WO2019110636A1 - Liquid-crystalline medium - Google Patents

Liquid-crystalline medium Download PDF

Info

Publication number
WO2019110636A1
WO2019110636A1 PCT/EP2018/083586 EP2018083586W WO2019110636A1 WO 2019110636 A1 WO2019110636 A1 WO 2019110636A1 EP 2018083586 W EP2018083586 W EP 2018083586W WO 2019110636 A1 WO2019110636 A1 WO 2019110636A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
liquid
denotes
another
crystalline medium
Prior art date
Application number
PCT/EP2018/083586
Other languages
English (en)
French (fr)
Inventor
Martin Engel
Lars Lietzau
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to CN201880078751.1A priority Critical patent/CN111433324A/zh
Priority to DE112018006224.4T priority patent/DE112018006224T5/de
Publication of WO2019110636A1 publication Critical patent/WO2019110636A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3098Unsaturated non-aromatic rings, e.g. cyclohexene rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3027Compounds comprising 1,4-cyclohexylene and 2,3-difluoro-1,4-phenylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • C09K2019/3408Five-membered ring with oxygen(s) in fused, bridged or spiro ring systems

Definitions

  • the invention relates to a liquid-crystalline medium which comprises one or more compounds of the formula I,
  • R 11 and R 12 each, independently of one another, denote H, an alkyl or alkoxy radical having 1 to 15 C atoms, where, in addition, one or more CFh groups in these radicals may each be replaced, independently of one another, by -CoC-, -CF2O-, -OCF2-
  • a 1 in each occurrence independently of one another denotes a) a 1 ,4-cyclohexenylene or 1 ,4-cyclohexylene radical, in which one or two non-adjacent CFh groups may be replaced by -O- or -S-, b) a 1 ,4-phenylene radical, in which one or two CFI groups may be replaced by N, c) a radical from the group piperidine-1 ,4-diyl, 1 ,4-bicyclo[2.2.2]- octylene, naphthalene-2, 6-diyl, decahydronaphthalene-2,6- diyl, 1 ,2,3, 4-tetrahydronaphthalene-2, 6-diyl, phenanthrene- 2,7-diyl and fluorene-2,7-diyl, where the radicals a), b) and c) may be mono- or polysubstituted by halogen atom
  • L 11 and L 12 each, independently of one another, denote F, Cl, CF3 or
  • CFIF 2 preferably FI or F, most preferably F, and one or more compounds selected from the group of compounds of formulae IIA, MB and IIC
  • R 2A , R 2B and R 2C each, independently of one another, denote FI, an alkyl or alkenyl radical having up to 15 C atoms which is unsubstituted, monosubstituted by CN or CF3 or at least monosubstituted by halogen, where, in addition, one or more CH2 groups in these radicals may be replaced by -O-, -S-,
  • L 1 to L 4 each, independently of one another, denote F, Cl,
  • Media of this type can be used, in particular, for electro-optical displays having active-matrix addressing based on the ECB effect and for IPS (in-plane switching) displays or FFS (fringe field switching) displays.
  • IPS in-plane switching
  • FFS far field switching
  • VAN vertical aligned nematic displays
  • MVA multi-domain vertical align- ment
  • MVA multi-domain vertical align- ment
  • SID 2004 International Symposium Digest of Technical Papers, XXXV, Book I, pp. 6 to 9
  • PVA patterned vertical alignment, for example: Kim, Sang Soo, paper 15.4:
  • LC phases which have to satisfy a multiplicity of requirements. Particularly important here are chemical resistance to moisture, air and physical influences, such as heat, infrared, visible and ultraviolet radiation and direct and alternating electric fields. Furthermore, industrially usable LC phases are required to have a liquid- crystalline mesophase in a suitable temperature range and low viscosity.
  • None of the hitherto-disclosed series of compounds having a liquid-crystal- line mesophase includes a single compound which meets all these require- ments.
  • Mixtures of two to 25, preferably three to 18, compounds are there- fore generally prepared in order to obtain substances which can be used as LC phases.
  • Matrix liquid-crystal displays are known.
  • Non-linear ele- ments which can be used for individual switching of the individual pixels are, for example, active elements (i.e. transistors).
  • active matrix is then used, where a distinction can be made between two types:
  • MOS metal oxide semiconductor
  • TFTs thin-film transistors
  • the electro-optical effect used is usually dynamic scattering or the guest-host effect.
  • the use of single-crystal silicon as sub- strate material restricts the display size, since even modular assembly of various part-displays results in problems at the joints.
  • the electro- optical effect used is usually the TN effect.
  • TFTs comprising corn- pound semiconductors, such as, for example, CdSe, or TFTs based on polycrystalline or amorphous silicon.
  • the latter technology is being worked on intensively worldwide.
  • the TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counter electrode on its inside. Compared with the size of the pixel electrode, the TFT is very small and has virtually no adverse effect on the image.
  • This technology can also be extended to fully colour-capable displays, in which a mosaic of red, green and blue filters is arranged in such a way that a filter element is opposite each switchable pixel.
  • MLC displays of this type are particularly suitable for TV applications (for example pocket TVs) or for high-information displays in automobile or air- craft construction.
  • TV applications for example pocket TVs
  • high-information displays in automobile or air- craft construction Besides problems regarding the angle dependence of the contrast and the response times, difficulties also arise in MLC displays due to insufficiently high specific resistance of the liquid-crystal mixtures [TOGASHI, S spirit SEKIGUCHI, K manner TANABE, H necessarily YAMAMOTO, E Cincinnati SORI- MACHI, K manner TAJIMA, E complicat WATANABE, H strict SHIMIZU, H Chapter Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, pp. 141 ff., Paris; STROMER, M., Proc. Eurodisplay 84, Sept.
  • the disadvantage of the MLC-TN displays frequently used is due to their comparatively low contrast, the relatively high viewing-angle dependence and the difficulty of generating grey shades in these displays.
  • the invention is based on the object of providing liquid-crystal mixtures, in particular for monitor and TV applications, based on the ECB, UB-FFS, IPS or FFS effect, which do not have the disadvantages indicated above, or only do so to a reduced extent.
  • it must be ensured for moni- tors and televisions that they also work at extremely high and extremely low temperatures and at the same time have very short response times and at the same time have an improved reliability behaviour, in particular exhibit no or significantly reduced image sticking after long operating times.
  • Patent application No. EP 17161352.4 There also formulae
  • n 2 and m is 5 is used in the media of that document.
  • the invention thus relates to a liquid-crystalline medium which comprises at least one compound of the formula I and one or more compounds selected from the group of compounds of formulae IIA, MB and MC.
  • These media are particularly well suitable in order to achieve liquid crystal displays that exhibit a fast response time and a good voltage holding ratio and also an excellent stability funder storage at deep temperatures sufficient for many applications.
  • the mixtures according to the invention preferably exhibit very broad nematic phase ranges with clearing points > 70°C, preferably > 75°C, in particular > 80°C, very favourable values of the capacitive threshold, rela- tively high values of the holding ratio and at the same time very good low- temperature stabilities at -20°C and -30°C, as well as very low rotational viscosity values and short response times.
  • the mixtures according to the invention are furthermore distinguished by the fact that, in addition to the improvement in the rotational viscosity gi, relatively high values of the elas- tic constants K33 for improving the response times can be observed.
  • R 11 particularly preferably denotes straight-chain alkyl having 1 to 7 C atoms and R 12 particularly preferably denotes straight-chain alkoxy having 1 to 6 C atoms, in particular methoxy, ethoxy, propoxy, butoxy, pentoxy or hexoxy.
  • L 11 and L 12 in formula I preferably both denote F.
  • Preferred compounds of the formula I present in the media are the compounds of the formulae 1-1 to I-3, preferably of formula I-2 ,
  • R 11 denotes straight-chain alkyl and R 12 preferably denotes alkoxy and L 11 and L 12 preferably both denote F.
  • the media comprise one or more compounds of the formula I selected from the group of compounds of formulae 1-0-1 to I- 0-3, preferably of formula I-0-2
  • the media comprise one or more compounds of the formula I selected from the group of compounds of formulae l-S-1 to l-S-3, preferably of formula l-S-2, in which the parameters have the meanings given above.
  • the media comprise one or more compounds selected from the group of compounds of formulae 1-0-1 to I-0-3 and one or more compounds selected from the group of compounds of formulae l-S-1 to l-S-3.
  • the compounds of the formula I can be prepared, for example, as described in US 2005/0258399 or WO 02/055463 A1.
  • the media according to the invention preferably comprise one, two, three, four or more, preferably one, two or three, compounds of the formula I.
  • the compounds of the formula I are preferably employed in the liquid- crystalline medium in amounts of > 1 %, preferably > 3 % by weight, based on the mixture as a whole. Particular preference is given to liquid- crystalline media which comprise 1 to 40% by weight, very particularly preferably 2 to 30 % by weight, of one or more compounds of the formula I.
  • Preferred embodiments of the liquid-crystalline medium according to the invention are indicated below: a) Liquid-crystalline medium which additionally comprises one or more compounds selected from the group of the compounds of the forrnu- lae 11 A, MB and IIC,
  • Z 2 may have identical or different meanings.
  • Z 2 and Z 2' may have identical or different meanings.
  • R 2A , R 2B and R 2C each preferably denote alkyl having 1 to 6 C atoms, in particular CH3, C2H5, n-C3H7, n-C 4 Hg, n-CsHn .
  • Z 2 and Z 2 ' in the formulae IIA and MB preferably each, independently of one another, denote a single bond, furthermore a -C2H 4 - bridge.
  • Z 2 -C 2 H 4 - or -CH 2 O-
  • (0)C V H2 V+ I preferably denotes OCvFhv +i , furthermore CvFhv +i .
  • (0)C v H2v +i preferably denotes CvFhv+i .
  • L 3 and L 4 preferably each denote F.
  • alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1 to 6 C atoms
  • alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2 to 6 C atoms.
  • Particularly preferred mixtures according to the invention comprise one or more compounds of the formulae IIA-2, IIA-8, IIA-14, IIA-26, II-28, IIA-33, IIA-39, IIA-45, IIA-46, IIA-47, IIA-50, IIB-2, IIB-11 , IIB-16 and IIC-1.
  • the proportion of compounds of the formulae IIA and/or MB in the mixture as a whole is preferably at least 20 % by weight.
  • Particularly preferred media according to the invention comprise at least one compound of the formula IIC-1 ,
  • Liquid-crystalline medium which additionally comprises one or more compounds of the formula III, in which
  • R 31 and R 32 each, independently of one another, denote a straight- chain alkyl, alkoxy, alkenyl, alkoxyalkyl or alkoxy radical having up to 12 C atoms, and
  • Z 3 denotes a single
  • alkyl* each, independently of one another, denote a straight- chain alkyl radical having 1 to 6 C atoms.
  • the medium according to the invention preferably comprises at least one compound of the formula Ilia and/or formula lllb.
  • the proportion of compounds of the formula III in the mixture as a whole is preferably at least 5 % by weight c) Liquid-crystalline medium additionally comprising a compound of the formula
  • mixtures according to the invention comprising the compound (acronym: CC-3-V1 ) preferably in amounts of 2 to 15 % by weight.
  • Preferred mixtures comprise 5 to 60 % by weight, preferably 10 to 55 % by weight, in particular 20 to 50 % by weight, of the compound of the formula (acronym: CC-3-V) Preference is furthermore given to mixtures which comprise a com pound of the formula (acronym: CC-3-V) and a compound of the formula (acronym: CC-3-V1 ) preferably in amounts of 10 to 60 % by weight.
  • Liquid-crystalline medium which additionally comprises one or more tetracyclic compounds of the formulae
  • R 7-10 each, independently of one another, have one of the meanings indicated for R 2A in Claim 5, and w and x each, independently of one another, denote 1 to 6.
  • Liquid-crystalline medium which additionally comprises one or more compounds of the formulae Y-1 to Y-6,
  • R 14 -R 19 each, independently of one another, denote an alkyl or alkoxy radical having 1 to 6 C atoms; z and m each, independently of one another, denote 1 to 6; x denotes 0, 1 , 2 or 3.
  • the medium according to the invention particularly preferably corn- prises one or more compounds of the formulae Y-1 to Y-6, preferably in amounts of > 5 % by weight.
  • Liquid-crystalline medium additionally comprising one or more fluori- nated terphenyls of the formulae T-1 to T-21 ,
  • R preferably denotes methyl, ethyl, propyl, butyl, pentyl, hexyl, meth- oxy, ethoxy, propoxy, butoxy, pentoxy.
  • the medium according to the invention preferably comprises the ter- phenyls of the formulae T-1 to T-21 in amounts of 2 to 30 % by weight, in particular 5 to 20 % by weight.
  • R preferably denotes alkyl, furthermore alkoxy, each having 1 to 5 C atoms.
  • R preferably denotes alkyl or alkenyl, in particular alkyl.
  • R preferably denotes alkyl.
  • the terphenyls are preferably employed in the mixtures according to the invention if the Dh value of the mixture is to be > 0.1.
  • Preferred mixtures comprise 2 to 20 % by weight of one or more terphenyl corn- pounds selected from the group of the compounds T-1 to T-21.
  • Liquid-crystalline medium additionally comprising one or more bi- phenyls of the formulae B-1 to B-3, in which alkyl and alkyl* each, independently of one another, denote a straight-chain alkyl radical having 1 to 6 C atoms, and alkenyl and alkenyl* each, independently of one another, denote a straight-chain alkenyl radical having 2 to 6 C atoms.
  • the proportion of the biphenyls of the formulae B-1 to B-3 in the mix- ture as a whole is preferably at least 3 % by weight, in particular > 5 % by weight.
  • the compounds of the formula B-2 are particularly preferred.
  • alkyl * denotes an alkyl radical having 1 to 6 C atoms.
  • the medium according to the invention particularly preferably comprises one or more compounds of the formulae B-1 a and/or B-2c. h) Liquid-crystalline medium comprising at least one compound of the formulae Z-1 to Z-7,
  • Liquid-crystalline medium additionally comprising at least one corn- pound of the formulae 0-1 to 0-18,
  • R 1 and R 2 have the meanings indicated for R 2A .
  • R 1 and R 2 preferably each, independently of one another, denote straight-chain alkyl or alkenyl.
  • Preferred media comprise one or more compounds of the formulae 0-1 , 0-3, 0-4, 0-6, 0-7, 0-10, 0-1 1 , 0-12, 0-14, 0-15, 0-16 and/or 0-17.
  • Particularly preferred comprise one or more compounds selected from the group of the compounds of the formula 0-17,
  • Mixtures according to the invention very particularly preferably corn- prise the compounds of the formula 0-10, 0-12, 0-16 and/or 0-17, in particular in amounts of 5 to 30 %.
  • the medium according to the invention particularly preferably corn- prises the tricyclic compounds of the formula 0-1 Oa and/or of the for- mula 0-1 Ob in combination with one or more bicyclic compounds of the formulae 0-17a to 0-17d.
  • the total proportion of the compounds of the formulae 0-1 Oa and/or 0-1 Ob in combination with one or more compounds selected from the bicyclic compounds of the formulae 0-17a to 0-17d is 5 to 40 %, very particularly preferably 15 to 35 %.
  • Very particularly preferred mixtures comprise compounds 0-1 Oa and
  • the compounds 0-1 Oa and 0-17a are preferably present in the mix- ture in a concentration of 15 to 35 %, particularly preferably 15 to 25 % and especially preferably 18 to 22 %, based on the mixture as a whole.
  • Very particularly preferred mixtures comprise the compounds 0-1 Ob and
  • the compounds 0-1 Ob and 0-17a are preferably present in the mixture in a concentration of 15 to 35 %, particularly preferably 15 to 25 % and especially preferably 18 to 22 %, based on the mixture as a whole.
  • Very particularly preferred mixtures comprise the following three corn- pounds:
  • the compounds 0-1 Oa, 0-1 Ob and 0-17a are preferably present in the mixture in a concentration of 15 to 35 %, particularly preferably 15 to 25 % and especially preferably 18 to 22 %, based on the mixture as a whole.
  • Preferred mixtures comprise at least one compound selected from the group of the compounds
  • R 1 and R 2 have the meanings indicated above.
  • R 1 denotes alkyl or alkenyl hav- ing 1 to 6 or 2 to 6 C atoms respectively and R 2 denotes alkenyl hav- ing 2 to 6 C atoms.
  • Preferred mixtures comprise at least one compound of the formulae 0-6a, 0-6b, 0-7a, 0-7b, 0-17e, 0-17f, 0-17g and 0-17h:
  • alkyl denotes an alkyl radical having 1 to 6 C atoms.
  • Preferred liquid-crystalline media according to the invention comprise one or more substances which contain a tetrahydronaphthyl or naph- thyl unit, such as, for example, the compounds of the formulae N-1 to N-5,
  • R 1 N and R 2N each, independently of one another, have the meanings indicated for R 2A , preferably denote straight-chain alkyl, straight-chain alkoxy or straight-chain alkenyl, and
  • Preferred mixtures comprise one or more compounds selected from the group of the difluorodibenzochroman compounds of the formula BC, chromans of the formula CR, fluorinated phenanthrenes of the formulae PH-1 and PH-2, fluorinated dibenzofurans of the formula BF-1 and BF-2,
  • R B1 , R B2 , R CR1 , R CR2 , R 1 , R 2 each, independently of one another, have the meaning of R 2A .
  • c is 0, 1 or 2 and d denotes 1 or 2.
  • R 1 and R 2 preferably, independently of one another, denote alkyl or alkoxy having 1 to 6 C atoms.
  • the compounds of the formulae BF-1 and BF-2 should not be identical to one or more compounds of the for- mula I.
  • the mixtures according to the invention preferably comprise the corn- pounds of the formulae BC, CR, PH-1 , PH-2 and/or BF in amounts of 3 to 20 % by weight, in particular in amounts of 3 to 15 % by weight.
  • Particularly preferred compounds of the formulae BC and CR are the compounds BC-1 to BC-7 and CR-1 to CR-5,
  • alkyl and alkyl* each, independently of one another, denote a
  • alkenyl* each, independently of one another, denote a
  • mixtures comprising one, two or three compounds of the formula BC-2, BF-1 and/or BF-2.
  • Preferred mixtures comprise one or more indane compounds of the formula In,
  • R 1 1 , R 12 R 13 each, independently of one another, denote a straight- chain alkyl, alkoxy, alkoxyalkyl or alkenyl radical having 1 to 6 C atoms,
  • R 12 and R 13 additionally denote halogen, preferably F,
  • i denotes 0, 1 or 2.
  • Preferred compounds of the formula In are the compounds of the formulae ln-1 to In-16 indicated below:
  • the compounds of the formula In and the sub-formulae ln-1 to In-16 are preferably employed in the mixtures according to the invention in concentrations > 5 % by weight, in particular 5 to 30 % by weight and very particularly preferably 5 to 25 % by weight.
  • Preferred mixtures additionally comprise one or more compounds of the formulae L-1 to L-1 1 ,
  • R, R 1 and R 2 each, independently of one another, have the meanings indicated for R 2A in Claim 5 and alkyl denotes an alkyl radical having
  • the compounds of the formulae L-1 to L-11 are preferably employed in concentrations of 5 to 50 % by weight, in particular 5 to 40 % by weight and very particularly preferably 10 to 40 % by weight. Particularly preferred mixture concepts are indicated below: (the acronyms used are explained in Table A. n and m here each, independently of one another, denote 1 to 15, preferably 1 to 6).
  • mixtures according to the invention preferably comprise
  • - CPY-n-Om in particular CPY-2-02, CPY-3-02 and/or CPY-5-02, pref- erably in concentrations > 5 %, in particular 10 to 30 %, based on the mixture as a whole, and/or - CY-n-Om, preferably CY-3-02, CY-3-04, CY-5-02 and/or CY-5-04, pref- erably in concentrations > 5 %, in particular 15 to 50 %, based on the mixture as a whole, and/or - CCY-n-Om, preferably CCY-4-02, CCY-3-02, CCY-3-03, CCY-3-01 and/or CCY-5-02, preferably in concentrations > 5 %, in particular 10 to 30 %, based on the mixture as a whole, and/or
  • CLY-n-Om preferably CLY-2-04, CLY-3-02 and/or CLY-3-03, preferably in concentrations > 5 %, in particular 10 to 30 %, based on the mixture as a whole.
  • mixtures according to the invention which comprise:
  • the compounds of formula I preferably of formulae 1-1 to I-3, i.e. of formulae 1-0-1 to I-0-3 and/or l-S-1 to l-S-3, especially LB-3-04 and/or LB(S)-4-03 in a concentration in the range of from 1 to 20 %, more preferably from 2 to 15 %, particularly preferably from 3 to 12 % by weight and very particularly preferably from 4 to 11 % by weight
  • - CPY-n-Om and PY-n-Om preferably CPY-2-02 and/or CPY-3-02 and PY-3-02, preferably in concentrations of 10 to 45 %, based on the mixture as a whole, and/or - CPY-n-Om and CLY-n-Om, preferably in concentrations of 10 to 80 %, based on the mixture as a whole, and/or
  • CCVC-n-V preferably CCVC-3-V, preferably in concentrations of 2 to10 %, based on the mixture as a whole, and/or
  • CCC-n-V preferably CCC-2-V and/or CCC-3-V, preferably in concentra- tions of 2 to 10 %, based on the mixture as a whole, and/or
  • the medium comprises the compound B-20-05 in a concentration in the range of from
  • the invention furthermore relates to an electro-optical display having active-matrix addressing based on the ECB, VA, PS-VA, PA-VA, IPS, PS- IPS, FFS or PS-FFS effect, characterised in that it contains, as dielectric, a liquid-crystalline medium according to one or more of Claims 1 to 11.
  • the liquid-crystalline medium according to the invention preferably has a nematic phase from ⁇ -20°C to > 70°C, particularly preferably from ⁇ -30°C to > 80°C, very particularly preferably from ⁇ -40°C to > 90°C.
  • the expression "have a nematic phase” here means on the one hand that no smectic phase and no crystallisation are observed at low temperatures at the corresponding temperature and on the other hand that clearing still does not occur on heating from the nematic phase. The investigation at low temperatures is carried out in a flow viscometer at the corresponding tem- perature and checked by storage in test cells having a layer thickness cor- responding to the electro-optical use for at least 100 hours.
  • the medium is referred to as stable at this temperature.
  • the corresponding times are 500 h and 250 h respectively.
  • the clearing point is measured by con- ventional methods in capillaries.
  • the liquid-crystal mixture preferably has a nematic phase range of at least 60 K and a flow viscosity V20 of at most 30 mm 2 ⁇ s 1 at 20°C.
  • the values of the birefringence Dh in the liquid-crystal mixture are gener- ally between 0.07 and 0.16, preferably between 0.08 and 0.13.
  • the liquid-crystal mixture according to the invention has a De of -0.5 to -8.0, in particular -2.5 to -6.0, where De denotes the dielectric anisotropy.
  • the rotational viscosity gi at 20°C is preferably ⁇ 150 mPa s, in particu- lar ⁇ 120 mPa s.
  • the liquid-crystal media according to the invention have relatively low val- ues for the threshold voltage (Vo). They are preferably in the range from 1.7 V to 3.0 V, particularly preferably ⁇ 2.5 V and very particularly prefera- bly ⁇ 2.3 V.
  • threshold voltage relates to the capa- citive threshold (Vo), also called the Freedericks threshold, unless explicitly indicated otherwise.
  • liquid-crystal media according to the invention have high values for the voltage holding ratio in liquid-crystal cells.
  • liquid-crystal media having a low addressing voltage or thresh- old voltage exhibit a lower voltage holding ratio than those having a higher addressing voltage or threshold voltage and vice versa.
  • dielectrically positive compounds denotes compounds having a De > 1.5
  • dielectrically neutral com- pounds denotes those having -1.5 ⁇ De ⁇ 1.5
  • dielectrically negative compounds denotes those having De ⁇ -1.5.
  • the dielectric ani- sotropy of the compounds is determined here by dissolving 10 % of the compounds in a liquid-crystalline host and determining the capacitance of the resultant mixture in at least one test cell in each case having a layer thickness of 20 pm with homeotropic and with homogeneous surface align- ment at 1 kHz.
  • the measurement voltage is typically 0.5 V to 1.0 V, but is always lower than the capacitive threshold of the respective liquid-crystal mixture investigated. All temperature values indicated for the present invention are in °C.
  • the mixtures according to the invention are suitable for all VA-TFT applica- tions, such as, for example, VAN, MVA, (S)-PVA, ASV, PSA (polymer sustained VA) and PS-VA (polymer stabilized VA). They are furthermore suitable for IPS (in-plane switching) and FFS (fringe field switching) appli cations having negative De.
  • the nematic liquid-crystal mixtures in the displays according to the inven- tion generally comprise two components A and B, which themselves con- sist of one or more individual compounds.
  • Component A has significantly negative dielectric anisotropy and gives the nematic phase a dielectric anisotropy of ⁇ -0.5.
  • it preferably comprises the compounds of the for- mulae IIA, MB and/or IIC, furthermore one or more compounds of the for- mula 0-17.
  • the proportion of component A is preferably between 45 and 100 %, in particular between 60 and 100 %.
  • component A one (or more) individual compound(s) which has (have) a value of De ⁇ -0.8 is (are) preferably selected. This value must be more negative, the smaller the proportion A in the mixture as a whole.
  • Component B has pronounced nematogeneity and a flow viscosity of not greater than 30 mm 2 ⁇ s -1 , preferably not greater than 25 mm 2 ⁇ s -1 , at 20°C.
  • Particularly preferred individual compounds in component B are extremely low-viscosity nematic liquid crystals having a flow viscosity of not greater than 18 mm 2 ⁇ s -1 , preferably not greater than 12 mm 2 ⁇ s -1 , at 20°C.
  • Component B is monotropically or enantiotropically nematic, has no smec- tic phases and is able to prevent the occurrence of smectic phases down to very low temperatures in liquid-crystal mixtures. For example, if various materials of high nematogeneity are added to a smectic liquid-crystal mix- ture, the nematogeneity of these materials can be compared through the degree of suppression of smectic phases that is achieved.
  • the mixture may optionally also comprise a component C, comprising compounds having a dielectric anisotropy of De >1.5.
  • posi- tive compounds are generally present in a mixture of negative dielectric anisotropy in amounts of ⁇ 20 % by weight, based on the mixture as a whole.
  • the phases preferably comprise 4 to 15, in particular 5 to 12, and particularly preferably ⁇ 10, compounds of the formulae IIA, MB and/or IIC and optionally one or more compounds of the formula 0-17.
  • the other constituents are preferably selected from nematic or nemato- genic substances, in particular known substances, from the classes of the azoxybenzenes, benzylideneanilines, biphenyls, terphenyls, phenyl or cyclohexyl benzoates, phenyl or cyclohexyl cyclohexanecarboxylates, phenylcyclohexanes, cyclohexylbiphenyls, cyclohexylcyclohexanes, cyclo- hexylnaphthalenes, 1 ,4-biscyclohexylbiphenyls or cyclohexylpyrimidines, phenyl- or cyclohexyldioxanes, optionally halogenated stilbenes, benzyl phenyl ethers, tolanes and substituted cinnamic acid esters.
  • L and E each denote a carbo- or heterocyclic ring system from the group formed by 1 ,4-disubstituted benzene and cyclohexane rings, 4,4’- disubstituted biphenyl, phenylcyclohexane and cyclohexylcyclohexane systems, 2,5-disubstituted pyrimidine and 1 ,3-dioxane rings, 2,6-disubsti- tuted naphthalene, di- and tetrahydronaphthalene, quinazoline and tetra- hydroquinazoline,
  • Q denotes halogen, preferably chlorine, or -CN
  • R 20 and R 21 each denote alkyl, alkenyl, alkoxy, alkoxyalkyl or alkoxycar- bonyloxy having up to 18, preferably up to 8, carbon atoms, or one of these radicals alternatively denotes CN, NC, NO 2 , NCS, CF3, SF 5 , OCF3, F, Cl or Br.
  • R 20 and R 21 are different from one another, one of these radicals usually being an alkyl or alkoxy group.
  • Other variants of the proposed substituents are also common. Many such substances or also mixtures thereof are commercially available. All these substances can be prepared by methods known from the literature.
  • VA, IPS or FFS mixture according to the invention may also comprise compounds in which, for example, H, N, O, Cl and F have been replaced by the corres- ponding isotopes.
  • Polymerisable compounds so-called reactive mesogens (RMs), for exam- pie as disclosed in U.S. 6,861 ,107, may furthermore be added to the mix- tures according to the invention in concentrations of preferably 0.01 to 5 % by weight, particularly preferably 0.2 to 2 % by weight, based on the mixture.
  • These mixtures may optionally also comprise an initiator, as described, for example, in U.S. 6,781 ,665.
  • the initiator for example lrganox-1076 from BASF, is preferably added to the mixture comprising polymerisable compounds in amounts of 0 to 1 %.
  • PS-VA polymer-stabilised VA modes
  • PSA polymer sustained VA
  • Liquid-crystalline compounds containing an alkenyl side chain such as, for example, CC-3-V, exhibit no reaction under the polymerisation conditions (UV polymerisation) for the RMs.
  • the mixtures according to the invention may furthermore comprise con- ventional additives, such as, for example, stabilisers, antioxidants, UV absorbers, nanoparticles, microparticles, etc.
  • the structure of the liquid-crystal displays according to the invention corre- sponds to the usual geometry, as described, for example, in
  • cyclohexylene rings are trans-1 ,4-cyclohexylene rings, unless explicitly mentioned otherwise.
  • the mixtures according to the invention preferably comprise one or more compounds of the corn- pounds mentioned below from Table A.
  • liquid-crystal mixtures which can be used in accordance with the invention are prepared in a manner which is conventional per se.
  • the desired amount of the components used in lesser amount is dis- solved in the components making up the principal constituent, advanta- geously at elevated temperature.
  • liquid-crystal phases according to the invention can be modified in such a way that they can be employed in any type of, for example, ECB, VAN, IPS, GH or ASM-VA LCD display that has been disclosed to date.
  • the dielectrics may also comprise further additives known to the person skilled in the art and described in the literature, such as, for example, UV absorbers, antioxidants, nanoparticles and free-radical scavengers.
  • further additives known to the person skilled in the art and described in the literature, such as, for example, UV absorbers, antioxidants, nanoparticles and free-radical scavengers.
  • 0 to 15 % of pleochroic dyes, stabilisers, such as, for example, phenols, HALS (hindered amine light stabilisers), or chiral dopants may be added.
  • Suitable stabilisers for the mixtures according to the invention are, in particular, those listed in Table C.
  • pleochroic dyes may be added, furthermore con- ductive salts, preferably ethyldimethyldodecylammonium 4-hexoxybenzo- ate, tetrabutylammonium tetraphenylboranate or complex salts of crown ethers (cf., for example, Haller et al., Mol. Cryst. Liq. Cryst, Volume 24, pages 249-258 (1973)), may be added in order to improve the conductivity or substances may be added in order to modify the dielectric anisotropy, the viscosity and/or the alignment of the nematic phases. Substances of this type are described, for example, in DE-A 22 09 127, 22 40 864,
  • Table B indicates possible dopants which can be added to the mixtures according to the invention. If the mixtures comprise a dopant, it is added in amounts of 0.01 to 4 % by weight, preferably 0.01 to 3 % by weight.
  • the mixtures according to the invention comprise at least one stabiliser from Table C given below.
  • Stabilisers which can be added, for example, to the mixtures according to the invention in amounts of 0 to 10 % by weight, preferably 0.001 to 5 % by weight, in particular 0.001 to 1 % by weight, are indicated below.
  • m.p. denotes the melting point and C denotes the clearing point of a liquid-crystalline substance in degrees Celsius; boiling temperatures are denoted by m.p.
  • C denotes crystalline solid state
  • S denotes smectic phase (the index denotes the phase type)
  • N denotes nematic state
  • Ch denotes cholesteric phase
  • I denotes isotropic phase
  • T g denotes glass-transition temperature. The number between two symbols indicates the conversion temperature in degrees Celsius an.
  • the host mixture used for determination of the optical anisotropy Dh of the compounds of the formula I is the commercial mixture ZLI-4792 (Merck KGaA).
  • the dielectric anisotropy De is determined using commercial mix- ture ZLI-2857.
  • the physical data of the compound to be investigated are obtained from the change in the dielectric constants of the host mixture after addition of the compound to be investigated and extrapolation to 100 % of the compound employed. In general, 10 % of the compound to be investigated are dissolved in the host mixture, depending on the solubility.
  • parts or per cent data denote parts by weight or per cent by weight.
  • Vo denotes threshold voltage, capacitive [V] at 20°C,
  • n e denotes extraordinary refractive index at 20°C and 589 nm
  • n 0 denotes ordinary refractive index at 20°C and 589 nm
  • Dh denotes optical anisotropy at 20°C and 589 nm
  • e ⁇ denotes dielectric permittivity perpendicular to the director at
  • T(N,l) denotes clearing point [°C]
  • gi denotes rotational viscosity measured at 20°C [nnPa-s], deter- mined by the rotation method in a magnetic field
  • Ki denotes elastic constant, "splay" deformation at 20°C [pN],
  • K2 denotes elastic constant, "twist" deformation at 20°C [pN],
  • K3 denotes elastic constant, "bend” deformation at 20°C [pN], and
  • LTS denotes low-temperature stability (nematic phase), deter- mined in test cells or in the bulk, as specified.
  • temperatures such as, for example, the melting point T(C,N), the transition from the smectic (S) to the nematic (N) phase T(S,N) and the clearing point T(N,I) or cl.p., are indicated in degrees Celsius (°C). M.p. denotes melting point .
  • Tg glass state
  • C crystalline state
  • N nematic phase
  • S smectic phase
  • I isotropic phase. The numbers between these symbols represent the transition temperatures.
  • threshold voltage for the present invention relates to the capacitive threshold (Vo), also called the Freedericksz threshold, unless explicitly indicated otherwise.
  • the optical threshold can also be indicated for 10 % relative contrast (V10).
  • the display or test cell used for measurement of the tilt angle consists of two plane-parallel glass outer plates at a separation of 4 pm, which each have on the insides an electrode layer and a polyimide alignment layer on top, where the two polyimide layers are rubbed antiparallel to one another and cause a homeotropic edge alignment of the liquid-crystal molecules.
  • VFIR is determined at 20°C (VFIR20) and after 5 minutes in an oven at 100°C (VFIR100) in a commercially available instrument Model 6254 from TOYO Corporation, Japan.
  • the voltage used has a frequency of in a range from 1 Hz to 60 Hz, unless indicated more precisely.
  • the accuracy of the VHR measurement values depends on the respective value of the VHR.
  • the accuracy decreases with decreasing values.
  • the deviations generally observed in the case of values in the various magni- tude ranges are compiled in their order of magnitude in the following table.
  • the stability to UV irradiation is investigated in a "Suntest CPS", a com-fural instrument from Heraeus, Germany.
  • the sealed test cells are irra- diated for between 30 min and 2.0 hours, unless explicitly indicated, with- out additional heating.
  • the irradiation power in the wavelength range from 300 nm to 800 nm is 765 W/m 2 V.
  • a UV "cut-off" filter having an edge wavelength of 310 nm is used in order to simulate the so-called window glass mode.
  • at least four test cells are investigated for each condition, and the respective results are indicated as averages of the corresponding individual measurements.
  • the decrease in the voltage holding ratio (AVHR) usually caused by the exposure, for example by UV irradiation or by LCD backlighting, is deter- mined in accordance with the following equation (1 ):
  • LTS low-temperature stability
  • LC mixture in the bulk against spontaneous crystallisation of individual components at low temperatures or the occurrence of smectic phases, as the case may be
  • several sealed bottles each containing about 1 g of the material, are stored at one or more given temperatures, typically of -10°C, -20°C, -30°C and/or -40°C and it is inspected at regular intervals visually, whether a phase transition is observed or not.
  • the first one of the samples at a given temperature shows a change time is noted.
  • the time until the last inspection, at which no change has been observed is noted as the respective LTS.
  • the ion density from which the resistivity is calculated is measured using the commercially available LC Material Characteristics Measurement System Model 6254 from Toyo Corporation, Japan, using VHR test cells with AL16301 Polyimide (JSR Corp., Japan) having a 3.2pm cell gap. The measurement is performed after 5 min of storage in an oven at 60 °C or 100 °C.
  • ⁇ TR denotes the helical twisting power of an optically active or chiral substance in an LC medium (in pm).
  • HTP is measured in the commercially available nematic LC host mixture MLD-6260 (Merck KGaA) at a temperature of 20°C.
  • Comparative Mixture C1 is prepared as follows:
  • Mixture M1 is prepared as follows:
  • Mixture M2 is prepared as follows:
  • VHR values (gi/ Ki) compared to CM1 as compiled in the following table.
  • Table 1 VHR values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal Substances (AREA)
PCT/EP2018/083586 2017-12-08 2018-12-05 Liquid-crystalline medium WO2019110636A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880078751.1A CN111433324A (zh) 2017-12-08 2018-12-05 液晶介质
DE112018006224.4T DE112018006224T5 (de) 2017-12-08 2018-12-05 Flüssigkristallines Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17206170.7 2017-12-08
EP17206170 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019110636A1 true WO2019110636A1 (en) 2019-06-13

Family

ID=60629575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/083586 WO2019110636A1 (en) 2017-12-08 2018-12-05 Liquid-crystalline medium

Country Status (4)

Country Link
CN (1) CN111433324A (zh)
DE (1) DE112018006224T5 (zh)
TW (1) TW201928025A (zh)
WO (1) WO2019110636A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730591A1 (en) * 2019-04-26 2020-10-28 Merck Patent GmbH Liquid-crystal medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492037A (zh) * 2017-12-22 2020-08-04 默克专利股份有限公司 液晶介质

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209127A1 (de) 1972-02-26 1973-09-06 Merck Patent Gmbh Modifizierte nematische phasen
DE2338281A1 (de) 1972-08-03 1974-02-21 Ibm Verfahren zur gesteuerten veraenderung der elektrischen eigenschaften von nematischen fluessigkeiten und dotierungsmittel hierfuer
DE2240864A1 (de) 1972-08-19 1974-02-28 Merck Patent Gmbh Nematische ester und ihre verwendung zur beeinflussung der elektrooptischen eigenschaften nematischer phasen
DE2321632A1 (de) 1973-04-28 1974-11-21 Merck Patent Gmbh Modifizierte nematische gemische mit positiver dielektrischer anisotropie
DE2450088A1 (de) 1974-10-22 1976-04-29 Merck Patent Gmbh Biphenylester
DE2637430A1 (de) 1976-08-20 1978-02-23 Merck Patent Gmbh Fluessigkristallines dielektrikum
DE2853728A1 (de) 1978-12-13 1980-07-17 Merck Patent Gmbh Fluessigkristalline carbonsaeureester, verfahren zu ihrer herstellung, diese enthaltende dielektrika und elektrooptisches anzeigeelement
EP0240379A1 (fr) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Cellule à double couche de cristal liquide, utilisant l'effet de biréfringence controlée électriquement
WO2002055463A1 (de) 2001-01-11 2002-07-18 Clariant International Ltd. Fluorierte aromaten und ihre verwendung in flüssigkristallmischungen
US6781665B2 (en) 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium
US20050258399A1 (en) 2004-04-26 2005-11-24 Wolfgang Schmidt Fluorinated heterocycles and their use in liquid-crystal mixtures
EP1752510A1 (de) * 2005-08-09 2007-02-14 Merck Patent GmbH Flüssigkristallines Medium
DE102012004871A1 (de) * 2011-03-29 2012-10-04 Merck Patent Gmbh Flüssigkristallines Medium
DE102015006246A1 (de) * 2014-05-27 2015-12-03 Merck Patent Gmbh Flüssigkristallines Medium
EP3235894A2 (de) * 2016-04-21 2017-10-25 Merck Patent GmbH Flüssigkristallines medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10774264B2 (en) * 2015-07-15 2020-09-15 Jnc Corporation Liquid crystal composition and liquid crystal display device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209127A1 (de) 1972-02-26 1973-09-06 Merck Patent Gmbh Modifizierte nematische phasen
DE2338281A1 (de) 1972-08-03 1974-02-21 Ibm Verfahren zur gesteuerten veraenderung der elektrischen eigenschaften von nematischen fluessigkeiten und dotierungsmittel hierfuer
DE2240864A1 (de) 1972-08-19 1974-02-28 Merck Patent Gmbh Nematische ester und ihre verwendung zur beeinflussung der elektrooptischen eigenschaften nematischer phasen
DE2321632A1 (de) 1973-04-28 1974-11-21 Merck Patent Gmbh Modifizierte nematische gemische mit positiver dielektrischer anisotropie
DE2450088A1 (de) 1974-10-22 1976-04-29 Merck Patent Gmbh Biphenylester
DE2637430A1 (de) 1976-08-20 1978-02-23 Merck Patent Gmbh Fluessigkristallines dielektrikum
DE2853728A1 (de) 1978-12-13 1980-07-17 Merck Patent Gmbh Fluessigkristalline carbonsaeureester, verfahren zu ihrer herstellung, diese enthaltende dielektrika und elektrooptisches anzeigeelement
EP0240379A1 (fr) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Cellule à double couche de cristal liquide, utilisant l'effet de biréfringence controlée électriquement
WO2002055463A1 (de) 2001-01-11 2002-07-18 Clariant International Ltd. Fluorierte aromaten und ihre verwendung in flüssigkristallmischungen
US6781665B2 (en) 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
US6861107B2 (en) 2002-07-06 2005-03-01 Merck Patent Gmbh Liquid-crystalline medium
US20050258399A1 (en) 2004-04-26 2005-11-24 Wolfgang Schmidt Fluorinated heterocycles and their use in liquid-crystal mixtures
EP1752510A1 (de) * 2005-08-09 2007-02-14 Merck Patent GmbH Flüssigkristallines Medium
DE102012004871A1 (de) * 2011-03-29 2012-10-04 Merck Patent Gmbh Flüssigkristallines Medium
DE102015006246A1 (de) * 2014-05-27 2015-12-03 Merck Patent Gmbh Flüssigkristallines Medium
EP3235894A2 (de) * 2016-04-21 2017-10-25 Merck Patent GmbH Flüssigkristallines medium

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Merck Liquid Crystals, Physical Properties of Liquid Crystals", November 1997, MERCK KGAA
G. LABRUNIE; J. ROBERT, J. APPL. PHYS., vol. 44, 1973, pages 4869
H. SCHAD, SID 82 DIGEST TECHN. PAPERS, 1982, pages 244
HALLER ET AL., MOL. CRYST. LIQ. CRYST., vol. 24, 1973, pages 249 - 258
J. DUCHENE, DISPLAYS, vol. 7, 1986, pages 3
J. ROBERT; F. CLERC, SID 80 DIGEST TECHN. PAPERS, 1980, pages 30
J.F. KAHN, APPL. PHYS. LETT., vol. 20, 1972, pages 1193
KIM, HYEON KYEONG ET AL.: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, article "A 57-in. Wide UXGA TFT-LCD for HDTV Application", pages: 106 - 109
KIM, SANG SOO: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, article "Super PVA Sets New State-of-the-Art for LCD-TV", pages: 760 - 763
LIU, C.T. ET AL.: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, article "A 46-inch TFT-LCD HDTV Technology ...", pages: 750 - 753
M.F. SCHIECKEL; K. FAHRENSCHON: "Deformation of nematic liquid crystals with vertical orientation in electrical fields", APPL. PHYS. LETT., vol. 19, 1971, pages 3912
MILLER; IAN: "LCD-Television", SEMINAR LECTURE NOTES, pages M-7,1 - M-7,32
SHIGETA, MITZUHIRO; FUKUOKA, HIROFUMI: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, article "Development of High Quality LCDTV", pages: 754 - 757
SOUK: "Recent Advances in LCD Technology", SEMINAR LECTURE NOTES, June 2004 (2004-06-01), pages M-6,1 - M-6,26
STROMER, M.: "Design of Thin Film Transistors for Matrix Addressing of Television Liquid Crystal Displays", PROC. EURODISPLAY, vol. 84, September 1984 (1984-09-01), pages 145
TOGASHI, S.; SEKIGUCHI, K.; TANABE, H.; YAMAMOTO, E.; SORI-MACHI, K.; TAJIMA, E.; WATANABE, H.; SHIMIZU, H.: "A 210-288 Matrix LCD Controlled by Double Stage Diode Rings", PROC. EURODISPLAY, vol. 84, September 1984 (1984-09-01), pages 141
YEO, S.D.: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, article "An LC Display for the TV Application", pages: 758,759
YOSHIDE, H. ET AL.: "SID 2004 International Symposium, Digest of Technical Papers", vol. XXXV, article "MVA LCD for Notebook or Mobile PCs ...", pages: 6 - 9

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3730591A1 (en) * 2019-04-26 2020-10-28 Merck Patent GmbH Liquid-crystal medium
US11655417B2 (en) 2019-04-26 2023-05-23 Merck Patent Gmbh Liquid-crystal medium

Also Published As

Publication number Publication date
DE112018006224T5 (de) 2020-09-24
CN111433324A (zh) 2020-07-17
TW201928025A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
JP7035101B2 (ja) 液晶媒体
JP6775916B2 (ja) 液晶媒体
KR102163585B1 (ko) 액정 매질
EP2931836B1 (en) Liquid-crystalline medium
EP2817388B1 (en) Liquid crystalline medium
JP5788418B2 (ja) 液晶媒体
KR20160110187A (ko) 액정 매질
WO2013004372A1 (en) Liquid-crystalline medium
KR20170127413A (ko) 액정 매질
KR20160133531A (ko) 액정 매질
KR20120130200A (ko) 액정 매질
KR20100066504A (ko) 액정 매질
KR20080075789A (ko) 액정 매질
EP3130650B1 (en) Liquid-crystalline medium
WO2019121648A1 (en) Liquid-crystalline medium
WO2018153838A1 (en) Liquid-crystalline medium
KR102662835B1 (ko) 액정 매질
WO2019110636A1 (en) Liquid-crystalline medium
WO2019115485A1 (en) Liquid-crystalline medium
EP3246377B1 (en) Liquid-crystal medium
EP3103855A1 (en) Liquid-crystalline medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814588

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18814588

Country of ref document: EP

Kind code of ref document: A1