WO2019115248A1 - Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride - Google Patents

Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride Download PDF

Info

Publication number
WO2019115248A1
WO2019115248A1 PCT/EP2018/083061 EP2018083061W WO2019115248A1 WO 2019115248 A1 WO2019115248 A1 WO 2019115248A1 EP 2018083061 W EP2018083061 W EP 2018083061W WO 2019115248 A1 WO2019115248 A1 WO 2019115248A1
Authority
WO
WIPO (PCT)
Prior art keywords
integer
molybdenum
heteropolyanion
solid catalyst
weight
Prior art date
Application number
PCT/EP2018/083061
Other languages
English (en)
Inventor
Thibault Corre
Thanh Son Nguyen
Joao MARQUES
Audrey BONDUELLE-SKRZYPCZAK
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to EP18807387.8A priority Critical patent/EP3723903A1/fr
Priority to US16/772,249 priority patent/US11192089B2/en
Priority to RU2020121163A priority patent/RU2771765C2/ru
Priority to CN201880080315.8A priority patent/CN111741811B/zh
Publication of WO2019115248A1 publication Critical patent/WO2019115248A1/fr
Priority to SA520412157A priority patent/SA520412157B1/ar

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/049Sulfides with chromium, molybdenum, tungsten or polonium with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • C10G2300/206Asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/208Sediments, e.g. bottom sediment and water or BSW
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the present disclosure relates to a process for hydroconversion of a heavy hydrocarbon feedstock in the presence of hydrogen, a supported solid catalyst and a solid catalyst dispersed and driven by the heavy hydrocarbon feedstock.
  • the hybrid process used for the hydroconversion of the heavy hydrocarbon fractions is a process known to those skilled in the art and makes it possible to obtain a hydrorefining of heavy feeds in the presence of a supported catalyst and a soluble catalyst precursor.
  • the document US2005 / 0241991 describes one or more chained bubbling bed reactors, these reactors being able to operate in hybrid mode with addition of a dispersed organosoluble metal precursor (ie in suspension or "slurry” according to the English terminology) in the charge.
  • a dispersed organosoluble metal precursor ie in suspension or "slurry” according to the English terminology
  • the addition of the dispersed catalyst prediluted in vacuum distillate (VGO for "Vacuum Gas Oil” according to the English terminology), can be made from the first reactor or following.
  • VGO vacuum distillate
  • the catalyst precursor typically molybdenum 2-ethylhexanoate, forms molybdenum sulphide dispersed by reaction with H 2 S resulting from the hydrodesulfurization of the charge.
  • WO2012 / 088025 discloses a method for upgrading heavy feeds using bubbling bed technology and a dual catalyst system consisting of a supported catalyst and a dispersed catalyst.
  • the bubbling bed reactor comprises two types of catalysts having different characteristics including a first catalyst having a size greater than 0.65 mm and occupying an expanded zone, and a second catalyst having an average size of 1 -300 ⁇ m and being used in suspension.
  • the second catalyst is introduced into the bubbling bed with the load and passes through the reactor from bottom to top.
  • the second catalyst is prepared either from unsupported bulk catalysts or by crushing supported catalysts (grain size between 1 and 300 ⁇ m).
  • metal compounds such as organosoluble compounds (eg molybdenum naphthenate, molybdenum octoate) and water-soluble compounds (eg phosphomolybdic acid, cited in US Patents 3,231,488, US 4,637,870 and US 4,637,871; ammonium cited in US Pat. No. 6,043,182) can act as precursor of dispersed catalyst by thermal decomposition.
  • organosoluble compounds eg molybdenum naphthenate, molybdenum octoate
  • water-soluble compounds eg phosphomolybdic acid, cited in US Patents 3,231,488, US 4,637,870 and US 4,637,871; ammonium cited in US Pat. No. 6,043,182
  • the dispersed catalyst precursor is generally mixed with the feed via an emulsion.
  • the dissolution of the dispersed catalyst precursor (generally molybdenum), promoted or not by cobalt or nickel in an acid medium (in the presence of H 3 PO 4 ) or basic (in the presence of NH 4 OH), has is the subject of numerous studies and patents.
  • the documents WO2006 / 031575, WO2006 / 031543 and WO2006 / 031570 describe the dissolution of a Group VIB oxide with an aqueous solution of ammonia to form a solution which is then sulphured, optionally promoted by the addition of a Group VIB metal after said sulfurization and mixed with the feed in the last step.
  • Patent EP 1 637 576 of the Applicant describes a hydroconversion process using a catalytic fraction obtained from a catalytic precursor which is an organometallic compound, a salt or a molybdenum-based acid.
  • Patent FR 2 913 691 describes the use, for hydroconversion processes of heavy fractions, of a dispersed catalyst obtained from Anderson structures (CO II 3/2 [CO III MO 6 0 24 H 6 ] , Ni II 3/2 [Co ' II Mo 6 0 24 H 6 ], Co II 3 [Co lII 2 Mo 10 O 38 H 4 ], Ni II 3 [Co lII 2 Mo 10 O 38 H 4 ],
  • Ni II 2 [Ni II Mo 6 0 24 H 6 ] and Ni II 4 [Ni II 2 Mo 10 O 38 H 4 ]).
  • a first object of the present description is to provide a hydroconversion process having improved hydrodésasphaltage and allowing a reduction of sediment formation.
  • the aforementioned object is obtained by a hydroconversion process of a heavy hydrocarbon feedstock in the presence of hydrogen, at least one supported solid catalyst and at least one a dispersed solid catalyst, the at least one dispersed solid catalyst being obtained from at least one salt of a heteropolyanion combining molybdenum and at least one metal selected from cobalt and nickel in a Strandberg type structure, Keggin , Keggin lacunary or Keggin lacunary substituted.
  • the at least one heteropolyanion salt respects: the following formula (I) M ( 6- x) / 2H x P 2 Mo m W n 023 in which:
  • M is the Ni 2+ cation or the Co 2+ cation
  • H is hydrogen
  • x is an integer between 0 and 2
  • P is phosphorus
  • Mo is molybdenum
  • W is tungsten
  • n is an integer from 1 to 5, preferably m is an integer of 3 to 5,
  • n is an integer from 0 to 4, preferably n is an integer from 0 to 2,
  • O oxygen
  • the structure H x P 2 Mo m W n O 2 3 is the negatively charged heteropolyanion, its charge being equal to x-6; or
  • C is the cation H + and / or a substituted or unsubstituted quaternary ammonium cation (eg N (R 1 R 2 R 3 R 4 ) + in which R 1; R 2 , R 3 and R 4 are the same or different, linear , branched, cyclic or cyclic and branched, and correspond to a hydrogen atom or an alkyl group comprising from 1 to 5 carbon atoms), p is an integer from 0 to 6, preferably p is an integer from 0 to 2, such as 0 or 1,
  • X is the Ni 2+ cation or the Co 2+ cation
  • x is an integer from 0 to 1 1, preferably x is an integer from 3 to 8,
  • p + x is an integer between 3 and 1 1, preferably p + x is an integer between 3 and 8,
  • A is phosphorus or silicon or boron, preferably A is phosphorus or silicon,
  • g is 0 or 1, preferably g is 1,
  • Mo is molybdenum
  • W is tungsten
  • n is an integer from 1 to 12, preferably m is an integer from 9 to 12,
  • n is an integer from 0 to 1 1, preferably n is an integer from 0 to 3,
  • X ' is an element of group VIII of the periodic table, preferably X' is nickel or cobalt,
  • z is 0 or 1
  • x + z is an integer greater than or equal to 1,
  • O oxygen
  • y is an integer equal to 34 or 39 or 40, preferably y is an integer equal to 39 or 40,
  • H is hydrogen
  • h is an integer from 0 to 3, preferably h is an integer from 0 to 2, and
  • a g Mo m W n X z O y H h is the heteropolyanion negatively charged, the charge being equal to - (p + x).
  • the at least one heteropolyanion salt respects: the following formula (I) M ( 6- x) / 2H x P 2 Mo m W n 023 in which:
  • M is the Ni 2+ cation or the Co 2+ cation
  • H is hydrogen
  • x is an integer between 0 and 2
  • P is phosphorus
  • Mo is molybdenum
  • W is tungsten
  • n is an integer from 3 to 5
  • n is an integer from 0 to 2
  • O oxygen
  • the structure H x R 2 Mo m W n O 23 is the negatively charged heteropolyanion, its charge being equal to x-6; or
  • C is the cation H + and / or a substituted or unsubstituted quaternary ammonium cation (eg N (R 1 R 2 R 3 R 4 ) + in which R 1; R 2 , R 3 and R 4 are the same or different, linear , branched, cyclic or cyclic and branched, and correspond to a hydrogen atom or an alkyl group comprising from 1 to 5 carbon atoms),
  • p is an integer between 0 and 2
  • X is the Ni 2+ cation or the Co 2+ cation
  • x is an integer between 3 and 8
  • p + x is an integer between 3 and 8
  • A is phosphorus or silicon
  • g 0 or 1
  • Mo is molybdenum
  • W is tungsten
  • n 9 to 12
  • n is an integer from 0 to 3
  • z is 0 or 1
  • O oxygen
  • y is an integer equal to 39 or 40
  • H is hydrogen
  • h is an integer from 0 to 2
  • the at least one heteropolyanion salt is chosen from the following salts:
  • the at least one heteropolyanion salt is chosen from the following salts:
  • the at least one heteropolyanion salt is chosen from
  • the method comprises at least one of the following steps:
  • step c) mixing the aqueous solution obtained at the end of step a) or the diluted precursor mixture obtained at the end of step b) with the heavy hydrocarbon feedstock to form an active mixture (eg an emulsion) ; and d) carrying out the hydroconversion step of the heavy hydrocarbon feedstock by injecting said aqueous solution obtained at the end of step a), or said diluted precursor mixture obtained at the end of the step b), or said active mixture obtained at the end of step c) upstream or directly in a hydroconversion reactor containing the at least one supported solid catalyst.
  • active mixture eg an emulsion
  • the method further comprises the heat treatment, preferably at a temperature between 200 ° C and 500 ° C, preferably in the presence of a sulfur compound, the at least one salt of heteropolyanion to form the at least one dispersed solid catalyst.
  • the concentration of the at least one dispersed solid catalyst is between 1 and 5000 ppm by weight of molybdenum relative to the heavy hydrocarbon feedstock at the reactor inlet.
  • the hydroconversion stage is carried out under an absolute pressure of between 2 and 38 MPa, and / or at a temperature between 300 and 500 ° C. and / or at a space velocity hour (VVHr). ) the charge relative to the volume of each reactor between 0.05 and 10 h -1 and / or with a quantity of hydrogen mixed with the heavy hydrocarbon feedstock of between 50 and 5000 normal cubic meters (Nm 3 ) per meter cube (m 3 ) of heavy hydrocarbon feedstock liquid.
  • VVHr space velocity hour
  • the supported solid catalyst comprises a support and an active phase comprising at least one Group VIB metal and at least one Group VIII metal.
  • the support is selected from alumina, silica, silica-alumina, titanium dioxide, carbon, coal and coke, and / or the group VIB metal content is between 1 and 30% by weight, expressed as metal oxide, relative to the total weight of the supported solid catalyst, and / or the group VIII metal content is between 0.5 and 10% by weight, expressed as metal oxide , relative to the total weight of the supported solid catalyst, and / or the group VIB metal is selected from molybdenum, tungsten and the mixture of these two elements, and / or the group VIII metal is selected from cobalt, nickel and the mixture of these two elements.
  • the heavy hydrocarbon feedstock contains hydrocarbons of which at least 50% by weight relative to the total weight of the heavy hydrocarbon feed have a boiling point greater than 300 ° C. and at least 1% by weight. have a boiling point above 540 ° C, sulfur greater than 0.1% by weight, metals greater than 20 ppm by weight and C7 asphaltenes greater than 1% by weight .
  • the aforementioned object is obtained by using a salt of a heteropolyanion for the hydroconversion of a heavy hydrocarbon feedstock in a reactor containing at least one supported solid catalyst , the heteropolyanion salt combining molybdenum and at least one metal selected from cobalt and nickel in a Strandberg, Keggin, Keggin lacunary or substituted lacunar Keggin type structure.
  • a solid dispersed catalyst obtained from a precursor for example obtained in aqueous solution, comprising at least one heteropolyanion salt of Strandberg, Keggin or Keggin type lacunary or Keggin substituted lacunary having in its structure at least molybdenum and at least cobalt and / or at least nickel, has a significantly improved activity in terms of hydrodésasphaltage and allows a reduction of the formation of sediments, for a hybrid reactor implementation, it is in a hydroconversion reactor containing at least one supported solid catalyst, such as a supported solid catalyst comprising a support and an active phase comprising at least one Group VIB metal and at least one Group VIII metal and optionally phosphorus.
  • a supported solid catalyst such as a supported solid catalyst comprising a support and an active phase comprising at least one Group VIB metal and at least one Group VIII metal and optionally phosphorus.
  • the heteropolyanion salt respects:
  • M is the Ni 2+ cation or the Co 2+ cation
  • H is hydrogen
  • x is an integer between 0 and 2
  • P is phosphorus
  • Mo is molybdenum
  • W is tungsten
  • n is an integer from 1 to 5, preferably m is an integer of 3 to 5,
  • n is an integer from 0 to 4, preferably n is an integer from 0 to 2,
  • O oxygen
  • the structure H x P 2 Mo m W n O 2 3 is the negatively charged heteropolyanion, its charge being equal to x-6; or
  • C is the cation H + and / or a substituted or unsubstituted quaternary ammonium cation (eg N (R 1 R 2 R 3 R 4 ) + in which R 1; R 2 , R 3 and R 4 are the same or different, linear , branched, cyclic or cyclic and branched, and correspond to a hydrogen atom or an alkyl group comprising from 1 to 5 carbon atoms), p is an integer from 0 to 6, preferably p is an integer from 0 to 2, such as 0 or 1,
  • X is the Ni 2+ cation or the Co 2+ cation
  • x is an integer from 0 to 1 1, preferably x is an integer from 3 to 8,
  • p + x is an integer between 3 and 1 1, preferably p + x is an integer between 3 and 8,
  • A is phosphorus or silicon or boron, preferably A is phosphorus or silicon,
  • g is 0 or 1, preferably g is 1,
  • Mo is molybdenum
  • W is tungsten
  • n is an integer from 1 to 12, preferably m is an integer from 9 to 12,
  • n is an integer from 0 to 1 1, preferably n is an integer from 0 to 3,
  • X ' is an element of group VIII of the periodic table, preferably X' is nickel or cobalt,
  • z is 0 or 1
  • x + z is an integer greater than or equal to 1
  • O oxygen
  • y is an integer equal to 34 or 39 or 40, preferably y is an integer equal to 39 or 40,
  • H is hydrogen
  • h is an integer from 0 to 3, preferably h is an integer from 0 to 2, and
  • a g Mo m W n X z O y H h is the heteropolyanion negatively charged, the charge being equal to - (p + x).
  • the groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC press, editor-in-chief DR Lide, 81 st edition, 2000-2001).
  • Group VIII according to the CAS classification corresponds to the metals in columns 8, 9 and 10 according to the new IUPAC classification
  • the group VIb according to the classification CAS corresponds to the metals of the column 6 according to the new IUPAC classification.
  • the present disclosure also relates to the use of at least one heteropolyanion salt with a Strandberg structure, Keggin structure, Keggin lacunary structure or Keggin lacunary structure structure combining at least molybdenum and at least cobalt and / or at least nickel for the preparation of a dispersed solid catalyst for the hydroconversion of heavy hydrocarbon feedstocks in a hybrid reactor.
  • heteropolyanions of Strandberg are characterized by their atomic ratio P / (Mo + W) equal to 2/5.
  • These heteropolyanions comprise five octahedra Mo0 6 forming a ring, these octahedra being connected to each other by an edge, except two of which are connected by only one bridging oxygen atom.
  • the structure is completed by two P0 4 octahedra which are each connected to the five Mo0 6 octahedra by three of their oxygen atoms.
  • a heteropolyanion salt with a Strandberg structure has the advantage of combining in its structure molybdenum and cobalt and / or nickel ensuring a strong interaction of said cobalt and / or nickel with molybdenum, which makes it possible to reach high levels. promotion and improve catalytic performance.
  • the isopolyanions, type M k O s t_, can be obtained by condensation of oxoanions MCV- type, where M is a metal atom such as molybdenum or tungsten. Condensation can occur by acidification of the solution with removal of water molecules and creation of oxo bridges between the metal atoms.
  • the molybdic compounds are well known for this kind of reaction, since depending on the pH, a molybdic compound can be in the monomeric form MoO 4 2- or can be condensed in aqueous solution according to the reaction: 7 MoO 4 2- + 8H + ⁇ Mo 7 0 2 6- + 4 H 2 0.
  • a heteropolyanion of Keggin type AM 12 O 40 d- consists of a regular tetrahedron A0 4 , surrounded by 12 M0 6 octahedra which associate with pooling of edges to form trimetallic groups M 3 0i 3.
  • a heteropolyanion salt with a Keggin structure has the advantage of combining in its structure molybdenum and cobalt and / or nickel ensuring strong interaction of said cobalt or nickel with molybdenum and therefore a high rate of promotion.
  • Keggin lacunary type structure corresponds to the structure of Keggin in which one or more sites previously occupied by the metal are vacant.
  • the A / M ratio of these structures is then 1 1 (or even 9 in some cases), obtained by removing one or three metal atoms from the same group or different M 3 0 13 groups .
  • These lacunary compounds can be synthesized directly from a stoichiometric composition of the reagents in an acidic medium, or by partial degradation of the saturated heteropolyanions in an alkaline medium.
  • the site or sites previously occupied by the metal may or may be occupied by another element: this is called a substituted lacunary Keggin type structure.
  • the lacunary Keggin or lacunar-substituted Keggin type structure (eg by nickel and / or cobalt) has the advantage of having a higher amount of promoter (eg nickel and / or cobalt) (Co / Mo or Ni / Higher Mo), which promotes the sulfuration of the heteropolyanion salt in MoS 2 sheets containing promoters and improves the catalytic activity.
  • step a Preparation of the precursor of the dispersed solid catalyst
  • the precursor is prepared in aqueous solution (i.e., a solution comprising a sufficient portion of water to allow the dissolution of the compounds used for the preparation of the precursor).
  • aqueous solution i.e., a solution comprising a sufficient portion of water to allow the dissolution of the compounds used for the preparation of the precursor.
  • the precursor is prepared in aqueous solution (ie, a solution comprising a sufficient portion of water to allow the dissolution of the compounds used for the preparation of the precursor) by contacting a source of molybdenum , a possible source of tungsten, a source of phosphorus, a source of cobalt and / or a source of nickel.
  • aqueous solution ie, a solution comprising a sufficient portion of water to allow the dissolution of the compounds used for the preparation of the precursor
  • said contacting of a source of molybdenum, a possible source of tungsten, a source of phosphorus, a source of cobalt and / or a source of nickel is carried out in a few minutes to several hours (eg between 2 minutes and 16 hours) at a temperature between 0 and 100 ° C, preferably at reflux, at a temperature between 60 and 100 ° C.
  • the molybdenum source employed is chosen from molybdenum oxides, molybdenum hydroxides, molybdic acids and their salts, in particular ammonium or sodium salts, such as molybdate and dimolybdate.
  • the possible source of tungsten is chosen from tungsten oxides, tungsten hydroxides, tungstic acids and their salts, in particular ammonium or sodium salts such as ammonium tungstate. or sodium tungstate, phosphotungstic acids and their salts.
  • the source of cobalt and / or nickel is chosen from oxides, hydroxides, hydroxycarbonates, carbonates, acetates, sulphates, phosphates, halides and nitrates of cobalt and of nickel, for example, nickel hydroxycarbonate, cobalt carbonate or cobalt hydroxide.
  • the phosphorus source is chosen from phosphoric acids and their salts, in particular orthophosphoric acid (H 3 PO 4 ) or ammonium phosphate, phosphomolybdic acids and their salts, in particular ammonium or sodium salts such as ammonium phosphomolybdate or sodium phosphomolybdate.
  • phosphoric acids and their salts in particular orthophosphoric acid (H 3 PO 4 ) or ammonium phosphate, phosphomolybdic acids and their salts, in particular ammonium or sodium salts such as ammonium phosphomolybdate or sodium phosphomolybdate.
  • said obtained solution containing said compounds with Strandberg structure complying with formula (I) has an acidic pH (i.e pH less than 7), preferably less than 5.5.
  • said source of phosphorus and said source of molybdenum and the possible source of tungsten are mixed in aqueous solution in proportions such that the molar ratio P / Mo is between 0.1 and 5, preferably between 0.2 and 1.5, particularly preferably between 0.3 and 0.8, and / or that the molar ratio W / Mo is between 0 and 25, preferably between 0 and 1 1, such as between 0 and 5.
  • said source of nickel and / or said source of cobalt and said source of molybdenum are mixed in proportions such that the molar ratio (Co + Ni) / Mo is between 0.05 and 5, preferably between 0.1 and 1.5, particularly preferably between 0.2 and 0.7.
  • the at least one heteropolyanion salt is chosen from the following salts:
  • the at least one heteropolyanion salt is chosen from the following salts
  • the dispersed solid catalyst thus has a very improved activity compared to the injection of a molybdenum precursor and another precursor of nickel and / or independent cobalt in aqueous solution.
  • the molybdenum concentration of the solutions thus prepared can range up to values as high as 4 mol of molybdenum per liter of aqueous solution, which makes it possible to limit the quantity of water to be introduced into the process.
  • the Raman spectrum of the at least one heteropolyanion salt comprises at least one main band between 925 and 945 cm 1 characteristic of a Strandberg type structure.
  • the exact position of the bands, their shapes and their relative intensities may vary to a certain extent depending on the recording conditions of the spectrum, while remaining characteristic of a Strandberg type structure, but also depending on the chemical nature of the salt.
  • Raman spectra were obtained with a dispersive Raman-type spectrometer equipped with an argon ion laser (514 nm). The laser beam is focused on the sample using a microscope equipped with a x50 long-distance working lens.
  • the laser power at the sample level is of the order of 1 mW.
  • the Raman signal emitted by the sample is collected by a CCD detector.
  • the spectral resolution obtained is of the order of 1 cm 1 .
  • the spectral zone recorded is between 100 and 1200 cm -1 .
  • the acquisition time was set at 60 s for each registered Raman spectrum.
  • step a) of preparing the heteropolyanion salt according to the present description comprises at least one of the steps a1), a2), a3) and a4) described below. a1) preparing an aqueous solution containing the Keggin structure complying with formula (III) C p A g Mo m W n 0 40 H h wherein:
  • C is the H + cation and / or a substituted or unsubstituted quaternary ammonium cation
  • p is an integer between 0 and 6
  • - A is phosphorus or silicon or boron
  • n 1 to 12
  • n is an integer between 0 and 1 1
  • - h is an integer between 0 and 3.
  • the solution obtained in step a1) is prepared by simply dissolving in water the hydrated heteropoly acid (commercial) or its salts (commercial) respecting the formula (IV) C p A g Mo m W n 0 40 H h .jH 2 0 wherein:
  • - C is the H + cation and / or a substituted or unsubstituted quaternary ammonium cation
  • p is an integer between 0 and 6
  • - A is phosphorus or silicon or boron
  • n 1 to 12
  • n is an integer between 0 and 1 1
  • h is an integer between 0 and 3
  • - j is an integer between 0 and 36.
  • the compound of formula (IV) used during step a1) is chosen from phosphomolybdic acid (H 3 RMqi 2 0 40 ) hydrated or acid silicomolybdic (H 4 SiMo 12 0 40 ) hydrated or boromolybdic acid (H 5 BMq 12 O 40 ) hydrated.
  • the preparation of the compound of formula (III) is carried out by mixing, in aqueous solution, at least one source of molybdenum and optionally a source of tungsten and at least one oxoacid.
  • the mixing is carried out until a preferably clear aqueous solution is obtained in which the molybdenum source and the possible source of tungsten are completely dissolved by the action of said oxo acid.
  • the mixture is made with stirring, for example at a temperature between 10 and 100 ° C, such as at room temperature or between 30 and 100 ° C (eg at reflux), for example during a few minutes to several hours until a clear aqueous solution is obtained.
  • said solution obtained at the end of step a1) and containing said compounds with Keggin structure complying with formula (III) has an acidic pH (ie pH below 7), preferably lower than at 5.5.
  • the molybdenum source used for carrying out said step a1) is chosen from molybdenum oxides, molybdenum hydroxides, molybdic acids and their salts, in particular ammonium salts. or sodium such as ammonium molybdate, dimolybdate, heptamolybdate and octamolybdate or sodium molybdate, dimolybdate, heptamolybdate and octamolybdate, phosphomolybdic acids and their salts, in particular sodium salts thereof.
  • ammonium or sodium phosphomolybdate or sodium phosphomolybdate silicomolybdic acids and their salts, in particular ammonium or sodium salts such as ammonium silicomolybdate or sodium silicomolybdate, boromolybdic acids and their salts, in particular ammonium or sodium salts such as ammonium boromolybdate or sodium boromolybdate.
  • the possible source of tungsten used for the implementation of said step a1) is chosen from tungsten oxides, tungsten hydroxides, tungstic acids and their salts, in particular the salts of tungsten.
  • ammonium or sodium such as ammonium tungstate or sodium tungstate, phosphotungstic acids and their salts, silicotungstic acids and their salts, borotungstic acids and their salts.
  • the oxoacid compound employed for carrying out said step a1) is chosen from silicic acids (eg orthosilicic, metasilicic, pyrosilicic acid), phosphoric acids and boric acids.
  • said oxoacid compound and the molybdenum source and the possible source of tungsten are mixed in aqueous solution in proportions such that the molar ratio (oxoacid) / Mo is between 1/100 and 50, preferably between 1/50 and 25, such as between 1/20 and 10, and / or that the molar ratio W / Mo is between 0 and 25, preferably between 0 and 1 1, as between 0 and 1.
  • B is barium, calcium, lithium, sodium, potassium, cesium, preferably B is barium,
  • q is an integer between 1 and 1 1
  • C is the H + cation and / or a substituted or unsubstituted quaternary ammonium cation
  • p is an integer between 0 and 6
  • - A is phosphorus or silicon or boron
  • n 1 to 12
  • n is an integer between 0 and 1 1
  • y is an integer equal to 34 or 39 or 40
  • H is hydrogen
  • h is an integer from 0 to 3.
  • the addition of the base in the aqueous solution obtained at the end of step a1) can be carried out between a few minutes to several hours (eg between 2 minutes and 3 hours), for example at a temperature between 0 and 100 ° C, preferably at a temperature between 10 and 40 ° C.
  • the base can be added in proportions such that the molar ratio (base) / Mo is between 1/1000 and 40, preferably between 1/100 and 4, such as between 1/10 and 1.
  • the base used is preferably barium hydroxide Ba (OH) 2 .
  • the base may be a compound other than Ba (OH) 2 , such as lithium hydroxide LiOH, sodium hydroxide NaOH, potassium hydroxide KOH, cesium hydroxide CsOH, calcium hydroxide Ca (OH) 2 .
  • Ionic exchange of Ba 2+ by the promoter cation for example Ni 2+ or Co 2+ ) in order to produce a heteropolyanion salt according to the present description (ie precursor of the dispersed solid catalyst).
  • step a3) is carried out by adding, to the solution obtained at the end of step a2), a sulfate, phosphate, carbonate, nitrate, halide, such as example, oxalate, citrate, promoter metal acetate, preferably promoter metal sulfate (for example nickel sulfate or cobalt sulfate) which can induce, in addition to the formation of the heteropolyanion salt according to the present description, the precipitation of a salt, for example barium sulfate BaSO 4 .
  • a sulfate, phosphate, carbonate, nitrate, halide such as example, oxalate, citrate, promoter metal acetate, preferably promoter metal sulfate (for example nickel sulfate or cobalt sulfate) which can induce, in addition to the formation of the heteropolyanion salt according to the present description, the precipitation of a salt, for example barium sulf
  • Step a3) can be carried out in a few minutes to several hours (eg between 2 minutes and 3 hours) at a temperature between 0 and 100 ° C, preferably at a temperature between 10 and 40 ° C.
  • a promoter metal of nickel and / or cobalt type is added in proportions such that the molar ratio (Co + Ni) / Mo is between 1/1000 and 50, preferably between 1/100 and 25, as between 1/25 and 10.
  • step a3) the ion exchange is carried out from barium salts.
  • the ion exchange can be carried out with a cation other than Ba 2+ , such as Li + , Na + , K + , Cs + or Ca 2+ .
  • step a4) the separation is carried out from BaSO 4 .
  • the separation can be carried out with a precipitate other than only BaSO 4 , such as BaCl 2 , Ba 3 (PO 4 ) 2 , Ba (NO 3 ) 2 , KCl, KNO 3 , NaCl, NaNO 3 , Ca 3 (PO 4 ) 2 , Ca (NO 3 ) 2 .
  • Patent FR 2 749 778 describes a process for the preparation of supported catalysts containing metals of groups VIB and VIII, these metals being introduced in the form of a compound of formula M x AB 12 O 40 in which M is cobalt and / or nickel, A is phosphorus, silicon and / or boron, B is molybdenum and / or tungsten and x takes values of 2 or more, 2.5 or more, or 3 or more depending on whether A is phosphorus, silicon or boron respectively.
  • the compound of formula M x AB 12 O 40 can be prepared by treatment of a heteropoly acid of formula H y AB 12 O 40 (where y is 3, 4 or 5 depending on the nature of A), with a reducing agent, and by adding a compound of cobalt and / or nickel in order to salify the acid functions present.
  • the patent FR 2 764 21 1 describes a method for preparing a supported catalyst prepared from a heteropoly compound of formula M x AB 1 1 Y 40 z-2x M'C .TH 2 O wherein M is cobalt and / or nickel, A is phosphorus, silicon and / or boron, B is molybdenum and / or tungsten and M 'is cobalt, nickel, iron, copper and / or zinc, x takes a value between 0 and 4.5, z a value between 7 and 9, t is an integer ranging from 5 to 29 and C is a cation H + or alkylammonium.
  • the compound is obtained by different ion exchange steps from a compound of formula ABn0 40 M'C z .tH 2 0.
  • the compound PCOMO11 O 4O H (NH 4 ) 6 .13H 2 0 is obtained from a reaction medium in which is added respectively ammonium heptamolybdate, phosphoric acid, sulfuric acid, cobalt sulfate and ammonium nitrate.
  • PCOMOH11O the compound 40 H (NH 4) 6 .13H 2 O then subjected to a first ion exchange step with for example tetramethylammonium chloride (TMA-Cl) to form the compound of formula PCoMon0 40 H (TI ⁇ / IA) 6 .13H 2 0. the latter is then brought into contact with a cobalt perchlorate solution to make the final ion exchange and form the desired compound of formula 40 PCoMonO HCO3- hydrated.
  • TMA-Cl tetramethylammonium chloride
  • Patent FR 2 935 139 describes a process for the preparation of a supported catalyst for hydrocracking of hydrocarbon feeds, said supported catalyst being prepared from a heteropolycomposed compound of formula Ni x + y / 2 AW 11 -y 0 39-2 , 5y .zH 2 0, wherein Ni is nickel, A is phosphorus, silicon or boron, W is tungsten, O is oxygen, y is 0 or 2, x is 3, 5 and 4.5 according to the nature A and z is between 0 and 36.
  • Said heteropolycomposé is obtained, according to a first step, by reaction between a heteropoly acid of the type H m AW 12 0 40 and the barium hydroxide (Ba (OH) 2 ), followed by a second ion exchange step on cation exchange resins in order to substitute Ba 2+ cations with Ni 2+ cations.
  • the at least one heteropolyanion salt according to the present description (eg contained in the aqueous solution resulting from step a)) is chosen from the following salts:
  • the at least one heteropolyanion salt is chosen from the following salts:
  • the at least one heteropolyanion salt is selected from Ni 4 SiMon0 39 , Ni 7/2 PMon0 39 , Ni 3 SiMonNiO 40 H 2 and Ni 3 PMonNiO 40 H.
  • These compounds having ratios (Co + Ni) / Mo, the Co / Mo and Ni / Mo ratios of the MOS 2 sheets generated after sulphurization make it possible to promote the activity of molybdenum.
  • the dispersed solid catalyst thus has a very improved activity compared with the injection of a molybdenum precursor alone or with respect to the injection of a molybdenum precursor simultaneously with the injection of another nickel precursor and or independent cobalt in aqueous solution.
  • the molybdenum concentration of the solutions thus prepared can range up to values as high as 4 mol of molybdenum per liter of aqueous solution, which makes it possible to limit the quantity of water to be introduced into the process.
  • the Raman spectrum of the at least one heteropolyanion salt comprises at least one major band of between 950 and 1010 cm.sup.- 1 characteristic of a Keggin, Keggin lacunary or substituted lacunar Keggin type structure.
  • the exact position of the bands, their shapes and their relative intensities may vary to a certain extent depending on the recording conditions of the spectrum, while remaining characteristic of a Keggin-type, Keggin-lacunary or a substituted-Keggin-type structure, but also depending on the chemical nature of the Keggin-type heteropolyanion salt, the lacunary Keggin or the substituted lacunar Keggin and the pH of the solution.
  • Raman spectra were obtained with a Raman spectrometer dispersive equipped with an argon ion laser (514 nm).
  • the laser beam is focused on the sample using a microscope equipped with a x50 long-distance working lens.
  • the laser power at the sample level is of the order of 1 mW.
  • the Raman signal emitted by the sample is collected by a CCD detector.
  • the spectral resolution obtained is of the order of 1 cm -1 .
  • the spectral zone recorded is between 100 and 1200 cm -1 .
  • the acquisition time was set at 60 s for each registered Raman spectrum.
  • the aqueous solution containing the at least one heteropolyanion salt according to the present description is introduced into at least a portion of the heavy hydrocarbon feedstock so as to form a mixture, preferably so as to form an emulsion.
  • the aqueous solution containing the at least one heteropolyanion salt is mixed with the heavy hydrocarbon feedstock, optionally in the presence of at least one surfactant, for example under an absolute pressure of between 0.05 and 20 MPa and / or at a temperature of between 0 and 200 ° C.
  • the emulsion according to the mixing step b) of the process according to the present description is prepared at atmospheric pressure, for example at a temperature below 95 ° C., preferably below 90 ° C. and particularly preferably less than 85 ° C.
  • a mixture in which the heteropolyanion salt is dispersed or a "water-in-oil" emulsion can be so obtained.
  • the aqueous solution containing the at least one heteropolyanion salt is premixed with a hydrocarbon oil composed for example of hydrocarbons of which at least 50% by weight relative to the total weight of the hydrocarbon oil have a boiling point between 180 ° C and 540 ° C, to form a diluted precursor mixture, optionally in the presence of at least one surfactant, for example at a temperature below 95 ° C, preferably below at 90 ° C and particularly preferably below 85 ° C.
  • the amount of hydrocarbon oil is at most 50% by weight, preferably at most 30% by weight, particularly preferably at most 10% by weight (eg between 0.1% by weight). and 10% by weight) based on the weight of the heavy hydrocarbon feedstock.
  • the aqueous solution or the mixture of diluted precursor is mixed, for example sufficiently active by means of a tool mixing, with the heavy hydrocarbon feedstock by dynamic mixing (eg use of a rotor) or static (eg use of an injector) to obtain an active mixture and preferably an emulsion.
  • active mixture means a mixture in which the heteropolyanion salt is sufficiently dispersed in the feed to allow formation of the dispersed solid catalyst by heat treatment of the mixture.
  • the aqueous solution or diluted precursor mixture is not simply added to the heavy hydrocarbon feedstock.
  • the at least one surfactant i.e. emulsifier, surfactant
  • the at least one surfactant is an amphiphilic molecule that makes it possible in particular to stabilize an emulsion with an interphase phase oil / aqueous phase.
  • emulsifier surfactant
  • the surfactant is an amphiphilic molecule that makes it possible in particular to stabilize an emulsion with an interphase phase oil / aqueous phase.
  • O / W oil in water
  • W / O water in oil
  • surfactant it is preferable to use a surfactant with a lipophilic tendency.
  • the hydrophilic / lipophilic balance (HLB) is thus defined, a criterion proposed by Griffin, WCJ Cosmetics Chemists 1949, 1, 131, consisting in attributing to each surfactant a value illustrating its hydrophilic-lipophilic balance.
  • the HLB ranges from 0 to 20.
  • the value 0 corresponds to a totally hydrophobic product and the value corresponds to a totally hydrophilic product.
  • the more the oil phase is polar the more it is preferable to use a hydrophilic surfactant; the more the oil phase is non-polar, the more it is preferable to use a lipophilic surfactant.
  • the surfactant used during step b) of the process according to the present description is a non-ionic surfactant (neither cationic nor anionic), and / or non-ionizable, and / or having an HLB between 0 and 8, such as between 1 and 8, preferably between 2 and 6.
  • the at least one surfactant is selected from sorbitan esters such as sorbitan monostearate.
  • the concentration of surfactant is at most 20% by weight, such as 10% by weight, relative to the weight of the heavy hydrocarbon feedstock to be treated. According to one or more embodiments, the concentration of surfactant is at most 5% by weight (eg between 0.1 and 5% by weight) relative to the weight of the heavy hydrocarbon feed in order to limit the amounts of surfactant injected into the process.
  • the mixture of the aqueous solution with the feedstock can then be dried or injected as such directly into the hydroconversion reactor or be injected with (the rest of) the heavy hydrocarbon feedstock to be treated upstream of the hydroconversion reactor.
  • the mixture is pre-dispersed in the rest of the heavy hydrocarbon feedstock using a solvent.
  • a solvent Any hydrocarbon fraction such as naphtha, gasoline, gas oil, vacuum distillate, vacuum-residues resulting from a fractionation or a conversion or catalytic or thermal treatment step, catalytic cracking effluents (HCO type for "Heavy Cycle Oil” according to the English terminology), LCO (for "Light Cycle Oil” in English terminology), or any other cup like CAD (for "Desasphalted Oil” according to the terminology Anglo-Saxon) and aromatic extracts for example, may be suitable as a solvent.
  • HCO type for "Heavy Cycle Oil” according to the English terminology
  • LCO for "Light Cycle Oil” in English terminology
  • CAD for "Desasphalted Oil” according to the terminology Anglo-Saxon
  • aromatic extracts for example, may be suitable as a solvent.
  • the solvent used may also belong to the family of polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, dimethylsulfoxide, tetrahydrofuran, nitrosodimethylamine and butyrolactone.
  • polar aprotic solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, hexamethylphosphoramide, dimethylsulfoxide, tetrahydrofuran, nitrosodimethylamine and butyrolactone.
  • the mixture is heat-treated outside the reactor at a temperature of 500 or less. ° C, preferably at a temperature of less than or equal to 450 ° C, preferably between 200 and 430 ° C, preferably in the presence of a source of sulfur, such as H 2 S (eg H 2 S dissolved in the heavy hydrocarbon feedstock), so as to promote the decomposition of the heteropolyanion salt according to the present description in the presence of sulfur, thus generating the active phase, that is to say the dispersed solid catalyst based on sulfur sulfide. molybdenum (and / or tungsten) promoted by nickel and / or cobalt.
  • H 2 S eg H 2 S dissolved in the heavy hydrocarbon feedstock
  • the decomposition of the at least one heteropolyanion salt into a dispersed solid catalyst is carried out with a total pressure of between 2 MPa and 38 MPa, such as between 5 MPa and 25 MPa.
  • the decomposition of the at least one heteropolyanion salt into a dispersed solid catalyst is carried out with a partial pressure of H 2 S (ppH 2 S) of between 0 MPa and 16 MPa, such as between 0, 01 MPa and 5 MPa, particularly suitable for the formation of the dispersed solid catalyst.
  • ppH 2 S partial pressure of H 2 S
  • the H 2 S can come for example from the H 2 S contained in the recycled hydrogen to the hydroconversion reactor or the decomposition of organo-sulfur molecules present in the charge or previously introduced (injection of dimethyl disulphide, all charge hydrocarbon-based hydrocarbon of the mercaptan type, sulphides, sulfur-containing gasoline, sulfur-containing gas oil, sulfur-free distillate, sulfur-containing residue) in the heavy hydrocarbon feedstock.
  • the mixture containing the precursor of the dispersed solid catalyst is injected into at least a portion of the feed containing dissolved hydrogen sulphide (or any other source of sulfur), under conditions of temperature and pressures close to those of the hydroconversion reaction zone (eg between 2 and 38 MPa and / or at a temperature between 300 and 500 ° C), which leads to the formation of the dispersed solid catalyst which is then injected into the reactor with the rest of the heavy hydrocarbon feed.
  • dissolved hydrogen sulphide or any other source of sulfur
  • the mixture containing the precursor of the dispersed solid catalyst is injected into part or all of the heavy hydrocarbon feedstock and the precursor of the dispersed solid catalyst is sulfided by means of dissolved hydrogen sulphide (or any other source of sulfur), before arriving in the reaction zone.
  • the precursor of the dispersed solid catalyst is injected directly into the reactor and is sulfided by reaction with the H 2 S resulting from the hydrodesulfurization of the heavy hydrocarbon feedstock in the hydroconversion stage.
  • the dispersed solid catalyst circulates with the heavy hydrocarbon feedstock in the reactor, preferably continuously.
  • the concentration of the dispersed solid catalyst is between 1 and 5000 ppm by weight of molybdenum relative to the heavy hydrocarbon feedstock at the inlet of the reactor, preferably between 2 and 1000 ppm by weight, preferably between 5 and 250 ppm by weight, particularly preferably between 10 and 100 ppm by weight.
  • the hydroconversion step is a hydrocracking step of the heavy fraction 370 ° C + or 540 ° C + of the heavy hydrocarbon feedstock in a lighter fraction 370 ° C or 540 ° C ( HDC 37 o + or HDC 540+ ) ⁇
  • the hydroconversion step is a hydrodemetallation (H DM) and / or hydrodesulphalting (HDAsC 7 ) and / or hydrodesulfurization step (HDS) and / or hydrodenitrogenation (HDN) and / or hydroconversion of the "Conradson carbon residue" according to the English terminology (HDCCR).
  • the hydroconversion step is performed by means of one or more three-phase reactors, which can be in series and / or in parallel.
  • each hydroconversion reactor may be a fixed bed type reactor, moving bed or bubbling bed depending on the heavy hydrocarbon feedstock to be treated.
  • said heavy hydrocarbon feedstock is generally converted under conventional hydroconversion conditions of a liquid hydrocarbon fraction.
  • the hydroconversion stage is carried out under an absolute pressure of between 2 and 38 MPa, preferably between 5 and 25 MPa, and preferably between 6 and 20 MPa, and / or at a temperature of between between 300 and 500 ° C and preferably between 350 and 450 ° C.
  • the hourly space velocity (VVHr) of the charge relative to the volume of each reactor is between 0.05 h -1 and 10 h -1 , preferably between 0.10 h -1 and 2 h -1 and preferably between 0.10 h -1 and 1 h -1 .
  • the hourly space velocity (VVHc) of the feedstock relative to the supported catalyst volume (ie non-dispersed) is between 0.06 h -1 and 17 h 1 , preferably between 0.12 h -1 and 3 h -1 and preferably between 0.12 h -1 and 1.6 h -1 .
  • the amount of hydrogen mixed with the heavy hydrocarbon feedstock is preferably between 50 and 5000 normal cubic meters (Nm 3 ) per cubic meter (m 3 ) of liquid heavy hydrocarbon feedstock, such as between 100 and 3000 Nm 3 / m 3 and preferably between 200 and 2000 Nm 3 / m 3 .
  • the hydroconversion is carried out in one or more three-phase hydroconversion reactors, which may be in series and / or in parallel, using bubbling bed reactor technology.
  • the hydroconversion step is carried out using the technology and under the conditions of the H-Oil TM process as described, for example, in US Pat. Nos. 4,521, 295 or US 4,495,060. or US 4,457,831 or US 4,354,852 or in the article Aiche, March 19-23, 1995, Houston, Texas, paper number 46d, "Second generation ebullated bed technology".
  • each reactor is operated in three-phase fluidized bed, also called bubbling bed.
  • each reactor comprises a recirculation pump for maintaining the solid catalyst supported in a bubbling bed by continuous recycling of at least a portion of a liquid fraction withdrawn at the top of the reactor and reinjected at the bottom of the reactor .
  • the supported solid (ie non-dispersed) hydroconversion catalyst used according to the present disclosure may comprise a support (eg amorphous support) and an active phase comprising at least one Group VIB metal and at least one Group VIII metal and optionally phosphorus .
  • said support is chosen from alumina, silica, silica-alumina, titanium dioxide, carbon, coal and coke. According to one or more embodiments, the support is alumina. According to one or more embodiments, the medium complies with at least one of the following characteristics:
  • the loss on ignition measured by calcination at 1000 ° C. is between about 1 and 15% by weight relative to the weight of the support before treatment at 1000 ° C .;
  • VPT total pore volume
  • ASTM standard D4284-92 with a wetting angle of 140 °, for example as described in Rouquerol F. Roukerol J. and Singh K. "Adsorption by Powders & Porous Solids: Principle, methodology and applications", Academy Press, 1999, for example by means of an Autopore model apparatus III TM brand Micromeritics TM);
  • the specific surface is between 50 and 350 m 2 / g (for example, as determined by the BET method, described in the same work cited above);
  • the porous distribution (for example, as determined by the mercury porosimetry technique), is characterized as follows:
  • % Of the total pore volume included in the pores with an average diameter of between 5,000 and 10,000; between 0.5 and 50%, preferably between 1 and 30% by volume relative to the total pore volume of the support,
  • the percentage of the total pore volume included in the pores with an average diameter greater than 1000 ⁇ is greater than 10% by volume relative to the total pore volume of the support and the average diameter of the pore diameter greater than 1000 ⁇ is between 1500 and 8000 ⁇ .
  • said support is in the form of balls, extrudates, pellets, or irregular and non-spherical agglomerates whose specific shape can result from a crushing step. According to one or more embodiments, said support is in the form of beads or extrusions.
  • the supported solid catalyst (ie non-dispersed) hydroconversion used according to the present description may contain one or more elements of Group VIB and Group VIII, and optionally phosphorus and / or other dopants such as boron and / or fluorine.
  • the group VIB metal content is between 1 and 30% by weight expressed as metal oxide, preferably between 4 and 20% by weight, particularly preferably between 4 and 12% by weight. , based on the total weight of the supported solid catalyst.
  • the group VIII metal content is between 0.5 and 10% by weight expressed as metal oxide, preferably between 1 and 6% by weight, particularly preferably between 1 and 4%. by weight, relative to the total weight of the supported solid catalyst.
  • the Group VIB metal present in the active phase of the supported solid catalyst used in the hydroconversion process according to the present description is chosen from molybdenum, tungsten and the mixture of these two elements. .
  • the Group VIB metal is molybdenum.
  • the Group VIII metal present in the active phase of the supported solid catalyst used in the hydroconversion process according to the present description is chosen from cobalt, nickel and the mixture of these two elements. .
  • the active phase of the supported solid catalyst is chosen from the group formed by the combination of cobalt-molybdenum, nickel-molybdenum, cobalt-nickel-molybdenum, cobalt-tungsten, nickel-tungsten, cobalt-nickel and molybdenum-tungsten or nickel-molybdenum-tungsten.
  • the active phase of the supported solid catalyst is the combination of cobalt-molybdenum, nickel-molybdenum or cobalt-nickel-molybdenum elements.
  • the active phase of the supported solid catalyst is nickel-molybdenum.
  • the molar ratio of Group VIII metal to Group VIB metal in the supported solid catalyst in oxide form is between 0.05 and 1, such as between 0.1 and 0.8, and preferably between 0.15 and 0.6.
  • the supported solid catalyst comprises a dopant such as phosphorus.
  • the dopant is an added element which in itself has no catalytic character but which increases the catalytic activity of the active phase.
  • the phosphorus content in said supported solid catalyst is between 0 and 10% by weight of P 2 0 5 , such as between 0.05 and 8% by weight of P 2 0 5 , preferably between 0.3 and 8% by weight of P 2 0 5 , particularly preferably between 0.5 and 5% by weight of P 2 0 5 , relative to the total weight of the supported solid catalyst.
  • the phosphorus to metal group VIB molar ratio in the supported solid catalyst is zero or greater than or equal to 0.05, such that greater than or equal to 0.07, preferably between 0, 08 and 0.5.
  • the supported solid catalysts used according to the present description also contain at least one dopant selected from boron and fluorine and a mixture of boron and fluorine.
  • the boron content in said supported catalyst is between 0.1 and 10% by weight of boron oxide, such as between 0.2 and 7% by weight of boron oxide, preferably between 0.2 and 5% by weight of boron oxide relative to the total weight of the supported solid catalyst.
  • the fluorine content in said supported solid catalyst is between 0.1 and 10% by weight of fluorine, such as between 0, 2 and 7% by weight of fluorine, preferably between 0.2 and 5% by weight of fluorine relative to the total weight of the supported solid catalyst.
  • each reactor of the hydroconversion stage uses a different catalyst adapted to the heavy hydrocarbon feedstock that is sent to each reactor.
  • several types of catalysts may be used in each reactor.
  • each reactor may contain one or more supported solid catalysts.
  • the solid hydroconversion supported solid catalyst can, in accordance with the process according to the present description, be at least partly replaced by freshly supported solid catalyst by racking, preferably at the bottom of the reactor, and by introduction, either at the top or at the bottom of the reactor, of solid catalyst supported fresh and / or used and / or regenerated and / or rejuvenated, for example at regular time interval and preferably by saccade or almost continuously.
  • the replacement of supported solid catalyst may be done in whole or in part by spent and / or regenerated and / or rejuvenated supported solid catalyst from the same reactor and / or another reactor of any hydroconversion step.
  • the supported solid catalyst may be added with the metals as metal oxides, metals as metal sulfides, or after preconditioning.
  • the replacement rate of the supported solid hydroconversion catalyst used with fresh supported solid catalyst is between 0.01 kilogram and 10 kilograms per cubic meter of treated heavy hydrocarbon feedstock, and preferably between 0.1 kilogram and 3 kilograms per cubic meter of treated heavy hydrocarbon feedstock.
  • the withdrawal and replacement are performed using devices for the continuous operation of the hydroconversion step.
  • the spent solid supported catalyst withdrawn from the reactor is sent to a regeneration zone in which the carbon and the sulfur contained therein are removed and then the regenerated supported solid catalyst is returned to the stage of regeneration. hydroconversion.
  • the spent supported solid catalyst withdrawn from the reactor is sent to a rejuvenation zone in which the major part of the deposited metals is removed, before sending the spent solid supported catalyst and rejuvenated in a regeneration zone in which one removes the carbon and the sulfur that he then contains and returns the regenerated solid supported catalyst in the hydroconversion stage.
  • the heavy hydrocarbon feeds which can be treated by the process according to the present description are hydrocarbon feeds which contain hydrocarbons of which at least 50% by weight, preferably at least 65% by weight, particularly preferably at least 80% by weight. weight with respect to the weight of the heavy hydrocarbon feed, have a boiling point above 300 ° C and at least 1% by weight have a boiling point greater than 540 ° C, sulfur with a content greater than 0, 1% by weight, metals with a content greater than 20 ppm by weight and C7 asphaltenes with a content greater than 1% by weight, such as heavy petroleum fillers (called residues) and / or hydrocarbon fractions produced in a refinery.
  • hydrocarbon feeds which contain hydrocarbons of which at least 50% by weight, preferably at least 65% by weight, particularly preferably at least 80% by weight. weight with respect to the weight of the heavy hydrocarbon feed, have a boiling point above 300 ° C and at least 1% by weight have a boiling point greater than 540 ° C, sulfur with a
  • Heavy oil loads include atmospheric residues, vacuum residues (eg atmospheric or vacuum residues from hydrotreatment, hydrocracking and / or hydroconversion stages), fresh or refined vacuum distillates, cuts from a cracking unit (eg fluidized catalytic cracking unit (FCC), coking unit or visbreaking unit, aromatic sections extracted from a lubricant production unit, deasphalted oils from a deasphalting unit, asphalts from a deasphalting unit, or a combination thereof.
  • the heavy hydrocarbon feedstock may further contain a residual fraction from the direct liquefaction of coal (an atmospheric residue).
  • a vacuum distillate resulting from the direct liquefaction of coal such as the H-Coal TM process
  • the heavy oil loads are comprised of hydrocarbon fractions from a crude oil or atmospheric distillation of a crude oil or vacuum distillation of a crude oil, said feeds containing a fraction of at least 50% by weight relative to the weight of the filler having a boiling point of at least 300 ° C, preferably of at least 350 ° C and preferably of at least 375 ° C And preferably vacuum residues having a boiling point of at least 450 ° C, preferably at least 500 ° C and preferably at least 540 ° C.
  • the heavy hydrocarbon feedstocks treated by the process according to the present description may contain impurities, such as metals, sulfur, resins, nitrogen, "Conradson Carbon residue” according to the English terminology and insolubles with heptane, also called C7 asphaltenes.
  • the heavy hydrocarbon feedstock comprises a metal content greater than 50 ppm by weight, and / or a sulfur content greater than 0.1% by weight, and / or a C7 asphaltenes content greater than 1% by weight, and / or a Conradson carbon content greater than 3% by weight (eg greater than 5% by weight), relative to the total weight of the heavy hydrocarbon feedstock.
  • C7 asphaltenes are compounds known to inhibit the conversion of residual cuts, both by their ability to form heavy hydrocarbon residues, commonly known as cokes, and by their tendency to produce sediments which severely limit the operability of the units of hydrotreatment and hydroconversion.
  • the Conradson carbon content is defined by ASTM D 482 and represents for the skilled person a well-known evaluation of the amount of carbon residues produced after pyrolysis under standard conditions of temperature and pressure.
  • Solution No. 1 is prepared from 17.0 g of phosphomolybdic acid H 3 PMO 12 O 40 .17H 2 O (0.008 mol) dissolved in 75 cm 3 of H 2 O, at room temperature (yellow color, translucent). 5.3 g of Ba (OH) 2 .H 2 O (0.028 mol) are added to this solution, which is then left stirring for about 30 minutes (no color change) before adding 8.4 g of NiSO 4 .6H 2 O (0.032 mol). The solution obtained is left stirring for 2 hours (it becomes opaque, greenish) before being filtered on a sinter to separate the precipitate of BaSO 4 (white solid) from the solution of Ni 3 PMo 11 NiO 40 H (pH around 2 , 5).
  • the molybdenum concentration is 1.1 moles of Mo per liter of solution.
  • the Raman spectrum of the solution thus prepared shows the characteristic bands of the lacunated Keggin heteropolyanion substituted at 975, 887, 600 and 234 cm -1.
  • Solution No. 2 is prepared from 16.4 g of silicomolybdic acid H 4 SiMol 2 O 40 .13H 2 O (0.008 mol) dissolved in 75 cm 3 of H 2 O, at room temperature (yellow color, translucent). 6.1 g of Ba (OH) 2 .H 2 O (0.032 mol) are added to this solution, which is then left stirring for about 30 minutes (no change in coloration) before adding 8.4 g of NiSO 4 .6H 2 O (0.032 mol). The solution obtained is left stirring for 2 hours (it becomes opaque, greenish) before being sintered to separate the precipitate of BaSO 4 (white solid) from the solution of Ni 4 SiMon0 39 (pH of the solution is close to 5).
  • the molybdenum concentration is 1.1 moles of Mo per liter of solution.
  • the Raman spectrum of the solution thus prepared shows the characteristic bands of the lacunar Keggin heteropolyanion at 957, 896, 616 and 240 cm -1 .
  • Solution No. 3 is prepared by dissolving 13.3 g of molybdenum oxide (purity 99.9%), 3.4 g of nickel hydroxide (99.5% purity) and 5.1 g of orthophosphoric acid 85% in water so as to have a total volume of solution of 75 cm 3 .
  • the atomic ratios Ni / Mo and P / Mo of this solution are respectively 0.40 and 0.48.
  • the pH of the solution is 0.8.
  • Example 3 mainly comprises the nickel salt of Strandberg heteropolyanions Ni 2 H 2 P 2 Mo 5 0 23 according to the characteristic Raman band at 942 cm -1 .
  • the emulsification of the solutions 1, 2 and 3 is carried out in a heavy organic phase containing asphaltenes preheated to 80 ° C.
  • the heavy hydrocarbon feedstock is a vacuum residue (RSV), rich in metals and asphaltenes, the main characteristics of which are reported in Table 1.
  • Table 1 Characteristics of the heavy hydrocarbon feedstock used
  • the mixture of the hydrocarbon feed with the dispersed solid catalyst precursor solution according to the invention is carried out at 80 ° C., with stirring at 8000 rpm using an Ultra-turrax®, after adding to the oil the surfactant sorbitan monooleate (C 24 H 44 O 6 ) at a concentration of 3% by weight relative to the heavy hydrocarbon feedstock and then adding the aqueous solution containing the precursor.
  • the concentration of molybdenum in the final mixture is 100 ppm by weight relative to the heavy hydrocarbon feedstock.
  • molybdenum 2-ethylhexanoate Prior to incorporation into the heavy organic phase containing asphaltenes, molybdenum 2-ethylhexanoate is premixed mechanically with a vacuum distillate (DSV) respecting the mass ratio 2-ethylhexanoate molybdenum / DSV of 0.75%. Subsequently, the molybdenum DSV / 2-ethylhexanoate mixture is added to the residue-containing heavy hydrocarbon feed containing asphaltenes, the main characteristics of which are reported in Table 1, so that the concentration of molybdenum in the final mixture or 100 ppm by weight.
  • DSV vacuum distillate
  • the supported solid catalyst was prepared by dry impregnation of a bimodal alumina with an aqueous solution containing molybdenum and nickel precursors.
  • the impregnating solution was prepared by dissolving, in 80 ml of water, 6 g of molybdenum oxide and 1.55 g of nickel hydroxide in the presence of 2.3 g of phosphoric acid (purity of 85% in 15% water) at a temperature of 90 ° C.
  • the supported solid catalyst was dried at 120 ° C. for 24 hours and then calcined under air at 450 ° C. for 2 hours in order to form the oxides of nickel and molybdenum by decomposition of the corresponding precursors. It is in this oxide form that the supported solid catalyst was charged to the reactor.
  • Example 7 Comparison of Residual Hydroconversion Performance
  • the performances of the dispersed solid catalysts were compared in a hybrid reactor, that is to say in a reactor containing the solid catalyst based on nickel and molybdenum supported on alumina of Example 6 plus the dispersed solid catalyst.
  • test conditions for hydroconversion of the residue in a continuous stirred reactor are as follows:
  • the amount of sediment formed is lower and is decreased by at least a factor of 3 compared to the use of 2-ethylhexanoate molybdenum, which improves the operability of the process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Dispersion Chemistry (AREA)

Abstract

La présente invention concerne un procédé d'hydroconversion d'une charge hydrocarbonée lourde en présence d'hydrogène, d'au moins un catalyseur solide supporté et d'au moins un catalyseur solide dispersé obtenu à partir d'au moins un sel d'un hétéropolyanion combinant du molybdène et au moins un métal sélectionné parmi le cobalt et le nickel dans une structure de type Strandberg, Keggin, Keggin lacunaire ou Keggin lacunaire substitué.

Description

PROCEDE D’HYDROCONVERSION DE CHARGE HYDROCARBONEE LOURDE EN
REACTEUR HYBRIDE
Domaine technique
La présente description concerne un procédé d’hydroconversion d’une charge hydrocarbonée lourde en présence d’hydrogène, d’un catalyseur solide supporté et d’un catalyseur solide dispersé et entraîné par la charge hydrocarbonée lourde.
Etat de l’art
Le procédé hybride utilisé pour l’hydroconversion des fractions lourdes d’hydrocarbures est un procédé connu de l’homme du métier et permet d’obtenir un hydroraffinage de charges lourdes en présence d’un catalyseur supporté et d’un précurseur de catalyseur soluble.
Le document US2005/0241991 décrit un ou plusieurs réacteurs à lit bouillonnant enchaînés, ces réacteurs pouvant fonctionner en mode hybride avec ajout d’un précurseur métallique organosoluble dispersé ( i.e en suspension ou « slurry » selon la terminologie anglo-saxonne) dans la charge. L’ajout du catalyseur dispersé, prédilué dans du distillât sous vide (VGO pour « Vacuum Gas Oil » selon la terminologie anglo-saxonne), peut se faire à partir du premier réacteur ou des suivants. Il est précisé que le précurseur de catalyseur, typiquement le 2-éthylhexanoate de molybdène, forme du sulfure de molybdène dispersé par réaction avec l’H2S issu de l’hydrodésulfuration de la charge.
Le document US2005/0241992 est équivalent au brevet US2005/0241991 mais avec des réacteurs à lit fixe en remplacement des réacteurs à lit bouillonnant.
Le document US2014/0027344 décrit un procédé comprenant une première étape d’hydrocraquage d’une charge puis une séparation des fractions liquide et volatile, et enfin une étape de cokage, le procédé mettant en oeuvre dans la charge un catalyseur dispersé issu d’un sel de métal organosoluble du type 2-éthylhexanoate de molybdène ou naphténate de molybdène.
Le document WO2012/088025 décrit un procédé de valorisation des charges lourdes en utilisant la technologie de lit bouillonnant et un système à deux catalyseurs constitué d’un catalyseur supporté et d’un catalyseur dispersé. Le réacteur en lit bouillonnant comprend deux types de catalyseurs ayant des caractéristiques différentes dont un premier catalyseur ayant une taille supérieure à 0,65 mm et occupant une zone expansée, et un deuxième catalyseur ayant une taille moyenne de 1 -300 pm et étant utilisé en suspension. Le deuxième catalyseur est introduit dans le lit bouillonnant avec la charge et traverse le réacteur de bas en haut. Le deuxième catalyseur est préparé soit à partir de catalyseurs massiques non supportés soit par concassage de catalyseurs supportés (taille des grains comprise entre 1 et 300 μm).
Il est notamment connu que certains composés métalliques, tels que des composés organosolubles (e.g. naphténate de molybdène ; octoate de molybdène) et des composés aquasolubles (e.g. acide phosphomolybdique cité dans les brevets US 3,231 ,488, US 4,637,870 et US 4,637,871 ; heptamolybdate d’ammonium cité dans le brevet US 6,043,182), peuvent jouer le rôle de précurseur de catalyseur dispersé par décomposition thermique. Dans le cas des composés aquasolubles, le précurseur de catalyseur dispersé est généralement mélangé à la charge via une émulsion. La mise en solution du précurseur de catalyseur dispersé (en général le molybdène), promu ou non par le cobalt ou le nickel en milieu acide (en présence d’H3P04) ou basique (en présence de NH4OH), a fait l’objet de nombreuses études et brevets.
Les documents W02006/031575, W02006/031543 et W02006/031570 décrivent la mise en solution d’un oxyde du groupe VIB avec une solution aqueuse d’ammoniaque pour former une solution qui est ensuite sulfurée, éventuellement promue par l’addition d’un métal du groupe VIB après ladite sulfuration et mélangée avec la charge en dernière étape.
Les brevets US 4,637,870 et US 4,637,871 décrivent la mise en solution de molybdène par addition dTH3P04 à l’acide phosphomolybdique ou à Mo03 sans promoteur et dans certaines gammes de rapport P/Mo et de concentration en molybdène (<5% en poids).
Le brevet EP 1 637 576 de la demanderesse décrit un procédé d'hydroconversion mettant en oeuvre une fraction catalytique obtenue à partir d'un précurseur catalytique qui est un composé organométallique, un sel ou un acide à base de molybdène.
Le brevet FR 2 913 691 décrit l'utilisation, pour des procédés d'hydroconversion de fractions lourdes, d’un catalyseur dispersé obtenu à partir de structures d’Anderson (COII 3/2[COIIIMO6024H6], NiII 3/2[Co'IIMo6024H6], CoII 3[ColII 2Mo10O38H4], NiII 3[ColII 2Mo10O38H4],
NiII 2[NiIIMo6024H6] et NiII 4[NiII 2Mo10O38H4]).
Le document US2008/0177124 décrit un procédé dans lequel on injecte une alumine en même temps ou consécutivement à l’injection d’un précurseur de catalyseur en suspension (ou du catalyseur sulfuré lui-même), le procédé mettant en œuvre un catalyseur en suspension et un catalyseur supporté, le catalyseur supporté se formant au sein du procédé par interaction entre le catalyseur dispersé et le support aluminique. Résumé
Dans le contexte précédemment décrit, un premier objet de la présente description est de fournir un procédé d’hydroconversion ayant un hydrodésasphaltage amélioré et permettant une diminution de la formation de sédiments.
Selon un premier aspect, l’objet précité, ainsi que d’autres avantages, sont obtenus par un procédé d’hydroconversion d’une charge hydrocarbonée lourde en présence d’hydrogène, d’au moins un catalyseur solide supporté et d’au moins un catalyseur solide dispersé, l’au moins un catalyseur solide dispersé étant obtenu à partir d’au moins un sel d’un hétéropolyanion combinant du molybdène et au moins un métal sélectionné parmi le cobalt et le nickel dans une structure de type Strandberg, Keggin, Keggin lacunaire ou Keggin lacunaire substitué.
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion respecte : la formule (I) suivante M(6-x)/2HxP2MomWn023 dans laquelle :
M est le cation Ni2+ ou le cation Co2+,
H est l’hydrogène,
x est un nombre entier compris entre 0 et 2,
P est le phosphore,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 1 et 5, préférablement m est un nombre entier compris entre 3 et 5,
n est un nombre entier compris entre 0 et 4, préférablement n est un nombre entier compris entre 0 et 2,
m + n = 5,
O est l’oxygène,
la structure HxP2MomWn023 est l’hétéropolyanion chargé négativement, sa charge étant égale à x-6 ; ou
la formule (II) suivante CpXx/2AgMomWnX’zOyHh dans laquelle :
C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué (e.g. N(R1R2R3R4)+ dans lequel R1 ; R2, R3 et R4 sont identiques ou différents, linéaires, ramifiées, cycliques ou cycliques et ramifiés, et correspondent à un atome d’hydrogène ou un groupement alkyle comprenant de 1 à 5 atomes de carbones), p est un nombre entier compris entre 0 et 6, préférablement p est un nombre entier compris entre 0 et 2, tel que 0 ou 1 ,
X est le cation Ni2+ ou le cation Co2+,
x est un nombre entier compris entre 0 et 1 1 , préférablement x est un nombre entier compris entre 3 et 8,
p+x est un nombre entier compris entre 3 et 1 1 , préférablement p+x est un nombre entier compris entre 3 et 8,
A est le phosphore ou le silicium ou le bore, préférablement A est le phosphore ou le silicium,
g est 0 ou 1 , préférablement g est 1 ,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 1 et 12, préférablement m est un nombre entier compris entre 9 et 12,
n est un nombre entier compris entre 0 et 1 1 , préférablement n est un nombre entier compris entre 0 et 3,
m+n = 9 ou 1 1 ou 12, préférablement m+n = 1 1 ou 12,
X’ est un élément du groupe VIII du tableau périodique, préférablement X’ est le nickel ou le cobalt,
z est 0 ou 1 ,
x+z est un nombre entier supérieur ou égal à 1 ,
O est l’oxygène,
y est un nombre entier égal à 34 ou 39 ou 40, préférablement y est un nombre entier égal à 39 ou 40,
H est l’hydrogène,
h est un nombre entier compris entre 0 et 3, préférablement h est un nombre entier compris entre 0 et 2, et
la structure AgMomWnX’zOyHh est l’hétéropolyanion chargé négativement, sa charge étant égale à -(p+x).
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion respecte : la formule (I) suivante M(6-x)/2HxP2MomWn023 dans laquelle :
M est le cation Ni2+ ou le cation Co2+,
H est l’hydrogène,
x est un nombre entier compris entre 0 et 2, P est le phosphore,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 3 et 5,
n est un nombre entier compris entre 0 et 2,
m + n = 5,
O est l’oxygène,
la structure HxR2MomWn023 est l’hétéropolyanion chargé négativement, sa charge étant égale à x-6 ; ou
la formule (II) suivante CpXx/2AgMomWnX’zOyHh dans laquelle :
C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué (e.g. N(R1R2R3R4)+ dans lequel R1 ; R2, R3 et R4 sont identiques ou différents, linéaires, ramifiées, cycliques ou cycliques et ramifiés, et correspondent à un atome d’hydrogène ou un groupement alkyle comprenant de 1 à 5 atomes de carbones),
p est un nombre entier compris entre 0 et 2,
X est le cation Ni2+ ou le cation Co2+,
x est un nombre entier compris entre 3 et 8,
p+x est un nombre entier compris entre 3 et 8,
A est le phosphore ou le silicium,
g est 0 ou 1 ,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 9 et 12,
n est un nombre entier compris entre 0 et 3,
m+n = 1 1 ou 12,
X’ est le nickel ou le cobalt,
z est 0 ou 1 ,
O est l’oxygène,
y est un nombre entier égal à 39 ou 40,
H est l’hydrogène,
h est un nombre entier compris entre 0 et 2, et
la structure AgMomWnX’zOyHh est l’hétéropolyanion chargé négativement, sa charge étant égale à -(p+x). Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants :
Figure imgf000007_0001
Figure imgf000007_0002
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants :
Figure imgf000007_0003
Figure imgf000007_0004
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi
Figure imgf000007_0005
Figure imgf000007_0006
Selon un ou plusieurs modes de réalisation, le procédé comprend au moins une des étapes suivantes :
a) préparation d’une solution aqueuse comprenant l’au moins un sel d’hétéropolyanion;
b) pré-mélange de la solution aqueuse avec une huile hydrocarbonée pour former un mélange de précurseur dilué,
c) mélange de la solution aqueuse obtenue à l’issue de l’étape a) ou du mélange de précurseur dilué obtenu à l’issue de l’étape b) avec la charge hydrocarbonée lourde pour former un mélange actif (e.g. une émulsion) ; et d) mise en oeuvre de l’étape d’hydroconversion de la charge hydrocarbonée lourde par injection de ladite solution aqueuse obtenue à l’issue de l’étape a), ou dudit mélange de précurseur dilué obtenu à l’issue de l’étape b), ou dudit mélange actif obtenu à l’issue de l’étape c) en amont ou directement dans un réacteur d’hydroconversion contenant l’au moins un catalyseur solide supporté.
Selon un ou plusieurs modes de réalisation, le procédé comprend en outre le traitement thermique, de préférence à une température comprise entre 200°C et 500°C, de préférence en présence d’un composé soufré, de l’au moins un sel d’hétéropolyanion pour former l’au moins un catalyseur solide dispersé. Selon un ou plusieurs modes de réalisation, la concentration de l’au moins un catalyseur solide dispersé est comprise entre 1 et 5000 ppm en poids de molybdène par rapport à la charge hydrocarbonée lourde en entrée de réacteur.
Selon un ou plusieurs modes de réalisation, l’étape d’hydroconversion est opérée sous une pression absolue comprise entre 2 et 38 MPa, et/ou à une température comprise entre 300 et 500°C et/ou à une vitesse spatiale horaire (VVHr) de la charge par rapport au volume de chaque réacteur comprise entre 0,05 et 10 h-1 et/ou avec une quantité d’hydrogène mélangée à la charge hydrocarbonée lourde comprise entre 50 et 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge hydrocarbonée lourde liquide.
Selon un ou plusieurs modes de réalisation, le catalyseur solide supporté comprend un support et une phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII.
Selon un ou plusieurs modes de réalisation, le support est choisi parmi l’alumine, la silice, la silice-alumine, le dioxyde de titane, le carbone, le charbon et le coke, et/ou la teneur en métal du groupe VIB est comprise entre 1 et 30% en poids, exprimé en oxyde métallique, par rapport au poids total du catalyseur solide supporté, et/ou la teneur en métal du groupe VIII est comprise entre 0,5 et 10% en poids, exprimé en oxyde métallique, par rapport au poids total du catalyseur solide supporté, et/ou le métal du groupe VIB est choisi parmi le molybdène, le tungstène et le mélange de ces deux éléments, et/ou le métal du groupe VIII est choisi parmi le cobalt, le nickel et le mélange de ces deux éléments.
Selon un ou plusieurs modes de réalisation, la charge hydrocarbonée lourde contient des hydrocarbures dont au moins 50% en poids par rapport au poids total de la charge hydrocarbonée lourde ont une température d'ébullition supérieure à 300°C et au moins 1% en poids ont une température d'ébullition supérieure à 540°C, du soufre à une teneur supérieure à 0,1 % en poids, des métaux à une teneur supérieure à 20 ppm en poids et des asphaltènes C7 à une teneur supérieure à 1 % en poids.
Selon un deuxième aspect, l’objet précité, ainsi que d’autres avantages, sont obtenus par une utilisation d’un sel d’un hétéropolyanion pour l’hydroconversion d’une charge hydrocarbonée lourde dans un réacteur contenant au moins un catalyseur solide supporté, le sel d’hétéropolyanion combinant du molybdène et au moins un métal sélectionné parmi le cobalt et le nickel dans une structure de type Strandberg, Keggin, Keggin lacunaire ou Keggin lacunaire substitué. Description détaillée
La demanderesse a mis en évidence qu’un catalyseur solide dispersé obtenu à partir d’un précurseur, par exemple obtenu en solution aqueuse, comprenant au moins un sel d’hétéropolyanion de type Strandberg, Keggin ou Keggin lacunaire ou Keggin lacunaire substitué présentant dans sa structure au moins du molybdène et au moins du cobalt et/ou au moins du nickel, présente une activité significativement améliorée en terme d’hydrodésasphaltage et permet une diminution de la formation de sédiments, pour une mise en oeuvre en réacteur hybride, c’est-à-dire en réacteur d’hydroconversion contenant au moins un catalyseur solide supporté, tel qu’un catalyseur solide supporté comprenant un support et une phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII et éventuellement du phosphore.
Selon un ou plusieurs modes de réalisation le sel d’hétéropolyanion respecte :
la formule (I) suivante M(6-x)/2HxP2MomWn023 dans laquelle :
M est le cation Ni2+ ou le cation Co2+,
H est l’hydrogène,
x est un nombre entier compris entre 0 et 2,
P est le phosphore,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 1 et 5, préférablement m est un nombre entier compris entre 3 et 5,
n est un nombre entier compris entre 0 et 4, préférablement n est un nombre entier compris entre 0 et 2,
m + n = 5,
O est l’oxygène,
la structure HxP2MomWn023 est l’hétéropolyanion chargé négativement, sa charge étant égale à x-6 ; ou
la formule (II) CpXx/2AgMomWnX’zOyHh dans laquelle :
C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué (e.g. N(R1R2R3R4)+ dans lequel R1 ; R2, R3 et R4 sont identiques ou différents, linéaires, ramifiées, cycliques ou cycliques et ramifiés, et correspondent à un atome d’hydrogène ou un groupement alkyle comprenant de 1 à 5 atomes de carbones), p est un nombre entier compris entre 0 et 6, préférablement p est un nombre entier compris entre 0 et 2, tel que 0 ou 1 ,
X est le cation Ni2+ ou le cation Co2+,
x est un nombre entier compris entre 0 et 1 1 , préférablement x est un nombre entier compris entre 3 et 8,
p+x est un nombre entier compris entre 3 et 1 1 , préférablement p+x est un nombre entier compris entre 3 et 8,
A est le phosphore ou le silicium ou le bore, préférablement A est le phosphore ou le silicium,
g est 0 ou 1 , préférablement g est 1 ,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 1 et 12, préférablement m est un nombre entier compris entre 9 et 12,
n est un nombre entier compris entre 0 et 1 1 , préférablement n est un nombre entier compris entre 0 et 3,
m+n = 9 ou 1 1 ou 12, préférablement m+n = 1 1 ou 12,
X’ est un élément du groupe VIII du tableau périodique, préférablement X’ est le nickel ou le cobalt,
z est 0 ou 1 ,
x+z est un nombre entier supérieur ou égal à 1
O est l’oxygène,
y est un nombre entier égal à 34 ou 39 ou 40, préférablement y est un nombre entier égal à 39 ou 40,
H est l’hydrogène,
h est un nombre entier compris entre 0 et 3, préférablement h est un nombre entier compris entre 0 et 2, et
la structure AgMomWnX’zOyHh est l’hétéropolyanion chargé négativement, sa charge étant égale à -(p+x).
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC; le groupe Vlb selon la classification CAS correspond aux métaux de la colonne 6 selon la nouvelle classification IUPAC.
La présente description concerne également l’utilisation d’au moins un sel d’hétéropolyanion à structure de Strandberg, Keggin, Keggin lacunaire ou Keggin lacunaire substitué combinant dans sa structure au moins du molybdène et au moins du cobalt et/ou au moins du nickel pour la préparation d’un catalyseur solide dispersé pour l’hydroconversion de charges hydrocarbonées lourdes en réacteur hybride.
Structures de Strandberg
Il est connu de l’Homme du métier que les hétéropolyanions de Strandberg se caractérisent par leur rapport atomique P/(Mo+W) égal à 2/5. Ces hétéropolyanions comprennent cinq octaèdres Mo06 formant une couronne, ces octaèdres étant reliés l'un à l'autre par une arête, sauf deux d’entre eux qui ne sont reliés que par un seul atome d’oxygène de pontage. La structure est complétée par deux octaèdres P04 qui sont chacun reliés aux cinq octaèdres Mo06 par trois de leurs atomes d’oxygène. Un sel d’hétéropolyanion à structure de Strandberg présente l’intérêt de combiner dans sa structure le molybdène et le cobalt et/ou le nickel assurant une forte interaction dudit cobalt et/ou nickel avec le molybdène ce qui permet d’atteindre de forts taux de promotion et d’améliorer la performance catalytique.
Structures de Keaain. Keaain lacunaire et Keaain lacunaire substitué
Les isopolyanions, de type MkOs t_, peuvent être obtenus par condensation d’oxoanions de type MCV-, où M est un atome métallique tel que le molybdène ou le tungstène. La condensation peut se produit par acidification de la solution avec élimination de molécules d’eau et création de ponts oxo entre les atomes métalliques. Les composés molybdiques sont bien connus pour ce genre de réaction, puisque selon le pH, un composé molybdique peut se présenter sous la forme monomérique Mo04 2- ou se condenser en solution aqueuse selon la réaction : 7 Mo04 2- + 8 H+→ Mo702 6- + 4 H20. En présence d’un oxoanion A04 r-, où A est un atome différent de M, les atomes métalliques peuvent s’associer autour de cet oxoanion et la polycondensation peut conduire alors à une espèce mixte appelée hétéropolyanion de type AaMbOc d-. On peut par exemple obtenir IΊoh 12- molybdophosphate (3-), hétéropolyanion de structure Keggin, selon la réaction : 12 Mo04 2- + HP04 2- + 23H+→ PMOI2O40 3- + 12 H20. Un hétéropolyanion de type Keggin AM12O40 d- est constitué d’un tétraèdre régulier A04, entouré de 12 octaèdres M06 qui s’associent par mise en commun d’arêtes pour former des groupements trimétalliques M30i3. Un sel d’hétéropolyanion à structure de Keggin présente l’intérêt de combiner dans sa structure le molybdène et le cobalt et/ou le nickel assurant une forte interaction dudit cobalt ou nickel avec le molybdène et donc un fort taux de promotion.
Il est également possible d’obtenir une structure de type Keggin lacunaire. Elle correspond à la structure de Keggin dans laquelle un ou plusieurs sites occupés préalablement par le métal sont rendus vacants. Le rapport A/M de ces structures est alors de 1 1 (voire de 9 dans certains cas), obtenues par enlèvement d’un ou trois atomes métalliques d’un même groupement ou de groupements M3013 différents. Ces composés lacunaires peuvent êtres synthétisés directement à partir d’une composition stoechiométrique des réactifs en milieu acide, ou par dégradation partielle des hétéropolyanions saturés en milieu alcalin. Le site ou les sites occupés préalablement par le métal (tel que le molybdène et/ou le tungstène) peut ou peuvent être occupés par un autre élément : on parle alors de structure de type Keggin lacunaire substitué. La structure de type Keggin lacunaire ou Keggin lacunaire substitué (e.g. par le nickel et/ou le cobalt) présente l’avantage d’avoir une quantité de promoteur (e.g. nickel et/ou cobalt) plus élevée (rapport Co/Mo ou Ni/Mo plus élevé), ce qui favorise la sulfuration du sel d’hétéropolyanion en feuillets de MoS2 contenant des promoteurs et améliore l’activité catalytique.
Préparation du précurseur du catalyseur solide dispersé (étape a)
Selon un ou plusieurs modes de réalisation, le précurseur est préparé en solution aqueuse ( i.e ., une solution comprenant une portion suffisante d’eau pour permettre la dissolution des composés utilisés pour la préparation du précurseur).
- Préparation d’un sel d’un hétéropolyanion de type Strandberg
Selon un ou plusieurs modes de réalisation, le précurseur est préparé en solution aqueuse {i.e., une solution comprenant une portion suffisante d’eau pour permettre la dissolution des composés utilisés pour la préparation du précurseur) par mise en contact d’une source de molybdène, d’une éventuelle source de tungstène, d’une source de phosphore, d’une source de cobalt et/ou d’une source de nickel.
Selon un ou plusieurs modes de réalisation, ladite mise en contact d’une source de molybdène, d’une éventuelle source de tungstène, d’une source de phosphore, d’une source de cobalt et/ou d’une source de nickel est effectuée en quelques minutes à plusieurs heures (e.g. entre 2 minutes et 16 heures) à une température comprise entre 0 et 100°C, de préférence à reflux, à température comprise entre 60 et 100°C. Selon un ou plusieurs modes de réalisation, la source de molybdène employée est choisie parmi les oxydes de molybdène, les hydroxydes de molybdène, les acides molybdiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le molybdate, le dimolybdate, l’heptamolybdate et l’octamolybdate d’ammonium ou le molybdate, le dimolybdate, l’heptamolybdate et l’octamolybdate de sodium, les acides phosphomolybdiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le phosphomolybdate d’ammonium ou le phosphomolybdate de sodium.
Selon un ou plusieurs modes de réalisation, la source éventuelle de tungstène est choisie parmi les oxydes de tungstène, les hydroxydes de tungstène, les acides tungstiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le tungstate d’ammonium ou le tungstate de sodium, les acides phosphotungstiques et leurs sels.
Selon un ou plusieurs modes de réalisation, la source de cobalt et/ou de nickel est choisie parmi les oxydes, les hydroxydes, les hydroxycarbonates, les carbonates, les acétates, les sulfates, les phosphates, les halogénures et les nitrates de cobalt et de nickel, par exemple, l'hydroxycarbonate de nickel, le carbonate de cobalt ou l'hydroxyde de cobalt.
Selon un ou plusieurs modes de réalisation, la source de phosphore est choisie parmi les acides phosphoriques et leurs sels, en particulier l’acide orthophosphorique (H3P04) ou le phosphate d’ammonium, les acides phosphomolybdiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le phosphomolybdate d’ammonium ou le phosphomolybdate de sodium.
Selon un ou plusieurs modes de réalisation, ladite solution obtenue contenant lesdits composés à structure de Strandberg respectant la formule (I), présente un pH acide ( i.e pH inférieur à 7), préférentiellement inférieur à 5,5.
Selon un ou plusieurs modes de réalisation, ladite source de phosphore et ladite source de molybdène et l’éventuelle source de tungstène sont mélangés en solution aqueuse dans des proportions telles que le rapport molaire P/Mo soit compris entre 0,1 et 5, préférablement compris entre 0,2 et 1 ,5, de manière particulièrement préférée entre 0,3 et 0,8, et/ou que le rapport molaire W/Mo soit compris entre 0 et 25, préférablement compris entre 0 et 1 1 , tel que compris entre 0 et 5.
Selon un ou plusieurs modes de réalisation, ladite source de nickel et/ou ladite source de cobalt et ladite source de molybdène sont mélangées dans des proportions telles que le rapport molaire (Co+Ni)/Mo soit compris entre 0,05 et 5, préférablement compris entre 0,1 et 1 ,5, de manière particulièrement préférée entre 0,2 et 0,7. Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants :
Figure imgf000014_0003
Figure imgf000014_0002
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants
Figure imgf000014_0001
Du fait de la présence du cobalt et/ou du nickel et du molybdène dans la même structure de type sel d’hétéropolyanion de Strandberg, il est possible de promouvoir l’activité des feuillets de MOS2 générés après sulfuration. Le catalyseur solide dispersé présente ainsi une activité très améliorée par rapport à l’injection d’un précurseur de molybdène et d’un autre précurseur de nickel et/ou de cobalt indépendant en solution aqueuse.
Par ailleurs, la concentration en molybdène des solutions ainsi préparées peut aller jusqu’à des valeurs aussi élevées que 4 moles de molybdène par litre de solution aqueuse ce qui permet de limiter la quantité d’eau à introduire dans le procédé.
Selon un ou plusieurs modes de réalisation, le spectre Raman de l’au moins un sel d’hétéropolyanion comprend au moins une bande principale comprise entre 925 et 945 cm 1 caractéristique d'une structure de type Strandberg. La position exacte des bandes, leurs formes et leur intensités relatives peuvent varier dans une certaine mesure en fonction des conditions d'enregistrement du spectre, tout en restant caractéristiques d’une structure de type Strandberg, mais également en fonction de la nature chimique du sel d’hétéropolyanion type Strandberg et du pH de la solution. Les spectres Raman ont été obtenus avec un spectromètre de type Raman dispersif équipé d'un laser argon ionisé (514 nm). Le faisceau laser est focalisé sur l'échantillon à l'aide d'un microscope équipé d'un objectif x50 longue distance de travail. La puissance du laser au niveau de l'échantillon est de l'ordre de 1 mW. Le signal Raman émis par l'échantillon est collecté par un détecteur CCD. La résolution spectrale obtenue est de l'ordre de 1 cm 1. La zone spectrale enregistrée est comprise entre 100 et 1200 cm-1. La durée d'acquisition a été fixée à 60 s pour chaque spectre Raman enregistré.
Préparation d’un sel d’un hétéropolyanion de type Keggin ou Keggin lacunaire ou Keggin lacunaire
Selon un ou plusieurs modes de réalisation, l’étape a) de préparation du sel d’hétéropolyanion selon la présente description, comprend au moins une des étapes a1 ), a2), a3) et a4) décrites ci-dessous. a1 ) préparation d’une solution aqueuse contenant la structure de Keggin respectant la formule (III) CpAgMomWn040Hh dans laquelle :
- C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué,
- p est un nombre entier compris entre 0 et 6,
- A est le phosphore ou le silicium ou le bore,
- g est 0 ou 1 ,
- Mo est le molybdène,
- W est le tungstène,
- m est un nombre entier compris entre 1 et 12,
- n est un nombre entier compris entre 0 et 1 1 ,
- m+n = 12,
- O est l’oxygène,
- H est l’hydrogène
- h est un nombre entier compris entre 0 et 3.
Selon un ou plusieurs modes de réalisation, la solution obtenue lors de l’étape a1 ) est préparée par simple dissolution dans l’eau de l’hétéropolyacide hydraté (commercial) ou de ses sels (commerciaux) respectant la formule (IV) CpAgMomWn040Hh.jH20 dans laquelle :
- C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non
substitué,
- p est un nombre entier compris entre 0 et 6,
- A est le phosphore ou le silicium ou le bore,
- g est 0 ou 1 ,
- Mo est le molybdène,
- W est le tungstène,
- m est un nombre entier compris entre 1 et 12,
- n est un nombre entier compris entre 0 et 1 1 ,
- m+n = 12,
- O est l’oxygène,
- H est l’hydrogène,
- h est un nombre entier compris entre 0 et 3,
- j est un nombre entier compris entre 0 et 36.
Selon un ou plusieurs modes de réalisation, le composé de formule (IV) mis en oeuvre lors de l’étape a1 ) est choisi parmi l’acide phosphomolybdique (H3RMqi2040) hydraté ou l’acide silicomolybdique (H4SiMo12040) hydraté ou l’acide boromolybdique (H5BMq12O40) hydraté. Selon un ou plusieurs modes de réalisation, la préparation du composé respectant la formule (III) est réalisée en mélangeant, en solution aqueuse, au moins une source de molybdène et éventuellement une source de tungstène et au moins un oxoacide. Selon un ou plusieurs modes de réalisation, le mélange est effectué jusqu’à l’obtention d’une solution aqueuse préférablement limpide dans laquelle la source de molybdène et l’éventuelle source de tungstène sont entièrement dissoutes par l’action dudit oxoacide. Selon un ou plusieurs modes de réalisation, le mélange est réalisé sous agitation, par exemple à une température comprise entre 10 et 100°C, telle qu’à température ambiante ou entre 30 et 100°C (e.g. à reflux), par exemple pendant quelques minutes à plusieurs heures jusqu’à l’obtention d’une solution aqueuse limpide. Selon un ou plusieurs modes de réalisation, ladite solution obtenue à l’issue de l’étape a1 ) et contenant lesdits composés à structure de Keggin respectant la formule (III), présente un pH acide ( i.e pH inférieur à 7), préférentiellement inférieur à 5,5.
Selon un ou plusieurs modes de réalisation, la source de molybdène employée pour la mise en oeuvre de ladite étape a1 ) est choisie parmi les oxydes de molybdène, les hydroxydes de molybdène, les acides molybdiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le molybdate, le dimolybdate, l’heptamolybdate et l’octamolybdate d’ammonium ou le molybdate, le dimolybdate, l’heptamolybdate et l’octamolybdate de sodium, les acides phosphomolybdiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le phosphomolybdate d’ammonium ou le phosphomolybdate de sodium, les acides silicomolybdiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le silicomolybdate d’ammonium ou le silicomolybdate de sodium, les acides boromolybdiques et leur sels, en particulier les sels d’ammonium ou de sodium tels que le boromolybdate d’ammonium ou le boromolybdate de sodium.
Selon un ou plusieurs modes de réalisation, la source éventuelle de tungstène employée pour la mise en oeuvre de ladite étape a1 ) est choisie parmi les oxydes de tungstène, les hydroxydes de tungstène, les acides tungstiques et leurs sels, en particulier les sels d’ammonium ou de sodium tels que le tungstate d’ammonium ou le tungstate de sodium, les acides phosphotungstiques et leurs sels, les acides silicotungstiques et leurs sels, les acides borotungstiques et leurs sels.
Selon un ou plusieurs modes de réalisation, le composé oxoacide employé pour la mise en oeuvre de ladite étape a1 ) est choisi parmi les acides siliciques (e.g. acide orthosilicique, métasilicique, pyrosilicique), les acides phosphoriques et les acides boriques. Selon un ou plusieurs modes de réalisation et conformément à l’étape a1 ), ledit composé oxoacide et la source de molybdène et l’éventuelle source de tungstène sont mélangés en solution aqueuse dans des proportions telles que le rapport molaire (oxoacide)/Mo soit compris entre 1/100 et 50, préférablement compris entre 1/50 et 25, tel que compris entre 1/20 et 10, et/ou que le rapport molaire W/Mo soit compris entre 0 et 25, préférablement compris entre 0 et 1 1 , tel que compris entre 0 et 1 . a2) Dégradation partielle, en solution aqueuse alcaline, du composé issu de l’étape a1 ) respectant la formule (III), par exemple par l’utilisation d’une base présentant un pKa supérieur ou égal à 12, de préférence supérieur ou égal à 14, de préférence l’hydroxyde de baryum Ba(OH)2. L’introduction de la base rendant la solution moins acide, les octaèdres de molybdène et/ou de tungstène des acides hétéropolymolydiques ou hétéroploytungstiques obtenus à l’issu de l’étape a1 ) se décondensent pour former des sels respectant la formule (V) BqCpAgMomWnOyHh dans laquelle :
B est le baryum, le calcium, le lithium, le sodium, le potassium, le césium, préférablement B est le baryum,
q est un nombre entier compris entre 1 et 1 1 ,
- C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué,
- p est un nombre entier compris entre 0 et 6,
- A est le phosphore ou le silicium ou le bore,
- g est 0 ou 1 ,
- Mo est le molybdène,
- W est le tungstène,
m est un nombre entier compris entre 1 et 12,
n est un nombre entier compris entre 0 et 1 1 ,
m+n = 9 ou 1 1 ou 12,
- O est l’oxygène,
- y est un nombre entier égal à 34 ou 39 ou 40,
H est l’hydrogène,
h est un nombre entier compris entre 0 et 3.
L’addition de la base dans la solution aqueuse obtenue à l’issue de l’étape a1 ) peut être réalisée entre quelques minutes à plusieurs heures (e.g entre 2 minutes et 3 heures), par exemple à une température comprise entre 0 et 100°C, de préférence à une température comprise entre 10 et 40°C. Conformément à l’étape a2), la base peut être ajoutée dans des proportions telles que le rapport molaire (base)/Mo soit compris entre 1/1000 et 40, préférablement compris entre 1 /100 et 4, tel que compris entre 1/10 et 1 .
Conformément à l’étape a2), la base utilisée est préférentiellement de l’hydroxyde de baryum Ba(OH)2. En revanche, la base peut être un composé autre que du Ba(OH)2, telle que l’hydroxyde de lithium LiOH, l’hydroxyde de sodium NaOH, l’hydroxyde de potassium KOH, l’hydroxyde de césium CsOH, l’hydroxyde de calcium Ca(OH)2. a3) Echange ionique de Ba2+ par le cation promoteur (par exemple Ni2+ ou Co2+) afin de produire un sel d’hétéropolyanion selon la présente description ( i.e précurseur du catalyseur solide dispersé).
Tout procédé d’échange ionique connu de l’homme du métier peut être mise en oeuvre dans l’étape a3), comme par exemple l’utilisation de résines et/ou membranes échangeuses d’ions. Selon un ou plusieurs modes de réalisation, l’étape a3) est réalisée par ajout, à la solution obtenue à l’issue de l’étape a2), d’un sulfate, phosphate, carbonate, nitrate, halogénure tel que le chlorure par exemple, oxalate, citrate, acétate de métal promoteur, de préférence sulfate de métal promoteur (par exemple le sulfate de nickel ou le sulfate de cobalt) ce qui peut induire, en plus de la formation du sel d’hétéropolyanion selon la présente description, la précipitation d’un sel, par exemple le sulfate de baryum BaS04. L’étape a3) peut être réalisée en quelques minutes à plusieurs heures (e.g. entre 2 minutes et 3 heures) à une température comprise entre 0 et 100°C, de préférence à température comprise entre 10 et 40°C. Conformément à l’étape a3), un métal promoteur de type nickel et/ou cobalt est ajouté dans des proportions telles que le rapport molaire (Co+Ni)/Mo soit compris entre 1/1000 et 50, préférablement compris entre 1/100 et 25, tel que compris entre 1/25 et 10.
Dans ces exemples de l’étape a3), l’échange ionique est effectué à partir de sels de baryum. En revanche, en fonction de la base utilisée dans l’étape a2), l’échange ionique peut être effectué avec un cation autre que Ba2+, tels que Li+, Na+, K+, Cs+ ou Ca2+. a4) Séparation optionnelle du précipité susceptible d’être formé lors de l’étape a3) (e.g. précipité de BaS04), de la solution aqueuse contenant l’au moins un sel d’hétéropolyanion selon la présente description. Tout procédé connu de l’homme du métier, tel que la filtration ou la centrifugation, peut être mis en oeuvre pour réaliser la séparation.
Dans ces exemples de l’étape a4), la séparation est effectuée à partir de BaS04. En revanche, en fonction de la base utilisée dans l’étape a2) et du précurseur de métal promoteur utilisé dans l’étape a3), la séparation peut être effectuée avec un précipité autre que du BaSO4, tel que BaCI2, Ba3(P04)2, Ba(N03)2, KCI, KN03, NaCI, NaN03, Ca3(P04)2, Ca(N03)2.
Pour synthétiser un sel d’hétéropolyanion selon la présente description, on peut également utiliser des préparations connues de l’homme de l’art, telles que les préparation décrites dans les brevets FR 2 749 778, FR 2 764 21 1 et FR 2 935 139.
Le brevet FR 2 749 778 décrit un procédé de préparation de catalyseurs supportés renfermant des métaux des groupes VIB et VIII, ces métaux étant introduits sous forme d’un composé de formule MxAB12O40 dans laquelle M est le cobalt et/ou le nickel, A est le phosphore, le silicium et/ou le bore, B est le molybdène et/ou le tungstène et x prend des valeurs de 2 ou plus, de 2,5 ou plus, ou de 3 ou plus selon que A est le phosphore, le silicium ou le bore respectivement. Le composé de formule MxAB12O40 peut être préparé par traitement d’un hétéropolyacide de formule HyAB12O40 (où y vaut 3, 4 ou 5 selon la nature de A), par un agent réducteur, et par ajout d’un composé du cobalt et/ou nickel afin de salifier les fonctions acides présentes.
Le brevet FR 2 764 21 1 décrit un procédé de préparation d’un catalyseur supporté préparé à partir d’un hétéropolycomposé de formule MxAB1 1O40M’Cz-2x.tH2O dans laquelle M est le cobalt et/ou le nickel, A est le phosphore, le silicium et/ou le bore, B est le molybdène et/ou le tungstène et M’ est le cobalt, le nickel, le fer, le cuivre et/ou le zinc, x prend une valeur comprise entre 0 et 4,5, z une valeur entre 7 et 9, t est un nombre entier variant de 5 à 29 et C est un cation H+ ou alkylammonium. Le composé est obtenu par différentes étapes d’échange ionique à partir d’un composé de formule ABn040M’Cz.tH20. Par exemple, le composé PCOMO11 O4OH(NH4)6.13H20 est obtenu à partir d’un milieu réactionnel dans lequel est ajouté respectivement l’heptamolybdate d’ammonium, l’acide phosphorique, l’acide sulfurique, le sulfate de cobalt ainsi que le nitrate d’ammonium. Le composé PCOMOH11O40H(NH4)6.13H2O subit ensuite une première étape d’échange ionique avec par exemple le chlorure de tétraméthylammonium (TMA-CI) pour former le composé de formule PCoMon040H(TI\/IA)6.13H20. Ce dernier est ensuite mis en contact d’une solution de perchlorate de cobalt afin de procéder au dernier échange ionique et former le composé souhaité de formule PCoMonO40HCo3 hydraté.
Le brevet FR 2 935 139 décrit un procédé de préparation d’un catalyseur supporté d’hydrocraquage de charges hydrocarbonées, ledit catalyseur supporté étant préparé à partir d’un hétéropolycomposé de formule Nix+y/2AW11 -y039-2,5y.zH20, dans lequel Ni est le nickel, A est le phosphore, le silicium ou le bore, W est le tungstène, O est l’oxygène, y est égal à 0 ou 2, x est compris entre 3,5 et 4,5 selon la nature A et z est compris entre 0 et 36. Ledit hétéropolycomposé est obtenu, selon une première étape, par réaction entre un hétéropolyacide de type HmAW12040 et l’hydroxyde de baryum (Ba(OH)2), suivi par une deuxième étape d’échange ionique sur des résines échangeuses de cations, afin de substitué les cations Ba2+ par des cations Ni2+.
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion selon la présente description (e.g. contenu dans la solution aqueuse issue de l’étape a)) est choisi parmi les sels suivants :
Figure imgf000020_0001
Figure imgf000020_0002
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants :
Figure imgf000020_0003
Figure imgf000020_0004
Selon un ou plusieurs modes de réalisation, l’au moins un sel d’hétéropolyanion est choisi parmi Ni4SiMon039, Ni7/2PMon039, Ni3SiMonNiO40H2 et Ni3PMonNiO40H. Ces composés présentant des rapports (Co+Ni)/Mo élevés, les rapports Co/Mo et Ni/Mo des feuillets de MOS2 générés après sulfuration permettent d’assurer la promotion de l’activité du molybdène. Le catalyseur solide dispersé présente ainsi une activité très améliorée par rapport à l’injection d’un précurseur de molybdène seul ou par rapport à l’injection d’un précurseur de molybdène simultanément à l’injection d’un autre précurseur de nickel et/ou de cobalt indépendant en solution aqueuse.
Par ailleurs, la concentration en molybdène des solutions ainsi préparées peut aller jusqu’à des valeurs aussi élevées que 4 moles de molybdène par litre de solution aqueuse ce qui permet de limiter la quantité d’eau à introduire dans le procédé.
Selon un ou plusieurs modes de réalisation, le spectre Raman de l’au moins un sel d’hétéropolyanion comprend au moins une bande principale comprise entre 950 et 1010 cm 1 caractéristique d'une structure de type Keggin, Keggin lacunaire ou Keggin lacunaire substitué. La position exacte des bandes, leurs formes et leur intensités relatives peuvent varier dans une certaine mesure en fonction des conditions d'enregistrement du spectre, tout en restant caractéristiques d’une structure de type Keggin, Keggin lacunaire ou Keggin lacunaire substitué, mais également en fonction de la nature chimique du sel d’hétéropolyanion type Keggin, Keggin lacunaire ou Keggin lacunaire substitué et du pH de la solution. Les spectres Raman ont été obtenus avec un spectromètre de type Raman dispersif équipé d'un laser argon ionisé (514 nm). Le faisceau laser est focalisé sur l'échantillon à l'aide d'un microscope équipé d'un objectif x50 longue distance de travail. La puissance du laser au niveau de l'échantillon est de l'ordre de 1 mW. Le signal Raman émis par l'échantillon est collecté par un détecteur CCD. La résolution spectrale obtenue est de l'ordre de 1 cm-1. La zone spectrale enregistrée est comprise entre 100 et 1200 cm-1. La durée d'acquisition a été fixée à 60 s pour chaque spectre Raman enregistré.
Etape de mélange de la solution aaueuse avec la charge hydrocarbonée lourde (étape b)
Selon un ou plusieurs modes de réalisation, on introduit la solution aqueuse contenant l’au moins un sel d’hétéropolyanion selon la présente description dans au moins une portion de la charge hydrocarbonée lourde de manière à former un mélange, de préférence de manière à former une émulsion.
Pour préparer un mélange tel qu’une émulsion selon l’étape de mélange b) du procédé selon la présente description, la solution aqueuse contenant l’au moins un sel d’hétéropolyanion est mélangée à la charge hydrocarbonée lourde, en présence éventuellement d’au moins un surfactant, par exemple sous une pression absolue comprise entre 0,05 et 20 MPa et/ou à une température comprise entre 0 et 200°C. Selon un ou plusieurs modes de réalisation, l’émulsion selon l’étape de mélange b) du procédé selon la présente description est préparée à pression atmosphérique, par exemple à une température inférieure à 95°C, de préférence inférieure à 90°C et de manière particulièrement préférée inférieure à 85°C. Un mélange dans lequel le sel d’hétéropolyanion est dispersé ou une émulsion de type "eau dans huile" peut être ainsi obtenue.
Selon un ou plusieurs modes de réalisation, la solution aqueuse contenant l’au moins un sel d’hétéropolyanion est pré-mélangée à une huile hydrocarbonée composée par exemple d’hydrocarbures dont au moins 50% en poids par rapport au poids total de l’huile hydrocarbonée ont une température d'ébullition comprise entre 180°C et 540°C, pour former un mélange de précurseur dilué, en présence éventuellement d’au moins un surfactant, par exemple à une température inférieure à 95°C, de préférence inférieure à 90°C et de manière particulièrement préférée inférieure à 85°C. Selon un ou plusieurs modes de réalisation, la quantité d’huile hydrocarbonée correspond au maximum à 50% en poids, de préférence au maximum à 30% en poids, de manière particulièrement préférée au maximum à 10% en poids (e.g. entre 0,1 et 10% en poids) par rapport au poids de la charge hydrocarbonée lourde.
Selon un ou plusieurs modes de réalisation, la solution aqueuse ou le mélange de précurseur dilué est mélangé, par exemple de façon suffisamment active au moyen d’un outil de mélange, avec la charge hydrocarbonée lourde par mélange dynamique (e.g. utilisation d’un rotor) ou statique (e.g. utilisation d’un injecteur) pour obtenir un mélange actif et préférablement une émulsion. Dans la présente demande, le terme « mélange actif » signifie un mélange dans lequel le sel d’hétéropolyanion est suffisamment dispersé dans la charge pour permettre la formation du catalyseur solide dispersé par traitement thermique du mélange. Dans la présente description, la solution aqueuse ou le mélange de précurseur dilué n’est pas simplement ajouté à la charge hydrocarbonée lourde.
Toutes les techniques de mélange et d’agitation connues de l’homme du métier peuvent être utilisées pour former un mélange actif (e.g. émulsion). Selon un ou plusieurs modes de réalisation, le mélange actif (e.g. l’émulsion) se fait à l’aide d’un homogénéiseur de type moulin colloïdal ou rotor-stator tel que l’Ultra-turrax®, à une vitesse d’agitation comprise entre 50 et 24000 tours par minutes, préférentiellement à une vitesse d’agitation comprise entre 300 et 18000 tours par minutes, de manière particulièrement préférée à une vitesse d’agitation comprise entre 4000 et 12000 tours par minutes, par exemple pendant quelques minutes voire plusieurs heures (e.g entre 2 minutes et 3 heures).
Selon un ou plusieurs modes de réalisation, l’au moins un surfactant ( i.e émulsifiant, tensioactif) est une molécule amphiphile permettant notamment de stabiliser une émulsion à l’interphase phase huile/phase aqueuse. Pour réaliser une émulsion H/E (Huile dans Eau), il est préférable d’utiliser un tensioactif à tendance hydrophile. Pour réaliser une émulsion E/H (Eau dans Huile), il est préférable d’utiliser un tensioactif à tendance lipophile. On définit ainsi l’équilibre hydrophile/lipophile (HLB pour « Hydrophilic to Lipophilie Balance » selon la terminologie anglo-saxonne), un critère proposé par « Griffin, W. C. J. Cosmetics Chemists 1949, 1 , 131 » consistant à attribuer à chaque agent de surface une valeur illustrant sa balance hydrophile-lipophile. La HLB varie de 0 à 20. La valeur 0 correspond à un produit totalement hydrophobe et la valeur 20 correspond à un produit totalement hydrophile. Plus la phase huile est polaire, plus il est préférable d’utiliser un tensioactif hydrophile ; plus la phase huile est non-polaire, plus il est préférable d’utiliser un tensioactif lipophile.
Selon un ou plusieurs modes de réalisation, le surfactant mis en œuvre lors de l’étape b) du procédé selon la présente description est un surfactant non-ionique (ni cationique, ni anionique), et/ou non ionisable, et/ou présentant une HLB comprise entre 0 et 8, tel qu’entre 1 et 8, de préférence entre 2 et 6. Selon un ou plusieurs modes de réalisation, l’au moins un surfactant est choisi parmi les esters de sorbitane tels que le monostéarate de sorbitane C24H4606, le tristéarate de sorbitane C6oH11408, le monolaurate de sorbitane CI 8H3406, le monooléate de sorbitane C24H4406, le monopalmitate de sorbitane C22H4206, le trioléate de sorbitane C6OHI 0808. Selon un ou plusieurs modes de réalisation, la concentration en surfactant est au maximum de 20% en poids, tel que de 10% en poids, par rapport au poids de la charge hydrocarbonée lourde à traiter. Selon un ou plusieurs modes de réalisation, la concentration en surfactant est au maximum de 5% en poids (e.g. entre 0,1 et 5% en poids) par rapport au poids de la charge hydrocarbonée lourde afin de limiter les quantités de surfactant injectées dans le procédé.
Le mélange de la solution aqueuse avec la charge peut être ensuite séché ou injecté tel quel directement dans le réacteur d’hydroconversion ou être injecté avec (le reste de) la charge hydrocarbonée lourde à traiter en amont du réacteur d’hydroconversion.
Selon un ou plusieurs modes de réalisation, le mélange est pré-dispersé dans (le reste de) la charge hydrocarbonée lourde à l’aide d’un solvant. Toute coupe d’hydrocarbure telle que les coupes naphta, essence, gasoil, distillat-sous-vide, résidus-sous-vide issues d’un fractionnement ou d’une étape de conversion ou de traitement catalytique ou thermique, des effluents de craquage catalytique (de type HCO pour « Heavy Cycle Oil » selon la terminologie anglo-saxonne), LCO (pour « Light Cycle Oil » selon la terminologie anglo- saxonne), ou toute autre coupe comme des DAO (pour « Desasphalted Oil » selon la terminologie anglo-saxonne) et extraits aromatiques par exemple, peuvent convenir comme solvant. Le solvant utilisé peut également appartenir à la famille des solvants polaires aprotiques tels que la N-méthylpyrrolidone, le diméthylformamide le diméthylacétamide, l’hexaméthylphosphoramide, le diméthylsulfoxide, le tétrahydrofurane, le nitrosodiméthylamine et la butyrolactone.
Mise en œuvre de l’étape d’hydroconversion (étape c)
Dans le cas de l’injection du mélange (e.g. émulsion) contenant le précurseur du catalyseur solide dispersé en amont du réacteur, selon un ou plusieurs modes de réalisation, le mélange est traité thermiquement en dehors du réacteur à une température inférieure ou égale à 500°C, de préférence à une température inférieure ou égale à 450°C, de préférence comprise entre 200 et 430°C, de préférence en présence d’une source de soufre, tel que de l’H2S (e.g. H2S dissous dans la charge hydrocarbonée lourde), de manière à favoriser la décomposition du sel d’hétéropolyanion selon la présente description en présence de soufre, générant ainsi la phase active, c’est-à-dire le catalyseur solide dispersé à base de sulfure de molybdène (et/ou de tungstène) promu par du nickel et/ou du cobalt.
Selon un ou plusieurs modes de réalisation, la décomposition de l’au moins un sel d’hétéropolyanion en catalyseur solide dispersé est réalisée avec une pression totale comprise entre 2 MPa et 38 MPa, telle qu’entre 5 MPa et 25 MPa. Selon un ou plusieurs modes de réalisation, la décomposition de l’au moins un sel d’hétéropolyanion en catalyseur solide dispersé est réalisée avec une pression partielle d’H2S (ppH2S) comprise entre 0 MPa et 16 MPa, telle qu’entre 0,01 MPa et 5 MPa, particulièrement adaptée pour la formation du catalyseur solide dispersé.
L’H2S peut provenir par exemple de l’H2S contenu dans l’hydrogène recyclé vers le réacteur d’hydroconversion ou de la décomposition de molécules organo-soufrées présentes dans la charge ou préalablement introduites (injection de diméthyldisulfure, toute charge hydrocarbonée soufrée du type mercaptans, sulfures, essence soufrée, gasoil soufré, distillât sous vide soufré, résidu soufré) dans la charge hydrocarbonée lourde.
Selon un ou plusieurs modes de réalisation, le mélange contenant le précurseur du catalyseur solide dispersé est injecté dans au moins une partie de la charge contenant du sulfure d’hydrogène dissous (ou toute autre source de soufre), dans des conditions de température et de pression proches de celles de la zone réactionnelle d’hydroconversion (e.g. entre 2 et 38 MPa et/ou à une température comprise entre 300 et 500°C), ce qui conduit à la formation du catalyseur solide dispersé qui est ensuite injectée dans le réacteur avec le reste de la charge hydrocarbonée lourde.
Selon un ou plusieurs modes de réalisation, le mélange contenant le précurseur du catalyseur solide dispersé est injecté dans une partie ou la totalité de la charge hydrocarbonée lourde et le précurseur du catalyseur solide dispersé est sulfuré grâce au sulfure d’hydrogène dissous (ou toute autre source de soufre), avant son arrivée dans la zone réactionnelle.
Selon un ou plusieurs modes de réalisation, le précurseur du catalyseur solide dispersé est injecté directement dans le réacteur et se sulfure par réaction avec l’H2S issu de l’hydrodésulfuration de la charge hydrocarbonée lourde dans l’étape d’hydroconversion.
Une fois formé, le catalyseur solide dispersé circule avec la charge hydrocarbon née lourde dans le réacteur, préférablement de façon continue. Selon un ou plusieurs modes de réalisation, la concentration du catalyseur solide dispersé est comprise entre 1 et 5000 ppm en poids de molybdène par rapport à la charge hydrocarbonée lourde en entrée du réacteur, de préférence entre 2 et 1000 ppm en poids, de manière préférée entre 5 et 250 ppm en poids, de manière particulièrement préférée entre 10 et 100 ppm en poids.
Selon un ou plusieurs modes de réalisation, une partie des effluents convertis est recyclée en amont de l’unité opérant le procédé d’hydroconversion, les effluents recyclés contenant du catalyseur solide dispersé recyclé. Selon un ou plusieurs modes de réalisation, l’étape d’hydroconversion est une étape d’hydrocraquage de la fraction lourde 370°C+ ou 540°C+ de la charge hydrocarbonée lourde en fraction plus légère 370°C- ou 540°C- (HDC37o+ ou HDC540+)· Selon un ou plusieurs modes de réalisation, l’étape d’hydroconversion est une étape d'hydrodémétallation (H DM) et/ou d’hydrodésasphaltage (HDAsC7) et/ou d'hydrodésulfuration (HDS) et/ou d’hydrodéazotation (HDN) et/ou de d’hydroconversion du « Conradson carbon residue » selon la terminologie anglo-saxonne (HDCCR).
Selon un ou plusieurs modes de réalisation, l’étape d’hydroconversion est effectuée au moyen d’un ou plusieurs réacteurs triphasiques, qui peuvent être en série et/ou en parallèle. Par exemple, chaque réacteur d’hydroconversion peut être un réacteur de type lit fixe, lit mobile ou lit bouillonnant en fonction de la charge hydrocarbonée lourde à traiter. Dans l’étape hydroconversion, ladite charge hydrocarbonée lourde est généralement transformée dans des conditions classiques d’hydroconversion d’une fraction hydrocarbonée liquide. Selon un ou plusieurs modes de réalisation, l’étape hydroconversion est opérée sous une pression absolue comprise entre 2 et 38 MPa, de préférence entre 5 et 25 MPa et de manière préférée, entre 6 et 20 MPa, et/ou à une température comprise entre 300 et 500°C et de préférence comprise entre 350 et 450°C. Selon un ou plusieurs modes de réalisation, la vitesse spatiale horaire (VVHr) de la charge par rapport au volume de chaque réacteur est comprise entre 0,05 h-1 et 10 h-1 , de préférence entre 0,10 h-1 et 2 h-1 et de manière préférée entre 0,10 h-1 et 1 h-1. Selon un ou plusieurs modes de réalisation, la vitesse spatiale horaire (VVHc) de la charge par rapport au volume de catalyseur supporté ( i.e non dispersé) est comprise entre 0,06 h-1 et 17 h 1 , de préférence entre 0,12 h-1 et 3 h-1 et de manière préférée entre 0,12 h-1 et 1 ,6 h-1. Selon un ou plusieurs modes de réalisation, la quantité d’hydrogène mélangée à la charge hydrocarbonée lourde est de préférence comprise entre 50 et 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge hydrocarbonée lourde liquide, tel qu’entre 100 et 3000 Nm3/m3 et de manière préférée entre 200 et 2000 Nm3/m3.
Selon un ou plusieurs modes de réalisation, l’hydroconversion est mise en oeuvre dans un ou plusieurs réacteurs triphasiques d’hydroconversion, qui peuvent être en série et/ou en parallèle, utilisant la technologie des réacteurs à lit bouillonnant. Selon un ou plusieurs modes de réalisation, l’étape d’hydroconversion est mise en oeuvre à l’aide de la technologie et dans les conditions du procédé H-Oil™ tel que décrit par exemple dans les brevets US 4,521 ,295 ou US 4,495,060 ou US 4,457,831 ou US 4,354,852 ou dans l’article Aiche, March 19-23, 1995, Houston, Texas, paper number 46d, "Second génération ebullated bed technology". Dans cette mise en oeuvre, chaque réacteur est opéré en lit triphasique fluidisé, également appelé lit bouillonnant. Selon un ou plusieurs modes de réalisation, chaque réacteur comporte une pompe de recirculation permettant le maintien du catalyseur solide supporté en lit bouillonnant par recyclage continu d’au moins une partie d’une fraction liquide soutirée en tête du réacteur et réinjectée en bas du réacteur.
Le catalyseur solide supporté
Le catalyseur solide supporté ( i.e non dispersé) d’hydroconversion utilisé selon la présente description peut comprendre un support (e.g. support amorphe) et une phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII et éventuellement du phosphore.
Selon un ou plusieurs modes de réalisation, ledit support est choisi parmi l’alumine, la silice, la silice-alumine, le dioxyde de titane, le carbone, le charbon et le coke. Selon un ou plusieurs modes de réalisation, le support est l’alumine. Selon un ou plusieurs modes de réalisation, le support respecte au moins une des caractéristiques suivantes :
- la perte au feu mesurée par calcination à 1000°C est comprise entre environ 1 et 15% en poids par rapport au poids du support avant traitement à 1000°C ;
- le volume poreux total (VPT) est compris entre 0,5 et environ 2,0 cm3/g (par exemple, tel que mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, par exemple telle que décrite dans l’ouvrage Rouquerol F. ; Rouquerol J. ; Singh K. « Adsorption by Powders & Porous Solids : Principle, methodology and applications », Academie Press, 1999, par exemple au moyen d’un appareil modèle Autopore III™ de la marque Microméritics™) ;
- la surface spécifique est comprise entre 50 et 350 m2/g (par exemple, tel que déterminée par la méthode B.E.T, méthode décrite dans le même ouvrage cité ci-dessus) ; et
- la distribution poreuse (par exemple, telle que déterminée par la technique de porosimétrie au mercure), est caractérisée comme suit :
• % du volume poreux total compris dans les pores de diamètre moyen inférieur à 100À : entre 0 et 80% en volume par rapport au volume poreux total du support,
• % du volume poreux total compris dans les pores de diamètre moyen compris entre 100 et 1000À : entre 10 et 90% en volume par rapport au volume poreux total du support, • % du volume poreux total compris dans les pores de diamètre moyen compris entre 1000 et 5000À : entre 2 et 60%, de préférence entre 3 et 35% en volume par rapport au volume poreux total du support,
• % du volume poreux total compris dans les pores de diamètre moyen compris entre 5000 et 10000À : entre 0,5 et 50%, de préférence entre 1 et 30% en volume par rapport au volume poreux total du support,
• % du volume poreux total compris dans les pores de diamètre moyen supérieur à 10000À : entre 0 et 20% en volume par rapport au volume poreux total du support.
Selon un ou plusieurs modes de réalisation, le pourcentage du volume poreux total compris dans les pores de diamètre moyen supérieur à 1000À est supérieur à 10% en volume par rapport au volume poreux total du support et le diamètre moyen des pores de diamètre supérieur à 1000À est compris entre 1500 et 8000 À.
Selon un ou plusieurs modes de réalisation, ledit support est en forme de billes, d’extrudés, de pastilles, ou d’agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d’une étape de concassage. Selon un ou plusieurs modes de réalisation, ledit support se présente sous forme de billes ou d’extrudés.
Le catalyseur solide supporté ( i.e non dispersé) d’hydroconversion utilisé selon la présente description peut contenir un ou plusieurs éléments du groupe VIB et du groupe VIII, et éventuellement du phosphore et/ou d’autres dopants tels que le bore et/ou le fluor.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIB est comprise entre 1 et 30% en poids exprimé en oxyde métallique, de préférence entre 4 et 20% en poids, de manière particulièrement préférée entre 4 et 12% en poids, par rapport au poids total du catalyseur solide supporté.
Selon un ou plusieurs modes de réalisation, la teneur en métal du groupe VIII est comprise entre 0,5 et 10% en poids exprimé en oxyde métallique, de préférence entre 1 et 6% en poids, de manière particulièrement préférée entre 1 et 4% en poids, par rapport au poids total du catalyseur solide supporté.
Selon un ou plusieurs modes de réalisation, le métal du groupe VIB présent dans la phase active du catalyseur solide supporté mis en oeuvre dans le procédé d’hydroconversion selon la présente description est choisi parmi le molybdène, le tungstène et le mélange de ces deux éléments. Selon un ou plusieurs modes de réalisation, le métal du groupe VIB est le molybdène. Selon un ou plusieurs modes de réalisation, le métal du groupe VIII présent dans la phase active du catalyseur solide supporté mis en oeuvre dans le procédé d’hydroconversion selon la présente description est choisi parmi le cobalt, le nickel et le mélange de ces deux éléments.
Selon un ou plusieurs modes de réalisation, la phase active du catalyseur solide supporté est choisie dans le groupe formé par la combinaison des éléments cobalt-molybdène, nickel-molybdène, cobalt-nickel-molybdène, cobalt-tungstène, nickel-tungstène, cobalt-molybdène-tungstène ou nickel-molybdène-tungstène. Selon un ou plusieurs modes de réalisation, la phase active du catalyseur solide supporté est la combinaison des éléments cobalt-molybdène, nickel-molybdène ou cobalt-nickel-molybdène. Selon un ou plusieurs modes de réalisation la phase active du catalyseur solide supporté est le nickel-molybdène.
Selon un ou plusieurs modes de réalisation, le rapport molaire métal du groupe VIII sur métal du groupe VIB dans le catalyseur solide supporté sous forme oxyde est compris entre 0,05 et 1 , tel qu’entre 0,1 et 0,8, et de manière préférée compris entre 0,15 et 0,6.
Selon un ou plusieurs modes de réalisation, le catalyseur solide supporté comprend un dopant tel que du phosphore. Le dopant est un élément ajouté qui en lui-même ne présente aucun caractère catalytique mais qui accroit l’activité catalytique de la phase active. Selon un ou plusieurs modes de réalisation, la teneur en phosphore dans ledit catalyseur solide supporté est comprise entre 0 et 10% en poids de P205, tel qu’entre 0,05 et 8% en poids de P205, de manière préférée entre 0,3 et 8% en poids de P205, de manière particulièrement préférée entre 0,5 et 5% en poids de P205, par rapport au poids total du catalyseur solide supporté.
Selon un ou plusieurs modes de réalisation, le rapport molaire phosphore sur métal du groupe VIB dans le catalyseur solide supporté est nul ou supérieur ou égal à 0,05, tel que supérieur ou égal à 0,07, de manière préférée compris entre 0,08 et 0,5.
Selon un ou plusieurs modes de réalisation, les catalyseurs solides supportés utilisés selon la présente description contiennent en outre au moins un dopant choisi parmi le bore et le fluor et un mélange de bore et de fluor.
Selon un ou plusieurs modes de réalisation, lorsque les catalyseurs solides supportés contiennent du bore en tant que dopant, la teneur en bore dans ledit catalyseur supporté est comprise entre 0,1 et 10% en poids d’oxyde de bore, tel qu’entre 0,2 et 7% en poids d’oxyde de bore, de manière préférée entre 0,2 et 5% en poids d’oxyde de bore par rapport au poids total du catalyseur solide supporté. Selon un ou plusieurs modes de réalisation, lorsque les catalyseurs solides supportés contiennent du fluor en tant que dopant, la teneur en fluor dans ledit catalyseur solide supporté est comprise entre 0,1 et 10% en poids de fluor, tel qu’entre 0,2 et 7% en poids de fluor, de manière préférée entre 0,2 et 5% en poids de fluor par rapport au poids total du catalyseur solide supporté.
Selon un ou plusieurs modes de réalisation, chaque réacteur de l’étape d’hydroconversion utilise un catalyseur différent adapté à la charge hydrocarbonée lourde qui est envoyée dans chaque réacteur. Selon un ou plusieurs modes de réalisation, plusieurs types de catalyseurs peuvent être utilisés dans chaque réacteur. Selon un ou plusieurs modes de réalisation, chaque réacteur peut contenir un ou plusieurs catalyseurs solides supportés..
Le catalyseur solide supporté d’hydroconversion usagé peut, conformément au procédé selon la présente description, être au moins en partie remplacé par du catalyseur solide supporté frais par soutirage, de préférence en bas du réacteur, et par introduction, soit en haut soit en bas du réacteur, de catalyseur solide supporté frais et/ou usagé et/ou régénéré et/ou réjuvéné, par exemple à intervalle de temps régulier et de manière préférée par saccade ou de façon quasi continue. Le remplacement de catalyseur solide supporté peut être fait tout ou en partie par du catalyseur solide supporté usagé et/ou régénéré et/ou réjuvéné issu du même réacteur et/ou d’un autre réacteur de n’importe quelle étape d’hydroconversion. Le catalyseur solide supporté peut être ajouté avec les métaux sous forme d’oxydes de métaux, avec les métaux sous forme de sulfures de métaux, ou après un préconditionnement. Selon un ou plusieurs modes de réalisation, pour chaque réacteur, le taux de remplacement du catalyseur solide supporté d’hydroconversion usé par du catalyseur solide supporté frais est compris entre 0,01 kilogramme et 10 kilogrammes par mètre cube de charge hydrocarbonée lourde traitée, et de préférence entre 0,1 kilogramme et 3 kilogrammes par mètre cube de charge hydrocarbonée lourde traitée. Selon un ou plusieurs modes de réalisation, le soutirage et le remplacement sont effectués à l’aide de dispositifs permettant le fonctionnement continu de l’étape d’hydroconversion.
Selon un ou plusieurs modes de réalisation, le catalyseur solide supporté usé soutiré du réacteur est envoyé dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu’il renferme puis de renvoyer le catalyseur solide supporté régénéré dans l’étape d’hydroconversion. Selon un ou plusieurs modes de réalisation, le catalyseur solide supporté usé soutiré du réacteur est envoyé dans une zone de réjuvénation dans laquelle on élimine la majeure partie des métaux déposés, avant d’envoyer le catalyseur solide supporté usé et réjuvéné dans une zone de régénération dans laquelle on élimine le carbone et le soufre qu’il renferme puis de renvoyer le catalyseur solide supporté régénéré dans l’étape d’hydroconversion.
La charae hvdrocarbonée lourde
Les charges hydrocarbonées lourdes susceptibles d’être traitées par le procédé selon la présente description sont des charges hydrocarbonées qui contiennent des hydrocarbures dont au moins 50% en poids, de préférence au moins 65% en poids, de manière particulièrement préférée au moins 80% en poids par rapport au poids de la charge hydrocarbonée lourde, ont une température d'ébullition supérieure à 300°C et au moins 1% en poids ont une température d'ébullition supérieure à 540°C, du soufre à une teneur supérieure à 0,1 % en poids, des métaux à une teneur supérieure à 20 ppm en poids et des asphaltènes C7 à une teneur supérieure à 1% en poids, telles que des charges pétrolières lourdes (appelées résidus) et/ou des fractions d’hydrocarbures produites dans une raffinerie. Les charges pétrolières lourdes incluent des résidus atmosphériques, des résidus sous vide (e.g. résidus atmosphérique ou sous vide issus d’étapes d’hydrotraitement, d’hydrocraquage et/ou d’hydroconversion), des distillais sous vide frais ou raffinés, des coupes provenant d’une unité de craquage (e.g. unité de craquage catalytique en lit fluidisé (FCC pour « Fluid Catalytic Cracking » selon la terminologie anglo-saxonne), de cokage ou de viscoréduction, des coupes aromatiques extraites d’une unité de production de lubrifiants, des huiles désasphaltées issues d’une unité de désasphaltage, des asphaltes issus d’une unité de désasphaltage, ou une combinaison de ces charges. La charge hydrocarbonée lourde peut contenir en outre une fraction résiduelle issue de la liquéfaction directe de charbon (un résidu atmosphérique et/ou un résidu sous vide issu par exemple du procédé H-Coal™), un distillât sous vide issue de la liquéfaction directe de charbon, comme par exemple le procédé H-Coal™, ou encore une fraction résiduelle issue de la liquéfaction directe de la biomasse lignocellulosique seule ou en mélange avec du charbon et/ou une fraction pétrolière fraîche et/ou raffinée.
Selon un ou plusieurs modes de réalisation, les charges pétrolières lourdes sont constituées de fractions d’hydrocarbures issues d’un pétrole brut ou de la distillation atmosphérique d’un pétrole brut ou de la distillation sous vide d’un pétrole brut, lesdites charges contenant une fraction d’au moins 50% en poids par rapport au poids de la charge ayant une température d’ébullition d’au moins 300°C, de préférence d’au moins 350°C et de manière préférée d’au moins 375°C et de manière préférée des résidus sous vide ayant une température d’ébullition d’au moins 450°C, de préférence d’au moins 500°C et de manière préférée d’au moins 540°C. Les charges hydrocarbonées lourdes traitées par le procédé selon la présente description peuvent contenir des impuretés, comme des métaux, du soufre, des résines, de l’azote, du « Conradson Carbon residue » selon la terminologie anglo-saxonne et des insolubles à l’heptane, également appelée asphaltènes C7. Selon un ou plusieurs modes de réalisation, la charge hydrocarbonée lourde comprend une teneur en métaux supérieure à 50 ppm en poids, et/ou une teneur en soufre supérieure à 0,1 % en poids, et/ou une teneur en asphaltènes C7 supérieure à 1 % en poids, et/ou une teneur en carbone Conradson supérieure à 3% en poids (e.g. supérieure à 5% en poids), par rapport au poids total de la charge hydrocarbonée lourde. Les asphaltènes C7 sont des composés connus pour inhiber la conversion de coupes résiduelles, à la fois par leur aptitude à former des résidus hydrocarbonés lourds, communément appelés coke, et par leur tendance à produire des sédiments qui limitent fortement l’opérabilité des unités d’hydrotraitement et d’hydroconversion. La teneur en carbone Conradson est définie par la norme ASTM D 482 et représente pour l’homme du métier une évaluation bien connue de la quantité de résidus de carbone produit après une pyrolyse sous des conditions standards de température et de pression.
Exemples
Exemple 1 : préparation d’une solution contenant le sel d’hétéropolyanion Ni3 PMo11NiO40H
(conforme au procédé selon la présente description)
La solution n°1 est préparée à partir de 17,0 g d’acide phosphomolybdique H3PM012O40.17H2O (0,008 mol) dissous dans 75 cm3 d’H20, à température ambiante (coloration jaune, translucide). 5,3 g de Ba(0H)2.H20 (0,028 mol) sont ajoutés à cette solution, que l’on laisse ensuite sous agitation environ 30 minutes (pas de changement de coloration) avant d’y ajouter 8,4 g de NiS04.6H20 (0,032 mol). La solution obtenue est laissée sous agitation 2 heures (elle devient opaque, verdâtre) avant d’être filtrée sur fritté pour séparer le précipité de BaS04 (solide blanc) de la solution de Ni3PMo11NiO40H (pH voisin de 2,5).
La concentration en molybdène est de 1 ,1 mole de Mo par litre de solution.
Le spectre Raman de la solution ainsi préparée présente les bandes caractéristiques de l’hétéropolyanion de Keggin lacunaire substitué à 975, 887, 600 et 234 cm-1
Exemple 2 : préparation d’une solution contentant le sel d’hétéropolyanion Ni3 SiMo11 O39 (conforme au procédé selon la présente description) La solution n°2 est préparée à partir de 16,4 g d’acide silicomolybdique H4SiMoi2040.13H20 (0,008 mol) dissous dans 75 cm3 d’H20, à température ambiante (coloration jaune, translucide). 6,1 g de Ba(0H)2.H20 (0,032 mol) sont ajoutés à cette solution, que l’on laisse ensuite sous agitation environ 30 minutes (aucun de changement de coloration) avant d’y ajouter 8,4 g de NiS04.6H20 (0,032 mol). La solution obtenue est laissée sous agitation 2 heures (elle devient opaque, verdâtre) avant d’être filtrée sur fritté pour séparer le précipité de BaS04 (solide blanc) de la solution de Ni4SiMon039 (pH de la solution est voisin de 5).
La concentration en molybdène est de 1 ,1 mole de Mo par litre de solution.
Le spectre Raman de la solution ainsi préparée présente les bandes caractéristiques de l’hétéropolyanion de Keggin lacunaire à 957, 896, 616 et 240 cm-1.
Exemple 3 : Préparation d'une solution contenant le sel d’hétéropolvanion Ni2H2P2Mo5 O23
(conforme à l’invention)
La solution n°3 est préparée par dissolution de 13,3 g d’oxyde de molybdène (pureté 99,9%), 3,4 g d’hydroxyde de nickel (pureté de 99,5%) et de 5,1 g d’acide orthophosphorique à 85% dans l’eau de manière à avoir un volume total de solution de 75 cm3. Les rapports atomiques Ni/Mo et P/Mo de cette solution sont respectivement de 0,40 et 0,48. Le pH de la solution est de 0,8.
La solution de l’exemple 3 comprend majoritairement le sel de nickel de l’hétéropolyanions de Strandberg Ni2H2P2Mo5023 d’après la bande Raman caractéristique à 942cm-1.
Exemple 4 : mise en émulsion des solutions des exemples 1, 2 et 3 conforme au procédé selon la présente description)
La mise en émulsion des solutions 1 , 2 et 3 est réalisée dans une phase organique lourde contenant des asphaltènes préchauffée à 80°C. La charge hydrocarbonée lourde est un résidu sous vide (RSV), riche en métaux et asphaltènes, dont les principales caractéristiques sont reportées dans le Tableau 1.
Figure imgf000032_0001
Tableau 1 : caractéristiques de la charge hydrocarbonée lourde mise en oeuvre Le mélange de la charge hydrocarbure avec la solution de précurseur de catalyseur solide dispersé selon l’invention est réalisé à 80°C, sous agitation à 8000 tr/min au moyen d’un Ultra-turrax®, après ajout dans l’huile du surfactant monooléate de sorbitane (C24H44O6) à une concentration de 3% en poids par rapport à la charge hydrocarbonée lourde puis ajout de la solution aqueuse contenant le précurseur.
La concentration en molybdène dans le mélange final est de 100 ppm en poids par rapport à la charge hydrocarbonée lourde.
Exemple 5 : préparation d’une solution résidu / 2-éthyihexanoate de molybdène (non conforme au procédé selon la présente description)
Préalablement à l’incorporation à la phase organique lourde contenant des asphaltènes, le 2- éthylhexanoate de molybdène est prémélangé mécaniquement avec un distillât sous vide (DSV) en respectant le rapport massique 2-éthylhexanoate de molybdène/DSV de 0,75%. Par la suite le mélange DSV/2-éthylhexanoate de molybdène est ajoutée à la charge hydrocarbonée lourde de type résidu contenant des asphaltènes, dont les principales caractéristiques sont reportées dans le Tableau 1 , de manière à ce que la concentration en molybdène dans le mélange final soit de 100 ppm en poids.
Il est à noter que l’addition d’une source de nickel ou de cobalt n’augmente pas les performances du catalyseur de l’exemple 5 et qu’il n’est pas nécessaire d’utiliser un surfactant pour parvenir à disperser le 2-éthylhexanoate de molybdène dans la phase organique lourde.
Exemple 6 : préparation d’un catalyseur NiMo solide supporté sur alumine
Le catalyseur solide supporté a été préparé par imprégnation à sec d’une alumine bimodale par une solution aqueuse contenant des précurseurs de molybdène et nickel. La solution d’imprégnation a été préparée par dissolution, dans 80mL d’eau, de 6g d’oxyde de molybdène et de 1 ,55g d’hydroxyde de nickel en présence de 2,3g d’acide phosphorique (pureté de 85% dans 15% d’eau) à une température de 90°C. Après l’imprégnation de l’alumine par la solution contenant le molybdène, le nickel et le phosphore, le catalyseur solide supporté a été séché à 120°C pendant 24 heures puis calciné sous air à 450°C pendant 2 heures afin de former les oxydes de nickel et molybdène par décomposition des précurseurs correspondants. C’est sous cette forme d’oxyde, que le catalyseur solide supporté a été chargé dans le réacteur. Exemple 7 : comparaison des performances en hydroconversion de résidus
Les performances en hydroconversion de résidu des catalyseurs solides dispersés issus des émulsions de l’exemple 4 ont été comparées aux performances du catalyseur dispersé issu du mélange de l’exemple 5.
Les performances des catalyseurs solides dispersés ont été comparées en réacteur hybride, c’est-à-dire en réacteur contenant le catalyseur solide à base de nickel et molybdène supporté sur alumine de l’exemple 6 plus le catalyseur solide dispersé.
Les conditions de test pour effectuer l’hydroconversion du résidu en réacteur continu parfaitement agité sont les suivantes :
température : 410°C ; pression totale : 16 MPa ; VVHr : 0,1 h-1 (débit volumique de charge hydrocarbonée lourde divisé par le volume total de réacteurs) ; H2/HC en entrée : 1500 NL/L ; concentration en Mo issu du catalyseur solide dispersé issu des préparations décrites avec les exemples 4 et 5 : 100 ppm en poids par rapport à la charge.
Ces conditions permettent la formation du sulfure de molybdène dispersé par réaction avec l’H2S issu de l’hydrodésulfuration de la charge hydrocarbonée lourde avec le précurseur.
Les résultats obtenus sont reportés dans le Tableau 2. On obtient de meilleures performances d’hydrodésasphaltage lorsque le précurseur est conforme au procédé selon la présente description. En l’occurrence, on constate une augmentation de l’hydrodésasphaltage (HDAsC7) du résidu de 80 à 86, 85 ou 84% avec l’utilisation de solutions contenant les précurseurs de type sel d’hétéropolyanion préparés selon les exemples 1 , 2 et 3 par rapport à l’utilisation du 2-éthylhexanoate de molybdène. De plus, avec l’utilisation de solutions contenant les précurseurs de catalyseur solide dispersé de type sel d’hétéropolyanion préparés selon les exemples 1 , 2 et 3, la quantité de sédiments formés est plus faible et est diminuée d’au moins un facteur 3 par rapport à l’utilisation du 2- éthylhexanoate de molybdène, ce qui permet d’améliorer l’opérabilité du procédé.
Figure imgf000035_0001
Tableau 2 : performances mesurées

Claims

REVENDICATIONS
1. Procédé d’hydroconversion d’une charge hydrocarbonée lourde en présence d’hydrogène, d’au moins un catalyseur solide supporté et d’au moins un catalyseur solide dispersé,
l’au moins un catalyseur solide dispersé étant obtenu à partir d’au moins un sel d’un hétéropolyanion combinant du molybdène et au moins un métal sélectionné parmi le cobalt et le nickel dans une structure de type Strandberg, Keggin, Keggin lacunaire ou Keggin lacunaire substitué.
2. Procédé selon la revendication 1 , dans lequel l’au moins un sel d’hétéropolyanion respecte :
la formule (I) suivante M(6.x)/ HxP2MomW dans laquelle :
M est le cation Ni2+ ou le cation Co2+,
H est l’hydrogène,
x est un nombre entier compris entre 0 et 2,
P est le phosphore,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 1 et 5,
n est un nombre entier compris entre 0 et 4,
m + n = 5,
O est l’oxygène,
la structure HxP2MomWn023 est l’hétéropolyanion chargé négativement, sa charge étant égale à x-6 ; ou
la formule (II) suivante CpXx/2AgMomWnX’zOyHh dans laquelle :
C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué,
p est un nombre entier compris entre 0 et 6,
X est le cation Ni2+ ou le cation Co2+,
x est un nombre entier compris entre 0 et 1 1 ,
p+x est un nombre entier compris entre 3 et 1 1 ,
A est le phosphore ou le silicium ou le bore,
g est 0 ou 1 ,
Mo est le molybdène, W est le tungstène,
m est un nombre entier compris entre 1 et 12,
n est un nombre entier compris entre 0 et 1 1 ,
m+n = 9 ou 1 1 ou 12,
X’ est un élément du groupe VIII du tableau périodique,
z est 0 ou 1 ,
x+z est un nombre entier supérieur ou égal à 1 ,
O est l’oxygène,
y est un nombre entier égal à 34 ou 39 ou 40,
H est l’hydrogène,
h est un nombre entier compris entre 0 et 3, et
la structure AgMomWnX’zOyHh est l’hétéropolyanion chargé négativement, sa charge étant égale à -(p+x).
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel l’au moins un sel d’hétéropolyanion respecte :
la formule (I) suivante M(6-x)/2HxP2MomWn023 dans laquelle :
M est le cation Ni2+ ou le cation Co2+,
H est l’hydrogène,
x est un nombre entier compris entre 0 et 2,
P est le phosphore,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 3 et 5,
n est un nombre entier compris entre 0 et 2,
m + n = 5,
O est l’oxygène,
la structure HxP2MomWn023 est l’hétéropolyanion chargé négativement, sa charge étant égale à x-6 ; ou
la formule (II) suivante CpXx/2AgMomWnX’zOyHh dans laquelle :
C est le cation H+ et/ou un cation ammonium quaternaire substitué ou non substitué,
p est un nombre entier compris entre 0 et 2,
X est le cation Ni2+ ou le cation Co2+,
x est un nombre entier compris entre 3 et 8, p+x est un nombre entier compris entre 3 et 8,
A est le phosphore ou le silicium,
g est 0 ou 1 ,
Mo est le molybdène,
W est le tungstène,
m est un nombre entier compris entre 9 et 12,
n est un nombre entier compris entre 0 et 3,
m+n = 1 1 ou 12,
X’ est le nickel ou le cobalt,
z est 0 ou 1 ,
O est l’oxygène,
y est un nombre entier égal à 39 ou 40,
H est l’hydrogène,
h est un nombre entier compris entre 0 et 2, et
la structure AgMomWnX’zOyHh est l’hétéropolyanion chargé négativement, sa charge étant égale à -(p+x).
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants : C02H2P2M05O23,
Figure imgf000038_0003
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’au moins un sel d’hétéropolyanion est choisi parmi les sels suivants : Ni2H2R2Mq5q23,
Figure imgf000038_0001
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’au moins un sel d’hétéropolyanion est choisi parmi Ni2H2R2Mq5q23, Ni5/2HR2Mq5q23,
Figure imgf000038_0002
7. Procédé selon l’une quelconque des revendications précédentes, comprenant au moins une des étapes suivantes :
a) préparation d’une solution aqueuse comprenant l’au moins un sel d’hétéropolyanion;
b) pré-mélange de la solution aqueuse avec une huile hydrocarbonée pour former un mélange de précurseur dilué,
c) mélange de la solution aqueuse obtenue à l’issue de l’étape a) ou du mélange de précurseur dilué obtenu à l’issue de l’étape b) avec la charge hydrocarbonée lourde pour former un mélange actif ; et
d) mise en oeuvre de l’étape d’hydroconversion de la charge hydrocarbonée lourde par injection de ladite solution aqueuse obtenue à l’issue de l’étape a), ou dudit mélange de précurseur dilué obtenu à l’issue de l’étape b), ou dudit mélange actif obtenu à l’issue de l’étape c) en amont ou directement dans un réacteur d’hydroconversion contenant l’au moins un catalyseur solide supporté.
8. Procédé selon l’une quelconque des revendications précédentes, comprenant en outre le traitement thermique de l’au moins un sel d’hétéropolyanion pour former l’au moins un catalyseur solide dispersé.
9. Procédé selon la revendication 8, dans lequel le traitement thermique est effectué en présence d’au moins un composé soufré.
10. Procédé selon l’une quelconque des revendications précédentes, dans lequel la concentration de l’au moins un catalyseur solide dispersé est comprise entre 1 et 5000 ppm en poids de molybdène par rapport à la charge hydrocarbonée lourde en entrée de réacteur.
1 1. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape d’hydroconversion est opérée sous une pression absolue comprise entre 2 et 38 MPa, et/ou à une température comprise entre 300 et 500°C et/ou à une vitesse spatiale horaire (VVHr) de la charge par rapport au volume total de réacteur comprise entre 0,05 et 10 h-1 et/ou avec une quantité d’hydrogène mélangée à la charge hydrocarbonée lourde comprise entre 50 et 5000 normaux mètres cube (Nm3) par mètre cube (m3) de charge hydrocarbonée lourde liquide.
12. Procédé selon l’une quelconque des revendications précédentes, dans lequel le catalyseur solide supporté comprend un support et une phase active comprenant au moins un métal du groupe VIB et au moins un métal du groupe VIII.
13. Procédé selon la revendication 12, dans lequel le support est choisi parmi l’alumine, la silice, la silice-alumine, le dioxyde de titane, le carbone, le charbon et le coke, et/ou la teneur en métal du groupe VIB est comprise entre 1 et 30% en poids exprimé en oxyde métallique par rapport au poids total du catalyseur solide supporté, et/ou la teneur en métal du groupe VIII est comprise entre 0,5 et 10% en poids exprimé en oxyde métallique par rapport au poids total du catalyseur solide supporté, et/ou le métal du groupe VIB est choisi parmi le molybdène, le tungstène et le mélange de ces deux éléments, et/ou le métal du groupe VIII est choisi parmi le cobalt, le nickel et le mélange de ces deux éléments.
14. Procédé selon l’une quelconque des revendications précédentes, dans lequel la charge hydrocarbonée lourde contient des hydrocarbures dont au moins 50% en poids ont une température d'ébullition supérieure à 300°C et au moins 1% en poids ont une température d'ébullition supérieure à 540°C, du soufre à une teneur supérieure à 0,1 % en poids, des métaux à une teneur supérieure à 20 ppm en poids et des asphaltènes C7 à une teneur supérieure à 1 % en poids, par rapport au poids total de la charge hydrocarbonée lourde.
15. Utilisation d’un sel d’un hétéropolyanion pour l’hydroconversion d’une charge hydrocarbonée lourde dans un réacteur contenant au moins un catalyseur solide supporté, le sel d’hétéropolyanion combinant du molybdène et au moins un métal sélectionné parmi le cobalt et le nickel dans une structure de type Strandberg, Keggin, Keggin lacunaire ou Keggin lacunaire substitué.
PCT/EP2018/083061 2017-12-13 2018-11-29 Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride WO2019115248A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18807387.8A EP3723903A1 (fr) 2017-12-13 2018-11-29 Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride
US16/772,249 US11192089B2 (en) 2017-12-13 2018-11-29 Process for hydroconversion of heavy hydrocarbon feedstock in hybrid reactor
RU2020121163A RU2771765C2 (ru) 2017-12-13 2018-11-29 Способ гидроконверсии тяжелого углеводородного сырья в гибридном реакторе
CN201880080315.8A CN111741811B (zh) 2017-12-13 2018-11-29 在混合反应器中加氢转化重质烃原料的方法
SA520412157A SA520412157B1 (ar) 2017-12-13 2020-06-08 عملية تحويل هيدروجيني لمخزون تلقيمة هيدروكربوني ثقيل في مفاعل هجين

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1762061 2017-12-13
FR1762061A FR3074699B1 (fr) 2017-12-13 2017-12-13 Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride

Publications (1)

Publication Number Publication Date
WO2019115248A1 true WO2019115248A1 (fr) 2019-06-20

Family

ID=61655903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/083061 WO2019115248A1 (fr) 2017-12-13 2018-11-29 Procede d'hydroconversion de charge hydrocarbonee lourde en reacteur hybride

Country Status (6)

Country Link
US (1) US11192089B2 (fr)
EP (1) EP3723903A1 (fr)
CN (1) CN111741811B (fr)
FR (1) FR3074699B1 (fr)
SA (1) SA520412157B1 (fr)
WO (1) WO2019115248A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741303C1 (ru) * 2019-12-27 2021-01-25 федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" Катализатор глубокой гидроочистки нефтяных фракций и способ его приготовления
FR3125058B1 (fr) 2021-07-08 2024-09-27 Ifp Energies Now Hydroconversion en lit entraine d’une charge hydrocarbonee lourd comprenant le prémélange de ladite charge avec un additif organique
FR3125059B1 (fr) 2021-07-08 2024-09-27 Ifp Energies Now Hydroconversion en lit hybride bouillonnant-entraîné d’une charge hydrocarbonee lourde comprenant le mélange de ladite charge avec un précurseur de catalyseur contenant un additif organique
FR3125057B1 (fr) 2021-07-08 2024-10-04 Ifp Energies Now Hydroconversion en lit hybride bouillonnant-entraîné d’une charge hydrocarbonee lourde comprenant le prémélange de ladite charge avec un additif organique
FR3125060B1 (fr) 2021-07-08 2024-09-27 Ifp Energies Now Hydroconversion en lit entraine d’une charge hydrocarbonee lourde comprenant le mélange de ladite charge avec un précurseur de catalyseur contenant un additif organique
WO2024005671A1 (fr) * 2022-06-29 2024-01-04 Публичное акционерное общество "Газпром нефть" Procédé de transformation de matières premières hydrocarbures lourdes

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231488A (en) 1963-10-28 1966-01-25 Universal Oil Prod Co Process for hydrorefining heavy hydrocarbon charge stocks and catalyst therefor
US4354852A (en) 1981-04-24 1982-10-19 Hydrocarbon Research, Inc. Phase separation of hydrocarbon liquids using liquid vortex
US4457831A (en) 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
US4495060A (en) 1982-12-27 1985-01-22 Hri, Inc. Quenching hydrocarbon effluent from catalytic reactor to avoid precipitation of asphaltene compounds
US4521295A (en) 1982-12-27 1985-06-04 Hri, Inc. Sustained high hydroconversion of petroleum residua feedstocks
US4637871A (en) 1985-04-29 1987-01-20 Exxon Research And Engineering Company Hydrocracking with aqueous phosphomolybdic acid
US4637870A (en) 1985-04-29 1987-01-20 Exxon Research And Engineering Company Hydrocracking with phosphomolybdic acid and phosphoric acid
EP0565205A1 (fr) * 1992-04-09 1993-10-13 Stone & Webster Engineering Corporation Procédé combiné de prétraitement et hydroconversion de résidus de raffinage lourds
FR2749778A1 (fr) 1996-06-13 1997-12-19 Elf Antar France Procede de preparation de catalyseurs d'hydrotraitement
FR2764211A1 (fr) 1997-06-09 1998-12-11 Elf Antar France Procede de preparation de catalyseurs d'hydrotraitement
US6043182A (en) 1997-04-11 2000-03-28 Intevep, S.A. Production of oil soluble catalytic precursors
US20050241991A1 (en) 2004-04-28 2005-11-03 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system
US20050241992A1 (en) 2004-04-28 2005-11-03 Lott Roger K Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
EP1637576A1 (fr) 2004-09-20 2006-03-22 Institut Français du Pétrole Procédé d'hydroconversion d'une charge lourde avec un catalyseur disperse
WO2006031575A1 (fr) 2004-09-10 2006-03-23 Chevron U.S.A. Inc. Composition catalytique en suspension epaisse hautement active
WO2006031570A1 (fr) 2004-09-10 2006-03-23 Chevron U.S.A. Inc. Composition de catalyseur en suspension hautement active
WO2006031543A2 (fr) 2004-09-10 2006-03-23 Chevron U.S.A. Inc. Procede permettant de valoriser une huile lourde au moyen d'une composition catalytique en suspension
US20080177124A1 (en) 2006-12-21 2008-07-24 Magalie Roy-Auberger Process for the hydroconversion in a slurry of heavy hydrocarbonaceous feedstocks in the presence of a dispersed phase and an alumina-based oxide
FR2913691A1 (fr) 2007-03-16 2008-09-19 Inst Francais Du Petrole Procede d'hydroconversion de charges hydrocarbonees lourdes en reacteur slurry en presence d'un catalyseur a base d'heteropolyanion
FR2935139A1 (fr) 2008-08-19 2010-02-26 Inst Francais Du Petrole Heteropolyanion de type keggin lacunaire a base de tungstene pour l'hydrocraquage
WO2012088025A2 (fr) 2010-12-20 2012-06-28 Chevron U.S.A. Inc. Catalyseurs d'hydrotraitement et leurs procédés de fabrication
US20140027344A1 (en) 2012-07-30 2014-01-30 Headwaters Technology Innovation, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
FR3045650A1 (fr) * 2015-12-21 2017-06-23 Ifp Energies Now Procede de valorisation de produits lourds en reacteur hybride avec captation d'un catalyseur disperse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1420888A (en) * 1987-02-27 1988-09-26 University Of Oregon Organic solvent soluble oxide supported hydrogenation catalyst precursors
FR2843050B1 (fr) * 2002-08-01 2005-04-15 Inst Francais Du Petrole Catalyseur a base de metaux du groupe vi et du groupe viii presents au moins en partie sous la forme d'heteropolyanions dans le precurseur oxyde
FR2884827B1 (fr) * 2005-04-25 2009-12-18 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
US7807599B2 (en) * 2007-10-31 2010-10-05 Chevron U. S. A. Inc. Hydroconversion processes employing multi-metallic catalysts and method for making thereof
BR112012014687B1 (pt) * 2009-12-16 2018-05-08 Ifp Energies Now catalisador utilizável em hidrotratamento, compreendendo metais dos grupos viii e vib e preparo com o ácido acético e succinato de dialquila c1-c4
US9340733B2 (en) * 2010-12-22 2016-05-17 Centre National De La Recherche Scientifique Process for Hydrodesulphuration of gasoil cuts using a catalyst based on heteropolyanions trapped in a mesostructured silica support
FR2969509B1 (fr) * 2010-12-22 2012-12-28 IFP Energies Nouvelles Materiau spherique a base d'heteropolyanions pieges dans une matrice oxyde mesostructuree et son utilisation comme catalyseur dans les procedes du raffinage
FR2969513B1 (fr) * 2010-12-22 2013-04-12 IFP Energies Nouvelles Procede de preparation d'un materiau spherique a porosite hierarchisee comprenant des particules metalliques piegees dans une matrice mesostructuree
FR2969649B1 (fr) * 2010-12-22 2012-12-28 IFP Energies Nouvelles Procede d'hydroteraitement de coupes lourdes en deux etapes utilisant un catalyseur a base d'heteropolyanions pieges dans un support oxyde mesostructure
FR3023184B1 (fr) * 2014-07-04 2019-12-27 IFP Energies Nouvelles Catalyseur d'hydrotraitement a densite de molybdene elevee et methode de preparation.
FR3043676B1 (fr) * 2015-11-17 2017-12-08 Ifp Energies Now Procede de transformation d'une charge comprenant une biomasse lignocellulosique utilisant un sel de polyoxometallates comprenant du nickel et du tungstene ou du nickel et du molybdene
CN106622373A (zh) * 2016-12-23 2017-05-10 山东大学 一种二氧化硅负载固体杂多酸氧化脱硫催化剂及其制备方法
CN106693997B (zh) * 2017-01-10 2019-05-31 中国石油大学(华东) 一种柴油加氢脱硫催化剂及其制备方法和应用

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231488A (en) 1963-10-28 1966-01-25 Universal Oil Prod Co Process for hydrorefining heavy hydrocarbon charge stocks and catalyst therefor
US4354852A (en) 1981-04-24 1982-10-19 Hydrocarbon Research, Inc. Phase separation of hydrocarbon liquids using liquid vortex
US4457831A (en) 1982-08-18 1984-07-03 Hri, Inc. Two-stage catalytic hydroconversion of hydrocarbon feedstocks using resid recycle
US4495060A (en) 1982-12-27 1985-01-22 Hri, Inc. Quenching hydrocarbon effluent from catalytic reactor to avoid precipitation of asphaltene compounds
US4521295A (en) 1982-12-27 1985-06-04 Hri, Inc. Sustained high hydroconversion of petroleum residua feedstocks
US4637871A (en) 1985-04-29 1987-01-20 Exxon Research And Engineering Company Hydrocracking with aqueous phosphomolybdic acid
US4637870A (en) 1985-04-29 1987-01-20 Exxon Research And Engineering Company Hydrocracking with phosphomolybdic acid and phosphoric acid
EP0565205A1 (fr) * 1992-04-09 1993-10-13 Stone & Webster Engineering Corporation Procédé combiné de prétraitement et hydroconversion de résidus de raffinage lourds
FR2749778A1 (fr) 1996-06-13 1997-12-19 Elf Antar France Procede de preparation de catalyseurs d'hydrotraitement
US6043182A (en) 1997-04-11 2000-03-28 Intevep, S.A. Production of oil soluble catalytic precursors
FR2764211A1 (fr) 1997-06-09 1998-12-11 Elf Antar France Procede de preparation de catalyseurs d'hydrotraitement
US20050241991A1 (en) 2004-04-28 2005-11-03 Headwaters Heavy Oil, Llc Ebullated bed hydroprocessing methods and systems and methods of upgrading an existing ebullated bed system
US20050241992A1 (en) 2004-04-28 2005-11-03 Lott Roger K Fixed bed hydroprocessing methods and systems and methods for upgrading an existing fixed bed system
WO2006031543A2 (fr) 2004-09-10 2006-03-23 Chevron U.S.A. Inc. Procede permettant de valoriser une huile lourde au moyen d'une composition catalytique en suspension
WO2006031575A1 (fr) 2004-09-10 2006-03-23 Chevron U.S.A. Inc. Composition catalytique en suspension epaisse hautement active
WO2006031570A1 (fr) 2004-09-10 2006-03-23 Chevron U.S.A. Inc. Composition de catalyseur en suspension hautement active
EP1637576A1 (fr) 2004-09-20 2006-03-22 Institut Français du Pétrole Procédé d'hydroconversion d'une charge lourde avec un catalyseur disperse
US20080177124A1 (en) 2006-12-21 2008-07-24 Magalie Roy-Auberger Process for the hydroconversion in a slurry of heavy hydrocarbonaceous feedstocks in the presence of a dispersed phase and an alumina-based oxide
FR2913691A1 (fr) 2007-03-16 2008-09-19 Inst Francais Du Petrole Procede d'hydroconversion de charges hydrocarbonees lourdes en reacteur slurry en presence d'un catalyseur a base d'heteropolyanion
FR2935139A1 (fr) 2008-08-19 2010-02-26 Inst Francais Du Petrole Heteropolyanion de type keggin lacunaire a base de tungstene pour l'hydrocraquage
WO2012088025A2 (fr) 2010-12-20 2012-06-28 Chevron U.S.A. Inc. Catalyseurs d'hydrotraitement et leurs procédés de fabrication
US20140027344A1 (en) 2012-07-30 2014-01-30 Headwaters Technology Innovation, Llc Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking
FR3045650A1 (fr) * 2015-12-21 2017-06-23 Ifp Energies Now Procede de valorisation de produits lourds en reacteur hybride avec captation d'un catalyseur disperse

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"CRC Handbook of Chemistry and Physics", 2000
"Second génération ebullated bed technology", 19 March 1995, AICHE
ADOLFO ROMERO-GALARZA ET AL: "Analysis of the promotion of CoMoP/AlOHDS catalysts prepared from a reduced HPMo heteropolyacid Co salt", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 280, no. 2, 23 March 2011 (2011-03-23), pages 230 - 238, XP028216795, ISSN: 0021-9517, [retrieved on 20110330], DOI: 10.1016/J.JCAT.2011.03.021 *
GRIFFIN, W. C. J., COSMETICS CHEMISTS, vol. 1, 1949, pages 131
JOCELYN NORTH ET AL: "Efficient hydrodesulfurization catalysts based on Keggin polyoxometalates", APPLIED CATALYSIS A: GENERAL, vol. 508, 14 October 2015 (2015-10-14), AMSTERDAM, NL, pages 16 - 24, XP055500657, ISSN: 0926-860X, DOI: 10.1016/j.apcata.2015.10.001 *
ROUQUEROL F.; ROUQUEROL J.; SINGH K.: "Adsorption by Powders & Porous Solids : Principle, methodology and applications", 1999, ACADEMIC PRESS

Also Published As

Publication number Publication date
FR3074699A1 (fr) 2019-06-14
CN111741811B (zh) 2023-10-13
US11192089B2 (en) 2021-12-07
RU2020121163A (ru) 2022-01-13
EP3723903A1 (fr) 2020-10-21
CN111741811A (zh) 2020-10-02
US20210101136A1 (en) 2021-04-08
FR3074699B1 (fr) 2019-12-20
SA520412157B1 (ar) 2024-04-22
RU2020121163A3 (fr) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2019115248A1 (fr) Procede d&#39;hydroconversion de charge hydrocarbonee lourde en reacteur hybride
EP2255873B1 (fr) Catalyseurs d&#39;hydrodémétallation et d&#39;hydrodésulfuration et mise en oeuvre dans un procédé d&#39;enchaînement en formulation unique
JP6097224B2 (ja) 水素化処理触媒を作製するための方法
EP3288678B1 (fr) Catalyseur a base de gamma-valerolactone et/ou de ses produits d&#39;hydrolyse et son utilisation dans un procede d&#39;hydrotraitement et/ou d&#39;hydrocraquage
EP3288679B1 (fr) Catalyseur a base d&#39;acide y-cetovalerique et son utilisation dans un procede d&#39;hydrotraitement et/ou d&#39;hydrocraquage
EA016893B1 (ru) Объемный катализатор гидрогенизации и его применение
EP2598612B1 (fr) Procede d&#39;hydrotraitement d&#39;une coupe hydrocarbonee de point d&#39;ebullition superieur a 250 °c en presence d&#39;un catalyseur sulfure prepare au moyen d&#39;un oligosaccharide cyclique
FR2999453A1 (fr) Catalyseur d&#39;hydrotraitement de residus comprenant du vanadium et son utilisation dans un procede d&#39;hydroconversion de residus
EP3338887B1 (fr) Procédé de sulfuration d&#39;un catalyseur à partir d&#39;une coupe d&#39;hydrocarbures préalablement hydrotraitée et d&#39;un composé soufré
FR3074698A1 (fr) Procede d&#39;hydroconversion en slurry de charge hydrocarbonee lourde
WO2019110346A1 (fr) Hydrotraitement de charges hydrocarbonees avec un catalyseur comprenant un materiau aluminique comprenant du carbone
WO2020020740A1 (fr) Catalyseur comalaxe issu de solutions a base d&#39;heteropolyanions, son procede de preparation et son utilisation en hydroconversion de charges hydrocarbonees lourdes
RU2771765C2 (ru) Способ гидроконверсии тяжелого углеводородного сырья в гибридном реакторе
RU2771812C2 (ru) Способ гидроконверсии тяжелого углеводородного сырья в суспензии
FR3090685A1 (fr) Procede d’hydroconversion de charges d’hydrocarbures lourdes mettant en œuvre un enchainement specifique de catalyseurs
WO2018059871A1 (fr) Procede d&#39;hydrotraitement utilisant un catalyseur a base d&#39;un metal du groupe viiib et un metal du groupe vib prepare en milieu fluide supercritique
FR2969644A1 (fr) Procede d&#39;hydroconversion de residu desalphalte utilisant un catalyseur a base d&#39;heteropolyanions pieges dans un support oxyde mesostructure
WO2024115274A1 (fr) Catalyseur d&#39;hydrotraitement et/ou d&#39;hydrocraquage a base d&#39;un element du groupe vib, d&#39;un element du groupe viii et d&#39;un element du groupe ivb
FR3121366A1 (fr) Procédé de sulfuration d’un catalyseur d&#39;hydrotraitement et/ou d’hydrocraquage par synthèse hydrothermale.
KR20140064948A (ko) 수소화처리 촉매들 및 이의 제조 방법들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18807387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018807387

Country of ref document: EP

Effective date: 20200713

WWE Wipo information: entry into national phase

Ref document number: 520412157

Country of ref document: SA