WO2019114304A1 - 移动充电车的启动供电装置和方法 - Google Patents

移动充电车的启动供电装置和方法 Download PDF

Info

Publication number
WO2019114304A1
WO2019114304A1 PCT/CN2018/100675 CN2018100675W WO2019114304A1 WO 2019114304 A1 WO2019114304 A1 WO 2019114304A1 CN 2018100675 W CN2018100675 W CN 2018100675W WO 2019114304 A1 WO2019114304 A1 WO 2019114304A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply circuit
control unit
load control
lead
Prior art date
Application number
PCT/CN2018/100675
Other languages
English (en)
French (fr)
Inventor
甘银华
吴广涛
Original Assignee
蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车有限公司 filed Critical 蔚来汽车有限公司
Priority to EP18889379.6A priority Critical patent/EP3726699A4/en
Publication of WO2019114304A1 publication Critical patent/WO2019114304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering

Definitions

  • the invention relates to the technical field of electric vehicle charging, and in particular to a starting power supply device and method for a mobile charging vehicle.
  • the mobile charging car can charge electric vehicles in urban areas and in emergency situations to improve the convenience of charging and enhance the experience of using electric vehicles.
  • the main energy sources of mobile charging vehicles include: vehicle lead-acid batteries, energy storage batteries for external services, and mobile power batteries, if they are electric vehicles, and their own power batteries.
  • vehicle lead-acid batteries When the mobile charging car provides service (replenishment or charging), it first needs a certain amount of energy to start the whole system.
  • the power battery and the energy storage battery need extra power to make their BMS work before starting, and then can output externally, so They themselves cannot be used as a starting power source for the system. Therefore, the car lead-acid battery becomes the starting power of the system, but the lead-acid battery has limited capacity.
  • the technical problem to be solved by the present invention is to provide a starting power supply device and method for a mobile charging vehicle, which can switch the system load, the controller, etc., and the steady state power supply from the lead-acid battery to the energy storage when the mobile charging vehicle is externally served. During the battery process, the supply voltage can be smoothly switched, thereby improving the safety and reliability of the external service of the entire charging car.
  • the present invention provides a startup power supply device for a mobile charging vehicle, including:
  • a lead-acid battery power supply circuit a lead-acid battery power supply circuit, an energy storage battery power supply circuit, and a load control unit, wherein the lead-acid battery power supply circuit and the energy storage battery power supply circuit are both connected to the load control unit for powering the load control unit ;
  • the starting power supply of the mobile charging vehicle is divided into a first starting phase and a second starting phase;
  • the lead-acid battery power supply circuit supplies power to the load control unit, and the load control unit controls the energy storage battery power supply circuit to start;
  • the power supply circuit of the load control unit is switched by the lead-acid battery power supply circuit to the energy storage battery power supply circuit.
  • the lead-acid battery power supply circuit includes a lead-acid battery and a first protection diode, wherein a positive electrode of the lead-acid battery is connected to a positive electrode of the first protection diode, a negative electrode of the lead-acid battery, and the The cathode of the first protection diode is connected to the load control unit.
  • the energy storage battery power supply circuit comprises an energy storage battery, a DC/DC converter and a second protection diode, wherein an input end of the DC/DC converter is connected to a positive pole and a negative pole of the energy storage battery One output end of the DC/DC converter is connected to the positive pole of the second protection diode, and the other output end is connected to the load control unit; the negative pole of the second protection diode and the load control The units are connected.
  • the load control unit is further configured to perform a system self-test, and after the self-test passes, the energy storage battery power supply circuit is started.
  • the load control unit activates the energy storage battery power supply circuit by controlling activation of the DC/DC converter.
  • the load control unit includes an electrical load and a controller of the charging vehicle.
  • the startup power supply device further includes a normally closed contact relay, and the normally closed contact relay includes a coil and a normally closed contact, wherein
  • One end of the coil is connected to a positive pole of the second protection diode and one end of the DC/DC converter, and the other end of the coil is connected to the other end of the DC/DC converter and a load control unit;
  • the normally closed contact has two, respectively a first normally closed contact and a second normally closed contact, one end of the first normally closed contact is connected to the negative pole of the first protection diode, and the other end is connected to the a load control unit; one end of the second normally closed contact is connected to the negative electrode of the lead-acid battery, and the other end is connected to the load control unit.
  • the lead-acid battery power supply circuit further includes a start switch for closing the lead-acid battery power supply circuit.
  • a method for starting power supply of a mobile charging vehicle comprising:
  • the lead-acid battery power supply circuit supplies power to the load control unit;
  • the load control unit sends a start command to the energy storage battery power supply circuit, starts the energy storage battery power supply circuit, and enters a second startup phase;
  • the output voltage of the energy storage battery power supply circuit is continuously increased.
  • the lead-acid battery power supply circuit is turned off, and the load is The power supply circuit of the control unit is switched by the lead-acid battery power supply circuit to the energy storage battery power supply circuit.
  • the lead-acid battery power supply circuit includes a lead-acid battery and a first protection diode, wherein a positive electrode of the lead-acid battery is connected to a positive electrode of the first protection diode, a negative electrode of the lead-acid battery, and the The cathode of the first protection diode is connected to the load control unit.
  • the energy storage battery power supply circuit includes an energy storage battery, a DC/DC converter, and a second protection diode, wherein an input end of the DC/DC converter is connected to a positive pole and a negative pole of the energy storage battery.
  • One output end of the DC/DC converter is connected to the positive pole of the second protection diode, and the other output end is connected to the load control unit; the negative pole of the second protection diode and the load control The units are connected.
  • the method further includes: the load control unit performs a system self-test, and after the self-test passes, the energy storage battery power supply circuit is started.
  • the load control unit activates the energy storage battery power supply circuit by controlling activation of the DC/DC converter.
  • the startup power supply device further includes a normally closed contact relay, and the normally closed contact relay includes a coil and a normally closed contact, wherein
  • One end of the coil is connected to a positive pole of the second protection diode and one end of the DC/DC converter, and the other end of the coil is connected to the other end of the DC/DC converter and a load control unit;
  • the normally closed contact has two, respectively a first normally closed contact and a second normally closed contact, one end of the first normally closed contact is connected to the negative pole of the first protection diode, and the other end is connected to the a load control unit; one end of the second normally closed contact is connected to the negative electrode of the lead-acid battery, and the other end is connected to the load control unit.
  • the second startup phase further includes:
  • the output voltage of the lead-acid battery power supply circuit is V 0
  • the power supply voltage received by the load control unit is V 1
  • the output voltage of the energy storage battery power supply circuit is V 2 .
  • V fall within the range of 1 to 20% V 1.
  • a controller comprising a memory and a processor, the memory storing a computer program, the program being capable of implementing the steps of the method when executed by the processor.
  • a computer readable storage medium for storing computer instructions that, when executed by a computer or processor, implement the steps of the method.
  • the startup power supply device and method of the mobile charging vehicle of the present invention can achieve considerable technical advancement and practicability, and have extensive industrial use value, and at least have the following advantages:
  • the invention enables the mobile charging vehicle to be divided into two start-up phases when starting the operation service, the first start-up phase is powered by the lead-acid battery to the load control unit 3, and the second start-up phase is smoothly switched by the lead-acid battery to the in-vehicle storage. It can be powered by battery, the power supply switching process is seamless switching, the response is fast, and the power supply drop voltage is small, which realizes the reliable and stable start of the mobile charging vehicle.
  • the mobile charging vehicle is in steady state service, it is powered by the energy storage battery, which ensures that the mobile charging vehicle will not be in a state of power failure during service, and greatly improves the safety and reliability of the mobile charging vehicle service.
  • FIG. 1 is a schematic diagram of a startup power supply device of a mobile charging vehicle according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a startup power supply device of a mobile charging vehicle according to an embodiment of the present invention.
  • FIG. 3 is a waveform diagram of a startup supply voltage of a startup power supply device of the mobile charging vehicle shown in FIG. 2.
  • FIG. 4 is a circuit diagram of a startup power supply device of a mobile charging vehicle according to another embodiment of the present invention.
  • Fig. 5 is a waveform diagram showing the startup supply voltage of the case 1 of the startup power supply device of the mobile charging car shown in Fig. 4.
  • Fig. 6 is a waveform diagram showing the startup supply voltage of the case 2 of the startup power supply device of the mobile charging car shown in Fig. 4.
  • FIG. 7 is a schematic diagram of a method for starting power supply of a mobile charging vehicle according to an embodiment of the present invention.
  • the embodiment of the invention provides a startup power supply device for a mobile charging vehicle, as shown in FIG. 1 , comprising: a lead-acid battery power supply circuit 1 , an energy storage battery power supply circuit 2 and a load control unit 3 , wherein the lead-acid battery power supply circuit 1 And the energy storage battery power supply circuit 2 are both connected to the load control unit 3 for supplying power to the load control unit 3.
  • the starting power supply of the mobile charging vehicle is divided into a first starting phase and a second starting phase; in the first starting phase, the lead-acid battery power supply circuit 1 supplies power to the load control unit 3, and after the load control unit 3 is powered up, the energy storage battery is controlled.
  • the power supply circuit 2 is activated to enter the second startup phase.
  • the power supply circuit of the load control unit 3 is switched by the lead-acid battery power supply circuit 1 to the energy storage battery power supply circuit 2.
  • the power supply for the mobile charging vehicle operation service is switched from the lead-acid battery to the energy storage battery, and the operational service is powered by the energy storage battery during steady state, thereby ensuring that the mobile charging vehicle does not serve. In the event of a power outage, the system's safety and reliability have been greatly improved.
  • the system self-test may be performed first, and after the self-test is passed, the energy storage battery power supply circuit 2 is controlled.
  • the load control unit 3 includes an electrical load of a charging vehicle, a controller, and the like.
  • the lead-acid battery power supply circuit 1 includes a lead-acid battery and a first protection diode D1, wherein a positive electrode of the lead-acid battery is connected to a positive electrode of the first protection diode D1, a negative electrode of the lead-acid battery, and a first protection diode.
  • the negative electrode of D1 is connected to the load control unit 3.
  • the output voltage of the lead-acid battery power supply circuit 1 is set to V 0 , which is equal to the output voltage of the lead-acid battery, and the power supply voltage received by the load control unit 3 is set to V 1 .
  • the lead-acid battery power supply circuit 1 may further include a start switch S1 that can be activated by closing the start switch S1.
  • the energy storage battery power supply circuit 2 includes an energy storage battery, a DC/DC converter (a DC-DC converter, which is a DC conversion device that converts a DC basic power source into another voltage type), and a second protection diode D2, wherein The input end of the DC/DC converter is connected to the positive pole and the negative pole of the energy storage battery, one output end of the DC/DC converter is connected to the positive pole of the second protection diode D2, and the other output end is connected to the load control unit 3. The cathode of the second protection diode D2 is connected to the load control unit 3. The output voltage of the energy storage battery power supply circuit 2 is set to V 2 , which is equal to the output voltage of the DC/DC converter.
  • the load control unit 3 can activate the energy storage battery power supply circuit 2 by controlling the startup of the DC/DC converter.
  • the first protection diode D1 and the second protection diode D2 both have the function of preventing voltage back-up, that is, when the voltage of the negative end of the first protection diode D1 and the second protection diode D2 is greater than the voltage of the positive end, the circuit is cut off to prevent the voltage from being reversed. Irrigation to a lead-acid battery or an energy storage battery effectively protects the lead-acid battery, the energy storage battery, and the entire circuit.
  • FIG. 3 a schematic diagram of V 0 , V 1 , and V 2 changing with time during the startup process of the mobile charging vehicle is shown in FIG. 3, specifically:
  • the system self-test is performed first. After the self-test is passed, a start command is sent to the DC/DC converter of the energy storage battery power supply circuit 2, and the energy storage battery power supply circuit 2 is started, and the second startup phase is entered.
  • the energy storage battery power supply circuit 2 externally outputs the voltage of the energy storage battery through the DC/DC converter and the diode D2, and the V 2 voltage starts to rise, corresponding to the time t 1 in FIG. 3, when V 2 has risen to V 2 >V 0 .
  • the charging car is powered by a seamless switch from a lead-acid battery to an energy storage battery.
  • the second embodiment further includes a normally closed contact relay including a coil R2 and a normally closed contact, wherein one end of the coil R2 and the positive pole of the second protection diode D2 And one end of the DC/DC converter is connected, and the other end of the coil R2 is connected to the other end of the DC/DC converter and the load control unit 3;
  • a normally closed contact relay including a coil R2 and a normally closed contact, wherein one end of the coil R2 and the positive pole of the second protection diode D2 And one end of the DC/DC converter is connected, and the other end of the coil R2 is connected to the other end of the DC/DC converter and the load control unit 3;
  • the normally closed contact has two, respectively a first normally closed contact K1 and a second normally closed contact K2, the first normally closed contact K1 is connected at one end to the negative pole of the first protection diode D1, and the other end is connected to the The load control unit 3; one end of the second normally closed contact K2 is connected to the negative electrode of the lead-acid battery, and the other end is connected to the load control unit 3.
  • V 0 , V 1 , and V 2 changing with time t during the startup process of the mobile charging vehicle, as shown in FIG. 5 and FIG. 6, specifically:
  • This phase is the first startup phase.
  • the system self-test is performed first. After the self-test is passed, a start command is sent to the DC/DC converter of the energy storage battery power supply circuit 2, and the energy storage battery power supply circuit 2 is started, and the second startup phase is entered.
  • the energy storage battery power supply circuit 2 externally outputs the voltage of the energy storage battery through the DC/DC converter and the diode D2, and the V 2 voltage starts to rise.
  • the DC/DC converter simultaneously gives the relay.
  • the coil R2 is powered, and after the coil R2 is energized, it is assumed that at time t 2 , the V 2 voltage reaches the operating voltage V op of the relay, the normally closed contacts K1 and K2 of the relay are disconnected, and are disconnected according to the normally closed contacts K1 and K2.
  • the difference in the magnitude of the voltage between the front V 2 and the V 0 is divided into two cases of FIG. 5 and FIG. 6 .
  • the starting power supply device of the mobile charging vehicle of the present invention enables the mobile charging vehicle to be divided into two starting phases when starting the operation service, the first starting phase is powered by the lead acid battery to the load control unit 3, and the second starting phase is led acid.
  • the battery power supply is smoothly switched to the energy storage battery in the vehicle, and the power supply switching process is seamless switching, the response is fast, and the power supply drop voltage is small, and the mobile charging vehicle is reliably and stably started.
  • the mobile charging vehicle is in steady state service, it is powered by the energy storage battery, which ensures that the mobile charging vehicle will not be in a state of power failure during service, and greatly improves the safety and reliability of the mobile charging vehicle service.
  • the embodiment of the invention further provides a method for starting power supply of a mobile charging vehicle, as shown in FIG. 7, comprising:
  • Step S1 Closing the lead-acid battery power supply circuit 1 and entering the first startup stage, the lead-acid battery power supply circuit 1 supplies power to the load control unit 3;
  • Step S2 the load control unit 3 sends a start command to the energy storage battery power supply circuit 2, starts the energy storage battery power supply circuit 2, and enters a second startup phase;
  • the step S2 further includes: after the load control unit 3 is powered on, the system self-test is performed first, and after the self-test is passed, the energy storage battery power supply circuit 2 is controlled.
  • Step S3 the output voltage of the energy storage battery power supply circuit 2 is continuously increased.
  • the lead-acid battery power supply circuit 1 is turned off, and the load control unit 3 The power supply circuit is switched by the lead-acid battery power supply circuit 1 to the energy storage battery power supply circuit 2.
  • the load control unit 3 includes an electrical load of a charging vehicle, a controller, and the like.
  • the power supply for the mobile charging vehicle operation service is switched from the lead-acid battery to the energy storage battery, and the operational service is powered by the energy storage battery during steady state, thereby ensuring that the mobile charging vehicle does not serve.
  • the system's safety and reliability have been greatly improved.
  • the lead-acid battery power supply circuit 1 includes a lead-acid battery and a first protection diode D1, wherein a positive electrode of the lead-acid battery is connected to a positive electrode of the first protection diode D1, a negative electrode of the lead-acid battery, and a first protection diode.
  • the negative electrode of D1 is connected to the load control unit 3.
  • the output voltage of the lead-acid battery power supply circuit 1 is set to V 0 , which is equal to the output voltage of the lead-acid battery, and the power supply voltage received by the load control unit 3 is set to V 1 .
  • the lead-acid battery power supply circuit 1 may further include a start switch S1 that can be activated by closing the start switch S1.
  • the energy storage battery power supply circuit 2 comprises an energy storage battery, a DC/DC converter and a second protection diode D2, wherein the input end of the DC/DC converter is connected to the positive and negative poles of the energy storage battery, and the DC/DC converter One output terminal is connected to the positive electrode of the second protection diode D2, and the other output terminal is connected to the load control unit 3; the negative electrode of the second protection diode D2 is connected to the load control unit 3.
  • the output voltage of the energy storage battery power supply circuit 2 is set to V 2 , which is equal to the output voltage of the DC/DC converter.
  • the load control unit 3 can activate the energy storage battery power supply circuit 2 by controlling the startup of the DC/DC converter.
  • the first protection diode D1 and the second protection diode D2 both have the function of preventing voltage back-up, that is, when the voltage of the negative end of the first protection diode D1 and the second protection diode D2 is greater than the voltage of the positive end, the circuit is cut off to prevent the voltage from being reversed. Irrigation to a lead-acid battery or an energy storage battery effectively protects the lead-acid battery, the energy storage battery, and the entire circuit.
  • FIG. 3 a schematic diagram of V 0 , V 1 , and V 2 changing with time during the startup process of the mobile charging vehicle is shown in FIG. 3, specifically:
  • Step S2 specifically includes: after the load control unit 3 is powered on, the system self-test is performed first, and after the self-test is passed, the start command is sent to the DC/DC converter of the energy storage battery power supply circuit 2, and the energy storage battery power supply circuit 2 is activated to enter The second start-up phase.
  • the circuit structure used in the fourth embodiment further includes a normally closed contact relay, the normally closed contact relay including a coil R2 and a normally closed contact, wherein the coil R2 has one end and a second The positive pole of the protection diode D2 and one end of the DC/DC converter are connected, and the other end of the coil R2 is connected to the other end of the DC/DC converter and the load control unit 3;
  • the normally closed contact has two, respectively a first normally closed contact K1 and a second normally closed contact K2, the first normally closed contact K1 is connected at one end to the negative pole of the first protection diode D1, and the other end is connected to the The load control unit 3; one end of the second normally closed contact K2 is connected to the negative electrode of the lead-acid battery, and the other end is connected to the load control unit 3.
  • V 0 , V 1 , and V 2 changing with time t during the startup process of the mobile charging vehicle, as shown in FIG. 5 and FIG. 6, specifically:
  • Step S2 includes: after the load control unit 3 is powered on, the system self-test is performed first, and after the self-test is passed, the start command is sent to the DC/DC converter of the energy storage battery power supply circuit 2, and the energy storage battery power supply circuit 2 is started.
  • the second start-up phase includes: after the load control unit 3 is powered on, the system self-test is performed first, and after the self-test is passed, the start command is sent to the DC/DC converter of the energy storage battery power supply circuit 2, and the energy storage battery power supply circuit 2 is started. The second start-up phase.
  • Step S3 includes: the energy storage battery power supply circuit 2 externally outputs the voltage of the energy storage battery through the DC/DC converter and the diode D2, and the V 2 voltage starts to rise, corresponding to the time t 1 in FIG. 5 and FIG. 6 , DC/DC conversion.
  • the coil R2 of the relay is supplied with power. After the coil R2 is energized, it is assumed that at time t 2 , the voltage of V 2 reaches the operating voltage V op of the relay, and the normally closed contacts K1 and K2 of the relay are disconnected, according to the normally closed contact K1.
  • the difference between the voltage of V 2 and V 0 before disconnection from K2 is divided into two cases: Figure 5 and Figure 6:
  • the starting power supply method of the mobile charging vehicle of the present invention enables the mobile charging vehicle to be divided into two starting phases when starting the operation service, the first starting phase is powered by the lead acid battery to the load control unit 3, and the second starting phase is led acid.
  • the battery power supply is smoothly switched to the energy storage battery in the vehicle, and the power supply switching process is seamless switching, the response is fast, and the power supply drop voltage is small, and the mobile charging vehicle is reliably and stably started.
  • the mobile charging vehicle is in steady state service, it is powered by the energy storage battery, which ensures that the mobile charging vehicle will not be in a state of power failure during service, and greatly improves the safety and reliability of the mobile charging vehicle service.
  • a controller comprising a memory and a processor, the memory storing a computer program, the program being capable of implementing the steps of the method when executed by the processor.
  • a computer readable storage medium for storing computer instructions that, when executed by a computer or processor, implement the steps of the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种移动充电车的启动供电装置和方法,所述装置包括:铅酸电池供电电路、储能电池供电电路和负载控制单元,其中,铅酸电池供电电路和储能电池供电电路均与负载控制单元相连接,用于为所述负载控制单元供电;移动充电车的启动供电分为第一启动阶段和第二启动阶段;在第一启动阶段,由铅酸电池供电电路为负载控制单元供电,负载控制单元控制所述储能电池供电电路启动;在第二启动阶段,负载控制单元的供电电路由铅酸电池供电电路切换为储能电池供电电路。本发明在移动充电车对外服务时,使系统负载、控制器等启动及稳态供电由铅酸电池切换到储能电池的过程中,供电电压能平滑切换,从而提高了整个充电车对外服务的安全性和可靠性。

Description

移动充电车的启动供电装置和方法 技术领域
本发明涉及电动汽车充电技术领域,尤其涉及一种移动充电车的启动供电装置和方法。
背景技术
移动充电车可以在城市区域范围内和紧急情况下给电动汽车充电,以提高充电的便捷性,增强使用电动车的体验。移动充电车主要的能量来源包括:车载铅酸电池,对外服务用的储能电池,若移动充电车本身为电动车,还包括自身的动力电池。移动充电车在提供服务(补能或者充电)时首先需要一定的能量将整个系统启动起来,动力电池和储能电池由于在启动时均需要额外的供电使得其BMS工作,然后才能对外输出,所以它们本身不能作为系统的启动电源。因此,车载铅酸电池成为系统的启动电源,但是,铅酸电池容量有限,在移动充电车服务全过程中,其能量不足以保证移动充电车本身电气及系统和控制供电;同时随着铅酸电池的能量下降,其电压值也跟着下降,当电压值下降到一定大小时,会低于系统负载和控制的欠压点,导致整个系统的供电崩溃,因此车载铅酸电池不能作为稳态时的供电电源,而储能电池的能量远大于铅酸电池,因此储能电池作为系统负载和控制稳态供电的能量来源。
由此可知,在移动充电车对外服务时,如何使系统负载、控制启动及稳态供电需由铅酸电池切换到储能电池的过程中,供电电压能平滑切换,没有电压过冲和过大的电压跌落,从而保证整个系统安全可靠的启动,成为亟待解决的技术问题。
发明内容
本发明所要解决的技术问题在于,提供一种移动充电车的启动供电装置和方法,在移动充电车对外服务时,使系统负载、控制器等启动及稳态供电由铅酸电池切换到储能电池的过程中,供电电压能平滑切换,从而提高了整个充电车对外服务的安全性和可靠性。
为了解决上述技术问题,本发明提供了一种移动充电车的启动供电装置,包括:
铅酸电池供电电路、储能电池供电电路和负载控制单元,其中,所述铅酸电池供电电路和储能电池供电电路均与所述负载控制单元相连接,用于为所述负载控制单元供电;
所述移动充电车的启动供电分为第一启动阶段和第二启动阶段;
在所述第一启动阶段,由所述铅酸电池供电电路为所述负载控制单元供电,所述负载控制单元控制所述储能电池供电电路启动;
在所述第二启动阶段,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路。
进一步的,所述铅酸电池供电电路包括铅酸电池和第一保护二极管,其中,所述铅酸电池的正极与所述第一保护二极管的正极相连,所述铅酸电池的负极和所述第一保护二极管的负极均与所述负载控制单元相连接。
进一步的,所述储能电池供电电路包括储能电池,DC/DC变换器和第二保护二极管,其中,所述DC/DC变换器的输入端与所述储能电池的正极和负极相连接,所述DC/DC变换器的一个输出端与所述第二保护二极管的正极相连接,另一输出端与所述负载控制单元相连接;所述第二保护二极管的负极与所述负载控制单元相连。
进一步的,所述负载控制单元还用于进行系统自检,自检通过后,启动所述储能电池供电电路。
进一步的,所述负载控制单元通过控制所述DC/DC变换器的启动,来启动所述储能电池供电电路。
进一步的,所述负载控制单元包括所述充电车的电气负载和控制器。
进一步的,所述启动供电装置还包括常闭触点继电器,所述常闭触点继电器包括线圈和常闭触点,其中,
所述线圈一端与所述第二保护二极管的正极以及所述DC/DC变换器的一端相连接,所述线圈另一端与所述DC/DC变换器的另一端以及负载控制单元相连接;
所述常闭触点具有两个,分别为第一常闭触点和第二常闭触点,所述第一常闭触点一端连接所述第一保护二极管的负极,另一端连接所述负载控制单元;所述第二常闭触点一端连接所述铅酸电池负极,另一端连接所述负载控制单元。
进一步的,所述铅酸电池供电电路还包括启动开关,用于闭合所述铅酸电池供电电路。
一种移动充电车的启动供电方法,包括:
闭合铅酸电池供电电路,进入第一启动阶段,所述铅酸电池供电电路为负载控制单元供电;
所述负载控制单元向储能电池供电电路发送启动指令,启动所述储能电池供电电路,进入第二启动阶段;
所述储能电池供电电路的输出电压不断增大,当所述储能电池供电电路的输出电压大于所述铅酸电池供电电路的输出电压时,所述铅酸电池供 电电路截止,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路。
进一步的,所述铅酸电池供电电路包括铅酸电池和第一保护二极管,其中,所述铅酸电池的正极与所述第一保护二极管的正极相连,所述铅酸电池的负极和所述第一保护二极管的负极均与所述负载控制单元相连接。
进一步的,所述储能电池供电电路包括储能电池,DC/DC变换器、第二保护二极管,其中,所述DC/DC变换器的输入端与所述储能电池的正极和负极相连接,所述DC/DC变换器的一个输出端与所述第二保护二极管的正极相连接,另一输出端与所述负载控制单元相连接;所述第二保护二极管的负极与所述负载控制单元相连。
进一步的,所述方法还包括:所述负载控制单元进行系统自检,自检通过后,启动所述储能电池供电电路。
进一步的,所述负载控制单元通过控制所述DC/DC变换器的启动,来启动所述储能电池供电电路。
进一步的,所述启动供电装置还包括常闭触点继电器,所述常闭触点继电器包括线圈和常闭触点,其中,
所述线圈一端与所述第二保护二极管的正极以及所述DC/DC变换器的一端相连接,所述线圈另一端与所述DC/DC变换器的另一端以及负载控制单元相连接;
所述常闭触点具有两个,分别为第一常闭触点和第二常闭触点,所述第一常闭触点一端连接所述第一保护二极管的负极,另一端连接所述负载控制单元;所述第二常闭触点一端连接所述铅酸电池负极,另一端连接所述负载控制单元。
进一步的,所述第二启动阶段还包括:
设铅酸电池供电电路的输出电压为V 0,负载控制单元接收的供电电压为V 1,储能电池供电电路的输出电压为V 2,所述储能电池供电单元启动后,所述DC/DC变换器给所述线圈供电,所述线圈的电压逐渐上升,当达到常闭触点继电器的动作电压后,常闭触点断开,所述常闭触点断开后,V 1的变化分为以下两种情况,
情况1、如果常闭触点断开前,V 2大于等于V 0,则当V 2大于V 0后,第一保护二极管截止,第二保护二极管导通,V 1电压跌落,然后V 1被所述DC/DC变换器充电,V 1跟随V 2变换,之后V 1=V 2,当常闭触点断开后,V 1仍然等于V 2,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路;
情况2、如果常闭触点断开时,V 2小于V 0,常闭触点断开后,V 1电压跌落,当V 1跌落到小于V 2时,第二保护二极管导通,V 1被所述DC/DC变换器 充电,电压上升,之后V 1=V 2,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路。
进一步的,所述V 1的跌落范围在20%V 1以内。
根据本发明又一方面,提供一种控制器,其包括存储器与处理器,所述存储器存储有计算机程序,所述程序在被所述处理器执行时能够实现所述方法的步骤。
根据本发明又一方面,提供一种计算机可读存储介质,用于存储计算机指令,所述指令在由一计算机或处理器执行时实现所述方法的步骤。
本发明与现有技术相比具有明显的优点和有益效果。借由上述技术方案,本发明一种移动充电车的启动供电装置和方法可达到相当的技术进步性及实用性,并具有产业上的广泛利用价值,其至少具有下列优点:
本发明使移动充电车在启动运营服务时,分为两个启动阶段,第一启动阶段由铅酸电池给负载控制单元3供电,第二启动阶段由铅酸电池供电平滑的切换到车内储能电池供电,供电切换过程为无缝切换,响应快,且供电跌电压跌落小,实现了移动充电车的可靠稳定地启动。移动充电车稳态服务时,采用储能电池供电,保证了移动充电车在服务时不会出现溃电的情况,大大提高了移动充电车服务的安全性和可靠性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明一实施例提供的移动充电车的启动供电装置示意图。
图2为本发明一实施例提供的移动充电车的启动供电装置电路图。
图3为图2所示移动充电车的启动供电装置的启动供电电压波形图。
图4为本发明又一实施例提供的移动充电车的启动供电装置电路图。
图5为图4所示移动充电车的启动供电装置的情况1的启动供电电压波形图。
图6为图4所示移动充电车的启动供电装置的情况2的启动供电电压波形图。
图7为本发明一实施例提供的移动充电车的启动供电方法示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种移动充电车的启动 供电装置和方法的具体实施方式及其功效,详细说明如后。
本发明实施例提供一种移动充电车的启动供电装置,如图1所示,包括:铅酸电池供电电路1、储能电池供电电路2和负载控制单元3,其中,铅酸电池供电电路1和储能电池供电电路2均与所述负载控制单元3相连接,用于为负载控制单元3供电。
移动充电车的启动供电分为第一启动阶段和第二启动阶段;在第一启动阶段,由铅酸电池供电电路1为负载控制单元3供电,负载控制单元3上电后,控制储能电池供电电路2启动,从而进入第二启动阶段。第二启动阶段,负载控制单元3的供电电路由所述铅酸电池供电电路1切换为所述储能电池供电电路2。经历上述两个启动阶段后,移动充电车运营服务时的供电电源便由铅酸电池切换到了储能电池,运营服务稳态时由储能电池供电,从而保证移动充电车在服务的时候不会出现溃电的情况,系统安全可靠性得到了大大的提高。
为了进一步提高移动充电车的供电的安全性和可靠性,负载控制单元3上电后,可先进行系统自检,自检通过后,再控制启动储能电池供电电路2。负载控制单元3包括充电车的电气负载和控制器等。
以下通过两个具体实施例进行说明:
实施例一、
如图2所示,铅酸电池供电电路1包括铅酸电池和第一保护二极管D1,其中,铅酸电池的正极与第一保护二极管D1的正极相连,铅酸电池的负极和第一保护二极管D1的负极均与负载控制单元3相连接。铅酸电池供电电路1的输出电压设为V 0,与铅酸电池输出电压相等,负载控制单元3所接收的供电电压设为V 1。铅酸电池供电电路1还可包括启动开关S1,可通过闭合启动开关S1,来启动铅酸电池供电电路1。
储能电池供电电路2包括储能电池,DC/DC变换器(直流-直流变换器,是一种将直流基础电源转变为其他电压种类的直流变换装置。)和第二保护二极管D2,其中,DC/DC变换器的输入端与储能电池的正极和负极相连接,DC/DC变换器的一个输出端与第二保护二极管D2的正极相连接,另一输出端与负载控制单元3相连接;第二保护二极管D2的负极与所述负载控制单元3相连。储能电池供电电路2的输出电压设为V 2,与DC/DC变换器的输出电压相等。负载控制单元3可通过控制所述DC/DC变换器的启动,来启动所述储能电池供电电路2。
第一保护二极管D1和第二保护二极管D2均具有防止电压反灌的作用,即当第一保护二极管D1和第二保护二极管D2负极一端的电压大于正极一端电压时,进行电路截止,防止电压反灌至铅酸电池或储能电池,有效地保护了铅酸电池、储能电池以及整个电路。
基于图2所示电路结构,移动充电车的启动过程中,V 0、V 1、V 2随时间变化的示意图,如图3所示,具体地:
闭合开关S1,铅酸电池通过第一保护二极管D1后,给负载控制单元3供电,对应图3中的t 0-t 1时刻,V 1=V 0,此阶段为第一启动阶段。
负载控制单元3上电后,先进行系统自检,自检通过后,向储能电池供电电路2的DC/DC变换器发送启动指令,启动储能电池供电电路2,进入第二启动阶段。
储能电池供电电路2将储能电池的电压通过DC/DC变换器和二极管D2对外输出,V 2电压开始上升,对应图3中t 1时刻,当V 2已经上升到V 2>V 0时,如图3所示t 2时刻,第一保护二极管D1截止,第二保护二极管D2导通,V 1很快跟随V 2的上升而上升,最终V 1=V 2,通过上述过程实现了移动充电车供电由铅酸电池到储能电池的无缝切换。
实施例二、
图3所示实施例的基础上,实施例二还包括常闭触点继电器,所述常闭触点继电器包括线圈R2和常闭触点,其中,线圈R2一端与第二保护二极管D2的正极以及DC/DC变换器的一端相连接,线圈R2另一端与所述DC/DC变换器的另一端以及负载控制单元3相连接;
常闭触点具有两个,分别为第一常闭触点K1和第二常闭触点K2,所述第一常闭触点K1一端连接第一保护二极管D1的负极,另一端连接所述负载控制单元3;第二常闭触点K2一端连接所述铅酸电池负极,另一端连接负载控制单元3。
基于图4所示电路结构,移动充电车的启动过程中,V 0、V 1、V 2随时间t变化的示意图,如图5和图6所示,具体地:
闭合开关S1,铅酸电池通过二极管D1和第一常闭触点K1后,给系统的负载控制单元3供电,对应图5、图6中的t 0-t 1时刻,V 1=V 0,此阶段为第一启动阶段。
负载控制单元3上电后,先进行系统自检,自检通过后,向储能电池供电电路2的DC/DC变换器发送启动指令,启动储能电池供电电路2,进入第二启动阶段。
储能电池供电电路2将储能电池的电压通过DC/DC变换器和二极管D2对外输出,V 2电压开始上升,对应图5、图6中的t 1时刻,DC/DC变换器同时给继电器的线圈R2供电,线圈R2得电后,假设在t 2时刻,V 2电压达到继电器的动作电压V op,继电器的常闭触点K1和K2断开,根据常闭触点K1和K2断开前V 2与V 0电压大小关系的不同,分为图5和图6两种情况。
情况1、如果常闭触点K1和K2断开前,V 2已经上升到V 2大于等于V 0时,假设图5所示t 2’时刻,V 2=V 0,则接下来第一保护二极管D1截止,第 二保护二极管D2导通,t 2’时刻起V 1会有一个很小的电压跌落,V 1电压跌落范围可控制在20%V 1以内。然后V 1被DC/DC变换器快速充电,V 1很快跟随V 2上升,V 1=V 2;当t 2时刻常闭触点K1和K2断开后,V 1仍然等于V 2;所述负载控制单元3的供电电路由所述铅酸电池供电电路1切换为所述储能电池供电电路2。
情况2、如果常闭触点K1和K2断开时,V 2仍然小于V 0,则第一保护二极管D1和第二保护二极管D2保持当前的状态不变,接下来,V 1仍等于V 0。t 2时刻常闭触点断开后,V 1会有一个很小的电压跌落,V 1电压跌落范围可控制在20%V 1以内。当V 1跌落到小于V 2时,第二保护二极管D2导通,V 1被充电,电压上升,之后V 1=V 2。最终系统负载和控制供电由铅酸电池切换到储能电池,负载控制单元3的供电电路由铅酸电池供电电路1切换为储能电池供电电路2。
本发明所述移动充电车的启动供电装置使移动充电车在启动运营服务时,分为两个启动阶段,第一启动阶段由铅酸电池给负载控制单元3供电,第二启动阶段由铅酸电池供电平滑的切换到车内储能电池供电,供电切换过程为无缝切换,响应快,且供电跌电压跌落小,实现了移动充电车的可靠稳定地启动。移动充电车稳态服务时,采用储能电池供电,保证了移动充电车在服务时不会出现溃电的情况,大大提高了移动充电车服务的安全性和可靠性。
本发明实施例还提供一种移动充电车的启动供电方法,如图7所示,包括:
步骤S1、闭合铅酸电池供电电路1,进入第一启动阶段,铅酸电池供电电路1为负载控制单元3供电;
步骤S2、负载控制单元3向储能电池供电电路2发送启动指令,启动储能电池供电电路2,进入第二启动阶段;
为了提高移动充电车的供电的安全性和可靠性,所述步骤S2还包括:负载控制单元3上电后,先进行系统自检,自检通过后,再控制启动储能电池供电电路2。
步骤S3、储能电池供电电路2的输出电压不断增大,当储能电池供电电路2的输出电压大于铅酸电池供电电路1的输出电压时,铅酸电池供电电路1截止,负载控制单元3的供电电路由所述铅酸电池供电电路1切换为所述储能电池供电电路2。
负载控制单元3包括充电车的电气负载和控制器等。
经历上述两个启动阶段后,移动充电车运营服务时的供电电源便由铅酸电池切换到了储能电池,运营服务稳态时由储能电池供电,从而保证移动充电车在服务的时候不会出现溃电的情况,系统安全可靠性得到了大大 的提高。
以下基于两个不同的电路组成示例,对所述移动充电车的启动供电方法进行详细说明:
实施例三、
如图2所示,铅酸电池供电电路1包括铅酸电池和第一保护二极管D1,其中,铅酸电池的正极与第一保护二极管D1的正极相连,铅酸电池的负极和第一保护二极管D1的负极均与负载控制单元3相连接。铅酸电池供电电路1的输出电压设为V 0,与铅酸电池输出电压相等,负载控制单元3所接收的供电电压设为V 1。铅酸电池供电电路1还可包括启动开关S1,可通过闭合启动开关S1,来启动铅酸电池供电电路1。
储能电池供电电路2包括储能电池,DC/DC变换器和第二保护二极管D2,其中,DC/DC变换器的输入端与储能电池的正极和负极相连接,DC/DC变换器的一个输出端与第二保护二极管D2的正极相连接,另一输出端与负载控制单元3相连接;第二保护二极管D2的负极与所述负载控制单元3相连。储能电池供电电路2的输出电压设为V 2,与DC/DC变换器的输出电压相等。负载控制单元3可通过控制所述DC/DC变换器的启动,来启动所述储能电池供电电路2。
第一保护二极管D1和第二保护二极管D2均具有防止电压反灌的作用,即当第一保护二极管D1和第二保护二极管D2负极一端的电压大于正极一端电压时,进行电路截止,防止电压反灌至铅酸电池或储能电池,有效地保护了铅酸电池、储能电池以及整个电路。
基于图2所示电路结构,移动充电车的启动过程中,V 0、V 1、V 2随时间变化的示意图,如图3所示,具体地:
步骤S1具体包括:闭合开关S1,铅酸电池通过第一保护二极管D1后,给负载控制单元3供电,对应图3中的t 0-t 1时刻,V 1=V 0,此阶段为第一启动阶段。
步骤S2具体包括:负载控制单元3上电后,先进行系统自检,自检通过后,向储能电池供电电路2的DC/DC变换器发送启动指令,启动储能电池供电电路2,进入第二启动阶段。
步骤S3具体包括:储能电池供电电路2将储能电池的电压通过DC/DC变换器和二极管D2对外输出,V 2电压开始上升,对应图3中t 1时刻,当V 2已经上升到V 2>V 0时,如图3所示t 2时刻,第一保护二极管D1截止,第二保护二极管D2导通,V 1很快跟随V 2的上升而上升,最终V 1=V 2,通过上述过程实现了移动充电车供电由铅酸电池到储能电池的无缝切换。
实施例四、
图3所示实施例的基础上,实施例四所采用的电路结构还包括常闭触 点继电器,所述常闭触点继电器包括线圈R2和常闭触点,其中,线圈R2一端与第二保护二极管D2的正极以及DC/DC变换器的一端相连接,线圈R2另一端与所述DC/DC变换器的另一端以及负载控制单元3相连接;
常闭触点具有两个,分别为第一常闭触点K1和第二常闭触点K2,所述第一常闭触点K1一端连接第一保护二极管D1的负极,另一端连接所述负载控制单元3;第二常闭触点K2一端连接所述铅酸电池负极,另一端连接负载控制单元3。
基于图4所示电路结构,移动充电车的启动过程中,V 0、V 1、V 2随时间t变化的示意图,如图5和图6所示,具体地:
步骤S1包括:闭合开关S1,铅酸电池通过二极管D1和第一常闭触点K1后,给系统的负载控制单元3供电,对应图5、图6中的t 0-t 1时刻,V 1=V 0,此阶段为第一启动阶段。
步骤S2包括:负载控制单元3上电后,先进行系统自检,自检通过后,向储能电池供电电路2的DC/DC变换器发送启动指令,启动储能电池供电电路2,进入第二启动阶段。
步骤S3包括:储能电池供电电路2将储能电池的电压通过DC/DC变换器和二极管D2对外输出,V 2电压开始上升,对应图5、图6中的t 1时刻,DC/DC变换器同时给继电器的线圈R2供电,线圈R2得电后,假设在t 2时刻,V 2电压达到继电器的动作电压V op,继电器的常闭触点K1和K2断开,根据常闭触点K1和K2断开前V 2与V 0电压大小关系的不同,分为图5和图6两种情况:
情况1、如果常闭触点K1和K2断开前,V 2已经上升到V 2大于等于V 0时,假设图5所示t 2’时刻,V 2=V 0,则接下来第一保护二极管D1截止,第二保护二极管D2导通,t 2’时刻起V 1会有一个很小的电压跌落,V 1电压跌落范围可控制在20%V 1以内。然后V 1被DC/DC变换器快速充电,V 1很快跟随V 2上升,V 1=V 2;当t 2时刻常闭触点K1和K2断开后,V 1仍然等于V 2;所述负载控制单元3的供电电路由所述铅酸电池供电电路1切换为所述储能电池供电电路2。
情况2、如果常闭触点K1和K2断开时,V 2仍然小于V 0,则第一保护二极管D1和第二保护二极管D2保持当前的状态不变,接下来,V 1仍等于V 0。t 2时刻常闭触点断开后,V 1会有一个很小的电压跌落,V 1电压跌落范围可控制在20%V 1以内。当V 1跌落到小于V 2时,第二保护二极管D2导通,V 1被充电,电压上升,之后V 1=V 2。最终系统负载和控制供电由铅酸电池切换到储能电池,负载控制单元3的供电电路由铅酸电池供电电路1切换为储能电池供电电路2。
本发明所述移动充电车的启动供电方法使移动充电车在启动运营服务 时,分为两个启动阶段,第一启动阶段由铅酸电池给负载控制单元3供电,第二启动阶段由铅酸电池供电平滑的切换到车内储能电池供电,供电切换过程为无缝切换,响应快,且供电跌电压跌落小,实现了移动充电车的可靠稳定地启动。移动充电车稳态服务时,采用储能电池供电,保证了移动充电车在服务时不会出现溃电的情况,大大提高了移动充电车服务的安全性和可靠性。
根据本发明又一方面,提供一种控制器,其包括存储器与处理器,所述存储器存储有计算机程序,所述程序在被所述处理器执行时能够实现所述方法的步骤。
根据本发明又一方面,提供一种计算机可读存储介质,用于存储计算机指令,所述指令在由一计算机或处理器执行时实现所述方法的步骤。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (18)

  1. 一种移动充电车的启动供电装置,其特征在于:
    所述装置包括:铅酸电池供电电路、储能电池供电电路和负载控制单元,其中,所述铅酸电池供电电路和储能电池供电电路均与所述负载控制单元相连接,用于为所述负载控制单元供电;
    所述移动充电车的启动供电分为第一启动阶段和第二启动阶段;
    在所述第一启动阶段,由所述铅酸电池供电电路为所述负载控制单元供电,所述负载控制单元控制所述储能电池供电电路启动;
    在所述第二启动阶段,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路。
  2. 根据权利要求1所述的移动充电车的启动供电装置,其特征在于:
    所述铅酸电池供电电路包括铅酸电池和第一保护二极管,其中,所述铅酸电池的正极与所述第一保护二极管的正极相连,所述铅酸电池的负极和所述第一保护二极管的负极均与所述负载控制单元相连接。
  3. 根据权利要求2所述的移动充电车的启动供电装置,其特征在于:
    所述储能电池供电电路包括储能电池,DC/DC变换器和第二保护二极管,其中,所述DC/DC变换器的输入端与所述储能电池的正极和负极相连接,所述DC/DC变换器的一个输出端与所述第二保护二极管的正极相连接,另一输出端与所述负载控制单元相连接;所述第二保护二极管的负极与所述负载控制单元相连。
  4. 根据权利要求1所述的移动充电车的启动供电装置,其特征在于:
    所述负载控制单元还用于进行系统自检,自检通过后,启动所述储能电池供电电路。
  5. 根据权利要求3所述的移动充电车的启动供电装置,其特征在于:
    所述负载控制单元通过控制所述DC/DC变换器的启动,来启动所述储能电池供电电路。
  6. 根据权利要求1所述的移动充电车的启动供电装置,其特征在于:
    所述负载控制单元包括所述充电车的电气负载和控制器。
  7. 根据权利要求3所述的移动充电车的启动供电装置,其特征在于:
    所述启动供电装置还包括常闭触点继电器,所述常闭触点继电器包括线圈和常闭触点,其中,
    所述线圈一端与所述第二保护二极管的正极以及所述DC/DC变换器的一端相连接,所述线圈另一端与所述DC/DC变换器的另一端以及负载控制单元相连接;
    所述常闭触点具有两个,分别为第一常闭触点和第二常闭触点,所述 第一常闭触点一端连接所述第一保护二极管的负极,另一端连接所述负载控制单元;所述第二常闭触点一端连接所述铅酸电池负极,另一端连接所述负载控制单元。
  8. 根据权利要求1-7中任意一项所述的移动充电车的启动供电装置,其特征在于:
    所述铅酸电池供电电路还包括启动开关,用于闭合所述铅酸电池供电电路。
  9. 一种移动充电车的启动供电方法,其特征在于:
    所述方法包括:
    闭合铅酸电池供电电路,进入第一启动阶段,所述铅酸电池供电电路为负载控制单元供电;
    所述负载控制单元向储能电池供电电路发送启动指令,启动所述储能电池供电电路,进入第二启动阶段;
    所述储能电池供电电路的输出电压不断增大,当所述储能电池供电电路的输出电压大于所述铅酸电池供电电路的输出电压时,所述铅酸电池供电电路截止,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路。
  10. 根据权利要求9所述的移动充电车的启动供电方法,其特征在于:
    所述铅酸电池供电电路包括铅酸电池和第一保护二极管,其中,所述铅酸电池的正极与所述第一保护二极管的正极相连,所述铅酸电池的负极和所述第一保护二极管的负极均与所述负载控制单元相连接。
  11. 根据权利要求10所述的移动充电车的启动供电方法,其特征在于:
    所述储能电池供电电路包括储能电池,DC/DC变换器、第二保护二极管,其中,所述DC/DC变换器的输入端与所述储能电池的正极和负极相连接,所述DC/DC变换器的一个输出端与所述第二保护二极管的正极相连接,另一输出端与所述负载控制单元相连接;所述第二保护二极管的负极与所述负载控制单元相连。
  12. 根据权利要求9所述的移动充电车的启动供电方法,其特征在于:
    所述方法还包括:所述负载控制单元进行系统自检,自检通过后,启动所述储能电池供电电路。
  13. 根据权利要求11所述的移动充电车的启动供电方法,其特征在于:
    所述负载控制单元通过控制所述DC/DC变换器的启动,来启动所述储能电池供电电路。
  14. 根据权利要求11所述的移动充电车的启动供电方法,其特征在于:
    所述启动供电装置还包括常闭触点继电器,所述常闭触点继电器包括线圈和常闭触点,其中,
    所述线圈一端与所述第二保护二极管的正极以及所述DC/DC变换器的一端相连接,所述线圈另一端与所述DC/DC变换器的另一端以及负载控制单元相连接;
    所述常闭触点具有两个,分别为第一常闭触点和第二常闭触点,所述第一常闭触点一端连接所述第一保护二极管的负极,另一端连接所述负载控制单元;所述第二常闭触点一端连接所述铅酸电池负极,另一端连接所述负载控制单元。
  15. 根据权利要求14所述的移动充电车的启动供电方法,其特征在于:
    所述第二启动阶段还包括:
    设铅酸电池供电电路的输出电压为V 0,负载控制单元接收的供电电压为V 1,储能电池供电电路的输出电压为V 2,所述储能电池供电单元启动后,所述DC/DC变换器给所述线圈供电,所述线圈的电压逐渐上升,当达到常闭触点继电器的动作电压后,常闭触点断开,所述常闭触点断开后,V 1的变化分为以下两种情况,
    情况1、如果常闭触点断开前,V 2大于等于V 0,则当V 2大于V 0后,第一保护二极管截止,第二保护二极管导通,V 1电压跌落,然后V 1被所述DC/DC变换器充电,V 1跟随V 2变换,之后V 1=V 2,当常闭触点断开后,V 1仍然等于V 2,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路;
    情况2、如果常闭触点断开时,V 2小于V 0,常闭触点断开后,V 1电压跌落,当V 1跌落到小于V 2时,第二保护二极管导通,V 1被所述DC/DC变换器充电,电压上升,之后V 1=V 2,所述负载控制单元的供电电路由所述铅酸电池供电电路切换为所述储能电池供电电路。
  16. 根据权利要求15所述的移动充电车的启动供电方法,其特征在于:
    所述V 1的跌落范围在20%V 1以内。
  17. 一种控制器,其包括存储器与处理器,所述存储器存储有计算机程序,所述程序在被所述处理器执行时能够实现权利要求9至16中任意一项权利要求所述的方法的步骤。
  18. 一种计算机可读存储介质,用于存储计算机程序,所述程序在由一计算机或处理器执行时实现如权利要求9至16中任意一项权利要求所述的方法的步骤。
PCT/CN2018/100675 2017-12-14 2018-08-15 移动充电车的启动供电装置和方法 WO2019114304A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18889379.6A EP3726699A4 (en) 2017-12-14 2018-08-15 DEVICE AND METHOD FOR STARTING ELECTRICAL POWER SUPPLY FOR MOBILE CHARGING VEHICLES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711342316.9 2017-12-14
CN201711342316.9A CN108400648A (zh) 2017-12-14 2017-12-14 移动充电车的启动供电装置和方法

Publications (1)

Publication Number Publication Date
WO2019114304A1 true WO2019114304A1 (zh) 2019-06-20

Family

ID=63093681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100675 WO2019114304A1 (zh) 2017-12-14 2018-08-15 移动充电车的启动供电装置和方法

Country Status (3)

Country Link
EP (1) EP3726699A4 (zh)
CN (1) CN108400648A (zh)
WO (1) WO2019114304A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864827A (zh) * 2020-06-10 2020-10-30 包头昊明稀土新电源科技有限公司 混合电源启动系统及其控制方法
CN112238763A (zh) * 2020-10-23 2021-01-19 中车株洲电力机车有限公司 一种预充电/充电电路及其控制装置、控制方法
CN112248812A (zh) * 2020-10-15 2021-01-22 北京三快在线科技有限公司 无人车及无人配送系统
CN113740653A (zh) * 2021-09-08 2021-12-03 无锡力芯微电子股份有限公司 适用于ldo动态负载响应的高精度评估方法及电路
CN116691426A (zh) * 2023-08-02 2023-09-05 山东同云新能源科技有限公司 一种充电机器人的控制方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400648A (zh) * 2017-12-14 2018-08-14 蔚来汽车有限公司 移动充电车的启动供电装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744876A (en) * 1994-09-30 1998-04-28 Wnf-1 Capacitive backup power source for electromechanical actuator
CN201774307U (zh) * 2010-07-29 2011-03-23 中山大洋电机制造有限公司 一种汽车电机供电电源电路
CN103036299A (zh) * 2012-12-28 2013-04-10 华为技术有限公司 复合供电方法和装置
CN205509649U (zh) * 2016-03-29 2016-08-24 株洲中车时代电气股份有限公司 用于轨道交通的供电模式自动切换电路
CN205753607U (zh) * 2016-06-16 2016-11-30 扬子江汽车集团有限公司 一种纯电动汽车电动油泵的双电源供电系统
CN207573077U (zh) * 2017-12-14 2018-07-03 蔚来汽车有限公司 移动充电车的启动供电装置
CN108400648A (zh) * 2017-12-14 2018-08-14 蔚来汽车有限公司 移动充电车的启动供电装置和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316868A (en) * 1992-07-21 1994-05-31 Globe-Union, Inc. Dual battery switch circuit
US6734651B2 (en) * 2001-06-06 2004-05-11 Simtech Systems, Llc Battery backup system with remote switch for actuating backup battery
JP6056988B2 (ja) * 2013-11-27 2017-01-11 日産自動車株式会社 電気回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744876A (en) * 1994-09-30 1998-04-28 Wnf-1 Capacitive backup power source for electromechanical actuator
CN201774307U (zh) * 2010-07-29 2011-03-23 中山大洋电机制造有限公司 一种汽车电机供电电源电路
CN103036299A (zh) * 2012-12-28 2013-04-10 华为技术有限公司 复合供电方法和装置
CN205509649U (zh) * 2016-03-29 2016-08-24 株洲中车时代电气股份有限公司 用于轨道交通的供电模式自动切换电路
CN205753607U (zh) * 2016-06-16 2016-11-30 扬子江汽车集团有限公司 一种纯电动汽车电动油泵的双电源供电系统
CN207573077U (zh) * 2017-12-14 2018-07-03 蔚来汽车有限公司 移动充电车的启动供电装置
CN108400648A (zh) * 2017-12-14 2018-08-14 蔚来汽车有限公司 移动充电车的启动供电装置和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3726699A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864827A (zh) * 2020-06-10 2020-10-30 包头昊明稀土新电源科技有限公司 混合电源启动系统及其控制方法
CN112248812A (zh) * 2020-10-15 2021-01-22 北京三快在线科技有限公司 无人车及无人配送系统
CN112248812B (zh) * 2020-10-15 2022-03-29 北京三快在线科技有限公司 无人车及无人配送系统
CN112238763A (zh) * 2020-10-23 2021-01-19 中车株洲电力机车有限公司 一种预充电/充电电路及其控制装置、控制方法
CN113740653A (zh) * 2021-09-08 2021-12-03 无锡力芯微电子股份有限公司 适用于ldo动态负载响应的高精度评估方法及电路
CN113740653B (zh) * 2021-09-08 2022-07-29 无锡力芯微电子股份有限公司 适用于ldo动态负载响应的高精度评估方法及电路
CN116691426A (zh) * 2023-08-02 2023-09-05 山东同云新能源科技有限公司 一种充电机器人的控制方法和系统
CN116691426B (zh) * 2023-08-02 2023-10-10 山东同云新能源科技有限公司 一种充电机器人的控制方法和系统

Also Published As

Publication number Publication date
EP3726699A1 (en) 2020-10-21
CN108400648A (zh) 2018-08-14
EP3726699A4 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2019114304A1 (zh) 移动充电车的启动供电装置和方法
JP6517333B2 (ja) 電気自動車用のステアリングパワーシステム及びそれを制御する方法
JP6026226B2 (ja) 蓄電システム及び電源システム
US10017138B2 (en) Power supply management system and power supply management method
US20230202343A1 (en) Low-voltage battery charging system and method
JP2009232665A (ja) 電源装置および電源制御方法
US20170110975A1 (en) Dc/dc converter and electrical storage system
CN105416069B (zh) 一种用于电动车的电源
CN107444123A (zh) 供电装置、供电方法和电动车
CN112072740B (zh) 一种电动汽车低压蓄电池欠压启动电路及其控制方法
CN210225056U (zh) 外部拓展装置、无人飞行器的遥控装置及套件
JP2019088141A (ja) 車両用電源システム
US20180037132A1 (en) Secondary lithium battery for vehicle use
CN110212259B (zh) 供电控制电路、叉车供电电路及叉车
CN115366833B (zh) 矿用无人驾驶车辆的冗余电源控制器
EP3059831A1 (en) Secondary lithium battery for vehicle use
CN109193885B (zh) 光伏储能逆变器的控制系统
JP2014166109A (ja) 2電源負荷駆動システム及び燃料電池自動車
CN207573077U (zh) 移动充电车的启动供电装置
CN109560585A (zh) 一种电池过放重启电路、储能装置和控制方法
JP2019088140A (ja) 車両用電源システム
CN113232511A (zh) 一种工业车辆锂电池总成预充控制系统
JP7120041B2 (ja) 車両用電源制御装置、及び車両用電源装置
JP2004304931A (ja) 蓄電装置の充電方法および充電装置
JP2016182014A (ja) パワーコンディショナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018889379

Country of ref document: EP

Effective date: 20200714