafe mode.
  • the compressor 11 is controlled to be forced to stop, and the fault code is constantly displayed on the display device 24 .
  • the first control strategy includes: judging whether the compressor 11 of the air conditioner 1 is turned on, and if the compressor 11 is turned on, then judging whether the air conditioner 1 satisfies the first requirement after the compressor 11 has run for a second preset time. A sub-precondition.
  • the compressor 11 is controlled to be forced to stop for the third preset time; after the third preset time, it is judged whether the compressor 11 is turned on, if the compressor 11 is turned on, the 11 After accumulatively running for the fourth preset time, determine whether the air conditioner 1 satisfies the second sub-preset condition.
  • the compressor 11 is controlled to be forced to stop for the fifth preset time; after the fifth preset time, it is determined whether the compressor 11 is turned on, and if the compressor 11 is turned on, the 11 After accumulatively running for the sixth preset time, determine whether the air conditioner 1 satisfies the third sub-preset condition.
  • the compressor 11 is controlled to forcibly stop for the seventh preset time.
  • the second preset time is longer than the fourth preset time, and the fourth preset time is longer than the sixth preset time.
  • the ambient temperature value and the temperature value of the indoor heat exchanger 21 are obtained by the ambient temperature sensor and the temperature sensor of the indoor heat exchanger 21 respectively. , and calculate the temperature difference between the two, for example, the first temperature difference; then, judge the size relationship between the first temperature difference and the preset temperature difference every preset time (for example, every 30 seconds) If the first temperature difference is determined to be less than or equal to the preset temperature difference (for example 2° C.) for a predetermined number of consecutive times (for example, 3 consecutive times), it is determined that the air conditioner 1 satisfies the first sub-preset condition.
  • the preset temperature difference for example 2° C.
  • the ambient temperature value and the temperature value of the indoor heat exchanger 21 are respectively obtained by the ambient temperature sensor and the temperature sensor of the indoor heat exchanger 21, and the temperature value of the two is calculated.
  • Temperature difference for example, the second temperature difference; Then, judge the size relationship between the second temperature difference and the preset temperature difference every preset time (for example, every 30 seconds), if the continuous preset times If it is determined (for example, 3 consecutive times) that the second temperature difference is less than or equal to the preset temperature difference, then it is determined that the air conditioner 1 satisfies the second sub-preset condition.
  • the ambient temperature value and the temperature value of the indoor heat exchanger 21 are respectively obtained by the ambient temperature sensor and the temperature sensor of the indoor heat exchanger 21, and the two are calculated.
  • the temperature difference value for example, the third temperature difference value;
  • the first temperature difference, the second temperature difference and the third temperature difference may be equal or unequal.
  • the second control strategy further includes: controlling the air conditioner 1 to run normally for an eighth preset time, where the eighth preset time is greater than any one of the first to seventh preset time.
  • the first control strategy further includes: re-executing The first control strategy.
  • the first control strategy further includes: after the receiver 31 receives a power-off instruction, a shutdown instruction or a preset mode switching instruction, the controller 32 controls to re-execute the first control strategy.
  • the implementation of the device 30 for detecting refrigerant leakage in some embodiments of the present disclosure is similar to the implementation of the method for detecting refrigerant leakage in the above-mentioned embodiments of the present disclosure, and will not be repeated here.
  • the air conditioner 1 includes: the device 30 for detecting refrigerant leakage in any one of the above embodiments.
  • the air conditioner 1 includes a processor 50, a memory 40, and a program for detecting refrigerant leakage stored on the memory 40 and operable on the processor 50.
  • the program for detecting refrigerant leakage is executed by the processor 50, the following The method for detecting refrigerant leakage in the above embodiments.
  • the air conditioner 1 when the air conditioner 1 detects refrigerant leakage, its implementation is similar to that of the device 30 for detecting refrigerant leakage in any of the above-mentioned embodiments of the present disclosure, which will not be repeated here.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (eg, a non-transitory computer-readable storage medium) on which computer program instructions are stored, and the computer program instructions are executed on the controller 32 , the controller 32 is made to execute the above-mentioned method for detecting refrigerant leakage.
  • a computer-readable storage medium eg, a non-transitory computer-readable storage medium
  • the above-mentioned computer-readable storage media may include, but are not limited to: magnetic storage devices (for example, hard disk, floppy disk or magnetic tape, etc.), optical discs (for example, CD (Compact Disk, compact disk), DVD (Digital Versatile Disk, digital universal disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory, Erasable Programmable Read-Only Memory), card, stick or key drive, etc.).
  • Various computer-readable storage media described in embodiments of the present disclosure can represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the computer program product includes computer program instructions (the computer program instructions are, for example, stored on a non-transitory computer-readable storage medium).
  • the computer program instructions When the computer program instructions are executed on the computer, the computer program instructions cause the computer to perform the detection of refrigerant leakage as described above. Methods.
  • Some embodiments of the present disclosure provide a computer program.
  • the computer program When the computer program is executed on the computer, the computer program causes the computer to execute the above method for detecting refrigerant leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种检测冷媒泄露的方法,所述方法包括:所述空调器接收到制冷或除湿指令后,控制器控制所述空调器制冷或除湿,并在制冷或除湿的过程中,控制所述空调器第一次执行预设的第一控制策略,以判断所述空调器是否满足预设条件,所述预设条件包括多个子预设条件;若所述空调器第一次同时满足所述多个子预设条件,则所述控制器控制所述空调器第一次执行预设的第二控制策略;在第一次执行完所述第二控制策略之后,所述控制器控制所述空调器第二次执行所述第一控制策略,以判断所述空调器是否第二次同时满足所述多个子预设条件;若所述空调器第二次同时满足所述多个子预设条件,则所述控制器控制所述空调器发出可能存在冷媒泄露的报警信息。

Description

检测冷媒泄露的方法、空调器和存储介质
本申请要求于2021年6月30日提交的、申请号为202110741119.4的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气处理技术领域,尤其涉及一种检测冷媒泄露的方法、空调器和存储介质。
背景技术
随着科技的进步与人们生活水平的提高,空调器逐渐走进了人们的生活中,成为了人们工作和生活中必不可少的用品。
空调器通过使用压缩机、冷凝器、膨胀阀和蒸发器来执行空调器的制冷循环。制冷循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发。空调器的制冷循环离不开冷媒,冷媒冷凝液化时放热、蒸发气化时吸热,并以此实现热量的交换和传递。
发明内容
一方面,提供一种检测冷媒泄露的方法,所述方法包括:所述空调器接收到制冷或除湿指令后,控制器控制所述空调器制冷或除湿,并在制冷或除湿的过程中,控制所述空调器第一次执行预设的第一控制策略,以判断所述空调器是否满足预设条件,所述预设条件包括多个子预设条件;若所述空调器第一次同时满足所述多个子预设条件,则所述控制器控制所述空调器第一次执行预设的第二控制策略;在第一次执行完所述第二控制策略之后,所述控制器控制所述空调器第二次执行所述第一控制策略,以判断所述空调器是否第二次同时满足所述多个子预设条件;若所述空调器第二次同时满足所述多个子预设条件,则所述控制器控制所述空调器发出可能存在冷媒泄露的报警信息。
另一方面,提供一种空调器,所述空调器包括存储器和控制器。其中,所述存储器中存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述控制器执行时,使得所述控制器执行所述的检测冷媒泄露的方法。
又一方面,提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令在控制器上运行时,使得所述控制器执行所述的检测冷媒泄露的方法。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的空调器的一种示意图;
图2为根据一些实施例的空调器的另一种示意图;
图3为根据一些实施例的检测冷媒泄露的方法的一种流程图;
图4为根据一些实施例的检测冷媒泄露的方法的另一种流程图;
图5为根据一些实施例的检测冷媒泄露的装置的框图;
图6为根据一些实施例的空调器的一个框图;
图7为根据一些实施例的空调器的另一个框图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)” 及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“若”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“若确定……”或“若检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
提供一种空调器。如图1所示,空调器1是由室外机10和室内机20组成的分体式空调。室外机10和室内机20通过管路连接以传输冷媒。室外机10包括压缩机11、四通阀12、室外换热器13、第二风机14(如室外风机)和膨胀阀15。室内机20包括室内换热器21和第一风机22(如室内风机)。依序连接的压缩机11、室外换热器13、膨胀阀15和室内换热器21形成冷媒回路,冷媒于冷媒回路中循环流动,通过室外换热器13与室内换热器21分别与空气进行换热,以实现空调器1的制冷模式或制热模式。
压缩机11被配置为压缩冷媒以使得低压冷媒受压缩形成高压冷媒。
室外换热器13被配置为将室外空气与在室外换热器13中传输的冷媒进行热交换。例如,室外换热器13在空调器1的制冷模式下作为冷凝器进行工作,使得由压缩机11压缩的冷媒通过室外换热器13将热量散发至室外空气而冷凝;室外换热器13在空调器1的制热模式下作为蒸发器进行工作,使得减压后的冷媒通过室外换热器13吸收室外空气的热量而蒸发。
在一些实施例中,室外换热器13还包括换热翅片,以扩大室外空气与室外换热器13中传输的冷媒之间的接触面积,从而提高室外空气与冷媒之间的热交换效率。
第二风机14被配置为将室外空气经室外机10的室外进风口吸入至室外机10内,并将与室外换热器13换热后的室外空气经由室外机10的室外出风口送出。第二风机14为室外空气的流动提供动力。
膨胀阀15连接于室外换热器13与室内换热器21之间,由膨胀阀15的开度大小调节流经室外换热器13和室内换热器21的冷媒压力,以调节流通于室外换热器13和室内换热器21之间的冷媒流量。流通于室外换热器13和室内换热器21之间的冷媒的流量和压力将影响室外换热器13和室内换热器21的换热性能。膨胀阀15可以是电子阀。膨胀阀15的开度是可调节的,以控制流经膨胀阀15冷媒的流量和压力。
四通阀12连接于冷媒回路内,四通阀12受控于控制器32以切换冷媒在冷媒回路中的流向以使空调器1执行制冷模式或制热模式。
室内换热器21被配置为将室内空气与在室内换热器21中传输的冷媒进行热交换。例如,室内换热器21在空调器1的制冷模式下作为蒸发器进行工作,使得经由室外换热器13散热后的冷媒通过室内换热器21吸收室内空气的热量而蒸发;室内换热器21在空调器1的制热模式下作为冷凝器进行工作,使得经由室外换热器13吸热后的冷媒通过室内换热器21将热量散发至室内空气而冷凝。
在一些实施例中,室内换热器21还包括换热翅片,以扩大室内空气与室内换热器21中传输的冷媒之间的接触面积,从而提高室内空气与冷媒之间的热交换效率。
第一风机22被配置为将室内空气经室内机20的室内进风口吸入至室内机20内,并将与室内换热器21换热后的室内空气经由室内机20的室内出风口送出。第一风机22为室内空气的流动提供动力。
控制器32被配置为控制压缩机11的工作频率、膨胀阀15的开度、室外风机14的转速和室内风机22的转速。控制器32与压缩机11、膨胀阀15、室外风机14和第一风机22通过数据线相连以传输通信信息。
控制器32包括处理器50。处理器50可以包括中央处理器(central processing unit,CPU))、微处理器(microprocessor)、专用集成电路(application specific integrated circuit,ASIC),并且可以被配置为当处理器50执行存储在耦合到控制器32的非暂时性计算机可读介质中的程序时,执行控制器32中描述的相应操作。非暂时性计算机可读存储介质可以包括磁存储设备(例如,硬盘、软盘、或磁带)、智能卡、或闪存设备(例如,可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒、或键盘驱动器)。
上述描述了空调器1为分体式空调器的示例,但本公开并不局限于此。在一些实施例中,空调器1也可以为一体式空调器(如,移动式空调器)。
如图2所示,空调器1为一体式空调器,包括箱体1001、第一风机22、第二风机14以及显示装置24。
第一风机22设置在箱体1001的上部,被配置为将与室内换热器21进行热交换后的空气排出。
第二风机14设置在箱体1001的下部,被配置为降低箱体1001内的压缩机11的温度,防止过热。
显示装置24被配置为显示空调器1的运行模式及运行温度等信息。空调器的制冷循环离不开冷媒,冷媒冷凝液化时放热、蒸发气化时吸热,并以此实现热量的交换和传递。
在空调器1运行的过程中,若冷媒发生泄漏,而压缩机11还在持续运行,则容易导致压缩机11损坏或者引发火灾等。
在一些实施例中,提供一种检测冷媒泄露的方法,该方法基于环境温度传感器41和室内换热器21的温度传感器42,采集环境温度值和室内换热器21的温度值。根据环境温度值和室内换热器21的温度值,对压缩机11的冷媒泄露状态进行检测,并在压缩机11出现冷媒泄露时,由空调器1发出可能存在冷媒泄露的报警信息;例如,由空调器1的显示装置显示故障码。从而在保证压缩机11可靠运行的同时,提醒用户压缩机11出现冷媒泄露的故障,进而避免因压缩机11在存在冷媒泄露故障时继续运行,而导致压缩机11损坏或者出现火灾的问题,利于提高压缩机11运行的安全性。
以下对本公开一些实施例的检测冷媒泄露的方法进行说明。
如图3所示,本公开的一些实施例的检测冷媒泄露的方法包括步骤1至步骤4。
在步骤1中,接收到制冷或除湿指令后,控制器32控制空调器1制冷或除湿,并在制冷或除湿的过程中,控制空调器1第一次执行预设的第一控制策略,以判断空调器1是否满足预设条件。
所述预设条件包括多个子预设条件。为了便于说明,如图4所示,本公开的一些实施例主要以所述预设条件包括第一子预设条件、第二子预设条件和第三子预设条件为例进行说明,然而,这并不能理解为对本公开的限制。
在一些实施例中,控制器32控制空调器1第一次执行预设的第一控制策略,所述第一控制策略主要用于判断空调器1是否满足所述第一子预设条件、所述第二子预设条件及所述第三子预设条件。
示例性地,控制器32判断空调器1是否满足第一子预设条件。例如,控制器32判断压缩机11的累计运行时长是否达到第二预设时间(例如20分钟),以及,在确定压缩机11的累计运行时长达到所述第二预设时间后,控制器32判断环境温度与室内换热器21的温度之间的第一温度差值是否满足预设温度差值(如2℃)。
在一些实施例中,控制器32包括计时器321,即使器321能够对压缩机11的运行状态进行计时,从而获得压缩机11的累计运行时长。环境温度传感器41将检测到的环境温度发送至控制器32,室内换热器21的温度传感器42将检测到的室内换热器21的温度发送至控制器32,控制器32计算环境温度与室内换热器21的温度之间的第一温度差值。
控制器32判断空调器1是否满足第二子预设条件或第三子预设条件的方法,与上述判断空调器1是否满足第一子预设条件的方法大致相同,区别在于:在第二子预设条件下,判断压缩机11的累计运行时长是否达到第四预设时间(例如15分钟);在第三子预设条件下,判断压缩机11的累计运行时长是否达到第六预设时间(例如10分钟)。
在控制器32判断空调器1是否满足所述第一子预设条件、所述第二子预设条件及所述第三子预设条件时,所述第二预设时间、所述第四预设时间以及所述第六预设时间满足:所述第二预设时间大于所述第四预设时间,所述第四预设时间大于所述第六预设时间,以减小压缩机11的总累计运行时间,从而可以提高判断空调器1是否满足第一子预设条件、第二子预设条件及第三子预设条件的准确性。
示例性地,压缩机11在所述预设条件下的总累计运行时间通常不超过2小时。
可以理解的是,若空调器1不满足上述预设条件中的任意一个,则认为压缩机11不存在冷媒泄露的风险;若空调器1满足上述预设条件,则认为压缩机11可能存在冷媒泄露风险,此时,需要控制器32控制空调器1继续执行相应的控制策略,以对压缩机11的冷媒泄露问题进行进一步地检测。
需要说明的是,在上述预设条件中,判断压缩机11的累计运行时长是否达到第二预设时间、第四预设时间以及第六预设时间的过程中,需要每隔一段时间对压缩机11的运行状态进行检测。
例如,每隔5分钟对压缩机11的运行状态进行检测,以便计时器321在压缩机11停机时停止计时,在压缩机11开启时,开始计时或保持计时,从而增加对压缩机11的循环逻辑判断,便于提高对压缩机11累计运行时长判断的准确性。
例如,用户可以通过空调遥控器发出制冷或者除湿指令。或者,用户也可以通过空调器1的操作界面的相关按键,发出制冷或者除湿指令,本公开对此不作限定。
空调器1接收到制冷或者除湿指令后,控制器32控制空调器1运行制冷模式或者除湿模式,并在制冷或者除湿的过程中,控制空调器1执行第一控制策略,以判断空调器1是否满足上述预设条件,从而对检测压缩机11冷媒泄露的过程进行相应控制。
在步骤2中,若空调器1满足第一子预设条件、第二子预设条件和第三子预设条件, 则控制空调器1第一次执行预设的第二控制策略。在一些实施例中,若在上述的第一子预设条件,第二子预设条件和第三子预设条件的判断过程中,压缩机11的累计运行时长分别达到第二预设时间、第四预设时间和第六预设时间,以及,在压缩机11的累计运行时长达到所述第二预设时间、所述第四预设时间和所述第六预设时间后,环境温度与室内换热器21的温度之间的温度差值均满足小于或等于所述预设温度差值(如2℃),则认为空调器1满足所述第一子预设条件、所述第二子预设条件及所述第三子预设条件。
此时,认为空调器1可能存在冷媒泄露的风险。因此,不再检测环境温度与室内换热器21的温度之间的温度差值,而是控制空调器1第一次执行预设的第二控制策略,使得空调器1正常运行制冷模式或除湿模式第八预设时间(例如,90分钟)。从而增加了空调器1运行的稳定性,降低了空调器1在特殊工况条件(例如,环境温度大于30℃)下工作时对温差检测结果产生的影响,有利于提高检测冷媒泄漏的准确性。
在步骤3中,在第一次执行完所述第二控制策略之后,控制器32控制空调器1第二次执行所述第一控制策略,以判断空调器1是否第二次满足所述第一子预设条件、所述第二子预设条件和所述第三子预设条件。
在一些实施例中,控制器32在执行完所述第一控制策略和所述第二控制策略之后,认为压缩机11可能存在冷媒泄露的风险,此时,为了降低误报警的概率,空调器1可以不立即发出可能存在冷媒泄露的故障报警信号(如可以由空调器1的报警器发出),控制器32可以控制空调器1第二次执行所述第一控制策略,以判断空调器1是否满足所述第一子预设条件、所述第二子预设条件及所述第三子预设条件。
控制器32判断空调器1是否满足所述第一子预设条件、所述第二子预设条件及所述第三子预设条件的方法与前述相同,在此不再赘述。
在步骤4中,若空调器1第二次满足所述第一子预设条件、所述第二子预设条件和所述第三子预设条件,则控制器32控制空调器1发出可能存在冷媒泄露的报警信息。例如,控制器32控制显示装置24闪烁显示对应于冷媒泄露的故障码。
在一些实施例中,在空调器1第二次执行所述第一控制策略时,若压缩机11在对应子预设条件下的累计运行时长分别达到预设时长,以及,在确定压缩机11的累计运行时长达到相应的预设时长后,环境温度与室内换热器21的温度之间的温度差值均满足所述预设温度差值,则认为空调器1再次满足上述预设条件。
此时,则认为压缩机11很可能存在冷媒泄露的风险。在这种情况下,可以控制空调器1的显示装置24闪烁显示故障码(如E9),以提醒用户压缩机11很可能存在冷媒泄露的风险,便于用户及时采取应对措施(例如,关闭空调器1)。
根据本公开一些实施例的检测冷媒泄露的方法,在控制空调器1运行制冷或除湿过程中,控制器32控制空调器1第一次执行第一控制策略,以判断空调器1是否满足第一子预设条件、第二子预设条件及第三子预设条件,并在判断空调器1满足上述预设条件时,控制空调器1第一次执行第二控制策略,从而增加了循环逻辑判断和空调器1的运行时间,提高了空调器1的运行稳定性,降低了空调器1在特殊工况条件(例如,环境温度大于30℃)下工作时对温差检测结果产生的影响,利于提高检测冷媒泄漏的准确性。
并且,在第一次执行完第二控制策略后,控制器32控制空调器1再次执行第一控制策略,以再次判断空调器1是否满足上述预设条件;在空调器1再次满足上述预设条件时,控制器32控制空调器1发出可能存在冷媒泄露的报警信息。例如,控制器32控制显示装置24闪烁显示对应于冷媒泄露的故障码,以提醒用户压缩机11很可能存在冷媒泄露的风险,便于用户及时采取应对措施,从而能够有效降低误报警率,提高检测冷媒泄露的准确性。
在一些实施例中,在控制器32控制空调器1发出可能存在冷媒泄露的报警信息之后,所述检测冷媒泄露的方法还包括:控制器32控制空调器1第三次执行所述第一控制策略, 以判断空调器1是否第三次满足所述第一子预设条件、所述第二子预设条件和所述第三子预设条件。
若空调器1第三次满足所述第一子预设条件、所述第二子预设条件和所述第三子预设条件,则控制器32控制空调器1第二次执行所述第二控制策略。
在第二次执行完所述第二控制策略之后,控制器32控制空调器1第四次执行所述第一控制策略,以判断空调器1是否第四次满足所述第一子预设条件、所述第二子预设条件和所述第三子预设条件。
若空调器1第四次满足所述第一子预设条件、所述第二子预设条件和所述第三子预设条件,则控制器32可以确定发生冷媒泄露。
此时,空调器1将执行最终故障保护模式,控制器32控制空调器1停机。例如,控制器32控制压缩机11强制停机,控制显示装置24恒定显示故障码,并控制空调器1的第一风机22停机,空调器1的第二风机14则会按照额定最低风速运转第一预设时间(例如5分钟)后停机。
在确定压缩机11出现冷媒泄露后,控制器32通过控制第二风机14继续运行一段时间,可以快速降低空调器1的箱体1001内的热量,避免出现温度过高导致压缩机11损坏,提高了压缩机11运行的安全性。
此外,通过在空调器1的显示装置24上闪烁显示对应于冷媒泄露的故障码后,控制器32控制空调器1再次执行所述第一控制策略及所述第二控制策略,再次增加了循环逻辑判断和空调器1运行的时间,从而可以提高检测压缩机11冷媒泄露的准确性。
在一些实施例中,所述第一控制策略包括:控制器32判断压缩机11是否开启,若压缩机11开启,则在压缩机11累计运行第二预设时间后,控制器32判断空调器1是否满足第一子预设条件。
若空调器1满足所述第一子预设条件,则控制器32控制压缩机11强制停机第三预设时间;并在所述第三预设时间后,控制器32判断压缩机11是否开启。若压缩机11开启,则在压缩机11累计运行第四预设时间后,控制器32判断空调器1是否满足第二子预设条件。
若空调器1满足所述第二子预设条件,则控制器32控制压缩机11强制停机第五预设时间;并在所述第五预设时间后,控制器32判断压缩机11是否开启。若压缩机11开启,则在压缩机11累计运行第六预设时间后,控制器32判断空调器1是否满足第三子预设条件。
若空调器1满足所述第三子预设条件,则控制器32控制压缩机11强制停机第七预设时间。
在一些实施例中,在控制器32控制空调器1执行所述第一控制策略时,需要判断压缩机11是否开启,若压缩机11开启,则在压缩机11启动后通过计时器321开始对压缩机11的运行时间进行计时,并在压缩机11运行的期间内,每隔一段时间(例如,每隔5分钟)对压缩机11的运行状态进行检测,以确定压缩机11当前的运行状态,并在压缩机11的累计运行所述第二预设时间(例如20分钟)后,判断空调器1是否满足第一子预设条件。
若满足所述第一子预设条件,则控制器32控制压缩机11强制停机所述第三预设时间(例如控制压缩机11停机3分钟);并在压缩机11强制停机所述第三预设时间后,对压缩机11的运行状态进行判断。即,控制器32判断压缩机11是否开启,若压缩机11开启,则开始计时,并在压缩机11运行期间内,每隔一段时间(例如每隔5分钟)对压缩机11的运行状态进行检测,以确定压缩机11当前的运行状态,并在压缩机11累计运行所述第四预设时间(例如15分钟)后,判断空调器1是否满足第二子预设条件。
若满足所述第二子预设条件,则控制器32控制压缩机11强制停机所述第五预设时间 (例如3分钟);在控制压缩机11强制停机所述第五预设时间后,判断压缩机11是否开启。若压缩机11开启,则在压缩机11启动后计时器321开始计时,并在压缩机11运行期间内,控制器32每隔一段时间(例如每隔5分钟)对压缩机11的运行状态进行检测,以确定压缩机11当前的运行状态,并在压缩机11累计运行所述第六预设时间(例如10分钟)后,判断空调器1是否满足第三子预设条件。
若满足所述第三子预设条件,则控制器32控制压缩机11强制停机所述第七预设时间(例如3分钟)。
需要说明的是,所述第三预设时间、所述第五预设时间及所述第七预设时间可以相等或不相等。例如,所述第三预设时间、所述第五预设时间及所述第七预设时间均可以为3分钟。或者,所述第三预设时间可以为3分钟,所述第五预设时间可以为4分钟,所述第七预设时间可以为5分钟等。
可以理解的是,在压缩机11累计运行所述第二预设时间、所述第四预设时间及所述第六预设时间的期间内,压缩机11无需连续运行。即,压缩机11可以停机,无需始终处于开启状态,且在压缩机11停机时,计时器321停止计时,并在压缩机11运行的期间内,满足每隔5分钟对压缩机11的运行状态进行检测时,压缩机11处于开启状态即可。
在一些实施例中,压缩机11在累计运行所述第二预设时间(例如20分钟)后,每隔预设时间(例如30秒、60秒或90秒)控制器32获取环境温度和室内换热器21的温度之间的第一温度差值。当连续预设次数(如3次、4次或5次等)获取的所述第一温度差值均小于或等于所述预设温度差值时(如2℃),则确定空调器1满足所述第一子预设条件。
判断空调器1是否满足第二子预设条件或第三子预设条件,与上述判断空调器1是否满足第一子预设条件的方法大致相同,区别在于:在第二子预设条件下,判断压缩机11的累计运行时长是否达到第四预设时间(例如15分钟);在第三子预设条件下,判断压缩机11的累计运行时长是否达到第六预设时间(例如10分钟)。
需要说明的是,通过连续多次对室内环境温度和室内换热器21的温度进行检测,计算两者之间的温度差值,并连续多次地判断该温度差值与所述预设温度差值之间的大小关系,从而可以确定空调器1是否满足预设条件,进而提高上述预设条件判断的准确性。
可以理解的是,所述第二预设时间、所述第四预设时间及所述第六预设时间逐渐减小,以减小压缩机11的总累计运行时间,从而可以提高判断空调器1是否满足第一子预设条件、第二子预设条件及第三子预设条件的准确性。
在一些实施例中,所述第二控制策略包括:控制空调器1正常运行第八预设时间。所述第八预设时间大于第一预设时间至第七预设时间中的任一个。
可以理解的是,控制器32控制空调器1运行所述第二控制策略时,可以控制空调器1正常运行所述第八预设时间。例如,控制器32控制空调器1运行制冷或者除湿模式90分钟。从而增加了空调器1的运行稳定性,降低了空调器1在特殊工况条件(例如,环境温度大于30℃)下工作时对温差检测结果产生的影响,利于提高检测冷媒泄露的准确性。
在一些实施例中,第一控制策略还包括:若判断空调器1不满足第一子预设条件、第二子预设条件或第三子预设条件中的至少一个,则重新执行所述第一控制策略。
例如,在空调器1执行第一控制策略的过程中,当获取的环境温度与室内换热器21的温度之间的温度差值(例如3℃、4℃或5℃等)大于所述预设温度差值(例如2℃)时,控制器32将控制空调器1重新执行所述第一控制策略,避免按照之前的控制策略继续执行,从而提高冷媒泄露检测的准确性。
在一些实施例中,第一控制策略还包括:在空调器1接收到断电指令、关机指令或预设的模式切换指令后,重新执行所述第一控制策略。
例如,在控制器32接收到送风指令或者制热模式指令后,控制空调器1重新执行第一控制策略。这样可以避免因继续执行之前的控制策略,而导致冷媒泄露误报警,从而可 以提高检测冷媒泄露准确性。
本公开的一些实施例根据图4所示的检测冷媒泄露的方法的流程图对冷媒泄露进行了检测,该方法包括步骤101至步骤245。
步骤101,空调器1在制冷或除湿模式下运行。
步骤102,判断压缩机11是否开启,若是,执行步骤103,若否,则不进行计时。
步骤103,压缩机11开启,开始计时。
步骤104,每隔5分钟检测压缩机11是否运行,若是,执行步骤105,若否,则执行步骤113。
步骤105,继续计时。
步骤106,判断压缩机11累计运行时间是否达到20分钟,若是,执行步骤107,若否,则执行步骤104。
步骤107,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤108,若否,则重新执行步骤102。
步骤108,延时30秒。
步骤109,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤110,若否,则重新执行步骤102。
步骤110,延时30秒。
步骤111,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤112,若否,则重新执行步骤102。
步骤112,控制压缩机11强制停机3分钟。
步骤113,暂停计时。
步骤114,判断压缩机11是否开启,若是,执行步骤115,若否,则不进行计时。
步骤115,压缩机11开启,开始计时。
步骤116,每隔5分钟检测压缩机11是否运行。若是,执行步骤117,若否,则执行步骤125。
步骤117,继续计时。
步骤118,判断压缩机11累计运行时间是否达到15分钟,若是,执行步骤119,若否,则执行步骤116。
步骤119,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤120,若否,则重新执行步骤102。
步骤120,延时30秒。
步骤121,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤122,若否,则重新执行步骤102。
步骤122,延时30秒。
步骤123,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤124,若否,则重新执行步骤102。
步骤124,压缩机11强制停机3分钟。
步骤125,暂停计时。
步骤126,判断压缩机11是否开启,若是,执行步骤127,若否,则不进行计时。
步骤127,压缩机11开启,开始计时。
步骤128,每隔5分钟检测压缩机11是否运行,若是,执行步骤129,若否,执行步骤138。
步骤129,继续计时。
步骤130,判断压缩机11累计运行时间是否达到10分钟,若是,执行步骤131,若否,则执行步骤128。
步骤131,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤132,若否,则重新执行步骤102。
步骤132,延时30秒。
步骤133,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤134,若否,则重新执行步骤102。
步骤134,延时30秒。
步骤135,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤136,若否,则重新执行步骤102。
步骤136,压缩机11强制停机3分钟。
步骤137,空调器1正常运行90分钟。
步骤138,暂停计时。
步骤139,判断压缩机11是否开启,若是,执行步骤140,若否,则不进行计时。
步骤140,压缩机11开启,开始计时。
步骤141,每隔5分钟检测压缩机11是否运行,若是,执行步骤142,若否,则执行步骤150’。
步骤142,继续计时。
步骤143,判断压缩机11的累计运行时间是否达到20分钟,若是,执行步骤144,若否,则执行步骤141。
步骤144,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤145,若否,则重新执行步骤102。
步骤145,延时30秒。
步骤146,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤147,若否,则重新执行步骤102。
步骤147,延时30秒。
步骤148,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤149,若否,则重新执行步骤102。
步骤149,压缩机11强制停机3分钟。
步骤150’,暂停计时。
步骤150,判断压缩机11是否开启,若是,执行步骤151,若否,则不进行计时。
步骤151,压缩机11开启,开始计时。
步骤152,每隔5分钟检测压缩机11是否运行,若是,执行步骤153,若否,则执行步骤161。
步骤153,继续计时。
步骤154,判断压缩机11的累计运行时间是否达到15分钟,若是,执行步骤155,若否,则执行步骤152。
步骤155,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤156,若否,则重新执行步骤102。
步骤156,延时30秒。
步骤157,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤158,若否,则重新执行步骤102。
步骤158,延时30秒。
步骤159,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤160,若否,则重新执行步骤102。
步骤160,压缩机11强制停机3分钟。
步骤161,暂停计时。
步骤162,判断压缩机11是否开启,若是,执行步骤163,若否,则不进行计时。
步骤163,压缩机11开启,开始计时。
步骤164,每隔5分钟检测压缩机11是否运行,若是,执行步骤165,若否,则执行步骤174。
步骤165,继续计时。
步骤166,判断压缩机11的累计运行时间是否达到10分钟,若是,执行步骤167,若否,则执行步骤164。
步骤167,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤168,若否,则重新执行步骤102。
步骤168,延时30秒。
步骤169,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤170,若否,则重新执行步骤102。
步骤170,延时30秒。
步骤171,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤172,若否,则重新执行步骤102。
步骤172,压缩机11强制停机3分钟。
步骤173,显示装置24闪烁显示故障码。
步骤174,暂停计时。
步骤175,判断压缩机11是否开启,若是,执行步骤176,若否,则不进行计时。
步骤176,压缩机11开启,开始计时。
步骤177,每隔5分钟检测压缩机11是否运行。若是,执行步骤178,若否,则执行步骤186。
步骤178,继续计时。
步骤179,判断压缩机11的累计运行时间是否达到20分钟,若是,执行步骤180,若否,则执行步骤177。
步骤180,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤181,若否,则重新执行步骤102。
步骤181,延时30秒。
步骤182,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤183,若否,则重新执行步骤102。
步骤183,延时30秒。
步骤184,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤185,若否,则重新执行步骤102。
步骤185,压缩机11强制停机3分钟。
步骤186,暂停计时。
步骤187,判断压缩机11是否开启,若是,执行步骤188,若否,则不进行计时。
步骤188,压缩机11开启,开始计时。
步骤189,每隔5分钟检测压缩机11是否运行,若是,执行步骤190,若否,则执行步骤198。
步骤190,继续计时。
步骤191,判断压缩机11的累计运行时间是否达到15分钟,若是,执行步骤192,若否,则执行步骤189。
步骤192,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤193,若否,则重新执行步骤102。
步骤193,延时30秒。
步骤194,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤195,若否,则重新执行步骤102。
步骤195,延时30秒。
步骤196,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤197,若否,则重新执行步骤102。
步骤197,压缩机11强制停机3分钟。
步骤198,暂停计时。
步骤199,判断压缩机11是否开启,若是,执行步骤200,若否,则不进行计时。
步骤200,压缩机11开启,开始计时。
步骤201,每隔5分钟检测压缩机11是否运行,若是,执行步骤202,若否,则执行步骤211。
步骤202,继续计时。
步骤203,判断压缩机11的累计运行时间是否达到10分钟,若是,执行步骤204,若否,则执行步骤201。
步骤204,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤205,若否,则重新执行步骤102。
步骤205,延时30秒。
步骤206,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤207,若否,则重新执行步骤102。
步骤207,延时30秒。
步骤208,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤209,若否,则重新执行步骤102。
步骤209,压缩机11强制停机3分钟。
步骤210,空调器1正常运行90分钟。
步骤211,暂停计时。
步骤212,判断压缩机11是否开启,若是,执行步骤213,若否,则不进行计时。
步骤213,压缩机11开启,开始计时。
步骤214,每隔5分钟检测压缩机11是否运行,若是,执行步骤215,若否,则执行步骤222’。
步骤215,继续计时。
步骤216,判断压缩机11的累计运行时间是否达到20分钟,若是,执行步骤217,若否,则执行步骤214。
步骤217,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤218,若否,则重新执行步骤102。
步骤218,延时30秒。
步骤219,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤220,若否,则重新执行步骤102。
步骤220,延时30秒。
步骤221,判断环境温度与室内换热器21的温度之间的第一温度差值是否小于或等于预设温度差值,若是,执行步骤222,若否,则重新执行步骤102。
步骤222,压缩机11强制停机3分钟。
步骤222’,暂停计时。
步骤223,判断压缩机11是否开启,若是,执行步骤224,若否,则不进行计时。
步骤224,压缩机11开启,开始计时。
步骤225,每隔5分钟检测压缩机11是否运行,若是,执行步骤226,若否,则执行 步骤234。
步骤226,继续计时。
步骤227,判断压缩机11的累计运行时间是否达到15分钟,若是,执行步骤228,若否,则执行步骤225。
步骤228,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤229,若否,则重新执行步骤102。
步骤229,延时30秒。
步骤230,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤231,若否,则重新执行步骤102。
步骤231,延时30秒。
步骤232,判断环境温度与室内换热器21的温度之间的第二温度差值是否小于或等于预设温度差值,若是,执行步骤233,若否,则重新执行步骤102。
步骤233,压缩机11强制停机3分钟。
步骤234,暂停计时。
步骤235,判断压缩机11是否开启,若是,执行步骤236,若否,则不进行计时。
步骤236,压缩机11开启,开始计时。
步骤237,每隔5分钟检测压缩机11是否运行,若是,执行步骤238,若否,则执行步骤246。
步骤238,继续计时。
步骤239,判断压缩机11的累计运行时间是否达到10分钟,若是,执行步骤240,若否,则执行步骤237。
步骤240,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤241,若否,则重新执行步骤102。
步骤241,延时30秒。
步骤242,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤243,若否,则重新执行步骤102。
步骤243,延时30秒。
步骤244,判断环境温度与室内换热器21的温度之间的第三温度差值是否小于或等于预设温度差值,若是,执行步骤245,若否,则重新执行步骤102。
步骤245,确定发生冷媒泄露,控制器32控制压缩机11强制停机,控制显示装置24恒定显示故障码,并控制第一风机22停机,此时,第二风机14按照额定最低风速运转第一预设时间后停机。
根据本公开一些实施例的检测冷媒泄露的方法,在控制空调器1运行制冷或除湿过程中,控制空调器1第一次执行第一控制策略,以判断空调器1是否满足第一子预设条件、第二子预设条件及第三子预设条件。在判断空调器1满足上述预设条件时,控制空调器1第一次执行第二控制策略。从而,增加了循环逻辑判断和空调器1的运行时间,可以提高空调器1的运行稳定性。
在第一次执行完第二控制策略后,控制空调器1再次执行所述第一控制策略,以再次判断空调器1是否满足上述预设条件,在空调器1再次满足上述预设条件时,控制显示装置24显示对应于冷媒泄露的故障码,以提醒用户压缩机11可能存在冷媒泄露的风险,便于用户及时采取应对措施,从而能够有效降低误报警概率,提高检测冷媒泄露的准确性。
本公开的一些实施例还提供了一种检测冷媒泄露的装置,如图5所示,检测冷媒泄露的装置30包括接收器31和控制器32。
接收器31,被配置为接收用户发出的制冷指令或除湿指令。示例性地,接收器31为红外接收器,以接收用户通过遥控器发出的制冷指令或除湿指令。
控制器32,例如为MCU(微控制单元,Micro Control Unit)控制器,被配置为根据所述制冷或除湿指令控制空调器1制冷或除湿,并在空调器1制冷或除湿的过程中,控制空调器1第一次执行预设的第一控制策略,以判断空调器1是否满足第一子预设条件、第二子预设条件和第三子预设条件;以及在空调器1满足所述第一子预设条件、第二子预设条件和第三子预设条件时,控制空调器1第一次执行预设的第二控制策略;以及在第一次执行完所述第二控制策略之后,控制空调器1第二次执行所述第一控制策略,以判断空调器1是否第二次满足所述第一子预设条件、第二子预设条件和第三子预设条件;以及在空调器1第二次满足所述第一子预设条件、第二子预设条件和第三子预设条件时,控制显示装置24闪烁显示对应于冷媒泄露的故障码。
在一些实施例中,控制器32还被配置为控制空调器1第三次执行第一控制策略,以判断空调器1是否第三次满足所述第一子预设条件、第二子预设条件和第三子预设条件。若空调器1第三次满足所述第一子预设条件、第二子预设条件和第三子预设条件,则控制空调器1第二次执行所述第二控制策略。在第二次执行完第二控制策略之后,控制空调器1第四次执行所述第一控制策略,以判断空调器1是否第四次满足所述第一子预设条件、第二子预设条件和第三子预设条件。若空调器1第四次满足所述第一子预设条件、第二子预设条件和第三子预设条件,则确定发生冷媒泄露,控制器32将控制压缩机11强制停机,控制显示装置24恒定显示故障码,并控制第一风机22停机,第二风机14则按照额定最低风速运转第一预设时间后停机。
在一些实施例中,空调器1的显示装置24显示对应于冷媒泄露的故障码之后,控制器32控制空调器1第三次执行所述第一控制策略,以对上述预设条件进行判断,并在空调器1第三次满足所述第一子预设条件、第二子预设条件及第三子预设条件后,控制空调器1第二次执行所述第二控制策略。
在第二次执行完第二控制策略后,控制空调器1第四次进入所述第一控制策略,再次对上述预设条件进行判断,若满足上述预设条件,则确定压缩机11发生冷媒泄露。
此时,控制器32控制空调器1执行最终故障保护模式。例如,控制压缩机11强制停机,并在显示装置24上恒定显示故障码。
在一些实施例中,第一控制策略包括:判断空调器1的压缩机11是否开启,若压缩机11开启,则在压缩机11累计运行第二预设时间后,判断空调器1是否满足第一子预设条件。
若空调器1满足第一子预设条件,则控制压缩机11强制停机第三预设时间;在第三预设时间后,判断压缩机11是否开启,若压缩机11开启,则在压缩机11累计运行第四预设时间后,判断空调器1是否满足第二子预设条件。
若空调器1满足第二子预设条件,则控制压缩机11强制停机第五预设时间;在第五预设时间后,判断压缩机11是否开启,若压缩机11开启,则在压缩机11累计运行第六预设时间后,判断空调器1是否满足第三子预设条件。
若空调器1满足第三子预设条件,则控制压缩机11强制停机第七预设时间。所述第二预设时间大于所述第四预设时间,所述第四预设时间大于所述第六预设时间。
在一些实施例中,压缩机11累计运行第二预设时间后(例如20分钟后),通过环境温度传感器和室内换热器21温度传感器分别获取环境温度值和室内换热器21的温度值,并计算两者的温度差值,例如,第一温度差值;然后,每隔预设时间(例如每隔30秒)判断一次第一温度差值与预设温度差值之间的大小关系,若连续预设次数(例如连续3次)确定第一温度差值小于或等于预设温度差值(例如2℃),则判断空调器1满足第一子预设条件。
压缩机11累计运行第四预设时间后(例如15分钟后),通过环境温度传感器和室内换热器21温度传感器分别获取环境温度值和室内换热器21的温度值,并计算两者的温度 差值,例如,第二温度差值;然后,每隔预设时间(例如每隔30秒)判断一次第二温度差值与预设温度差值之间的大小关系,若连续预设次数(例如连续3次)确定第二温度差值小于或等于预设温度差值,则判断空调器1满足第二子预设条件。
压缩机11累计运行第六预设时间后,(例如10分钟后),通过环境温度传感器和室内换热器21温度传感器分别获取环境温度值和室内换热器21的温度值,并计算两者的温度差值,例如,第三温度差值;然后,每隔预设时间(例如每隔30秒)判断一次第三温度差值与预设温度差值之间的大小关系,若连续预设次数(例如连续3次)确定第三温度差值小于或等于预设温度差值,则判断空调器1满足第三子预设条件。
所述第一温度差值、所述第二温度差值以及所述第三温度差值可以相等或不相等。在一些实施例中,第二控制策略还包括:控制空调器1正常运行第八预设时间,第八预设时间大于第一预设时间至第七预设时间中的任一个。
在一些实施例中,第一控制策略还包括:若判断空调器1不满足所述第一子预设条件、第二子预设条件和第三子预设条件中的至少一个,则重新执行所述第一控制策略。
在一些实施例中,第一控制策略还包括:接收器31接收到断电指令、关机指令或预设的模式切换指令后,控制器32控制重新执行所述第一控制策略。
需要说明的是,本公开的一些实施例的检测冷媒泄露的装置30的实现方式与本公开上述实施例的检测冷媒泄露的方法的实现方式类似,此处不再赘述。
本公开的一些实施例还提供了一种空调器1,如图6所示,该空调器1包括:上述任意一个实施例的检测冷媒泄露的装置30。
如图7所示,空调器1包括处理器50、存储器40和存储在存储器40上并可在处理器50上运行的检测冷媒泄露的程序,检测冷媒泄露的程序被处理器50执行时实现如上述实施例的检测冷媒泄露的方法。
在一些实施例中,该空调器1在检测冷媒泄露的情况时,其实现方式与本公开上述任意实施例的检测冷媒泄露的装置30的实现方式类似,此处不再赘述。
本公开的一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),该计算机可读存储介质上存储有计算机程序指令,计算机程序指令在控制器32上运行时,使得控制器32执行上述的检测冷媒泄露的方法。
例如,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开实施例描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本公开一些实施例提供了一种计算机程序产品。该计算机程序产品包括计算机程序指令(该计算机程序指令例如存储在非暂态计算机可读存储介质上),在计算机上执行该计算机程序指令时,该计算机程序指令使计算机执行如上述的检测冷媒泄露的方法。
本公开一些实施例提供了一种计算机程序。当该计算机程序在计算机上执行时,该计算机程序使计算机执行如上述的检测冷媒泄露的方法。
本领域技术人员应当理解,本公开中所涉及的公开公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与一些实施例公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (20)

  1. 一种检测冷媒泄露的方法,用于空调器,所述方法包括:
    所述空调器接收到制冷或除湿指令后,控制器控制所述空调器制冷或除湿,并在制冷或除湿的过程中,控制所述空调器第一次执行预设的第一控制策略,以判断所述空调器是否满足预设条件,所述预设条件包括多个子预设条件;
    若所述空调器第一次同时满足所述多个子预设条件,则所述控制器控制所述空调器第一次执行预设的第二控制策略;
    在第一次执行完所述第二控制策略之后,所述控制器控制所述空调器第二次执行所述第一控制策略,以判断所述空调器是否第二次同时满足所述多个子预设条件;
    若所述空调器第二次同时满足所述多个子预设条件,则所述控制器控制所述空调器发出可能存在冷媒泄露的报警信息。
  2. 根据权利要求1所述的检测冷媒泄露的方法,其中,在所述控制器控制所述空调器发出可能存在冷媒泄露的报警信息之后,所述方法还包括:
    所述控制器控制所述空调器第三次执行所述第一控制策略,以判断所述空调器是否第三次同时满足所述多个预设条件;
    若所述空调器第三次同时满足所述多个子预设条件,则所述控制器控制所述空调器第二次执行所述第二控制策略;
    在第二次执行完所述第二控制策略之后,所述控制器控制所述空调器第四次执行所述第一控制策略,以判断所述空调器是否第四次同时满足所述多个子预设条件;
    若所述空调器第四次同时满足所述多个子预设条件,则确定发生冷媒泄露,所述控制器控制所述空调器停机。
  3. 根据权利要求2所述的检测冷媒泄露的方法,其中,所述空调器包括压缩机、室内换热器、第一风机、第二风机和显示装置;所述第一风机被配置为将与所述室内换热器进行热交换后的空气排出;所述第二风机被配置为降低所述压缩机的温度;
    所述控制器控制所述空调器发出可能存在冷媒泄露的报警信息包括:
    所述控制器控制所述显示装置闪烁显示对应于冷媒泄露的故障码;
    所述控制器控制所述空调器停机包括:
    所述控制器控制所述压缩机强制停机,并控制所述显示装置恒定显示所述故障码,并控制第一风机停机,所述第二风机按照额定最低风速运转第一预设时间后停机。
  4. 根据权利要求1或2所述的检测冷媒泄露的方法,其中,
    所述多个子预设条件包括第一子预设条件、第二子预设条件及第三子预设条件;
    所述第一控制策略包括:
    所述控制器判断压缩机是否开启;
    若所述压缩机开启,则在所述压缩机累计运行第二预设时间后,所述控制器判断所述空调器是否满足所述第一子预设条件;
    若满足所述第一子预设条件,则所述控制器控制所述压缩机强制停机第三预设时间,并在所述第三预设时间后,所述控制器判断所述压缩机是否开启,若所述压缩机开启,则在所述压缩机累计运行第四预设时间后,所述控制器判断所述空调器是否满足所述第二子预设条件;
    若满足所述第二子预设条件,则所述控制器控制所述压缩机强制停机第五预设时间,并在所述第五预设时间后,所述控制器判断所述压缩机是否开启,若所述压缩机开启,则在所述压缩机累计运行第六预设时间后,所述控制器判断所述空调器是否满足第三子预设条件;
    若满足所述第三预设条件,则所述控制器控制所述压缩机强制停机第七预设时间。
  5. 根据权利要求4所述的检测冷媒泄露的方法,其中,
    所述空调器包括室内换热器;
    所述压缩机累计运行所述第二预设时间时,所述控制器每隔预设间隔获取环境温度和所述室内换热器的温度之间的第一温度差值,当连续预设次数获取的所述第一温度差值均小于或等于预设温度差值时,则所述控制器判断所述空调器满足所述第一子预设条件;
    所述压缩机累计运行所述第四预设时间时,所述控制器每隔预设间隔获取环境温度和所述室内换热器的温度之间的第二温度差值,当连续预设次数获取的所述第二温度差值均小于或等于预设温度差值时,则所述控制器判断所述空调器满足所述第二子预设条件;
    所述压缩机累计运行第六预设时间时,所述控制器每隔预设间隔获取环境温度和所述室内换热器的温度之间的第三温度差值,当连续预设次数获取的所述第三温度差值均小于或等于预设温度差值时,则所述控制器判断所述空调器满足所述第三子预设条件。
  6. 根据权利要求4所述的检测冷媒泄露的方法,其中,所述第三预设时间、所述第五预设时间以及所述第七预设时间相等或不相等。
  7. 根据权利要求6所述的检测冷媒泄露的方法,其中,所述第三预设时间、所述第五预设时间以及所述第七预设时间均为3分钟。
  8. 根据权利要求6所述的检测冷媒泄露的方法,其中,所述第三预设时间为3分钟、所述第五预设时间为4分钟,所述第七预设时间均为5分钟。
  9. 根据权利要求4所述的检测冷媒泄露的方法,其中,所述第二预设时间大于所述第四预设时间,所述第四预设时间大于所述第六预设时间。
  10. 根据权利要求9所述的检测冷媒泄露的方法,其中,所述第二预设时间为20分钟,所述第四预设时间为15分钟,所述第六预设时间为10分钟。
  11. 根据权利要求5所述的检测冷媒泄露的方法,其中,所述预设间隔为5分钟,所述连续预设次数为3次、4次或5次。
  12. 根据权利要求5所述的检测冷媒泄露的方法,其中,所述预设温度差值为2℃。
  13. 根据权利要求5所述的检测冷媒泄露的方法,其中,所述第一温度差值、所述第二温度差值以及所述第三温度差值均相等。
  14. 根据权利要求5所述的检测冷媒泄露的方法,其中,所述第二控制策略包括:
    控制所述空调器正常运行第八预设时间。
  15. 根据权利要求14所述的检测冷媒泄露的方法,其中,第一预设时间至第七预设时间中的任一个均小于所述第八预设时间。
  16. 根据权利要求14所述的检测冷媒泄露的方法,其中,所述第八预设时间为90分钟。
  17. 根据权利要求1所述的检测冷媒泄露的方法,其中,所述第一控制策略还包括:
    若所述控制器判断所述空调器不满足所述第一子预设条件、第二子预设条件和第三子预设条件中的至少一个,则所述控制器控制所述空调器重新执行所述第一控制策略。
  18. 根据权利要求1所述的检测冷媒泄露的方法,其中,所述第一控制策略还包括:
    所述控制器接收到断电指令、关机指令或预设的模式切换指令后,控制所述空调器重新执行所述第一控制策略。
  19. 一种空调器,包括:
    存储器;
    控制器;
    其中,所述存储器中存储有一个或多个计算机程序,所述一个或多个计算机程序包括指令,当所述指令被所述控制器执行时,使得所述控制器执行如权利要求1至18中任一项所述的检测冷媒泄露的方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序指令,所述计算机程序指令在控制器上运行时,使得所述控制器执行如权利要求1-18任一项所述的检测冷媒泄露的方法。
PCT/CN2021/143421 2021-06-30 2021-12-30 检测冷媒泄露的方法、空调器和存储介质 WO2023273270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180055409.1A CN116194718A (zh) 2021-06-30 2021-12-30 检测冷媒泄露的方法、空调器和存储介质
US18/113,499 US20230258350A1 (en) 2021-06-30 2023-02-23 Method for detecting refrigerant leakage, air conditioner, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110741119.4A CN113432240B (zh) 2021-06-30 2021-06-30 检测冷媒泄露的方法及装置、空调器和存储介质
CN202110741119.4 2021-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/113,499 Continuation US20230258350A1 (en) 2021-06-30 2023-02-23 Method for detecting refrigerant leakage, air conditioner, and storage medium

Publications (1)

Publication Number Publication Date
WO2023273270A1 true WO2023273270A1 (zh) 2023-01-05

Family

ID=77758347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143421 WO2023273270A1 (zh) 2021-06-30 2021-12-30 检测冷媒泄露的方法、空调器和存储介质

Country Status (3)

Country Link
US (1) US20230258350A1 (zh)
CN (2) CN113432240B (zh)
WO (1) WO2023273270A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113432240B (zh) * 2021-06-30 2022-09-30 海信(广东)空调有限公司 检测冷媒泄露的方法及装置、空调器和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116437A1 (ja) * 2017-12-12 2019-06-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN110410933A (zh) * 2019-06-24 2019-11-05 青岛海尔空调器有限总公司 空调器冷媒泄漏检测方法
CN110793170A (zh) * 2019-11-13 2020-02-14 四川长虹空调有限公司 空调系统冷媒不足的判断方法和空调器
CN111457549A (zh) * 2020-04-09 2020-07-28 海信(广东)空调有限公司 空调器的控制方法
CN111878915A (zh) * 2020-07-16 2020-11-03 海信(广东)空调有限公司 除湿机及其冷媒泄露控制方法
CN113432240A (zh) * 2021-06-30 2021-09-24 海信(广东)空调有限公司 检测冷媒泄露的方法及装置、空调器和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09178306A (ja) * 1995-12-22 1997-07-11 Denso Corp 冷凍サイクル装置
CN103940560B (zh) * 2014-04-10 2016-08-17 广东美的制冷设备有限公司 冷媒泄漏检测方法、冷媒泄漏检测系统和空调器
CN104655365A (zh) * 2014-12-30 2015-05-27 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
JP6582496B2 (ja) * 2015-03-31 2019-10-02 ダイキン工業株式会社 空調室内ユニット
WO2017026014A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 冷凍サイクル装置
CN105546771B (zh) * 2016-02-29 2018-05-08 美的集团武汉制冷设备有限公司 空调器冷媒泄漏检测的方法和装置
CN107560100B (zh) * 2017-08-09 2019-10-01 宁波奥克斯电气股份有限公司 空调冷媒不足保护的控制方法
JP6866906B2 (ja) * 2019-07-12 2021-04-28 ダイキン工業株式会社 冷凍サイクルシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116437A1 (ja) * 2017-12-12 2019-06-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN110410933A (zh) * 2019-06-24 2019-11-05 青岛海尔空调器有限总公司 空调器冷媒泄漏检测方法
CN110793170A (zh) * 2019-11-13 2020-02-14 四川长虹空调有限公司 空调系统冷媒不足的判断方法和空调器
CN111457549A (zh) * 2020-04-09 2020-07-28 海信(广东)空调有限公司 空调器的控制方法
CN111878915A (zh) * 2020-07-16 2020-11-03 海信(广东)空调有限公司 除湿机及其冷媒泄露控制方法
CN113432240A (zh) * 2021-06-30 2021-09-24 海信(广东)空调有限公司 检测冷媒泄露的方法及装置、空调器和存储介质

Also Published As

Publication number Publication date
CN116194718A (zh) 2023-05-30
CN113432240A (zh) 2021-09-24
CN113432240B (zh) 2022-09-30
US20230258350A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2023005147A1 (zh) 空调器的水位控制方法及空调器
CN104266307B (zh) 空调的保护方法和空调的保护装置
US10001294B2 (en) Air-conditioning apparatus
WO2015003482A1 (zh) 一种空调压缩机反转检测方法及装置
JP6595288B2 (ja) 空気調和機
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
WO2020135589A1 (zh) 空调系统及空调系统的逆循环除霜方法、装置
US11609010B2 (en) Detection of refrigerant side faults
WO2023273270A1 (zh) 检测冷媒泄露的方法、空调器和存储介质
JP2006207932A (ja) 空気調和機
WO2022194218A1 (zh) 一拖多空调器的压缩机频率的控制方法及一拖多空调器
CN113757945B (zh) 空调器控制方法、装置、空调器以及计算机可读存储介质
CN105864953A (zh) 空调节流部件的堵塞检测方法、装置及空调
JP2006214617A (ja) 空気調和機
JP2011007346A (ja) 空気調和機
CN115013931B (zh) 空调器及其控制方法、装置及计算机可读存储介质
JP2020091080A (ja) 冷凍サイクル装置
KR101303239B1 (ko) 공기조화기 및 그 제어방법
KR20120085403A (ko) 냉매 순환 장치 및 그의 제어방법
JP6444536B2 (ja) 圧縮機劣化診断装置および圧縮機劣化診断方法
JP2006194552A (ja) 空気調和機
JP7465827B2 (ja) 冷凍サイクル装置
JP2003329312A (ja) 空気調和機
JP3613862B2 (ja) 空気調和装置
KR20110003770A (ko) 공기조화기 및 공기조화기의 고장 판단 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE