WO2019111401A1 - 半導体光素子 - Google Patents

半導体光素子 Download PDF

Info

Publication number
WO2019111401A1
WO2019111401A1 PCT/JP2017/044136 JP2017044136W WO2019111401A1 WO 2019111401 A1 WO2019111401 A1 WO 2019111401A1 JP 2017044136 W JP2017044136 W JP 2017044136W WO 2019111401 A1 WO2019111401 A1 WO 2019111401A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
optical device
semiconductor optical
grooves
optical
Prior art date
Application number
PCT/JP2017/044136
Other languages
English (en)
French (fr)
Inventor
弘介 篠原
直幹 中村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018517237A priority Critical patent/JPWO2019111401A1/ja
Priority to PCT/JP2017/044136 priority patent/WO2019111401A1/ja
Publication of WO2019111401A1 publication Critical patent/WO2019111401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Definitions

  • the present invention relates to a semiconductor optical device, and more particularly to an integrated semiconductor optical device capable of obtaining outgoing light with a good beam shape.
  • an integrated semiconductor optical device in which a plurality of light sources are integrated on one chip is used.
  • an optical waveguide having a curved portion, an optical multiplexer, etc. are formed on one chip, but the signal light interferes with stray light in the optical waveguide between the optical multiplexer and the output end face And the FFP (Far Field Pattern) shape of light emitted from the output end face is disturbed.
  • FFP Fluor Field Pattern
  • it has been proposed to provide reflection grooves on both sides of the optical waveguide between the optical coupler and the output end face to reflect and reduce stray light toward the output end face see, for example, Patent Document 1 .
  • the present invention aims to provide an integrated semiconductor optical device in which stray light is further removed to suppress disturbance of the beam shape of outgoing light.
  • the present invention An optical waveguide sandwiched on both sides by the embedded portion and having a first end and a second end; An optical multiplexer connected to the first end of the optical waveguide, at least the end face on the output side being in contact with the embedded portion; A recess formed in the embedded portion, and including a reflection groove for reflecting at least a part of the light emitted from the end of the output side of the optical multiplexer away from the optical waveguide; A semiconductor optical device in which light emitted from an optical multiplexer is emitted from a second end through an optical waveguide, The reflection groove is a semiconductor optical device characterized in that it does not have a side surface parallel to the optical waveguide.
  • the semiconductor optical device As described above, in the semiconductor optical device according to the present invention, it is possible to reduce stray light propagating along the optical waveguide and suppress interference between the signal light and the stray light to make the beam shape of the outgoing light favorable. .
  • FIG. 1 is a plan view showing a part of an integrated semiconductor optical device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the integrated semiconductor optical device of FIG. 1 as viewed in the II-II direction.
  • FIG. 7 is a plan view showing a part of another integrated semiconductor optical device according to Embodiment 1 of the present invention.
  • FIG. 1 is a plan view of an integrated semiconductor optical device according to a first embodiment of the present invention. The distribution of FFP of the emitted light of (a) the integrated semiconductor optical device of the conventional structure and (b) the integrated semiconductor optical device according to the first embodiment of the present invention is shown.
  • FIG. 6 is a plan view showing a part of an integrated semiconductor optical device according to a second embodiment of the present invention.
  • FIG. 10 is a plan view showing a part of an integrated semiconductor optical device according to a fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the integrated semiconductor optical device of FIG. 10 as viewed in the XI-XI direction.
  • FIG. 1 is a plan view showing a part of an integrated semiconductor optical device according to a first embodiment of the present invention, which is generally denoted by 100.
  • FIG. 2 is a plan view of the integrated semiconductor optical device 100 of FIG. It is sectional drawing at the time of seeing in II-II direction.
  • the integrated semiconductor optical device 100 includes an optical multiplexer 30 and an embedded optical waveguide 20 connected to the output port 31 of the optical multiplexer 30.
  • the buried portions 40 and 41 on both sides of the optical waveguide 20 reflective grooves 10 and 11 are provided so as to be symmetrical with respect to the optical waveguide 20, respectively.
  • a multi-mode interference (MMI) optical coupler As the optical multiplexer 30, a multi-mode interference (MMI) optical coupler, a Y-shaped optical branching waveguide, a directional coupler, a Mach-Zehnder interferometer optical branching element, or the like is used.
  • MMI multi-mode interference
  • the integrated semiconductor optical device 100 has an n-type substrate 83 having a front surface and a back surface.
  • An electrode 81 is provided on the back surface of the n-type substrate 83.
  • the optical waveguide 20 and the embedded portions 40 and 41 sandwiching the optical waveguide 20 from both sides are provided.
  • the optical waveguide 20 has an n-type cladding layer 84, a p-type cladding layer 86, and an i-type core layer 85 sandwiched between the n-type cladding layer 84 and the p-type cladding layer 86.
  • the buried portions 40 and 41 have a p-type buried layer 87 and an n-type buried layer 88 sequentially stacked on the n-type substrate 83.
  • a p-type cladding layer 86 provided in the optical waveguide 20 extends on the n-type buried layer 88. Further, a p-type cap layer 89 is provided on the p-type cladding layer 86, and an electrode 82 is provided thereon.
  • the optical waveguide 20, the optical multiplexer 30, and the embedded portions 40 and 41 are, for example, indium-phosphorus (InP), indium-gallium-arsenic-phosphorus (InGaAsP), aluminum-gallium-indium-arsenic (AlGaInAs), indium, respectively.
  • InP indium-phosphorus
  • InGaAsP indium-gallium-arsenic-phosphorus
  • AlGaInAs aluminum-gallium-indium-arsenic
  • InGaAs InGaAs
  • the electrodes 81 and 82 are formed of a conductive metal material such as gold.
  • the conductivity types (p-type and n-type) of each layer may be reversed.
  • the buried portions 40 and 41 may include an undoped layer or may be a layer doped with iron.
  • the substrate 83 may be a semi-insulating substrate, and the electrode 81 may be disposed on the surface of the element as the electrode 82 is.
  • the layers from the electrode 82 to the p-type embedded layer 87 are removed to form reflective grooves 10 and 11, respectively.
  • the depth of the bottom of the reflective groove 10 is preferably deeper than the depth of the bottom of the core layer.
  • the reflection grooves 10 and 11 respectively have four side surfaces 10a, 10b, 10c and 10d and side surfaces 11a, 11b, 11c and 11d, but the respective side surfaces and the optical waveguide 20 are arranged not to be parallel to each other Ru. Since the insides of the reflection grooves 10 and 11 are hollow and filled with air, the side faces 10a, 10b, 10c and 10d and the side faces 11a, 11b, 11c and 11d form a semiconductor-air interface.
  • the positions, depths, and planar shapes (shapes when viewed in the Z-axis direction shown in the plan view of FIG. 1) of the reflective grooves 10 and 11 may be the same, as shown in FIGS. 10 and the reflecting groove 11 may be different.
  • the planar shape of the reflection grooves 10 and 11 is such that the side surfaces (for example, the side surfaces 10 a, 10 b, 11 a and 11 b in FIG. 1) of the reflection grooves 10 and 11 close to the optical waveguide 20 If it does not become parallel, in other words, if the side surface close to the optical waveguide 20 is not arranged parallel to the optical waveguide 20 with the embedded portions 40 and 41 interposed therebetween, a triangle, a rectangle as shown in FIG. Other polygons are also possible. Also, it may be a curved shape instead of a straight line.
  • FIG. 3 is a plan view of another integrated semiconductor optical device according to the first embodiment of the present invention, generally indicated by 150, and in FIG. 3, the same reference numerals as in FIG. .
  • the planar shapes of the reflection grooves 10 and 11 are triangular, and there is no side surface corresponding to the reference numerals 10d and 11d in FIG.
  • FIG. 4 is a schematic view of the entire integrated semiconductor optical device 100.
  • a plurality of semiconductor lasers 70 are provided in parallel in an array.
  • the semiconductor laser 70 is made of, for example, a DFB-LD (Distributed Feedback LD).
  • Each semiconductor laser 70 is coupled to the optical multiplexer 30 by an optical waveguide 50.
  • the light guide 50 includes a curved one as well as one extending straight in the X direction.
  • the optical waveguide 20 may be provided with a semiconductor optical amplifier (SOA: Semiconductor Optical Amplifier).
  • SOA semiconductor optical amplifier
  • MMI coupler multimode interference coupler
  • the embedded optical waveguide 20 in place of the mesa waveguide, the embedded optical waveguide 20 is adopted, and at least the output side of the MMI optical multiplexer is embedded with the embedded member of the semiconductor.
  • the end face on the output side of the MMI optical coupler is in contact with the embedded portions 40 and 41 to reduce the difference in refractive index at the end face on the output side of the MMI optical coupler and suppress the return light due to the light reflection. be able to.
  • the reflection grooves 10 and 11 are provided in the width direction (Y direction) in the embedded portions 40 and 41 in which the optical waveguide 20 is embedded. At this time, a gap is provided between the optical waveguide 20 and the reflective grooves 10 and 11 so that the light guided through the optical waveguide 20 does not interfere with the reflective grooves 10 and 11.
  • the portion close to the optical waveguide 20 is provided so as to be parallel to the optical waveguide 20. Therefore, between the optical waveguide 20 and the reflective grooves 10 and 11 The stray light propagates a long distance through the gap of.
  • the reflection grooves 10 and 11 adopt a structure having no side surface parallel to the light guide 20.
  • the incident stray light is reflected away from the optical waveguide 20 by the reflective grooves 10 and 11, and the distance for light to propagate through the gap between the optical waveguide 20 and the reflective grooves 10 and 11 is shortened, and the gap is further reduced. Even if the light passes through, light can spread immediately by the diffraction phenomenon, and the stray light that propagates along the optical waveguide 20 and reaches the end face 25 of the integrated semiconductor optical device 100 can be suppressed.
  • the reflection grooves 10 and 11 When the embedded portions 40 and 41 are made of a semiconductor material, and the reflection grooves 10 and 11 have a hollow structure and the inside is occupied by air, perpendicular to the side surfaces 10 a and 11 a of the reflection grooves 10 and 11 provided in the Y direction.
  • the reflectance of incident light is about 33%.
  • the angle ⁇ from the side surfaces 10a and 11a may be equal to or greater than the critical angle. That is, if the angle (incident angle) between the light incident on the side surface 10d and the normal direction of the side surface 10d becomes larger than the critical angle, the light is totally reflected, but here, the incident angle is The angle ⁇ is equal to that of the side surface 10d (the same applies to the reflection groove 11). Therefore, if the angle (angle from the Y direction) ⁇ formed by the side surfaces 10d and 11d of the reflective grooves 10 and 11 and the side surfaces 10a and 11a is equal to or greater than the critical angle, light incident on the side surfaces 10d and 11d is totally reflected. become.
  • the angle ⁇ formed by the side surfaces 10a and 11a of the reflective grooves 10 and 11 and the side surfaces 10d and 11d. Is preferably 18 ° or more.
  • n ' is the refractive index of the air inside the reflective grooves 10, 11.
  • the optimal MMI multiplexer length for wavelength ⁇ is It is n_r ⁇ W ⁇ 2) / (N ⁇ ⁇ ).
  • the MMI multiplexers have different optimum lengths depending on the wavelengths. As the length of the MMI coupler is deviated from the optimum length, the light not coupled to the output port 31 increases. Therefore, for the MMI coupler having a predetermined length, the light of the wavelength most deviated from the optimum wavelength is
  • the distance between the side surfaces 10b and 10d and the side surfaces 11b and 11d of the reflective grooves 10 and 11 may be designed to reflect light.
  • the distance between the optical waveguide 20 and the portion of the reflective grooves 10 and 11 closest to the optical waveguide 20 (the distance in the Y direction in FIG. 1) so that the light guided through the optical waveguide 20 does not interfere with the reflective grooves 10 and 11 It is preferable to set a distance such that the intensity distribution in the width direction (Y direction in FIG. 1) of the light guided through the optical waveguide 20 is away from the maximum value from a position where 1 / e ⁇ 2 becomes.
  • the reflection grooves 10 and 11 are the side faces 10a, 10b, 10c and 10d parallel to the optical waveguide 20 and the side faces 11a and 11b. , 11c, 11d.
  • the distance for propagating stray light is shortened in the gap between the optical waveguide 20 and the reflective grooves 10 and 11, and even if the gap is propagated further, the stray light spreads immediately due to the diffraction phenomenon.
  • stray light reaching the end face 25 of the integrated semiconductor optical device 100 can be reduced. Thereby, the interference between the signal light propagating through the optical waveguide 20 and the stray light is suppressed, and as shown in FIG.
  • the far field pattern (FFP) of the beam of outgoing light can be improved to have an ideal Gaussian shape.
  • FIG. 6 is a plan view showing a part of an integrated semiconductor optical device according to a second embodiment of the present invention, which is generally denoted by 200.
  • the same reference numerals as in FIG. Indicate the location.
  • the reflection grooves 13, 14, 15, 16 having the same shape as the reflection grooves 10, 11 are parallel to the reflection grooves 10, 11 and have the same distance from the optical waveguide 20. It is provided. In FIG. 6, three reflection grooves are respectively provided on one side of the optical waveguide 20, but the present invention is not limited to this, and two or four or more may be provided.
  • the shape of the reflection grooves 10 to 15 is a triangle, a rectangle, or a shape of the plane shape of the reflection grooves 10 to 15 if the portion close to the optical waveguide 20 does not have a side parallel to the optical waveguide 20.
  • Other polygons are also possible.
  • the positions, depths and planar shapes of the reflection grooves 10 to 15 may be different among the reflection grooves.
  • the planar shapes of the reflection grooves 10 to 15 are triangular.
  • the side surfaces of the reflection grooves 10 to 15 are more An angle ⁇ (an angle from the Y direction) formed by the side surfaces 10 d to 15 d of the reflective grooves 10 to 15 and the side surfaces 10 a to 15 a in the Y direction of the integrated semiconductor optical device 200 is It is preferable that the angle is equal to or larger than the critical angle when it is assumed that the light enters the reflection grooves 10 to 15 in parallel with the optical waveguide 20.
  • the side surfaces 10a to 10d and the side surfaces 10d of the reflection grooves 10 to 15 of the integrated semiconductor optical device 200 It is desirable that the angle ⁇ formed by ⁇ 15d be 18 ° or more.
  • the side surfaces 10 b and 10 d of the reflection grooves 10 to 15, 11 b and 11 d, 12 b and 12 d , 13b and 13d, 14b and 14d, and 15b and 15d in the X direction may be ⁇ '/ 4n'.
  • n ' is the refractive index of air inside the reflective grooves 10-15.
  • the distance W2 between the side surfaces 10d and 12b, 11d and 13b, 12d and 14b, and 13d and 15b of the adjacent reflection grooves 10 to 15 may be ⁇ '/ 4n' '.
  • n ′ ′ is the refractive index of the reflective groove.
  • the optimum MMI coupler length for wavelength ⁇ is It is n_r ⁇ W ⁇ 2) / (N ⁇ ⁇ ).
  • the MMI multiplexers have different optimum lengths depending on the wavelengths. As the length of the MMI coupler is deviated from the optimum length, the light not coupled to the output port 31 increases. Therefore, for the MMI coupler having a predetermined length, the light of the wavelength most deviated from the optimum wavelength is
  • the intervals W1 and W2 may be set to reflect light. Further, in order to reflect stray light of a plurality of wavelengths efficiently, the intervals W1 and W2 may be provided at different periods.
  • the distance between the optical waveguide 20 and the portion of the reflective grooves 10 to 15 close to the optical waveguide 20 guides the optical waveguide 20 so that the light guided to the optical waveguide 20 does not interfere with the reflective grooves 10 to 15 It is preferable that the intensity distribution in the width direction (Y direction) of the light is farther from the maximum value than the position where it is 1 / e ⁇ 2.
  • the stray light transmitted through the nth reflection groove counted from the side closer to the optical multiplexer 30 immediately spreads due to the diffraction phenomenon and spreads the spread stray light (n + 1)
  • the second reflection groove reflects and removes it.
  • the light propagating along the side of the optical waveguide 20 passes through the gap between the (n + 1) th reflection groove and the optical waveguide 20, it spreads again due to the diffraction phenomenon and spreads the stray light by the (n + 2) th reflection groove Reflect and remove.
  • stray light can be removed with high efficiency, and stray light reaching the end face 25 of the integrated semiconductor optical device 200 can be further reduced.
  • FIG. 8 is a plan view of a part of an integrated semiconductor optical device according to a third embodiment of the present invention, which is generally denoted by 300.
  • the same reference numerals as in FIG. Indicates
  • the integrated semiconductor optical device 300 in the vicinity of the end face 25 on the emission side, the recessed grooves 60 and 61 for removing stray light propagated along the optical waveguide 20 are provided on both sides of the optical waveguide 20.
  • the other structure is the same as that of the integrated semiconductor optical device 100.
  • the recessed grooves 60 and 61 are hollow portions formed by etching the embedded portions 40 and 41 similarly to the reflective grooves 10 and 11, and the depth thereof is at least the n-type core layer 85 of the optical waveguide 20 ( See Figure 2).
  • the positions, depths, and planar shapes of the digging grooves 60 and 61 may be different from each other.
  • the planar shape of the digging grooves 60, 61 may be triangular or other polygonal as shown in FIG. Further, only one of the digging grooves 60 and 61 may be used.
  • the distance between the optical waveguide 20 and the portion of the recessed grooves 60, 61 closest to the optical waveguide 20 is set so that the light guided through the optical waveguide 20 does not interfere with the recessed grooves 60, 61. It is preferable that the intensity distribution in the width direction (Y direction) of the light guided through the waveguide is apart from the maximum value from a position where it is 1 / e ⁇ 2.
  • stray light propagated along the optical waveguide 20 is reflected by the digging grooves 60, 61 in the vicinity of the end face 25 on the emission side. Stray light can be removed more efficiently.
  • FIG. 10 is a plan view of a part of the integrated semiconductor optical device according to the fourth embodiment of the present invention, generally indicated by 400.
  • the same reference numerals as in FIG. Indicates
  • a metal layer 90 such as gold is provided so as to cover the reflection grooves 10 and 11 and the digging grooves 60 and 61.
  • FIG. 11 is a cross-sectional view of the integrated semiconductor optical device 400 of FIG. 10 as viewed in the XI-XI direction.
  • the same reference numerals as in FIG. 2 indicate the same or corresponding portions.
  • the metal layer 90 is provided on the inside of the reflection grooves 10 and 11 and on the electrode 82, and the integration is performed except that in addition to the reflection grooves 10 and 11, the depression grooves 60 and 61 are provided. Has the same structure as that of the semiconductor optical device 100.
  • the embedded portions 40 and 41 are made of a semiconductor material and the inside of the reflective grooves 10 and 11 is hollow and filled with air, light incident perpendicularly to the side surfaces of the reflective grooves 10 and 11
  • the reflectance of is about 33%.
  • the insides of the reflection grooves 10 and 11 and the digging grooves 60 and 61 are covered with the metal layer 90, the light reflectance is about 90%.
  • the reflectance on the side surfaces of the reflection grooves 10 and 11 and the digging grooves 60 and 61 becomes high, so stray light is more efficiently generated. It can be removed.
  • all of the reflection grooves 10 and 11 and the depression grooves 60 and 61 are covered with the metal layer 90, but the inside of any reflection groove or depression groove may be covered. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

埋込部で両側が挟まれ、第1端部と第2端部とを有する光導波路と、光導波路の第1端部に接続され、少なくとも出力側の端面が埋込部と接する光合波器と、埋込部の中に設けられた凹部からなり、光合波器の出力側の端部から出た光の少なくとも一部を、光導波路から遠ざかる方向に反射する反射溝とを含み、光合波器から出た光が光導波路を通って第2端部から出射する半導体光素子において、反射溝は、光導波路に対して平行な側面を有さない。さらに、光合波器の出力側の端部から出た光の少なくとも一部を、光導波路に入らないように反射する埋込部を有しても良い。

Description

半導体光素子
 本発明は、半導体光素子に関し、特に、良好なビーム形状の出射光が得られる集積型半導体光素子に関する。
 近年、半導体光素子を小型化、低コスト化のために、複数の光源を1つのチップに集積した集積型半導体光素子が用いられている。集積型半導体光素子では、湾曲部分を有する光導波路や光合波器などが1つのチップの上に形成されているが、光合波器と出力端面との間の光導波路で信号光が迷光と干渉し、出力端面から出射する光のFFP(Far Field Pattern)形状が乱れるという問題があった。これに対して、光合波器と出力端面との間の光導波路の両側に反射溝を設け、出力端面に向かう迷光を反射して低減することが提案されている(例えば、特許文献1参照)。
特開平2007-250889号公報
 しかしながら、光合波器と出力端面との間の光導波路の両側に反射溝を設けた特許文献1に記載の集積型半導体光素子でも、なおもFFP形状が乱れ、特に光導波路が短い場合にFFP形状の乱れが大きくなるという問題があった。
 そこで、本発明は、さらに迷光を除去して出射光のビーム形状の乱れを抑制した集積型半導体光素子の提供を目的とする。
 本発明は、
 埋込部で両側が挟まれ、第1端部と第2端部とを有する光導波路と、
 光導波路の第1端部に接続され、少なくとも出力側の端面が埋込部と接する光合波器と、
 埋込部の中に設けられた凹部からなり、光合波器の出力側の端部から出た光の少なくとも一部を、光導波路から遠ざかる方向に反射する反射溝と、を含み、
 光合波器から出た光が光導波路を通って第2端部から出射する半導体光素子であって、
 反射溝は、光導波路に対して平行な側面を有さないことを特徴とする半導体光素子である。
 このように、本発明にかかる半導体光素子では、光導波路に沿って伝搬する迷光を減らし、信号光と迷光との干渉を抑制して、出射光のビーム形状を良好にすることが可能になる。
本発明の実施の形態1にかかる集積型半導体光素子の一部を示す平面図である。 図1の集積型半導体光素子をII-II方向に見た場合の断面図である。 本発明の実施の形態1にかかる他の集積型半導体光素子の一部を示す平面図である。 本発明の実施の形態1にかかる集積型半導体光素子の平面図である。 (a)従来構造の集積型半導体光素子と、(b)本発明の実施の形態1にかかる集積型半導体光素子の、出射光のFFPの分布を示す。 本発明の実施の形態2にかかる集積型半導体光素子の一部を示す平面図である。 本発明の実施の形態2にかかる他の集積型半導体光素子の一部を示す平面図である。 本発明の実施の形態3にかかる集積型半導体光素子の一部を示す平面図である。 本発明の実施の形態3にかかる他の集積型半導体光素子の一部を示す平面図である。 本発明の実施の形態4にかかる集積型半導体光素子の一部を示す平面図である。 図10の集積型半導体光素子をXI-XI方向に見た場合の断面図である。
実施の形態1.
 図1は、全体が100で表される、本発明の実施の形態1にかかる集積型半導体光素子の一部を示す平面図であり、図2は、図1の集積型半導体光素子100をII-II方向に見た場合の断面図である。
 図1に示すように、集積型半導体光素子100は、光合波器30と、光合波器30の出力ポート31に接続された埋め込み型の光導波路20を含む。光導波路20の両側の埋込部40、41には、光導波路20を挟んで対称となるように反射溝10、11がそれぞれ設けられている。光合波器30には、マルチモード干渉型(MMI:Multi-Mode Interference)光結合器、Y字型光分岐導波路、方向性結合器、マッハツェンダ干渉計型光分岐素子などが用いられる。
 図2に示すように、集積型半導体光素子100は、表面と裏面を備えたn型基板83を有する。n型基板83の裏面上には電極81が設けられている。一方、n型基板83の表面上には、光導波路20と、光導波路20を両側から挟む埋込部40、41が設けられている。
 光導波路20は、n型クラッド層84、p型クラッド層86、およびn型クラッド層84とp型クラッド層86との間に挟まれたi型コア層85を有する。一方、埋込部40、41は、n型基板83の上に順次積層されたp型埋込層87およびn型埋込層88を有する。
 n型埋込層88の上には、光導波路20に設けられたp型クラッド層86が延在している。さらにp型クラッド層86の上にはp型キャップ層89が設けられ、その上に電極82が設けられている。
 光導波路20、光合波器30、埋込部40、41はそれぞれ、例えば、インジウム-リン(InP)、インジウム-ガリウム-ヒ素-リン(InGaAsP)、アルミニウム-ガリウム-インジウム-ヒ素(AlGaInAs)、インジウム-ガリウム-ヒ素(InGaAs)等の半導体材料から形成される。電極81、82は、金等の導電性金属材料から形成される。
 各層の導電型(p型、n型)は、逆にしても良い。埋込部40、41は、アンドープ層を含んでもかまわないし、鉄をドーピングした層としてもかまわない。また、基板83を半絶縁性の基板とし、電極81を電極82と同様に素子表面に配置する構造でもかまわない。
 埋込部40、41には、電極82からp型埋込層87までの層を除去して、反射溝10、11がそれぞれ形成されている。反射溝10の底面の深さは、コア層の底面の深さより深いことが好ましい。反射溝10、11は、それぞれ4つの側面10a、10b、10c、10d、および側面11a、11b、11c、11dを有するが、それぞれの側面と光導波路20とは、互いに平行にならないように配置される。反射溝10、11の内部は中空で、空気で満たされるため、側面10a、10b、10c、10d、および側面11a、11b、11c、11dは、半導体-空気界面となる。
 なお、反射溝10、11の位置、深さ、平面形状(図1の平面図に表されるZ軸方向に見た場合の形状)は、図1、2に示すように同一でも、反射溝10と反射溝11との間で異なってもよい。さらに、反射溝10、11の平面形状は、反射溝10、11の平面形状のうち光導波路20に近接している側面(例えば図1では側面10a、10b、11a、11b)が光導波路20と平行にならなければ、言い換えれば光導波路20に近接している側面が埋込部40、41を挟んで光導波路20と平行配置とならなければ、以下で述べる図3のような三角形、矩形、他の多角形とすることも可能である。また、直線ではなく湾曲した形状でも構わない。
 図3は、全体が150で表される、本発明の実施の形態1にかかる他の集積型半導体光素子の平面図であり、図3中、図1と同一符合は同一または相当箇所を示す。集積型半導体光素子150では、反射溝10、11の平面形状は三角形で、図1の符号10d、11dに相当する側面が無い構造となっている。
 図4に、集積型半導体光素子100の全体の概略図を示す。集積型半導体光素子100では、複数の半導体レーザ70が、アレイ状に平行に設けられている。半導体レーザ70は、例えばDFB-LD(Distributed Feedback LD)からなる。それぞれの半導体レーザ70は、光導波路50により光合波器30に結合されている。光導波路50は、X方向に直線に延びるものの他に、湾曲したものも含む。光導波路20には、半導体光増幅器(SOA:Semiconductor Optical Amplifier)が設けられても良い。
 次に、本発明の実施の形態1にかかる集積型半導体光素子100の特徴について、光合波器30としてマルチモード干渉型光結合器(以下「MMI光結合器」という。)を用いた場合を例に述べる。入力ポート32の数がN、出力ポート31の数が1のMMI光合波器では、入力光強度の(N-1)/Nは出力ポート31に結合しない。メサ型の光導波路の場合、MMI光合波器の出力ポート側の端面は空気中に露出して、半導体-空気界面となる。半導体と空気は屈折率の差が大きいため、出力ポート31に結合しない光の多くは入力ポート32に再結合し、光導波路50を通って半導体レーザ70に戻ってしまう。このような戻り光は、光波形の乱れや出射波長のずれ、注入電流-出力パワーのグラフにおけるキンクの発生等の原因となる。
 そこで、集積型半導体光素子100では、メサ型の導波路に代えて、埋込型の光導波路20を採用し、少なくともMMI光合波器の出力側を半導体の埋込部材により埋め込む構造としている。これにより、MMI光合波器の出力側の端面が埋込部40、41と接して、MMI光合波器の出力側の端面での屈折率差を低減し、光の反射による戻り光を抑制することができる。
 しかし、一方で、MMI光合波器の出力側の端面における反射率が下がると、MMI光合波器の出力側の端面から集積型半導体光素子100の出射側の端面25に向かって迷光が放射されてしまう。この迷光は、光導波路20を伝搬する信号光と干渉を起こし、信号光のビーム形状が乱れるという問題が起きる。また、特許文献1に記述されているように、迷光が光ファイバと結合せずにパワーモニタPDに入射することで、光ファイバ出力が変動するという問題も起きる。
 上述の特許文献1では、後者の問題に対し、光導波路20を埋め込む埋込部40、41に、幅方向(Y方向)に反射溝10、11を設けている。その際、光導波路20を導波する光が、反射溝10、11と干渉しないように、光導波路20と反射溝10、11の間に隙間を空けている。しかしながら、反射溝10、11の平面形状のうち、光導波路20に近接している部分が光導波路20と平行になるように設けられているため、光導波路20と反射溝10、11との間の隙間を迷光が長い距離伝搬してしまう。このため、特にMMI光合波器の出力側の端面(出力ポート31の位置)と素子の出射側の端面25との間の距離が短い場合や、MMI光合波器の入力ポート数が少なく、放射される迷光強度が大きい場合は、十分な迷光除去効果が得られず、光ファイバ出力が変動するという問題が解決できない。これは前者の課題に対しても同様であり、光導波路20と反射溝10、11との間の隙間を迷光が長い距離伝搬してしまうと、十分な迷光除去効果が得られず、出射後のビーム形状が乱れてしまう。また、特許文献1とは異なり、半導体光増幅器を有しない構成の場合、MMI光合波器から出力された光が増幅されないため、半導体光増幅器を有する場合に比べて信号光と迷光との強度比が小さくなり、これらの問題がさらに顕著になる。
 そこで、本発明の実施の形態1にかかる集積型半導体光素子100では、反射溝10、11の平面形状において、光導波路20に近接している部分が光導波路20と平行な辺を持たない構造、すなわち反射溝10、11は、光導波路20に対して平行な側面を有さない構造を採用した。これにより、入射した迷光を反射溝10、11で光導波路20から遠ざかるように反射すると共に、光導波路20と反射溝10、11との間の隙間を光が伝搬する距離が短くなり、さらに隙間を通過してもすぐに回折現象により光が広がるようになり、光導波路20に沿って伝搬し、集積型半導体光素子100の端面25に到達する迷光を抑制できる。
 埋込部40、41が半導体材料からなり、反射溝10、11が中空構造で内部が空気で占められる場合、Y方向に設けられた反射溝10、11の側面10a、11aに対して垂直に入射した光の反射率は33%程度である。反射溝10、11の側面10d、11dでより多くの光を反射させるためには、側面10d、11dで入射光を全反射させることが好ましい。光導波路20と平行(X方向)に光が側面10d、11dに入射したと仮定したとき、入射光を全反射させるには、反射溝10、11の側面10d、11dは、Y方向に配置された側面10a、11aからの角度θが臨界角以上であれば良い。つまり、側面10dに入射する光と、側面10dの法線方向との間の角度(入射角)が臨界角より大きくなれば、光は全反射するが、ここでは、入射角は、側面10aと側面10dとが成す角度θと等しくなる(反射溝11においても同じ)。従って、反射溝10、11の側面10d、11dと、側面10a、11aが成す角度(Y方向からの角度)θが臨界角以上であれば、側面10d、11dに入射した光は全反射することになる。例えば埋込部40、41を構成する半導体材料の屈折率を3.2、空気の屈折率を1とした場合、反射溝10、11の側面10a、11aと側面10d、11dとが成す角θは、18°以上であることが好ましい。
 また、光の干渉を利用して効率よく迷光を反射する場合、例えば反射させる迷光の波長を波長λ’とすると、反射溝10の2つの側面10b、10dの間隔、および反射溝11の2つの側面11b、11dの間隔は、λ’/4n’とするとよい。ここでn’は反射溝10、11の内部の空気の屈折率である。例えば、幅がW、リッジ部分の屈折率がn_rであり、入力ポート数がN、出力ポート数が1であるMMI光合波器を考えると、波長λに対する最適MMI光合波器の長さは(n_r×W^2)/(N×λ)である。このように、MMI光合波器は波長により最適長さが異なる。MMI光合波器の長さが最適長さからずれるほど、出力ポート31に結合しない光が増加するため、所定の長さのMMI光合波器に対して、最適波長から最もずれた波長の光を反射するように、反射溝10、11の側面10b、10dおよび側面11b、11dの間隔を設計するとよい。
 さらに、光導波路20を導波する光が反射溝10、11と干渉しないよう、光導波路20と、反射溝10、11の光導波路20に最も近い部分との距離(図1のY方向の距離)は、光導波路20を導波する光の幅方向(図1のY方向)の強度分布が最大値から1/e^2となる位置よりも離れるような距離とすることが好ましい。
 以上で述べたように、本発明の実施の形態1にかかる集積型半導体光素子100では、反射溝10、11は、光導波路20に平行な側面10a、10b、10c、10dおよび側面11a、11b、11c、11dを有さない。このため、光導波路20と反射溝10、11との隙間を迷光が伝搬する距離が短くなり、さらに隙間を伝搬してもすぐに回折現象により迷光は広がるため、光導波路20に沿って伝搬して集積型半導体光素子100の端面25に到達する迷光を低減できる。これにより、光導波路20を伝搬する信号光と、迷光との干渉を抑制し、例えば図5に示すように、(a)反射溝10、11を形成しない集積型半導体光素子に比較して、(b)集積型半導体光素子100のように、出射光のビームのファーフィールドパターン(FFP)を改良して、理想的なガウシアン形状とすることができる。
実施の形態2.
 図6は、全体が200で表される、本発明の実施の形態2にかかる集積型半導体光素子の一部を示す平面図であり、図6中、図1と同一符合は、同一または相当箇所を示す。
 集積型半導体光素子200では、反射溝10、11と同一形状の反射溝13、14、15、16を、反射溝10、11と平行で、かつ光導波路20からの距離が同一になるように設けられている。図6では、光導波路20の片方に3つの反射溝がそれぞれ設けられているが、これに限定されるものではなく、2つまたは4つ以上でも良い。
 ここで、反射溝10~15の形状は、反射溝10~15の平面形状のうち、光導波路20に近接している部分が光導波路20と平行な辺を持たなければ、三角形、矩形、もしくはその他の多角形にすることも可能である。また、反射溝10~15の位置、深さ、平面形状は、それぞれの反射溝の間で異なってもよい。図7に示す集積型半導体光素子250では、反射溝10~15の平面形状が三角形となっている。
 上述の集積型半導体光素子100と同様に、埋込部40、41が半導体材料からなり、反射溝10~15が中空構造で内部が空気で占められる場合、反射溝10~15の側面でより多くの光を反射させるために、反射溝10~15の側面10d~15dと、集積型半導体光素子200のY方向の側面10a~15aとが成す角度θ(Y方向からの角度)は、光が光導波路20と平行に反射溝10~15に入射したと仮定したとき、臨界角以上の角度であるとよい。例えば埋込部40、41を構成する半導体材料の屈折率を3.2、空気の屈折率を1とした場合、集積型半導体光素子200の反射溝10~15の側面10a~10dと側面10d~15dとが成す角θは、18°以上であることが望ましい。
 また、光の干渉を利用して効率よく迷光を反射するため、波長λ’の光を反射させることを目的とする場合、反射溝10~15の側面10bと10d、11bと11d、12bと12d、13bと13d、14bと14d、15bと15dの、X方向の間隔W1は、λ’/4n’とするとよい。ここでn’は反射溝10~15の内部の空気の屈折率である。また、隣り合う反射溝10~15の側面10dと12b、11dと13b、12dと14b、13dと15bのX方向の間隔W2は、λ’/4n’’とするとよい。ここでn’’は反射溝の屈折率である。このように複数の反射溝を所定の間隔で周期的に配置することで、迷光を効率よく反射することができる。
 例えば、幅がW、リッジ部分の屈折率がn_rであり、入力ポートの数がN、出力ポートの数が1であるMMI光合波器を考えると、波長λに対する最適MMI光合波器長は(n_r×W^2)/(N×λ)である。このように、MMI光合波器は波長により最適長さが異なる。MMI光合波器の長さが最適長さからずれるほど、出力ポート31に結合しない光が増加するため、所定の長さのMMI光合波器に対して、最適波長から最もずれた波長の光を反射するように、間隔W1、W2を設定すれば良い。また、複数の波長の迷光を効率よく反射するため、間隔W1、W2を異なる周期で設けてもよい。
 さらに、光導波路20を導波する光が反射溝10~15と干渉しないよう、光導波路20と、反射溝10~15の光導波路20に近い部分との距離は、光導波路20を導波する光の幅方向(Y方向)の強度分布が最大値から1/e^2となる位置よりも離れていることが好ましい。
 本発明の実施の形態2かかる集積型半導体光素子200では、光合波器30に近い方から数えてn番目の反射溝を透過した迷光がすぐに回折現象により広がり、広がった迷光を(n+1)番目の反射溝が反射して除去する。さらに、光導波路20の脇を伝搬した光が(n+1)番目の反射溝と光導波路20との間の隙間を通るとき、再度回折現象により広がり、広がった迷光を(n+2)番目の反射溝により反射して除去する。これにより、高効率で迷光の除去が可能となり、集積型半導体光素子200の端面25に到達する迷光をより低減できる。
実施の形態3.
 図8は、全体が300で表される、本発明の実施の形態3にかかる集積型半導体光素子の一部の平面図であり、図8中、図1と同一符合は、同一または相当箇所を示す。集積型半導体光素子300では、出射側の端面25の近傍で、光導波路20の両側に、光導波路20に沿って伝搬した迷光を除去するための掘込溝60、61が設けられている。他の構造は、集積型半導体光素子100と同じである。
 掘込溝60、61は、反射溝10、11と同様に、埋込部40、41をエッチングして形成した中空部であり、その深さは、少なくとも光導波路20のn型コア層85(図2参照)より深くなっている。掘込溝60、61の位置、深さ、平面形状は、互いに異なってもよい。さらに、掘込溝60、61の平面形状は、図9に示すように三角形、もしくはその他の多角形でも良い。また、掘込溝60、61は、一方だけでも良い。
 光導波路20を導波する光が掘込溝60、61と干渉しないように、光導波路20と、掘込溝60、61の光導波路20に最も近い部分との間の距離は、光導波路20を導波する光の幅方向(Y方向)の強度分布が最大値から1/e^2となる位置よりも離れていることが好ましい。
 本発明の実施の形態3にかかる集積型半導体光素子300、350では、光導波路20に沿って伝搬した迷光が、出射側の端面25の近傍で掘込溝60、61によって反射されるため、より効率よく迷光を除去できる。
実施の形態4.
 図10は、全体が400で表される、本発明の実施の形態4にかかる集積型半導体光素子の一部の平面図であり、図10中、図8と同一符合は、同一または相当箇所を示す。集積型半導体光素子400では、反射溝10、11および掘込溝60、61を覆うように、例えば金のような金属層90が設けられている。
 図11は、図10の集積型半導体光素子400のXI-XI方向に見た場合の断面図である。図11中、図2と同一符合は、同一または相当箇所を示す。集積型半導体光素子400では、反射溝10、11の内部および電極82の上に金属層90が設けられており、反射溝10、11に加えて掘込溝60、61を有する以外は、集積型半導体光素子100と同じ構造である。
 上述のように、埋込部40、41が半導体材料からなり、反射溝10、11の内部が中空で空気で満たされている場合、反射溝10、11の側面に対して垂直に入射した光の反射率は33%程度である。これは掘込溝60、61についても同様である。つまり、反射溝10、11および掘込溝60、61に到達した光の3分の2程度は、反射溝10、11および掘込溝60、61の内部を通って透過してしまう。これに対して、反射溝10、11および掘込溝60、61の内部を金属層90で覆うと、光の反射率は約90%になる。
 このように、本発明の実施の形態4にかかる集積型半導体光素子400では、反射溝10、11および掘込溝60、61の側面での反射率が高くなるため、より高効率で迷光を除去することができる。
 なお、本発明の実施の形態4では、反射溝10、11および掘込溝60、61の全てを金属層90で覆ったが、任意の反射溝または掘込溝の内部を覆っても構わない。
 10~15 反射溝、10a~10d、11a~11d、12a~12d、13a~13d、14a~14d、15a~15d 側面、20 光導波路、25 端面、30 光合波器、31 出力ポート、32 入力ポート、40、41 埋込部、60、61 掘込溝、70 半導体レーザ、100、200、300、400 集積型半導体光素子。

Claims (10)

  1.  埋込部で両側が挟まれ、第1端部と第2端部とを有する光導波路と、
     前記光導波路の第1端部に接続され、少なくとも出力側の端面が前記埋込部と接する光合波器と、
     前記埋込部の中に設けられた凹部からなり、前記光合波器の出力側の端部から出た光の少なくとも一部を、前記光導波路から遠ざかる方向に反射する反射溝と、を含み、
     前記光合波器から出た光が前記光導波路を通って前記第2端部から出射する半導体光素子であって、
     前記反射溝は、前記光導波路に対して平行な側面を有さないことを特徴とする半導体光素子。
  2.  前記光導波路の片側の前記埋込部に、複数の前記反射溝が設けられたことを特徴とする請求項1に記載の半導体光素子。
  3.  前記反射溝は、前記光導波路の両側に、前記光導波路を挟んで対称となるように設けられたことを特徴とする請求項1または2に記載の半導体光素子。
  4.  前記光導波路は、コア層と、前記コア層を挟むクラッド層との積層構造を有し、前記反射溝の凹部の深さは、前記コア層より深いことを特徴とする請求項1~3のいずれかに記載の半導体光素子。
  5.  前記反射溝の開口部の形状は、三角形、矩形、またはそれ以外の多角形であることを特徴とする請求項1~4のいずれかに記載の半導体光素子。
  6.  さらに、前記光導波路の、前記反射溝より第2端部側に配置され、前記埋込部の中に設けられた凹部からなる掘込溝を含み、
     前記掘込溝は、前記光合波器の出力側の端部から出た光の少なくとも一部を、前記光導波路に入らないように反射することを特徴とする請求項1~5のいずれかに記載の半導体光素子。
  7.  前記掘込溝は、前記光導波路の両側に、前記光導波路を挟んで対称となるように設けられたことを特徴とする請求項6に記載の半導体光素子。
  8.  前記光導波路は、コア層と、前記コア層を挟むクラッド層との積層構造を有し、前記掘込溝の凹部の深さは、前記コア層より深いことを特徴とする請求項6または7に記載の半導体光素子。
  9.  前記掘込溝の開口部の形状は、三角形、矩形、またはそれ以外の多角形であることを特徴とする請求項6~8のいずれかに記載の半導体光素子。
  10.  前記反射溝および/または前記掘込溝の凹部の側壁が、金属層により覆われていることを特徴とする請求項1~9のいずれかに記載の半導体光素子。
PCT/JP2017/044136 2017-12-08 2017-12-08 半導体光素子 WO2019111401A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018517237A JPWO2019111401A1 (ja) 2017-12-08 2017-12-08 半導体光素子
PCT/JP2017/044136 WO2019111401A1 (ja) 2017-12-08 2017-12-08 半導体光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044136 WO2019111401A1 (ja) 2017-12-08 2017-12-08 半導体光素子

Publications (1)

Publication Number Publication Date
WO2019111401A1 true WO2019111401A1 (ja) 2019-06-13

Family

ID=66750090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044136 WO2019111401A1 (ja) 2017-12-08 2017-12-08 半導体光素子

Country Status (2)

Country Link
JP (1) JPWO2019111401A1 (ja)
WO (1) WO2019111401A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021005723A1 (ja) * 2019-07-09 2021-01-14
WO2021177167A1 (ja) * 2020-03-04 2021-09-10 セーレンKst株式会社 背景光を低減した光合波器
WO2022070659A1 (ja) * 2020-10-02 2022-04-07 Tdk株式会社 光回路素子
JP7205011B1 (ja) * 2022-06-08 2023-01-16 三菱電機株式会社 光終端器、光波長フィルタ及び外部共振器型レーザ光源
WO2023223432A1 (ja) * 2022-05-17 2023-11-23 日本電信電話株式会社 モードフィールド変換光回路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078209A (ja) * 2001-09-05 2003-03-14 Fujitsu Ltd 光半導体装置
US20040136415A1 (en) * 2002-12-24 2004-07-15 Park Sahng Gi Tunable semiconductor laser and method thereof
JP2005311308A (ja) * 2004-03-05 2005-11-04 Nichia Chem Ind Ltd 半導体レーザ素子
JP2007250889A (ja) * 2006-03-16 2007-09-27 Furukawa Electric Co Ltd:The 集積型半導体レーザ素子および半導体レーザモジュール
WO2010110152A1 (ja) * 2009-03-26 2010-09-30 古河電気工業株式会社 半導体レーザモジュール
JP2013130638A (ja) * 2011-12-20 2013-07-04 Mitsubishi Electric Corp 光デバイス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2376083B (en) * 2001-05-30 2004-01-21 Bookham Technology Plc An integrated optical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078209A (ja) * 2001-09-05 2003-03-14 Fujitsu Ltd 光半導体装置
US20040136415A1 (en) * 2002-12-24 2004-07-15 Park Sahng Gi Tunable semiconductor laser and method thereof
JP2005311308A (ja) * 2004-03-05 2005-11-04 Nichia Chem Ind Ltd 半導体レーザ素子
JP2007250889A (ja) * 2006-03-16 2007-09-27 Furukawa Electric Co Ltd:The 集積型半導体レーザ素子および半導体レーザモジュール
WO2010110152A1 (ja) * 2009-03-26 2010-09-30 古河電気工業株式会社 半導体レーザモジュール
JP2013130638A (ja) * 2011-12-20 2013-07-04 Mitsubishi Electric Corp 光デバイス

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021005723A1 (ja) * 2019-07-09 2021-01-14
WO2021005723A1 (ja) * 2019-07-09 2021-01-14 日本電信電話株式会社 光合波回路
JP7436881B2 (ja) 2019-07-09 2024-02-22 日本電信電話株式会社 光合波回路
WO2021177167A1 (ja) * 2020-03-04 2021-09-10 セーレンKst株式会社 背景光を低減した光合波器
WO2022070659A1 (ja) * 2020-10-02 2022-04-07 Tdk株式会社 光回路素子
WO2023223432A1 (ja) * 2022-05-17 2023-11-23 日本電信電話株式会社 モードフィールド変換光回路
JP7205011B1 (ja) * 2022-06-08 2023-01-16 三菱電機株式会社 光終端器、光波長フィルタ及び外部共振器型レーザ光源
WO2023238294A1 (ja) * 2022-06-08 2023-12-14 三菱電機株式会社 光終端器、光波長フィルタ及び外部共振器型レーザ光源

Also Published As

Publication number Publication date
JPWO2019111401A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2019111401A1 (ja) 半導体光素子
US20210351562A1 (en) Optical device having a substrate and a laser unit that emits light into the substrate
US8472494B2 (en) Semiconductor laser silicon waveguide substrate, and integrated device
US9219347B2 (en) Optical semiconductor device
US20190207362A1 (en) Dual layer grating coupler
JP2012004441A (ja) 光増幅装置
JP4406023B2 (ja) 光集積素子
JP2001133647A (ja) 導波路型高次モードフィルタおよび半導体レーザ
WO2018197015A1 (en) Curved waveguide laser
US9929532B1 (en) Broad area semiconductor laser device
JP4549949B2 (ja) 光学素子
US6865205B2 (en) Semiconductor laser
JP2016018894A (ja) 集積半導体光素子
JP5374106B2 (ja) 半導体光機能デバイス
KR20040032375A (ko) 광 모드 크기 변환기와 분포 궤환형 레이저 다이오드가일체화된 분포 반사형 레이저 다이오드
WO2020246042A1 (ja) 表面出射型光回路及びそれを適用した表面出射型光源
US10680409B2 (en) Laser device
US20030103761A1 (en) Folded light path for planar optical devices
CN114930657A (zh) 单模dfb激光器
JP3393634B2 (ja) スーパールミネッセントダイオード
JPH0467119A (ja) 半導体光変調器
JP2007103589A (ja) 光増幅素子
JP6341713B2 (ja) 外部共振器レーザ
US7010187B1 (en) Mode transition-discrimination photonic logic device
JP2021158269A (ja) 半導体発光素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517237

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934165

Country of ref document: EP

Kind code of ref document: A1