WO2019111973A1 - プロペラファン - Google Patents

プロペラファン Download PDF

Info

Publication number
WO2019111973A1
WO2019111973A1 PCT/JP2018/044795 JP2018044795W WO2019111973A1 WO 2019111973 A1 WO2019111973 A1 WO 2019111973A1 JP 2018044795 W JP2018044795 W JP 2018044795W WO 2019111973 A1 WO2019111973 A1 WO 2019111973A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
propeller fan
wing element
hub
rotation
Prior art date
Application number
PCT/JP2018/044795
Other languages
English (en)
French (fr)
Inventor
澤田 大貴
和也 船田
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN201880077041.7A priority Critical patent/CN111417786B/zh
Priority to AU2018381395A priority patent/AU2018381395B2/en
Priority to EP18885012.7A priority patent/EP3722615A4/en
Priority to US16/769,988 priority patent/US11187237B2/en
Publication of WO2019111973A1 publication Critical patent/WO2019111973A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/388Blades characterised by construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/329Details of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/684Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/305Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the pressure side of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/306Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the suction side of a rotor blade

Definitions

  • the present invention relates to a propeller fan.
  • the outdoor unit of the air conditioner has a propeller fan inside.
  • the wind velocity at the outer periphery of the blade is high, and the wind velocity decreases toward the center of rotation.
  • the air flow of a propeller fan has been increased, and the diameter of the propeller fan has been increased and the speed has been increased.
  • the above-mentioned prior art has the following problems. That is, the wind velocity distribution in the radial direction becomes uneven, and a surging phenomenon such as suction of air from the downstream side occurs in the inner circumferential portion of the wing, resulting in an abnormal operation state.
  • a surging phenomenon such as suction of air from the downstream side occurs in the inner circumferential portion of the wing, resulting in an abnormal operation state.
  • the inner peripheral portion where the wind speed is slow does not contribute to the air flow, the air flow amount obtained with respect to the size is small, the air flow is easily disturbed, and the blade surface can not be used effectively.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a propeller fan capable of increasing the air flow rate of a propeller fan while suppressing the occurrence of a surging phenomenon.
  • a propeller fan disclosed in the present application includes, for example, a hub having a side surface around a central axis, and a plurality of wings provided on the side surface.
  • the wing includes an inner peripheral portion located on the base side and an outer peripheral portion located on the outer peripheral side in a portion from a base connected to the hub and extending from the outer peripheral portion to the inner peripheral portion. It has multiple wing elements branched on the way.
  • the plurality of blade elements have a trailing edge on the downstream side of rotation about the central axis and a leading edge on the upstream side of the rotation, and the respective pitch angles with respect to the central axis Holes that are connected to the side surfaces and serve as air flow paths are formed between the adjacent wing elements.
  • the plurality of blade elements are adjacent to the first blade element on the upstream side of the rotation branched at a branch point on the way from the outer peripheral portion to the inner peripheral portion and the downstream side of the rotation of the first blade element. And an extending portion which is a part of the first wing element at the trailing edge of the first wing element from the branch point to the side surface. At least a portion of the front edge portion of the second blade element overlaps a rotational path around the central axis of the extension portion as a rotation center.
  • the present invention for example, it is possible to increase the air volume of the propeller fan while suppressing the occurrence of the surging phenomenon.
  • FIG. 1 is a schematic view showing an outdoor unit having a propeller fan according to a first embodiment.
  • FIG. 2 is a schematic plan view of the propeller fan according to the first embodiment as viewed from the pressure side.
  • FIG. 3 is a plan view of one of the propeller fan blades according to the first embodiment as viewed from the pressure side.
  • FIG. 4 is a schematic plan view of the propeller fan according to the first embodiment as viewed from the suction side.
  • FIG. 5 is a plan view of one of the propeller fan blades according to the first embodiment as viewed from the suction side.
  • FIG. 6 is a perspective view of the propeller fan according to the first embodiment.
  • FIG. 7 is a side view of the propeller fan according to the first embodiment.
  • FIG. 1 is a schematic view showing an outdoor unit having a propeller fan according to a first embodiment.
  • FIG. 2 is a schematic plan view of the propeller fan according to the first embodiment as viewed from the pressure side.
  • FIG. 3 is
  • FIG. 8 is a side view showing one of the propeller fan blades according to the first embodiment.
  • FIG. 9 is a cross-sectional view schematically illustrating an II cross section of the propeller fan according to the first embodiment.
  • FIG. 10 is a cross-sectional view for comparing the propeller fan according to the comparative example with the propeller fan according to the first embodiment in the I-I cross section.
  • FIG. 11 is an air volume-input (input power) curve diagram.
  • FIG. 12 is an air volume-rotational speed curve diagram.
  • FIG. 13 is an air volume-static pressure curve diagram.
  • FIG. 14 is a side view showing one of the propeller fan blades according to the second embodiment.
  • FIG. 1 is a schematic view showing an outdoor unit having a propeller fan according to a first embodiment.
  • the outdoor unit 1 of the first embodiment is an outdoor unit of an air conditioner.
  • the outdoor unit 1 has a housing 6, and a compressor 3 for compressing a refrigerant and a propeller fan connected to the compressor 3 in the housing 6 for blowing the heat to the heat exchanger 4 and the heat exchanger 4 in which the refrigerant flows. 5 accommodates.
  • the housing 6 has an inlet 7 for taking in the outside air, and an outlet 8 for discharging the air in the housing 6.
  • the suction port 7 is provided on the side surface 6 a and the back surface 6 c of the housing 6.
  • the outlet 8 is provided on the front surface 6 b of the housing 6.
  • the heat exchanger 4 is disposed across the back surface 6 c opposite to the front surface 6 b of the housing 6 from the side surface 6 a.
  • the propeller fan 5 is disposed to face the outlet 8 and is rotationally driven by a fan motor (not shown).
  • the direction of the wind discharged from the outlet 8 by rotation of the propeller fan 5 is referred to as the positive pressure side, and the direction of the wind opposite thereto is referred to as the negative pressure side.
  • FIG. 2 is a schematic plan view of the propeller fan according to the first embodiment as viewed from the pressure side.
  • FIG. 3 is a plan view of one of the propeller fan blades according to the first embodiment as viewed from the pressure side.
  • FIG. 4 is a schematic plan view of the propeller fan according to the first embodiment as viewed from the suction side.
  • FIG. 5 is a plan view of one of the propeller fan blades according to the first embodiment as viewed from the suction side.
  • FIG. 6 is a perspective view of the propeller fan according to the first embodiment.
  • FIG. 7 is a side view of the propeller fan according to the first embodiment.
  • FIG. 8 is a side view showing one of the propeller fan blades according to the first embodiment.
  • the propeller fan 5 includes a hub 11 formed in a cylindrical shape (or a polygonal column) in appearance and a hub 11 provided around a central axis of the hub 11.
  • a plurality of wings 12 are provided on the side surface 11a (see FIGS. 6 and 7), and the hub 11 and the plurality of wings 12 are integrally molded using, for example, a resin material as a molding material.
  • the wing 12 has a front edge 12-2 which is the front in the rotational direction of the wing 12 and a rear edge 12-1 which is the rear in the rotational direction of the wing 12.
  • the front edge 12-2 is curved and formed so as to be concave toward the rear edge 12-1 located on the opposite side of the front edge 12-2. Wings are also called wings.
  • the hub 11 is a boss (not shown) in which the shaft (not shown) of the fan motor is fitted at the position of the central axis O of the hub 11 at the end of the suction side (see FIGS. 4 and 7) of the propeller fan 5. Is provided.
  • the hub 11 rotates about the central axis O of the hub 11 as the fan motor rotates in the direction of “R” shown in FIGS. 2, 4 and 6-8.
  • the propeller fan 5 has an inner periphery 12 a of the wing 12 located within a circle of radius r 1 of the central axis O and a circle of radius r 1 of the central axis O It has an outer peripheral portion 12b of the wing 12 located outside and within the circumference of a circle of radius R1 of the central axis O.
  • the wing area of the radially outer peripheral portion 12 b of the hub 11 is wider than the inner peripheral portion 12 a connected to the hub 11.
  • the propeller fan 5 has wing elements 12-11, 12-12 and 12-13 on the inner peripheral portion 12 a of each of the blades 12.
  • the wing element 12-11 is an example of a first wing element
  • the wing element 12-12 is an example of a second wing element.
  • the wing area of wing elements 12-11, 12-12, 12-13 can be changed in design suitably, the wing area of wing element 12-11 is wing element 12-12, 12-13. It may be the largest compared to the wing area of
  • the propeller fan 5 has a hole 12-21 between the wing elements 12-11 and 12-12 of the inner peripheral portion 12 a of each wing 12
  • a hole 12-22 is provided between 12-12 and 12-13.
  • the hole 12-21 is provided in contact with the boundary between the inner circumferential portion 12a and the outer circumferential portion 12b (the position of the radius r1 from the central axis O).
  • the holes 12-21 and 12-22 are air flow channels.
  • each wing 12 is connected to the hub 11 so that the base 12-11a of the wing element 12-11 and the base 12-12a of the wing element 12-12 form a hole 12-21 in the inner circumferential portion 12a. It is done. Further, each wing 12 is connected to the hub 11 so that the base 12-12a of the wing element 12-12 and the base 12-13a of the wing element 12-13 form a hole 12-22 in the inner circumferential portion 12a. It is done.
  • the outer peripheral portion 12b is continuous with the wing elements 12-11, 12-12, 12-13, and the inner peripheral portion 12a and the outer peripheral portion 12b form a single wing surface.
  • the three wing elements 12-11, 12-12 and 12-13 branch on the way from the outer peripheral portion 12 b of the wing 12 to the inner peripheral portion 12 a.
  • the holes 12-21 between the wing elements 12-1 and 12-12 and the holes 12-22 between the wing elements 12-12 and 12-13 are flow paths of the air flow passing through the propeller fan 5, respectively. .
  • the wing element 12-11 of the wing 12 is connected to the hub 11 with the base 12-11a as a connecting portion.
  • the wing element 12-12 of the wing 12 is connected to the hub 11 with the base 12-12a as a connection portion.
  • the wing element 12-13 of the wing 12 is connected to the hub 11 with the base 12-13a as a connection portion.
  • the wing 12 is a wing element in which a wing element 12-12 located on the upstream side (front edge side) in the rotational direction (“R” direction in the figure) with respect to the hub 11 is located on the downstream side (rear edge side) It is connected to the positive pressure side than 12-11.
  • the hole 12-21 of the wing 12 is located between the wing element 12-12 and the wing element 12-11 with respect to the central axis O direction and the circumferential direction.
  • the wing 12 is a wing element having a wing element 12-13 located on the upstream side (front edge side) in the rotational direction (the “R” direction in the figure) with respect to the hub 11 located on the downstream side (rear edge side). It is connected to the positive pressure side than 12-12.
  • the hole 12-22 of the wing 12 is located between the wing element 12-13 and the wing element 12-12 with respect to the central axis O direction and the circumferential direction.
  • the number of blade elements 12-11, 12-12 and 12-13 and holes 12-21 and 12-22 included in the wing 12 in the first embodiment is not limited to those illustrated in FIGS. 2 to 8, One hole may be provided for two blade elements, or four or more blade elements may have (number of blade elements minus 1) holes.
  • the wing element 12-11 has a leading edge 12-11-2 on the upstream side (leading edge side) in the rotational direction (the “R” direction in the figure), and the rotational direction A trailing edge 12-11-1 is provided on the downstream side (rear edge side) of the “R” direction in the drawing.
  • the wing element 12-12 has a front edge 12-12-2 on the upstream side (leading edge side) in the rotational direction (the "R” direction in the figure), and in the rotational direction (the "R” direction in the figure)
  • a trailing edge 12-12-1 is provided on the downstream side (rear edge side).
  • the wing element 12-13 has a leading edge 12-13-2 on the upstream side (leading edge side) in the rotational direction ("R" direction in the figure), and in the rotational direction ("R” direction in the figure)
  • a trailing edge 12-13-1 is provided on the downstream side (rear edge side).
  • the wing element 12-11 has a base portion 12-11 A and an extension portion 12-11 B divided by a boundary C 1.
  • the boundary C1 has a positional relationship substantially parallel to the front edge 12-12-2 of the wing element 12-12. Further, as shown in FIGS. 7 and 8, the boundary C1 is a branch of wing element 12-11 and wing element 12-12, one end of which branches off on the way from the outer peripheral portion 12b of the wing 12 to the inner peripheral portion 12a. The other end corresponds to the pressure-side end of the base 12-13a.
  • the extended part 12-11B is the base of the wing element 12-11 to the hole 12-21 side which exists between the wing element 12-11 and the wing element 12-12. It is a portion further extending from the portion 12-11A to the downstream side of the air flow.
  • the extending portion 12-11B has a triangular shape or a convex shape with the boundary C1 as a base and the both ends of the boundary C1 as vertices of the base angle.
  • the extending portion 12-11B has a triangular shape or a convex shape. From this, a part of the hole 12-21 is shielded against the air flow along the wing element 12-11 near the branch point 12p of the wing element 12-11 and the wing element 12-12, and the hole The remaining unshielded portion 12-21 is exposed to the air flow along the wing element 12-11 near the side face 11 a of the hub 11.
  • the extension portion 12-11B has a portion in which the vicinity of the branch point 12p of the wing element 12-11 and the wing element 12-12 overlaps the wing element 12-12 in the rotational direction (the “R” direction in the figure).
  • the vicinity of the base 12-11a of the wing element 12-11 has a portion which does not overlap with the wing element 12-12 in the rotational direction (the “R” direction in the drawing).
  • the wing element 12-11 is an extension 12-11B that overlaps the wing element 12-12 in the rotational direction (the "R” direction in the figure) at least near the branch point 12p of the wing element 12-11 and the wing element 12-12. Have.
  • the extending portion 12-11B starts from one end of the boundary C1 in the vicinity of the branch point 12p of the wing element 12-11 and the wing element 12-12 as a starting point, and its height gradually increases toward the pressure side of the hub 11 with respect to the boundary C1.
  • the height increases to the point where the pressure is highest on the pressure side of the hub 11 with respect to the boundary C1
  • the height decreases on the pressure side of the hub 11 with respect to the boundary C1 and reaches the other end on the boundary C1. It is a shape.
  • the extension portion 12-11B has a shape in which the height gradually increases toward the pressure side of the hub 11 with respect to the boundary C1 in the vicinity of the branch point 12p of the wing element 12-11 and the wing element 12-12.
  • the extension portion 12-11B is a hole 12 that passes the air flow along the wing surface of the wing element 12-11 and the wing element 12-12 at the branch point 12p of the wing element 12-11 and the wing element 12-12. It has a part shaped to escape to -21. Therefore, the outer end of the extension portion 12-11B is located at the branch point 12p, so that the air conditioner is operated at high load or at high rotation, from the hole portion 12-21 to the wing element 12-12.
  • the extension portion 12-11B branches at least the wing element 12-11 and the wing element 12-12. Even if it overlaps only with the wing element 12-12 in the rotational direction ("R" direction in the figure) near the portion, the wind speed of the inner peripheral portion is increased by increasing the number of blades on the inner peripheral side. Thus, it is possible to suppress the occurrence of an abnormal operating condition such as air flow disturbance or surging phenomenon caused by the difference in the wind velocity of the inner circumferential portion, and to increase the air volume. This becomes more pronounced when the wing element 12-12 has the same extension as the extension 12-11B.
  • FIG. 9 is a cross-sectional view schematically illustrating an II cross section of the propeller fan according to the first embodiment.
  • the II cross section is a cross section when the blade 12 of the propeller fan 5 is cut along the cutting line II in the plan view of the propeller fan 5 of FIG. 2 and viewed from the outer peripheral portion 12 b side .
  • the wing 12 has wing elements 12-11, 12-12, 12-13.
  • the wing elements 12-11, 12-12, 12-13 are arranged in the order of the wing elements 12-11, 12-12, 12-13 from the upstream side (leading edge side) in the rotational direction (the "R" direction in the figure). And partially overlap when viewed in the rotational direction ("R" direction in the figure).
  • the wing 12 rotates in the direction of rotation with the leading edge 12-12-2 of the wing element 12-12 on the trailing edge 12-11-1 side of the wing element 12-11. It has an extending portion 12-11B which partially overlaps when viewed in the “R” direction in the drawing.
  • the extension 12-11B partially overlaps with the front edge 12-12-2 of the wing element 12-12 in the rotational direction (the “R” direction in the figure)
  • the axial direction of the hub 11 is
  • the highest height in the positive pressure direction from the boundary C1 is H1.
  • the pitch angles ⁇ , ⁇ and ⁇ of the wing elements 12-11, 12-12 and 12-13 with respect to the central axis O of the hub 11 can be changed as appropriate, but the pitch angle ⁇ of the wing element 12-11 is , And may be maximum as compared to the pitch angles ⁇ and ⁇ of the wing elements 12-12 and 12-13.
  • the wing elements 12-11, 12-12 and 12-13 do not overlap in the central axis O direction on the side surface 11 a of the hub 11.
  • the wing elements 12-11, 12-12 and 12-13 are connected to the side surface 11 a of the hub 11 at the side surface 11 a of the hub 11 so as not to overlap each other in the central axis O direction.
  • the wing elements 12-11, 12-12 and 12-13 may overlap in the central axis O direction of the hub 11. That is, the wing elements 12-11, 12-12 and 12-13 are arranged on the side surface 11 a of the hub 11 so that the bases 12-11 a, 12-12 a and 12-13 a are aligned substantially in a straight line on the side surface 11 a of the hub 11 It may be connected.
  • the extended portion 12-11B partially overlaps the wing element 12-12 in the rotational direction (the “R” direction in the figure).
  • a part of the front edge 12-12-2 of the wing element 12-12 overlaps the rotational orbit around the hub 11 of the extension 12-11B. That is, the leading edge portion of the wing element 12-12 along the air flow A2 in which the extending portion 12-11B flows from the upstream side to the downstream side in the rotation direction (the “R” direction in the drawing) as the wing 12 rotates. Overlap with part of 12-12-2.
  • the airflows A1 and A2 flowing from the upstream side to the downstream side in the rotational direction (the “R” direction in the drawing) along with the rotation of the wing 12 are both of the wing surfaces of the wing elements 12-11 and 12-12. It flows along the wing surface from the upstream side to the downstream side. That is, the air flow A2 flowing along the wing surface of the wing element 12-11 continues to flow into the wing element 12-without flowing into the hole 12-21 existing between the wing element 12-11 and the wing element 12-12. There is no loss of air volume because it flows along the 12 wing surfaces.
  • the wing elements 12-12 and 12-13 are arranged so as to overlap with the rotational orbit around the hub 11 of the wing elements 12-11 and 12-12.
  • the wing elements 12-12 and 12-13 are arranged so as to overlap the rotational orbit about the hub 11 of the wing elements 12-11 and 12-12 as a center of rotation, so that the wing surface of the wing 12 12 An air stream flowing along the position can be affected by the next row of wing elements 12-12, 12-13.
  • FIG. 10 is a cross-sectional view for comparing the propeller fan according to the comparative example with the propeller fan according to the first embodiment in the I-I cross section.
  • FIG. 10 is a cross-sectional view of a propeller fan blade 12Z according to a comparative example as viewed along the same II cross section (not shown) as the I-I cross section of the propeller fan 5 according to the first embodiment in FIG. Show vision.
  • the wing 12Z has wing elements 12Z-11, 12Z-12, 12Z-13.
  • the wing elements 12Z-11, 12Z-12, and 12Z-13 are arranged in the order of the wing elements 12Z-11, 12Z-12, and 12Z-13 from the upstream side (leading edge side) in the rotational direction (the "R" direction in the figure). And do not overlap when viewed in the rotational direction ("R" direction in the figure).
  • the wing 12Z rotates in the rotational direction with the leading edge 12Z-12-2 of the wing element 12Z-12 on the side of the trailing edge 12Z-11-1 of the wing element 12Z-11. There is no part that partially overlaps (in the "R" direction in the figure).
  • the distance between the trailing edge 12Z-11-1 of the wing element 12Z-11 and the leading edge 12Z-12-2 of the wing element 12Z-12 is H01 at the widest portion in the axial direction of the hub 11.
  • the air flow A01 flowing from the upstream side to the downstream side in the rotation direction (the “R” direction in the drawing) with the rotation of the wing 12Z is the wing element 12Z-11, Since the air flow A02 is sandwiched between 12Z-12, the air flows along the downstream wing surface of the wing element 12Z-11, 12Z-12.
  • the air flow A02 flowing from the upstream side to the downstream side in the rotational direction (the “R” direction in the drawing) along with the rotation of the wing 12Z is directly along the wing surface of the wing elements 12Z-11, 12Z-12, After along the wing surface on the downstream side of wing element 12Z-11, not along the wing surface of wing element 12Z-12, to hole 12Z-21 existing between wing element 12Z-11 and wing element 12Z-12 Flow into. Therefore, the air flow A02 flowing into the hole 12Z-21 existing between the wing element 12Z-11 and the wing element 12Z-12 is a loss of air volume as compared with the first embodiment.
  • FIG. 11 is an air volume-input (input power) curve diagram.
  • FIG. 12 is an air volume-rotational speed curve diagram.
  • FIG. 13 is an air volume-static pressure curve diagram.
  • FIG. 11 and FIG. 12 show the preconditions in comparing the static pressure of the propeller fan of the first embodiment and the propeller fan of the comparative example.
  • FIG. 11 shows that the input (input power) is W1 [W] when the air volume of the propeller fan is Q01 [m 3 / h] and the input (input power) when the air volume of the propeller fan is Q 02 [m 3 / h] Indicates that W2 [W].
  • Fig. 12 shows that the rotational speed is RF1 [W] when the air volume of the propeller fan is Q01 [m 3 / h] and the rotational speed is RF 2 [W] when the air volume of the propeller fan is Q 02 [m 3 / h] Indicates that there is. That is, Example 1 and a comparative example show that an input (input electric power) and rotation speed are the same, if the air volume is the same.
  • the static pressure is P1 [Pa] when the air volume of the propeller fan is Q01 [m 3 / h], whereas in the first embodiment, the air volume of the propeller fan is When Q is Q01 [m 3 / h], the static pressure is higher than P1 [Pa], and the static pressure is higher than P1.
  • the static pressure is P2 [Pa] when the air volume of the propeller fan is Q02 [m 3 / h], whereas in the first embodiment, the airflow of the propeller fan is Q 02 [m 3 / h] In this case, the static pressure is higher than P2 [Pa], and the static pressure is higher than P2.
  • the air volume of the propeller fan 5 according to the conventional example is Q01 [m 3 / h]
  • the propeller fan according to the first embodiment is Q11 [m 3 / h].
  • the air volume is increasing from Q01 [m 3 / h] to Q11 [m 3 / h].
  • the air volume of the propeller fan 5 according to the conventional example is Q02 [m 3 / h]
  • the propeller fan according to the first embodiment is Q12 [m 3 / h]
  • the air volume is increasing from Q02 [m 3 / h] to Q 12 [m 3 / h].
  • the same air volume as that of the conventional example can be secured. That is, according to Example 1, it can be said from FIG. 13 that the air volume of the propeller fan 5 can be increased.
  • the wing 12 is shaped to branch to the wing elements 12-11, 12-12 and 12-13 as it extends from the outer peripheral portion 12 b to the inner peripheral portion 12 a.
  • the wing elements 12-11, 12-12, 12-13 are connected in a row around the hub 11 with their respective bases 12-11a, 12-12a, 12-13a.
  • the wing element 12-11 has a triangular or convex extension near the branch point 12p of the wing element 12-11, 12-12 on the side of the trailing edge 12-11-1 on the downstream side in the rotational direction of the hub 11 It has 12-11B.
  • the extension portion 12-11B suppresses the deflection of the air flow due to the centrifugal force caused by the rotation of the propeller fan 5, the occurrence of the surging phenomenon can be prevented. Further, by arranging the wing elements 12-12 and 12-13 so as to overlap with the rotational orbit around the hub 11 of the wing elements 12-11 and 12-12, the wing separated from the extension portion 12-11B The air flow flowing along the position of the surface is affected by the next row of wing elements 12-12. Thus, the force of the wing 12 can be exerted even on the air flow that has not been able to exert the force of the wing 12 conventionally, and the air volume of the propeller fan 5 can be increased. That is, according to the first embodiment, it is possible to increase the air volume of the propeller fan while suppressing the occurrence of the surging phenomenon.
  • Example 1 the wing element 12-11 has the extended portion 12-11B at the rear edge 12-11-1.
  • the present invention is not limited thereto.
  • the wing element 12-11 does not have the extension 12-11B at the rear edge 12-11-1, and the wing element 12-12 extends at the rear edge 12-12-1.
  • the wing element 12-11 has the extension 12-11B at the rear edge 12-11-1, and the wing element 12-12 is the same as the extension 12-11B at the rear edge 12-12-1. It may have a stretched portion of
  • the wing element 12-11 has the extension 12-11B at the rear edge 12-11-1.
  • the present invention is not limited to this, and the wing element 12-12 may have an extension portion similar to the extension portion 12-11B at the front edge portion 12-12-2.
  • wing element 12-11 has extension 12-11B at the trailing edge 12-11-1, and wing element 12-12 is similar to extension 12-11B at the front edge 12-12-2. It may have a stretched portion of
  • wing element 12-12 has an extension at trailing edge 12-12-1 similar to extension 12-11B, and wing element 12-13 extends to leading edge 12-13-2. It may have the same stretched portion as the portion 12-11B.
  • wing element 12-11 has an extension 12-11B at the trailing edge 12-11-1
  • wing element 12-12 is similar to extension 12-11B at the front edge 12-12-2
  • the wing element 12-12 has an extension similar to the extension 12-11B at the trailing edge 12-12-1
  • the wing element 12-13 has the leading edge 12
  • the same extension part as the extension part 12-11B may be provided at -13-2.
  • FIG. 14 is a side view showing one of the propeller fan blades according to the second embodiment.
  • the wing element 12A-11 of the wing 12A of the propeller fan 5A according to the second embodiment is connected to the hub 11 with the base 12A-11a as a connection portion.
  • the wing 12A has a substantially trapezoidal shape in which the extended portions 12A-11B of the wing element 12A-11 have the boundary C1 as a base and the boundary C1 as a base.
  • the height of the extension 12A-11B gradually increases toward the pressure side of the hub 11 with respect to the boundary C1.
  • the height of the hub 11 with respect to the pressure side of the boundary C1 is substantially constant until the connection point with the hub 11 is reached.
  • the extended portions 12A-11B of the second embodiment like the extended portions 12-11B of the first embodiment, have the hub 11 with respect to the boundary C1 in the vicinity of the branch point 12p of the wing element 12A-11 and the wing element 12-12.
  • the height gradually increases toward the positive pressure side of the In other words, the whole of the front edge 12-12-2 of the wing element 12-12 overlaps the rotational orbit around the hub 11 of the extension 12A-11B. Therefore, the outer end of the extension 12A-11B is located at the branch point 12p, so that the air conditioner is operated at high load or at high rotation from the hole 12A-21 to the wing element 12-12.

Abstract

プロペラファン(5)は、ハブ(11)と複数の翼(12)とを備える。翼(12)は、外周部(12b)から内周部(12a)へ至る途中で分岐した複数の翼素(12-11、12-12、12-13)を有する。複数の翼素(12-11、12-12、12-13)は、隣接する翼素間それぞれに気流の流路となる孔部(12-21)を形成し、分岐点(12p)で分岐した回転の上流側の第1の翼素(12-11)と第1の翼素(12-11)の回転の下流側に隣接する第2の翼素(12-12)とを含み、分岐点(12p)からハブ(11)の側面(11a)に至る第1の翼素(12-11)の後縁部(12-11-1)に第1の翼素(12-11)の一部である延伸部(12-11B)を有する。延伸部(12-11B)の中心軸(O)を回転中心とする回転軌道には、第2の翼素(12-12)の前縁部(12-12-2)の少なくとも一部が重なる。

Description

プロペラファン
 本発明は、プロペラファンに関する。
 空気調和機の室外機は、内部にプロペラファンを有する。プロペラファンは、翼外周部の風速が速く、回転中心に向かうにつれて風速が低下する。近年、空気調和機の省エネルギー性能向上のため、プロペラファンの風量増大が図られており、プロペラファンの大径化、高速回転化などが行われている。
特開2010-101223号公報 国際公開第2011/001890号 特表2003-503643号公報 特開2004-116511号公報
 しかしながら、上述の従来技術では、次の問題がある。すなわち、径方向の風速分布が不均一となり、翼の内周部において下流側から空気を吸い込む等のサージング現象が発生して異常な運転状態となる。プロペラファンを室外機に使用する場合、サージング現象が発生すると、騒音やプロペラファンの破損につながるおそれがある。また、風速が遅い内周部は送風に寄与しないので、大きさに対して得られる送風量が少なく、かつ、気流が乱れやすく、翼面が有効に使えていないといえる。
 本発明は、上述の問題に鑑みてなされたものであり、サージング現象の発生を抑制しつつプロペラファンの風量増大を図ることができるプロペラファンを提供することを目的とする。
 上述した課題を解決するため、本願が開示するプロペラファンは、例えば、中心軸の周りに側面を有するハブと、前記側面に設けられた複数の翼と、を備える。前記翼は、前記ハブに接続されている基部から外周までの部分のうち前記基部側に位置する内周部および前記外周側に位置する外周部を含み、前記外周部から前記内周部へ至る途中で分岐した複数の翼素を有する。前記複数の翼素は、前記中心軸を回転中心とする回転の下流側の後縁部と、該回転の上流側の前縁部とを有し、前記中心軸に対してそれぞれのピッチ角で前記側面に接続され、隣接する該翼素間それぞれに気流の流路となる孔部を形成する。前記複数の翼素は、前記外周部から前記内周部へ至る途中の分岐点で分岐した前記回転の上流側の第1の翼素と前記第1の翼素の前記回転の下流側に隣接する第2の翼素とを含み、前記分岐点から前記側面に至る前記第1の翼素の前記後縁部に前記第1の翼素の一部である延伸部を有する。前記延伸部の前記中心軸を回転中心とする回転軌道には、前記第2の翼素の前縁部の少なくとも一部が重なる。
 本発明によれば、例えば、サージング現象の発生を抑制しつつプロペラファンの風量増大を図ることができる。
図1は、実施例1にかかるプロペラファンを有する室外機を示す模式図である。 図2は、実施例1にかかるプロペラファンを正圧側から見た概略的な平面図である。 図3は、実施例1にかかるプロペラファンの翼のうちの1枚を正圧側から見た平面図である。 図4は、実施例1にかかるプロペラファンを負圧側から見た概略的な平面図である。 図5は、実施例1にかかるプロペラファンの翼のうちの1枚を負圧側から見た平面図である。 図6は、実施例1にかかるプロペラファンを示す斜視図である。 図7は、実施例1にかかるプロペラファンを示す側面図である。 図8は、実施例1にかかるプロペラファンの翼のうちの1枚を示す側面図である。 図9は、実施例1にかかるプロペラファンのI-I断面の概略を示す断面図である。 図10は、比較例にかかるプロペラファンを実施例1にかかるプロペラファンとI-I断面において比較するための断面図である。 図11は、風量-入力(投入電力)曲線図である。 図12は、風量-回転数曲線図である。 図13は、風量-静圧曲線図である。 図14は、実施例2にかかるプロペラファンの翼のうちの1枚を示す側面図である。
 以下に、本発明を実施するための形態を、図面を参照しつつ詳細に説明する。以下に示す各実施例により、本願が開示する技術が限定されるものではない。また、以下に示す各実施例および変形例は、矛盾しない範囲で適宜組合せて実施してもよい。なお、既出または同一の要素の説明については、同一符号を付与し、後述においてその説明を省略する。
(室外機の構成)
 図1は、実施例1にかかるプロペラファンを有する室外機を示す模式図である。図1に示すように、実施例1の室外機1は、空気調和機の室外機である。室外機1は、筐体6を有し、筐体6内に、冷媒を圧縮する圧縮機3、圧縮機3に連結されて冷媒が流れる熱交換器4、熱交換器4に送風するプロペラファン5を収容する。
 筐体6は、外気を取り込むための吸込み口7、筐体6内の空気を排出するための吹出し口8を有する。吸込み口7は、筐体6の側面6aおよび背面6cに設けられている。吹出し口8は、筐体6の前面6bに設けられている。熱交換器4は、筐体6の前面6bに対向する背面6cから側面6aにわたって配置されている。プロペラファン5は、吹出し口8に対向して配置されており、ファンモータ(図示せず)によって回転駆動される。以下の説明では、プロペラファン5が回転することにより吹出し口8から排出される風の方向を正圧側とし、その反対側の風の方向を負圧側とする。
(実施例1にかかるプロペラファン)
 図2は、実施例1にかかるプロペラファンを正圧側から見た概略的な平面図である。図3は、実施例1にかかるプロペラファンの翼のうちの1枚を正圧側から見た平面図である。図4は、実施例1にかかるプロペラファンを負圧側から見た概略的な平面図である。図5は、実施例1にかかるプロペラファンの翼のうちの1枚を負圧側から見た平面図である。図6は、実施例1にかかるプロペラファンを示す斜視図である。図7は、実施例1にかかるプロペラファンを示す側面図である。図8は、実施例1にかかるプロペラファンの翼のうちの1枚を示す側面図である。
 図2~図8に示すように、実施例1にかかるプロペラファン5は、外観で円柱状(もしくは多角柱状)に形成されたハブ11、ハブ11の中心軸の周りに設けられたハブ11の側面11a(図6および図7参照)に設けられた複数の翼12を有しており、これらハブ11と複数枚の翼12は成形材料として例えば樹脂材料を用いて一体成形されている。翼12は、翼12の回転方向における前方である前縁部12-2と翼12の回転方向における後方である後縁部12-1とを有している。前縁部12-2は、前縁部12-2の反対側に位置する後縁部12-1側へ向かって凹となるように湾曲して形成されている。翼は、羽根ともいう。
 ハブ11は、プロペラファン5の負圧側(図4および図7参照)の端部におけるハブ11の中心軸Oの位置に、ファンモータのシャフト(図示せず)が嵌め込まれるボス(図示せず)が設けられる。ハブ11は、ファンモータの回転に伴ってハブ11の中心軸Oを軸として、図2、図4、図6~図8に示す“R”の方向へ回転する。ハブ11の側面11aには、ハブ11の周方向に沿って所定の間隔をあけて複数(図2~図8の例では5つ)の翼12が一体に形成されている。また、翼12は、湾曲した板状に形成されている。
 図2および図4に示す平面視において、プロペラファン5は、中心軸Oの半径r1の円の円周内に位置する翼12の内周部12a、中心軸Oの半径r1の円の円周外かつ中心軸Oの半径R1の円の円周内に位置する翼12の外周部12bを有する。図2および図4に示すように、ハブ11に連結された内周部12aに比べて、ハブ11の径方向へ延ばされた外周部12bの翼面積が広く形成されている。
 また、図2および図4に示す平面視において、プロペラファン5は、翼12それぞれの内周部12aに、翼素12-11、12-12、12-13を有する。翼素12-11は、第1の翼素の一例であり、翼素12-12は、第2の翼素の一例である。
 なお、翼素12-11、12-12、12-13の翼面積の大小関係は、適宜設計変更可能であるが、翼素12-11の翼面積が、翼素12-12、12-13の翼面積と比較して最大であってもよい。
 また、図2および図4に示す平面視において、プロペラファン5は、翼12それぞれの内周部12aの翼素12-11、12-12の間に孔部12-21を有し、翼素12-12、12-13の間に孔部12-22を有する。孔部12-21は、内周部12aと外周部12bの境界(中心軸Oからの半径r1の位置)に接するように設けられている。孔部12-21、12-22は、気流の流路である。
 すなわち、翼12それぞれは、翼素12-11の基部12-11aと、翼素12-12の基部12-12aとが内周部12aにおいて孔部12-21を形成するようにハブ11に接続されている。また、翼12それぞれは、翼素12-12の基部12-12aと、翼素12-13の基部12-13aとが内周部12aにおいて孔部12-22を形成するようにハブ11に接続されている。また、翼12それぞれは、外周部12bが翼素12-11、12-12、12-13から連続し、内周部12aと外周部12bで1枚の翼面を形成している。
 言い換えると、3つの翼素12-11、12-12、12-13は、翼12の外周部12bから内周部12aに向かう途中で分岐する。翼素12-11、12-12間の孔部12-21と、翼素12-12、12-13間の孔部12-22は、それぞれ、プロペラファン5を通過する気流の流路となる。
 図2~図8に示すように、翼12の翼素12-11は、ハブ11に対して、基部12-11aを接続部分として接続されている。また、翼12の翼素12-12は、ハブ11に対して、基部12-12aを接続部分として接続されている。また、翼12の翼素12-13は、ハブ11に対して、基部12-13aを接続部分として接続されている。
 また、翼12は、ハブ11に対して、回転方向(図中の“R”方向)の上流側(前縁側)に位置する翼素12-12が下流側(後縁側)に位置する翼素12-11よりも正圧側に接続されている。そして、翼12の孔部12-21は、中心軸O方向および周方向に関して、翼素12-12と翼素12-11の間に位置している。
 また、翼12は、ハブ11に対して、回転方向(図中の“R”方向)の上流側(前縁側)に位置する翼素12-13が下流側(後縁側)に位置する翼素12-12よりも正圧側に接続されている。そして、翼12の孔部12-22は、中心軸O方向および周方向に関して、翼素12-13と翼素12-12の間に位置している。
 なお、実施例1における翼12が有する翼素12-11、12-12、12-13および孔部12-21、12-22の数は、図2~図8に図示のものに限られず、2つの翼素に対して1つの孔部、または、4つ以上の翼素に対し、その数が(翼素の数-1)の孔部を有してもよい。
 また、図6に示すように、翼素12-11は、回転方向(図中の“R”方向)の上流側(前縁側)に前縁部12-11-2を有し、回転方向(図中の“R”方向)の下流側(後縁側)に後縁部12-11-1を有する。翼素12-12は、回転方向(図中の“R”方向)の上流側(前縁側)に前縁部12-12-2を有し、回転方向(図中の“R”方向)の下流側(後縁側)に後縁部12-12-1を有する。翼素12-13は、回転方向(図中の“R”方向)の上流側(前縁側)に前縁部12-13-2を有し、回転方向(図中の“R”方向)の下流側(後縁側)に後縁部12-13-1を有する。
 図7~図8に示すように、翼12において、翼素12-11は、境界C1により区画される基体部12-11Aおよび延伸部12-11Bを有する。境界C1は、翼素12-12の前縁部12-12-2と略平行な位置関係である。また、図7および図8に示すように、境界C1は、その一端が、翼12の外周部12bから内周部12aに向かう途中で分岐する翼素12-11と翼素12-12の分岐点12pに該当し、他端が基部12-13aの正圧側の端点に該当する。
 そして、図7および図8に示すように、延伸部12-11Bは、翼素12-11および翼素12-12の間に存在する孔部12-21側へ、翼素12-11の基体部12-11Aから、気流の下流側へさらに延びる部分である。図7および図8に示す側面視において、延伸部12-11Bは、境界C1を底辺とし、境界C1の両端を底角の頂点とする三角形状または凸形状である。
 そして、図7および図8に示す側面視において、延伸部12-11Bが三角形状または凸形状である。このことから、孔部12-21の一部分が、翼素12-11および翼素12-12の分岐点12p付近において、翼素12-11に沿った気流に対して遮蔽されており、孔部12-21の遮蔽されていない残りの部分が、ハブ11の側面11a付近において、翼素12-11に沿った気流に対して露出している。
 言い換えると、延伸部12-11Bは、翼素12-11および翼素12-12の分岐点12p付近が翼素12-12と回転方向(図中の“R”方向)に重なる部分を有し、翼素12-11の基部12-11a付近が翼素12-12と回転方向(図中の“R”方向)に重ならない部分を有する。翼素12-11は、少なくとも翼素12-11および翼素12-12の分岐点12p付近において、翼素12-12と回転方向(図中の“R”方向)に重なる延伸部12-11Bを有する。
 すなわち、延伸部12-11Bは、翼素12-11および翼素12-12の分岐点12p付近における境界C1の一端を始点として、境界C1に対してハブ11の正圧側へ高さが徐々に高くなり、境界C1に対してハブ11の正圧側へ高さが最も高くなる点に至ると、境界C1に対してハブ11の正圧側へ高さが低くなり、境界C1上の他端へ至る形状である。
 延伸部12-11Bは、翼素12-11および翼素12-12の分岐点12p付近において境界C1に対してハブ11の正圧側へ高さが徐々に高くなる形状である。言い換えると、延伸部12-11Bは、翼素12-11および翼素12-12の分岐点12pにおいて、翼素12-11および翼素12-12の翼面に沿って流れる気流を孔部12-21へ逃がす形状の部分を有する。よって、延伸部12-11Bの外側端部が分岐点12pに位置していることで、高負荷または高回転での空気調和機の運転時において、孔部12-21から翼素12-12の翼面に沿って流れる気流(特に遠心力の影響で径方向に傾いた気流)の通風抵抗になりにくくなり、この気流の一部を孔部12-21へ逃がすことから、翼素12-12の外周側翼面の負荷を小さくし、プロペラファン5を駆動させるためにファンモータ(不図示)へ投入する入力電力の増大を抑制できる。
 また、翼素12-11を沿う気流は、プロペラファン5の回転による遠心力で外周方向へ移動することから、延伸部12-11Bが、少なくとも翼素12-11および翼素12-12の分岐部分付近において翼素12-12と回転方向(図中の“R”方向)に重なるのみであっても、内周側の翼の枚数が増えることで内周部の風速を上昇させ、外周部と内周部の風速差によって生じる気流乱れやサージング現象など異常な運転状態の発生を抑制し、風量の増大を図ることができる。これは、翼素12-12が延伸部12-11Bと同様の延伸部を有する場合に、より顕著となる。すなわち、翼素12-11、12-12、12-13を沿う気流は、プロペラファン5の回転による遠心力で外周方向へ移動することから、少なくとも翼素12-11、12-12、12-13の外周方向に延伸部を設けることにより、風量の増大が期待できる。
(実施例1にかかるプロペラファンのI-I断面の概略)
 さらに、図9を参照して、隣接する翼素12-11と翼素12-12との位置関係について説明する。図9は、実施例1にかかるプロペラファンのI-I断面の概略を示す断面図である。ここで、I-I断面とは、図2のプロペラファン5の平面図における切断線I-Iに沿ってプロペラファン5の翼12を切断し、外周部12b側から見た場合の断面である。
 翼12は、翼素12-11、12-12、12-13を有する。翼素12-11、12-12、12-13は、回転方向(図中の“R”方向)の上流側(前縁側)から、翼素12-11、12-12、12-13の順序で、回転方向(図中の“R”方向)に各々を見たときに部分的に重なる。
 具体的には、図9に示すように、翼12は、翼素12-11の後縁部12-11-1側に、翼素12-12の前縁部12-12-2と回転方向(図中の“R”方向)に見たときに部分的に重なる延伸部12-11Bを有する。延伸部12-11Bが、翼素12-12の前縁部12-12-2と回転方向(図中の“R”方向)に見たときに部分的に重なる部分は、ハブ11の軸方向で境界C1から正圧方向で最も高い高さがH1である。
 なお、ハブ11の中心軸Oに対する翼素12-11、12-12、12-13のピッチ角α、β、γは、適宜設計変更可能であるが、翼素12-11のピッチ角αが、翼素12-12、12-13のピッチ角β、γと比較して最大であってもよい。
 また、図2~図9から分かるとおり、翼12において、翼素12-11、12-12、12-13は、ハブ11の側面11aにおける中心軸O方向で重ならない。翼素12-11、12-12、12-13は、ハブ11の側面11aにおいて、中心軸O方向に互いに重ならないようにハブ11の側面11aの位置に接続している。
 なお、翼12において、翼素12-11、12-12、12-13は、ハブ11の中心軸O方向で重なってもよい。すなわち、翼素12-11、12-12、12-13は、ハブ11の側面11aにおいて、基部12-11a、12-12a、12-13aが略一直線上に並ぶようにハブ11の側面11aに接続してもよい。
 図9に示すように、延伸部12-11Bが、翼素12-12と回転方向(図中の“R”方向)に部分的に重なる。言い換えると、延伸部12-11Bのハブ11を回転中心とする回転軌道に、翼素12-12の前縁部12-12-2の一部が重なる。すなわち、延伸部12-11Bが、翼12の回転に伴って回転方向(図中の“R”方向)の上流側から下流側へ流れる気流A2に沿って、翼素12-12の前縁部12-12-2の一部と重なる。このことから、翼12の回転に伴って回転方向(図中の“R”方向)の上流側から下流側へ流れる気流A1およびA2は、ともに翼素12-11、12-12の翼面の上流側から下流側へ翼面に沿って流れる。すなわち、翼素12-11の翼面を沿って流れた気流A2は、翼素12-11および翼素12-12の間に存在する孔部12-21へ流れ込むことなく、引き続き翼素12-12の翼面を沿って流れるため、風量のロスがない。
 また、翼素12-12、12-13が、翼素12-11、12-12のハブ11を回転中心とする回転軌道に重なるように配列する。翼素12-12、12-13が、翼素12-11、12-12のハブ11を回転中心とする回転軌道に重なるように配列することで、延伸部12-11Bから離れた翼面の位置に沿って流れる気流が、次列の翼素12-12、12-13の作用を受けることができる。
(比較例にかかるプロペラファンのI-I断面の概略)
 図10は、比較例にかかるプロペラファンを実施例1にかかるプロペラファンとI-I断面において比較するための断面図である。図10は、比較例にかかるプロペラファンの翼12Zを、図2における実施例1にかかるプロペラファン5のI-I断面と同様のI-I断面(不図示)に沿って見た場合の断面視を示す。
 翼12Zは、翼素12Z-11、12Z-12、12Z-13を有する。翼素12Z-11、12Z-12、12Z-13は、回転方向(図中の“R”方向)の上流側(前縁側)から、翼素12Z-11、12Z-12、12Z-13の順序で、回転方向(図中の“R”方向)に各々を見たときに重ならない。
 具体的には、図10に示すように、翼12Zは、翼素12Z-11の後縁部12Z-11-1側に、翼素12Z-12の前縁部12Z-12-2と回転方向(図中の“R”方向)に部分的に重なる部分を有さない。翼素12Z-11の後縁部12Z-11-1と、翼素12Z-12の前縁部12Z-12-2との間隔は、ハブ11の軸方向で、最も広い部分でH01である。
 このため、比較例にかかるプロペラファンの翼12Zでは、翼12Zの回転に伴って回転方向(図中の“R”方向)の上流側から下流側へ流れる気流A01は、翼素12Z-11、12Z-12との間に気流A02を挟むことから、翼素12Z-11、12Z-12の下流側の翼面に沿って流れる。しかし、翼12Zの回転に伴って回転方向(図中の“R”方向)の上流側から下流側へ流れる気流A02は、翼素12Z-11、12Z-12の翼面に直接沿うことから、翼素12Z-11の下流側の翼面に沿った後、翼素12Z-12の翼面を沿わず、翼素12Z-11および翼素12Z-12の間に存在する孔部12Z-21へ流れ込む。このため、翼素12Z-11および翼素12Z-12の間に存在する孔部12Z-21へ流れ込んだ気流A02は、実施例1と比較して、風量のロスとなる。
(実施例1と比較例のプロペラファンの静圧の比較)
 図11~図13を参照して、実施例1と比較例のプロペラファンの静圧の変化を説明する。図11は、風量-入力(投入電力)曲線図である。図12は、風量-回転数曲線図である。図13は、風量-静圧曲線図である。図11および図12は、実施例1と比較例のプロペラファンの静圧を比較する際の前提条件を示す。
 図11は、プロペラファンの風量がQ01[m/h]のとき入力(投入電力)がW1[W]であり、プロペラファンの風量がQ02[m/h]のとき入力(投入電力)がW2[W]であることを示す。図12は、プロペラファンの風量がQ01[m/h]のとき回転数がRF1[W]であり、プロペラファンの風量がQ02[m/h]のとき回転数がRF2[W]であることを示す。すなわち、実施例1および比較例は、風量が同一であれば、入力(投入電力)と回転数は、同一であることを示す。
 ここで、図13に示すように、比較例では、プロペラファンの風量がQ01[m/h]のとき静圧がP1[Pa]であるのに対し、実施例1では、プロペラファンの風量がQ01[m/h]のとき静圧がP1[Pa]より高い値となり、静圧がP1より上昇している。また、比較例では、プロペラファンの風量がQ02[m/h]のとき静圧がP2[Pa]であるのに対し、実施例1では、プロペラファンの風量がQ02[m/h]のとき静圧がP2[Pa]より高い値となり、静圧がP2より上昇している。
 すなわち、静圧がP1[Pa]で同一であれば、従来例にかかるプロペラファン5の風量はQ01[m/h]、実施例1にかかるプロペラファンはQ11[m/h]と、風量がQ01[m/h]からQ11[m/h]へ増大している。また、静圧がP2[Pa]で同一であれば、従来例にかかるプロペラファン5の風量はQ02[m/h]、実施例1にかかるプロペラファンはQ12[m/h]と、風量がQ02[m/h]からQ12[m/h]へ増大している。逆に言うと、実施例1では、従来例よりも静圧が高い場合であっても、従来例と同一の風量を確保することができる。すなわち、図13から、実施例1によれば、プロペラファン5の風量の増大を図ることができるといえる。
 以上の実施例1では、翼12が、外周部12bから内周部12aに至るに従って翼素12-11、12-12、12-13へ分岐する形状である。翼素12-11、12-12、12-13は、それぞれの基部12-11a、12-12a、12-13aが、ハブ11の周囲に、列をなすように接続されている。翼素12-11は、ハブ11の回転方向の下流側の後縁部12-11-1側の翼素12-11、12-12の分岐点12p付近に、三角形状または凸形状の延伸部12-11Bを有する。
 よって、延伸部12-11Bが、プロペラファン5の回転による遠心力で気流が偏向することを抑制するので、サージング現象の発生を防止できる。また、翼素12-11、12-12のハブ11を回転中心とする回転軌道に、翼素12-12、12-13が重なるように配列することで、延伸部12-11Bから離れた翼面の位置に沿って流れる気流が、次列の翼素12-12の作用を受ける。これにより、従来では、翼12の力を及ぼし得なかった気流に対しても翼12の力を及ぼし、プロペラファン5の風量増大を図ることができる。すなわち、実施例1によれば、サージング現象の発生を抑制しつつプロペラファンの風量増大を図ることができる。
(実施例1の変形例)
(1)実施例1では、翼素12-11が後縁部12-11-1に延伸部12-11Bを有するとした。しかし、これに限られず、翼素12-11が後縁部12-11-1に延伸部12-11Bを有さず、翼素12-12が後縁部12-12-1に延伸部12-11Bと同様の延伸部を有してもよい。または、翼素12-11が後縁部12-11-1に延伸部12-11Bを有し、かつ、翼素12-12が後縁部12-12-1に延伸部12-11Bと同様の延伸部を有するとしてもよい。
(2)実施例1では、翼素12-11が後縁部12-11-1に延伸部12-11Bを有するとした。しかし、これに限られず、翼素12-12が前縁部12-12-2に延伸部12-11Bと同様の延伸部を有してもよい。または、翼素12-11が後縁部12-11-1に延伸部12-11Bを有し、かつ、翼素12-12が前縁部12-12-2に延伸部12-11Bと同様の延伸部を有するとしてもよい。
 同様に、翼素12-12が後縁部12-12-1に延伸部12-11Bと同様の延伸部を有し、かつ、翼素12-13が前縁部12-13-2に延伸部12-11Bと同様の延伸部を有するとしてもよい。
 あるいは、翼素12-11が後縁部12-11-1に延伸部12-11Bを有し、かつ、翼素12-12が前縁部12-12-2に延伸部12-11Bと同様の延伸部を有し、かつ、翼素12-12が後縁部12-12-1に延伸部12-11Bと同様の延伸部を有し、かつ、翼素12-13が前縁部12-13-2に延伸部12-11Bと同様の延伸部を有するとしてもよい。
 図14は、実施例2にかかるプロペラファンの翼のうちの1枚を示す側面図である。実施例2にかかるプロペラファン5Aの翼12Aの翼素12A-11は、ハブ11に対して、基部12A-11aを接続部分として接続されている。また、翼12Aは、その翼素12A-11の延伸部12A-11Bが、境界C1を底辺とし、境界C1を底辺とする略台形状である。
 延伸部12A-11Bは、翼素12A-11および翼素12-12の分岐点12p付近における境界C1の一端を始点として、境界C1に対してハブ11の正圧側へ高さが徐々に高くなり、境界C1に対してハブ11の正圧側へ高さが最も高くなる点に至ると、ハブ11との接続点に至るまで境界C1に対してハブ11の正圧側への高さが概ね一定となる。
 すなわち、実施例2の延伸部12A-11Bは、実施例1の延伸部12-11Bと同様に、翼素12A-11および翼素12-12の分岐点12p付近において境界C1に対してハブ11の正圧側へ高さが徐々に高くなる形状である。言い換えると、延伸部12A-11Bのハブ11を回転中心とする回転軌道には、翼素12-12の前縁部12-12-2の全部が重なる。よって、延伸部12A-11Bの外側端部が分岐点12pに位置していることで、高負荷または高回転での空気調和機の運転時において、孔部12A-21から翼素12-12の翼面に沿って流れる気流(特に遠心力の影響で径方向に傾いた気流)の通風抵抗になりにくくなり、この気流の一部を切り欠き形状の部分から孔部12A-21へ逃がすことから、翼素12-12の外周側翼面の負荷を小さくし、プロペラファン5を駆動させるためにファンモータ(不図示)へ投入する入力電力の増大を抑制できる。
 以上、実施例を説明したが、上述した内容により本願が開示する技術が限定されるものではない。また、上述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、上述した構成要素は適宜組み合わせることが可能である。さらに、実施例の要旨を逸脱しない範囲で構成要素の種々の省略、置換および変更のうち少なくとも1つを行うことができる。
1 室外機
3 圧縮機
4 熱交換器
5、5A プロペラファン
6 筐体
6a 側面
6b 前面
6c 背面
7 吸込み口
8 吹出し口
11 ハブ
11a 側面
12、12A 翼
12a 内周部
12b 外周部
12p 分岐点
12-11、12-12、12-13、12A-11 翼素
12-21、12A-21、12-22 孔部
12-11a、12A-11a、12-12a、12-13a 基部
12-11A 基体部
12-11B、12A-11B 延伸部
12-1、12-11-1、12-12-1、12-13-1 後縁部
12-2、12-11-2、12-12-2、12-13-2 前縁部

Claims (4)

  1.  中心軸の周りに側面を有するハブと、前記側面に設けられた複数の翼と、を備え、
     前記翼は、前記ハブに接続されている基部から外周までの部分のうち前記基部側に位置する内周部および前記外周側に位置する外周部を含み、前記外周部から前記内周部へ至る途中で分岐した複数の翼素を有し、
     前記複数の翼素は、前記中心軸を回転中心とする回転の下流側の後縁部と、該回転の上流側の前縁部とを有し、前記中心軸に対してそれぞれのピッチ角で前記側面に接続され、隣接する該翼素間それぞれに気流の流路となる孔部を形成し、
     前記複数の翼素は、前記外周部から前記内周部へ至る途中の分岐点で分岐した前記回転の上流側の第1の翼素と前記第1の翼素の前記回転の下流側に隣接する第2の翼素とを含み、前記分岐点から前記側面に至る前記第1の翼素の前記後縁部に前記第1の翼素の一部である延伸部を有し、
     前記延伸部の前記中心軸を回転中心とする回転軌道には、前記第2の翼素の前縁部の少なくとも一部が重なる、プロペラファン。
  2.  前記延伸部の前記中心軸を回転中心とする回転軌道には、前記第2の翼素の前縁部の全部が重なる、請求項1に記載のプロペラファン。
  3.  前記複数の翼素は、前記中心軸に対して互いに異なる方向の前記側面の位置に接続されている、請求項1に記載のプロペラファン。
  4.  前記延伸部は、前記分岐点において、前記翼素の翼面に沿って流れる気流を前記流路へ逃がす形状の部分を有する、請求項1に記載のプロペラファン。
PCT/JP2018/044795 2017-12-05 2018-12-05 プロペラファン WO2019111973A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880077041.7A CN111417786B (zh) 2017-12-05 2018-12-05 螺旋桨式风扇
AU2018381395A AU2018381395B2 (en) 2017-12-05 2018-12-05 Propeller fan
EP18885012.7A EP3722615A4 (en) 2017-12-05 2018-12-05 PROPELLER FAN
US16/769,988 US11187237B2 (en) 2017-12-05 2018-12-05 Propeller fan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017233659A JP6583397B2 (ja) 2017-12-05 2017-12-05 プロペラファン
JP2017-233659 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019111973A1 true WO2019111973A1 (ja) 2019-06-13

Family

ID=66750565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044795 WO2019111973A1 (ja) 2017-12-05 2018-12-05 プロペラファン

Country Status (6)

Country Link
US (1) US11187237B2 (ja)
EP (1) EP3722615A4 (ja)
JP (1) JP6583397B2 (ja)
CN (1) CN111417786B (ja)
AU (1) AU2018381395B2 (ja)
WO (1) WO2019111973A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503643A (ja) 1999-07-06 2003-01-28 ルドルフ バンアッシュ, 分岐型ロータブレードを備えたロータ
JP2004116511A (ja) 2002-09-27 2004-04-15 Delta Electronics Inc 多重セグメントブレードを備えた軸流ファン
JP2010101223A (ja) 2008-10-22 2010-05-06 Sharp Corp プロペラファン、流体送り装置および成型金型
WO2011001890A1 (ja) 2009-06-28 2011-01-06 有限会社バルミューダデザイン 軸流ファン
CN104047893A (zh) * 2013-03-15 2014-09-17 扎尔曼技术株式会社 冷却风扇
WO2015072256A1 (ja) * 2013-11-15 2015-05-21 株式会社Ihi 軸流ターボ機械の翼の構造及びガスタービンエンジン
CN206377068U (zh) * 2016-09-20 2017-08-04 法雷奥汽车空调湖北有限公司 涡壳单元和包括这样的涡壳单元的汽车空调

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19604638A1 (de) * 1996-02-08 1997-08-14 Sued Electric Gmbh Ventilator-Laufrad
KR100648088B1 (ko) * 1999-12-21 2006-11-23 한라공조주식회사 축류팬
ES2269274T3 (es) * 2001-01-02 2007-04-01 BEHR GMBH & CO. KG Ventilador con palas axiales.
US7014425B2 (en) 2003-12-12 2006-03-21 Siemens Vdo Automotive Inc. Low pressure fan with Y-shaped blades
DE102005046180B3 (de) 2005-09-27 2007-03-22 Siemens Ag Lüftermodul
DE112008001022B4 (de) * 2007-05-10 2021-09-16 Borgwarner Inc. Synergetische Flügel- und Nabenstruktur für Kühlgebläse
DE102008040698A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Lüfter mit Vorflügeln an den Lüfterschaufeln
DE102008035185B4 (de) * 2008-07-28 2023-12-28 Mahle International Gmbh Lüfterkupplung
DE102010042325A1 (de) * 2010-10-12 2012-04-12 Behr Gmbh & Co. Kg Lüfter mit Lüfterschaufeln
CN202833302U (zh) * 2012-10-24 2013-03-27 温州车舟汽车部件有限公司 环形冷却风扇

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503643A (ja) 1999-07-06 2003-01-28 ルドルフ バンアッシュ, 分岐型ロータブレードを備えたロータ
JP2004116511A (ja) 2002-09-27 2004-04-15 Delta Electronics Inc 多重セグメントブレードを備えた軸流ファン
JP2010101223A (ja) 2008-10-22 2010-05-06 Sharp Corp プロペラファン、流体送り装置および成型金型
WO2011001890A1 (ja) 2009-06-28 2011-01-06 有限会社バルミューダデザイン 軸流ファン
CN104047893A (zh) * 2013-03-15 2014-09-17 扎尔曼技术株式会社 冷却风扇
WO2015072256A1 (ja) * 2013-11-15 2015-05-21 株式会社Ihi 軸流ターボ機械の翼の構造及びガスタービンエンジン
CN206377068U (zh) * 2016-09-20 2017-08-04 法雷奥汽车空调湖北有限公司 涡壳单元和包括这样的涡壳单元的汽车空调

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722615A4

Also Published As

Publication number Publication date
CN111417786A (zh) 2020-07-14
AU2018381395A1 (en) 2020-06-18
US20210199122A1 (en) 2021-07-01
JP2019100278A (ja) 2019-06-24
AU2018381395B2 (en) 2021-09-23
CN111417786B (zh) 2021-10-08
JP6583397B2 (ja) 2019-10-02
EP3722615A4 (en) 2021-09-08
EP3722615A1 (en) 2020-10-14
US11187237B2 (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP5230805B2 (ja) 多翼送風機
WO2012008238A1 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
ES2865274T3 (es) Ventilador axial de paleta con anillos de control de flujo intermedios
US11391295B2 (en) Propeller fan
EP2886875B1 (en) Centrifugal compressor
US7186080B2 (en) Fan inlet and housing for a centrifugal blower whose impeller has forward curved fan blades
WO2016125335A1 (ja) 遠心圧縮機
WO2008075467A1 (ja) 軸流圧縮機の翼列
JP2008223741A (ja) 遠心送風機
JP5473497B2 (ja) 多翼遠心ファンおよびそれを用いた空気調和機
JP6621194B2 (ja) ターボファン及びこのターボファンを用いた送風装置
WO2019111973A1 (ja) プロペラファン
WO2017072843A1 (ja) 回転機械
US20190055947A1 (en) Centrifugal rotary machine
US11187242B2 (en) Multi-stage centrifugal compressor
US11536288B2 (en) Propeller fan
JP6109700B2 (ja) 送風機
KR20170116754A (ko) 고정압 원심임펠러
JP2012202362A (ja) 羽根車、およびそれを備えた遠心式ファン
KR20120023319A (ko) 공기조화기용 터보팬
JP6330738B2 (ja) 遠心送風機及びこれを用いた空気調和機
WO2017072844A1 (ja) 回転機械
US20210062821A1 (en) Impeller and centrifugal compressor
EP3550152B1 (en) Impeller and centrifugal compressor
WO2020075378A1 (ja) 遠心式流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018381395

Country of ref document: AU

Date of ref document: 20181205

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018885012

Country of ref document: EP

Effective date: 20200706