WO2019109997A1 - 障碍物信息获取方法、激光脉冲的发射方法及装置 - Google Patents

障碍物信息获取方法、激光脉冲的发射方法及装置 Download PDF

Info

Publication number
WO2019109997A1
WO2019109997A1 PCT/CN2018/119721 CN2018119721W WO2019109997A1 WO 2019109997 A1 WO2019109997 A1 WO 2019109997A1 CN 2018119721 W CN2018119721 W CN 2018119721W WO 2019109997 A1 WO2019109997 A1 WO 2019109997A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser pulse
laser
time
moment
obstacle
Prior art date
Application number
PCT/CN2018/119721
Other languages
English (en)
French (fr)
Inventor
潘政清
向少卿
李一帆
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Priority to EP18884929.3A priority Critical patent/EP3722833A4/en
Publication of WO2019109997A1 publication Critical patent/WO2019109997A1/zh
Priority to US16/805,061 priority patent/US11346952B2/en
Priority to US17/555,655 priority patent/US11573327B2/en
Priority to US17/731,411 priority patent/US20220299647A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor

Definitions

  • Embodiments of the present invention relate to the field of environment sensing technologies, and in particular, to an obstacle information acquiring method, a laser pulse transmitting method, and a device.
  • Lidar has become a necessary sensor for automatic driving because it can capture the shape and distance information of all obstacles within 100 meters of the vehicle.
  • the pulse distance measurement method is mainly used to acquire obstacle information, that is, by transmitting laser pulses of narrow pulse width and high peak power, and then measuring the reflection by an Avalanche Photo Diode (APD) detector. The time delay of the pulse is calculated to calculate the distance information of the obstacle.
  • APD Avalanche Photo Diode
  • the detection circuit For the laser radar system using the pulse ranging method, a small portion of the transmitted pulse will be directly received by the APD during the optical pulse transmission, resulting in the detection circuit of the highly sensitive APD entering the nonlinear saturation region.
  • the detection circuit When the detection circuit is saturated, the amplification of the pulse base of the stray light is greater than the amplification of the top pulse, causing the pulse width of the stray light pulse to increase in the detection circuit, thereby causing the laser pulse echo signal reflected by the near-field obstacle to be submerged in In the post-dwelling pedestal of stray light, the position of the near-field obstacle cannot be judged, and the measurement blind zone is formed, which seriously affects the application of the laser radar in the field of automatic driving.
  • the existing products have two technical solutions: 1. Using a smaller emission pulse width, reducing the width of the measurement dead zone. 2. After the APD, the fast adjustable gain amplifier is used to replace the original fixed gain amplifier.
  • the adjustable gain amplifier uses a small gain for the front-end strong reflected light, and the back-end weak reflected light adopts a large gain method, which can appropriately reduce the gain of the stray light. The saturation effect reduces the width of the measurement dead zone.
  • the scheme of reducing the transmission pulse width brings about an increase in the detection bandwidth, introduces more radio frequency noise, and the cost of the transmitting unit and the detecting unit also rises sharply;
  • the scheme using the adjustable gain amplifier is only Optimizing the amplification circuit after the detection circuit APD, improving the dynamic range, does not change the gain inside the APD, so in most cases, due to the high gain of the APD, the stray light signal is saturated in the APD, and the subsequent amplification circuit cannot Solve the saturation effect of the APD itself and the blind spot effect.
  • the technical problem solved by the embodiments of the present invention is how to solve the problem of measuring blind spots of near-field obstacles caused by stray light inside the laser radar at a low cost.
  • an embodiment of the present invention provides a method for transmitting a laser pulse, the method comprising: transmitting a first laser pulse at a first moment; and transmitting a second laser pulse at the second moment, the first The peak power of the laser pulse is less than the peak power of the second laser pulse, and the time interval between the second moment and the first moment is greater than T, where T is the time at which the laser pulse is emitted and the near-field obstacle is received.
  • T is the time at which the laser pulse is emitted and the near-field obstacle is received.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • Embodiments of the present invention provide a laser pulse emitting apparatus, including: a waveform generator and a laser coupled thereto, wherein: the waveform generator is adapted to output a first driving current to the laser at a first moment And at a second time, outputting a second driving current to the laser, wherein a current value of the second driving current is greater than a current value of the first driving current, and an interval between the second time and the first time Greater than T, where T is the time between the moment at which the laser pulse is emitted and the moment at which the laser pulse echo signal reflected by the near field obstacle is received; the laser being adapted to be based on the first drive current input by the waveform generator At a first moment, a first laser pulse is generated and emitted; based on a second drive current input by the waveform generator, a second laser pulse is generated and emitted at a second time.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • the laser is a semiconductor laser.
  • An embodiment of the present invention provides a laser pulse emitting device, including: a laser and a first branch and a second branch coupled thereto, wherein: the first branch includes: a first branch coupled to each other An optical fiber, a first attenuator; the second branch includes: a second shunt fiber coupled to each other, and a second attenuator, wherein an attenuation value of the second attenuator is smaller than an attenuation value of the first attenuator, The delay introduced by the second shunt fiber is greater than the delay introduced by the first shunt fiber, and the delay difference is T, where T is the moment when the laser pulse is emitted and the laser that receives the near-field obstacle reflection The length of time between the moments of the pulse echo signal.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • the laser is a semiconductor laser.
  • Embodiments of the present invention provide a laser pulse emitting apparatus, including: a first transmitting unit adapted to emit a first laser pulse at a first moment; and a second transmitting unit adapted to emit a second laser pulse at a second moment
  • the peak power of the first laser pulse is less than the peak power of the second laser pulse, and the time interval between the second moment and the first moment is greater than T, where T is the time at which the laser pulse is emitted and is received near The length of time between the moments of the laser pulse echo signal reflected by the field obstacle.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • An embodiment of the present invention provides a method for acquiring obstacle information, including: calculating distance information of a near-field obstacle based on an echo signal of a first laser pulse; and calculating a far field based on an echo signal of the second laser pulse Distance information for obstacles.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon computer instructions that perform the steps of the method of transmitting the laser pulses while the computer instructions are running.
  • Embodiments of the present invention provide a system including a memory and a processor, wherein the memory stores computer instructions executable on the processor, and the processor executes the emission of the laser pulse when the computer instruction is executed The steps of the method.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon computer instructions, the steps of the method for acquiring the obstacle information when the computer instructions are running.
  • Embodiments of the present invention provide a system including a memory and a processor, where the computer stores computer instructions executable on the processor, and the processor executes the obstacle information when the computer instruction is executed. The steps to get the method.
  • the first laser pulse of low power is transmitted at the first moment, and the second laser pulse of high power is emitted at the second moment. Since the power of the first laser pulse is small, the stray light does not cause the detection circuit. The voltage is saturated, so the first laser pulse echo signal reflected by the near-field obstacle can be detected, thereby effectively solving the measurement blind zone problem of the near-field obstacle caused by the stray light inside the laser radar at a low cost; The laser pulse signal is strong, which can ensure the normal detection of far-field obstacles.
  • FIG. 1 is a schematic diagram of an APD detection voltage in a conventional laser radar system
  • FIG. 2 is a detailed flowchart of a method for transmitting a laser pulse according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a laser pulse according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an APD detection voltage according to an embodiment of the present invention.
  • FIG. 5 is a detailed flowchart of a method for acquiring obstacle information according to an embodiment of the present invention.
  • FIG. 6 is a detailed flowchart of another method for acquiring obstacle information according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a laser pulse emitting device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another laser pulse emitting apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of still another laser pulse emitting apparatus according to an embodiment of the present invention.
  • the detection circuit is saturated, thereby flooding the laser pulse echo signal reflected by the near-field obstacle, forming a measurement dead zone, as shown in FIG.
  • the voltage signal detected by the APD includes: the emitted laser pulse is directly absorbed by the APD, that is, the stray light causes the voltage signal 11 of the detection circuit to be saturated and the laser pulse is reflected by the near field obstacle.
  • the laser pulse echo signal 12 is saturated by the detection circuit due to stray light directly absorbed by the APD, so the voltage signal 11 is equal to the voltage saturation value, which is greater than the laser pulse echo signal 12 emitted by the near field obstacle, thereby causing the echo signal 12 was submerged and could not obtain distance information for near-field obstacles.
  • the duration of the saturation voltage signal caused by the stray light is the duration Ta corresponding to the measurement dead zone. In the time length Ta corresponding to the measurement dead zone, the detector cannot correctly receive the reflected laser pulse echo signal, so that the distance information of the obstacle cannot be obtained.
  • a scheme for reducing the transmission pulse width and a scheme of an adjustable gain amplifier are proposed for the problem of measurement dead zone caused by stray light.
  • the scheme of reducing the transmission pulse width will bring about an increase in the detection bandwidth, introduce more radio frequency noise, and the cost of the transmitting unit and the detecting unit will also rise sharply; the scheme using the adjustable gain amplifier is only for the amplification after the detecting circuit APD
  • the circuit is optimized to improve the dynamic range without changing the gain inside the APD. Therefore, in most cases, due to the high gain of the APD, the stray light signal is saturated in the APD, and the subsequent amplification circuit cannot solve the saturation effect of the APD itself. The blind zone effect caused. Therefore, the scheme of reducing the pulse width and the scheme of the adjustable gain amplifier cannot solve the problem of measurement dead zone caused by stray light at a low cost.
  • the first laser pulse of low power is transmitted at the first moment, and the second laser pulse of high power is emitted at the second moment. Since the power of the first laser pulse is small, the stray light does not cause the detection circuit. The voltage is saturated, so the first laser pulse echo signal reflected by the near-field obstacle can be detected, thereby effectively solving the measurement blind zone problem of the near-field obstacle caused by the stray light inside the laser radar at a low cost; The laser pulse signal is strong, which can ensure the normal detection of far-field obstacles.
  • an embodiment of the present invention provides a method for transmitting a laser pulse, the method comprising:
  • Step S201 at the first moment, transmitting a first laser pulse.
  • Step S202 at a second moment, transmitting a second laser pulse, a peak power of the first laser pulse is less than a peak power of the second laser pulse, and a time interval between the second moment and the first moment is greater than T Where T is the length of time between the moment the laser pulse is emitted and the moment the laser pulse echo signal is received by the near field obstacle.
  • the embodiment of the present invention adopts a double pulse.
  • the transmitting method that is, at the first moment, emits a weak first laser pulse for the measurement of the near-field obstacle, and at the second moment, transmits a strong second laser pulse for the measurement of the far-field obstacle.
  • the time interval between the second moment and the first moment may be constrained. Greater than T, where T is the reflection delay time of the near field obstacle, ie the time between the moment the laser pulse is emitted and the moment the same laser pulse echo signal is received by the near field obstacle.
  • the near field may be defined as a region corresponding to the measurement dead zone, that is, the measurement is introduced because the emitted laser pulse is directly received by the detection module, causing the detection circuit voltage to be saturated, thereby flooding the laser pulse echo signal reflected by the space obstacle.
  • the area corresponding to the blind spot may be defined as a region corresponding to the measurement dead zone, that is, the measurement is introduced because the emitted laser pulse is directly received by the detection module, causing the detection circuit voltage to be saturated, thereby flooding the laser pulse echo signal reflected by the space obstacle.
  • the first laser pulse signal is weak, even if it is directly used by the APD system, the stray light does not cause the APD to be saturated, so the pulse signal reflected by the subsequent obstacle can be effectively separated, thereby eliminating the measurement dead zone, and at the same time
  • the second laser pulse signal is strong, which can ensure the normal detection of far-field obstacles.
  • an embodiment of the present invention provides a schematic diagram of a laser pulse, as shown in FIG.
  • the first laser pulse 31 is emitted, the peak power is P1, and at time T2, the second laser pulse 32 is emitted, the peak power is P2, and P2 is much larger than P1, and the time interval between T2 and T1.
  • the stray light does not cause the APD to be saturated, so that the echo signal of the first laser pulse 31 reflected by the near-field obstacle can be effectively separated; and since the signal of the second laser pulse 32 is strong, the far field can be ensured. Normal detection of obstacles.
  • an embodiment of the present invention provides a schematic diagram of an APD detection voltage, as shown in FIG.
  • the APD detects the voltage signal, including: the emitted first laser pulse 31 is directly absorbed by the APD, that is, the first voltage signal 41 caused by the stray light, the first The laser pulse 31 is reflected by the near-field obstacle echo signal 42.
  • the time delay of the first laser pulse 31 being reflected by the near-field obstacle is X1
  • the second laser pulse 32 is directly absorbed by the APD to cause the saturation of the detection circuit.
  • the second voltage signal 43, the second laser pulse 32 is reflected by the near-field obstacle 44, the transmission time interval between the second laser pulse 32 and the first laser pulse 31 is T, and the duration of the voltage signal 43 is measured.
  • the time interval Ta, T>Ta corresponding to the dead zone, and the time delay of the second laser pulse 32 being reflected by the near field obstacle is T+X1.
  • an embodiment of the present invention provides a method for acquiring obstacle information, as shown in FIG. 5.
  • the method for acquiring the obstacle information may include the following steps:
  • Step S501 calculating distance information for acquiring a near field obstacle based on an echo signal of the first laser pulse.
  • Step S502 calculating distance information for acquiring a far field obstacle based on the echo signal of the second laser pulse.
  • the first laser pulse signal is weak, even if it is directly affected by the APD system, the stray light does not cause the APD to be saturated, so the distance information of the near field obstacle can be calculated based on the echo signal of the first laser pulse;
  • the second laser pulse signal is strong, so based on the echo signal of the second laser pulse, the distance information of the far field obstacle is calculated.
  • the laser pulse shown in FIG. 3 is emitted, and the received APD detection voltage signal is as shown in FIG. 4 .
  • a method for acquiring obstacle information is as shown in FIG. 6 , and may include the following steps:
  • step S601 it is determined whether there is a clear and non-overlapping waveform after the second voltage signal 43 caused by the stray light. If there is a clear and non-overlapping waveform, the second pulse waveform is executed, step S602 is performed, otherwise step S603 is performed.
  • the obstacle is in the far field, and the pulse waveform is the second pulse waveform, which is the far field.
  • the echo signal of the second laser pulse 32 reflected by the obstacle.
  • the two pulse waveforms are respectively the echo signals of the first laser pulse 31 reflected by the far field obstacle and the second The echo signal of the laser pulse 32, since the peak power of the first laser pulse 31 is smaller than the peak power of the second laser pulse 32, the latter pulse waveform, that is, the echo signal of the second laser pulse 32 reflected by the far field obstacle is The second pulse waveform.
  • Step S602 calculating distance information for acquiring a far field obstacle based on a reflection delay of the second pulse waveform.
  • the distance information of the far field obstacle can be calculated based on the reflection delay of the second pulse waveform.
  • the reflection delay can be calculated based on T+X2 to obtain the distance information of the obstacle, where X2 is the second laser emitted. The time between the moment of the pulse 32 and the moment of receipt of the echo signal of the second laser pulse 32 reflected by the far field obstacle.
  • Step S603 determining whether there is a clear and non-overlapping waveform between the first voltage signal 41 caused by the stray light and the second voltage signal 43 caused by the stray light, and if there is a clear and non-overlapping waveform, the first pulse waveform is Step S604 is performed, otherwise step S605 is performed.
  • the far field is unobstructed, and at this time, the inner field is further analyzed for the presence of an obstacle.
  • the pulse waveform is the first pulse waveform, which is The echo signal of the first laser pulse 31 reflected by the near field obstacle.
  • Step S604 calculating distance information for acquiring a near field obstacle based on a reflection delay of the first pulse waveform.
  • the reflection delay may be calculated based on X1 to obtain distance information of the near field obstacle, where X1 is the time at which the first laser pulse 31 is emitted and the echo of the first laser pulse 31 received by the near field obstacle is reflected. The length of time between the moments of the signal.
  • step S605 the detection ends.
  • an embodiment of the present invention provides a schematic diagram of a structure of a laser pulse emitting device, as shown in FIG.
  • an embodiment of the present invention provides a laser pulse emitting device 70, including: a waveform generator 71 and a laser 72 coupled thereto, wherein:
  • the waveform generator 71 is adapted to output a first driving current to the laser 72 at a first time and a second driving current to the laser 72 at a second time, wherein the current of the second driving current The value is greater than the current value of the first driving current, and the interval between the second time and the first time is greater than T, where T is the time at which the laser pulse is emitted and the laser pulse echo signal received by the near field obstacle is reflected The time between the moments.
  • the laser 72 is adapted to generate and emit a first laser pulse at a first time based on a first driving current input by the waveform generator 71; and based on a second driving current input by the waveform generator 71, At the second moment, a second laser pulse is generated and emitted.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • the laser may be a semiconductor laser or other types of lasers.
  • an embodiment of the present invention provides a schematic structural diagram of another laser pulse emitting device, as shown in FIG.
  • an embodiment of the present invention provides a laser pulse emitting device 80, including: a laser 81 and a first branch 82 and a second branch 83 coupled thereto, wherein: the first branch 82
  • the first branching fiber 821 and the first attenuator 822 are coupled to each other
  • the second branching 83 includes a second branching fiber 831 and a second attenuator 832 coupled to each other, and the second attenuation.
  • the attenuation value of the 832 is less than the attenuation value of the first attenuator 822, and the delay introduced by the second shunt fiber 831 is greater than the delay introduced by the first shunt fiber 821, and the delay difference is T.
  • T is the length of time between the moment the laser pulse is emitted and the moment the laser pulse echo signal is received by the near field obstacle.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • the laser may be a semiconductor laser or other types of lasers.
  • an embodiment of the present invention provides a schematic structural diagram of another laser pulse emitting device, as shown in FIG.
  • an embodiment of the present invention provides a laser pulse emitting device 90, including: a first transmitting unit 91 and a second transmitting unit 92, wherein:
  • the first transmitting unit 91 is adapted to emit a first laser pulse at a first moment.
  • the second transmitting unit 92 is adapted to emit a second laser pulse at a second moment, wherein a peak power of the first laser pulse is less than a peak power of the second laser pulse, and the second moment is different from the first
  • the time interval at a time is greater than T, where T is the length of time between the moment the laser pulse is emitted and the moment the laser pulse echo signal is reflected by the near field obstacle.
  • the near field is: a region corresponding to the measurement dead zone introduced by the laser pulse echo signal reflected by the space obstacle due to the laser pulse emitted by the detection module being directly received by the detection module.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon computer instructions that, when executed, perform the steps of any of the methods of transmitting the laser pulses.
  • Embodiments of the present invention provide a system including a memory and a processor, the memory storing computer instructions executable on the processor, and the processor executing any one of the instructions when the computer instruction is executed The steps of the laser pulse emission method.
  • the working process and the principle of the transmitting device 90 can be referred to the description in the method provided in the foregoing embodiment, and details are not described herein again.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon computer instructions that perform the steps of acquiring any one of the obstacle information when the computer instructions are executed.
  • Embodiments of the present invention provide a system including a memory and a processor, the memory storing computer instructions executable on the processor, and the processor executing any one of the instructions when the computer instruction is executed The steps of the method of acquiring obstacle information.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Abstract

一种障碍物信息获取方法、激光脉冲的发射方法及装置,激光脉冲的发射方法包括:在第一时刻,发射第一激光脉冲;在第二时刻,发射第二激光脉冲,第一激光脉冲的峰值功率小于第二激光脉冲的峰值功率,第二时刻与第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。应用上述方案,由于第一激光脉冲的功率较小,杂散光不会引起探测电路的电压饱和,故可以探测到近场障碍物反射的第一激光脉冲,从而以较低的成本,有效解决激光雷达内部杂散光导致的近场障碍物的测量盲区问题;同时由于第二激光脉冲信号较强,可以保证远场障碍物的正常探测。

Description

障碍物信息获取方法、激光脉冲的发射方法及装置
本申请要求于2017年12月08日提交中国专利局、申请号为201711303228.8、发明名称为“障碍物信息获取方法、激光脉冲的发射方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及环境感知技术领域,尤其涉及一种障碍物信息获取方法、激光脉冲的发射方法及装置。
背景技术
由于可以获取车辆百米范围内所有障碍物的形状和距离信息,激光雷达已经成为实现自动驾驶所必需的传感器。在目前的激光雷达系统中,主要采用脉冲测距的方法获取障碍物信息,即通过发射窄脉宽、高峰值功率的激光脉冲,然后通过雪崩光电二极管探测器(Avalanche Photo Diode,APD)测量反射脉冲的时间延迟,从而计算获取障碍物的距离信息。
对于采用脉冲测距方法的激光雷达系统,在光脉冲发射过程中,有小部分发射脉冲将直接被APD接收,导致高灵敏APD的探测电路进入非线性饱和区。当探测电路饱和时,杂散光的脉冲基座的放大倍数大于顶部脉冲的放大,引起杂散光脉冲在探测电路中的脉宽增大,从而导致近场障碍物反射的激光脉冲回波信号淹没在杂散光的后延基座内,无法判断近场障碍物的位置,形成测量盲区,严重影响激光雷达在自动驾驶领域的应用。为了解决上述问题,现有的产品有两种技术方案:1、采用更小的发射脉宽,减少测量盲区的宽度。2、在APD后采用快速可调增益放大器替代原先的固定增益放大器,可调增益放大器对前端强反射光采用小增益,后端弱反射光采用大增益的方式,可适当减小杂散光的增益饱和效果,减少测量盲区的宽度。
在现有的技术方案中,减少发射脉宽的方案会带来探测带宽的提高,引入更多的射频噪声,而且发射单元和探测单元的成本也会急剧上升;采用可调增益放大器的方案仅针对探测电路APD之后的放大电路做优化,改善动态范围,并没有改变APD内部的增益,因此在大多数情况下,由于APD的高增益,杂散光信号在APD内已经饱和,后续的放大电路无法解决APD本身的饱和效应以及引起的盲区效果。
发明内容
本发明实施例解决的技术问题是如何以较低的成本,解决激光雷达内部杂散光导致的近场障碍物的测量盲区的问题。
为解决上述技术问题,本发明实施例提供一种激光脉冲的发射方法,所述方法包括:在第一时刻,发射第一激光脉冲;在第二时刻,发射第二激光脉冲,所述第一激光脉冲的峰值功率小于所述第二激光脉冲的峰值功率,所述第二时刻与所述第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
可选地,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
本发明实施例提供一种激光脉冲的发射装置,包括:波形发生器和与之耦接的激光器,其中:所述波形发生器,适于在第一时刻,输出第一驱动电流至所述激光器,在第二时刻,输出第二驱动电流至所述激光器,其中所述第二驱动电流的电流值大于所述第一驱动电流的电流值,所述第二时刻与所述第一时刻的间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长;所述激光器,适于基于所述波形发生器输入的第一驱动电流,在第一时刻,产生并发射第一激光脉冲;基于所述波形发生器输入的第二驱动电流,在第二时刻,产生并发射第二激光脉冲。
可选地,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
可选地,所述激光器为半导体激光器。
本发明实施例提供一种激光脉冲的发射装置,包括:激光器和与之耦接的第一分路、第二分路,其中:所述第一分路包括:相互耦接的第一分路光纤、第一衰减器;所述第二分路包括:相互耦接的第二分路光纤、第二衰减器,所述第二衰减器的衰减值小于所述第一衰减器的衰减值,所述第二分路光纤引入的延时大于所述第一分路光纤引入的延时,且其延时差为T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
可选地,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
可选地,所述激光器为半导体激光器。
本发明实施例提供一种激光脉冲的发射装置,包括:第一发射单元,适于在第一时刻,发射第一激光脉冲;第二发射单元,适于在第二时刻,发射第二激光脉冲,所述第一激光脉冲的峰值功率小于所述第二激光脉冲的峰值功率,所述第二时刻与所述第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
可选地,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
本发明实施例提供一种障碍物信息的获取方法,包括:基于第一激光脉冲的回波信号,计算获取近场障碍物的距离信息;基于第二激光脉冲的回波信号,计算获取远场障碍物的距离信息。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行所述激光脉冲的发射方法的步骤。
本发明实施例提供一种系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行所述激光脉冲的发射方法的步骤。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行所述障碍物信息的获取方法的步骤。
本发明实施例提供一种系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行所述障碍物信息的获取方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例在第一时刻,发射小功率的第一激光脉冲,在第二时刻,发射大功率的第二激光脉冲,由于第一激光脉冲的功率较小,杂散光不会引起探测电路的电压饱和,故可以探测到近场障碍物反射的第一激光脉冲回波信号,从而以较低的成本,有效解决激光雷达内部杂散光导致的近场障碍物的测量盲区问题;同时由于第二激光脉冲信号较强,可以保证远场障碍物的正常探测。
附图说明
图1是现有的激光雷达系统中APD探测电压的示意图;
图2是本发明实施例提供的一种激光脉冲的发射方法的详细流程图;
图3是本发明实施例提供的一种激光脉冲的示意图;
图4是本发明实施例提供的一种APD探测电压的示意图;
图5是本发明实施例提供的一种障碍物信息的获取方法的详细流程图;
图6是本发明实施例提供的另一种障碍物信息的获取方法的详细流程图;
图7是本发明实施例提供的一种激光脉冲的发射装置的结构示意图;
图8是本发明实施例提供的另一种激光脉冲的发射装置的结构示意图;
图9是本发明实施例提供的又一种激光脉冲的发射装置的结构示意图。
具体实施方式
在现有的激光雷达系统中,由于发射的激光脉冲直接被APD吸收,导致探测电路饱和,从而淹没近场障碍物反射的激光脉冲回波信号,形成测量盲区,如图1所示。
参见图1,当激光雷达发射激光脉冲后,APD探测到的电压信号包括:发射的激光脉冲直接被APD吸收,即杂散光导致探测电路饱和的电压信号11和激光脉冲被近场障碍物反射的激光脉冲回波信号12,由于直接被APD吸收的杂散光导致探测电路饱和,故所述电压信号11等于电压饱和值,大于近场障碍物发射的激光脉冲回波信号12,从而导致回波信号12被淹没,无法获取近场障碍物的距离信息。所述杂散光导致的饱和电压信号持续的时间即为测量盲区对应的时长Ta。在测量盲区对应的时长Ta内,探测器无法正确接收反射回来的激光脉冲回波信号,从而无法获取障碍物的距离信息。
在现有的技术方案中,针对杂散光引起的测量盲区问题,提出了减少发射脉宽的方案和可调增益放大器的方案。其中减少发射脉宽的方案会带来探测带宽的提高,引入更多的射频噪声,而且发射单元和探测单元的成本也会急剧上升;采用可调增益放大器的方案仅针对探测电路APD之后的放大电路做优化,改善动态范围,并没有改变APD内部的增益,因此在大多数情况下,由于APD的高增益,杂散光信号在APD内已经饱和,后续的放大电路无法解决APD本身的饱和效应以及引起的盲区效果。故减少发射脉宽的方案和可调增益放大器的方案均无法以较低的成本,解决杂散光引起的测量盲区问题。
本发明实施例在第一时刻,发射小功率的第一激光脉冲,在第二时刻,发射大功率的第二激光脉冲,由于第一激光脉冲的功率较小,杂散光不会引起探测电路的电压饱和,故可以探测到近场障碍物反射 的第一激光脉冲回波信号,从而以较低的成本,有效解决激光雷达内部杂散光导致的近场障碍物的测量盲区问题;同时由于第二激光脉冲信号较强,可以保证远场障碍物的正常探测。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参见图2,本发明实施例提供了一种激光脉冲的发射方法,所述方法包括:
步骤S201,在第一时刻,发射第一激光脉冲。
步骤S202,在第二时刻,发射第二激光脉冲,所述第一激光脉冲的峰值功率小于所述第二激光脉冲的峰值功率,所述第二时刻与所述第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
在现有的激光雷达系统中,由于发射的激光脉冲直接被APD吸收,导致探测电路饱和,从而淹没近场障碍物反射的激光脉冲回波信号,形成测量盲区,故本发明实施例采用双脉冲发射方法,即在第一时刻,发射弱的第一激光脉冲,用于近场障碍物的测量,在第二时刻,发射强的第二激光脉冲,用于远场障碍物的测量。
在具体实施中,由于弱的第一激光脉冲可以用于近场障碍物的测量,故为了提高近场障碍物测量的准确率,可以约束所述第二时刻与所述第一时刻的时间间隔大于T,其中T为近场障碍物的反射延迟时间,即发射激光脉冲的时刻和接收到近场障碍物反射的同一激光脉冲回波信号的时刻之间的时长。
在具体实施中,可以定义近场为测量盲区对应的区域,即由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
应用上述方案,由于第一激光脉冲信号较弱,故即使其直接被 APD系统,杂散光也不会引起APD饱和,故可以有效分离后续障碍物反射的脉冲信号,从而可以消除测量盲区,同时由于第二激光脉冲信号较强,可以保证远场障碍物的正常探测。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了一种激光脉冲的示意图,如图3所示。
参见图3,在T1时刻,发射第一激光脉冲31,峰值功率为P1,在T2时刻,发射第二激光脉冲32,峰值功率为P2,且P2远大于P1,T2与T1之间的时间间隔为T。
由于P1较低,杂散光也不会引起APD饱和,故可以有效分离近场障碍物反射的第一激光脉冲31的回波信号;同时由于第二激光脉冲32的信号较强,可以保证远场障碍物的正常探测。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了一种APD探测电压的示意图,如图4所示。
参见图4,当激光雷达系统发射图3所示的激光脉冲后,APD探测到电压信号包括:发射的第一激光脉冲31直接被APD吸收,即杂散光导致的第一电压信号41、第一激光脉冲31被近场障碍物反射的回波信号42,第一激光脉冲31被近场障碍物反射的时间延迟为X1,第二激光脉冲32直接被APD吸收的杂散光导致探测电路饱和的第二电压信号43,第二激光脉冲32被近场障碍物反射的回波信号44,第二激光脉冲32与第一激光脉冲31之间的发射时间间隔为T,电压信号43持续的时间为测量盲区对应的时长Ta,T>Ta,第二激光脉冲32被近场障碍物反射的时间延迟为T+X1。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了一种障碍物信息的获取方法,如图5所示。
参见图5,所述障碍物信息的获取方法可以包括如下步骤:
步骤S501,基于第一激光脉冲的回波信号,计算获取近场障碍物的距离信息。
步骤S502,基于第二激光脉冲的回波信号,计算获取远场障碍物的距离信息。
由于第一激光脉冲信号较弱,故即使其直接被APD系统,杂散光也不会引起APD饱和,故可以基于第一激光脉冲的回波信号,计算获取近场障碍物的距离信息;同时由于第二激光脉冲信号较强,故基于第二激光脉冲的回波信号,计算获取远场障碍物的距离信息。
在本发明一实施例中,发射图3所示的激光脉冲,接收到的APD探测电压信号如图4所示,一种障碍物信息的获取方法如图6所示,可以包括如下步骤:
步骤S601,判断杂散光导致的第二电压信号43之后是否存在清晰且非重叠的波形,如果存在清晰且非重叠的波形,则为第二脉冲波形,执行步骤S602,否则执行步骤S603。
在具体实施中,如果激光雷达内部杂散光导致的第二电压信号43之后只存在一个清晰且非重叠的脉冲波形,说明障碍物在远场,所述脉冲波形为第二脉冲波形,为远场障碍物反射的第二激光脉冲32的回波信号。如果激光雷达内部杂散光导致的第二电压信号43之后存在两个清晰且非重叠的脉冲波形,则两个脉冲波形分别为远场障碍物反射的第一激光脉冲31的回波信号和第二激光脉冲32的回波信号,由于第一激光脉冲31的峰值功率小于第二激光脉冲32的峰值功率,故后一个脉冲波形,即远场障碍物反射的第二激光脉冲32的回波信号为第二脉冲波形。
步骤S602,基于第二脉冲波形的反射延迟,计算获取远场障碍物的距离信息。
在具体实施中,由于第二脉冲波形的反射延迟大小与距离远近相关,故可以基于第二脉冲波形的反射延迟,计算获取远场障碍物的距离信息。
在具体实施中,由于第二激光脉冲32相对于第一激光脉冲31, 延迟了时间T发送的,可以基于T+X2计算反射延迟,以获取障碍物的距离信息,其中X2为发射第二激光脉冲32的时刻和接收到远场障碍物反射的第二激光脉冲32的回波信号的时刻之间的时长。
步骤S603,判断杂散光导致的第一电压信号41和杂散光导致的第二电压信号43之间是否存在清晰且非重叠的波形,如果存在清晰且非重叠的波形,则为第一脉冲波形,执行步骤S604,否则执行步骤S605。
在具体实施中,如果激光雷达内部杂散光导致的第二电压信号43之后无清晰且重叠的波形,说明远场无障碍物,此时进一步分析内场是否存在障碍物。
当杂散光导致的第一电压信号41和杂散光导致的第二电压信号43之间存在清晰且非重叠的脉冲波形时,说明近场存在障碍物,所述脉冲波形为第一脉冲波形,为近场障碍物反射的第一激光脉冲31的回波信号。
步骤S604,基于第一脉冲波形的反射延迟,计算获取近场障碍物的距离信息。
在具体实施中,可以基于X1计算反射延迟,以获取近场障碍物的距离信息,其中X1为发射第一激光脉冲31的时刻和接收到近场障碍物反射的第一激光脉冲31的回波信号的时刻之间的时长。
步骤S605,探测结束。
在具体实施中,当激光雷达内部杂散光导致的第二电压信号43之后无清晰且重叠的第二脉冲波形、且当杂散光导致的第一电压信号41和杂散光导致的第二电压信号43之间无清晰且非重叠的第一脉冲波形时,探测结束,结论为:远场和近场均无障碍物。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了一种激光脉冲的发射装置的结构示意图,如图7所示。
参见图7,本发明实施例提供了一种激光脉冲的发射装置70,包 括:波形发生器71和与之耦接的激光器72,其中:
所述波形发生器71,适于在第一时刻,输出第一驱动电流至所述激光器72,在第二时刻,输出第二驱动电流至所述激光器72,其中所述第二驱动电流的电流值大于所述第一驱动电流的电流值,所述第二时刻与所述第一时刻的间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
所述激光器72,适于基于所述波形发生器71输入的第一驱动电流,在第一时刻,产生并发射第一激光脉冲;基于所述波形发生器71输入的第二驱动电流,在第二时刻,产生并发射第二激光脉冲。
在具体实施中,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
在具体实施中,所述激光器可以为半导体激光器,也可以为其他类型的激光器。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了另一种激光脉冲的发射装置的结构示意图,如图8所示。
参见图8,本发明实施例提供了一种激光脉冲的发射装置80,包括:激光器81和与之耦接的第一分路82、第二分路83,其中:所述第一分路82包括:相互耦接的第一分路光纤821、第一衰减器822,所述第二分路83包括:相互耦接的第二分路光纤831、第二衰减器832,所述第二衰减器832的衰减值小于所述第一衰减器822的衰减值,所述第二分路光纤831引入的延时大于所述第一分路光纤821引入的延时,且其延时差为T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
在具体实施中,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
在具体实施中,所述激光器可以为半导体激光器,也可以为其他类型的激光器。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了另一种激光脉冲的发射装置的结构示意图,如图9所示。
参见图9,本发明实施例提供了一种激光脉冲的发射装置90,包括:第一发射单元91、第二发射单元92,其中:
所述第一发射单元91,适于在第一时刻,发射第一激光脉冲。
所述第二发射单元92,适于在第二时刻,发射第二激光脉冲,所述第一激光脉冲的峰值功率小于所述第二激光脉冲的峰值功率,所述第二时刻与所述第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
在具体实施中,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
本发明实施例提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行任一种所述激光脉冲的发射方法的步骤。
本发明实施例提供了一种系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行任一种所述激光脉冲的发射方法的步骤。
在具体实施中,所述发射装置90的工作流程及原理可以参考上述实施例中提供的方法中的描述,此处不再赘述。
本发明实施例提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行任一种所述障碍物信息的获取方法的步骤。
本发明实施例提供了一种系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行任一种所述障碍物信息的获取方法的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种激光脉冲的发射方法,其特征在于,包括:
    在第一时刻,发射第一激光脉冲;
    在第二时刻,发射第二激光脉冲,所述第一激光脉冲的峰值功率小于所述第二激光脉冲的峰值功率,所述第二时刻与所述第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
  2. 根据权利要求1所述的激光脉冲的发射方法,其特征在于,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
  3. 一种激光脉冲的发射装置,其特征在于,包括:波形发生器和与之耦接的激光器,其中:
    所述波形发生器,适于在第一时刻,输出第一驱动电流至所述激光器,在第二时刻,输出第二驱动电流至所述激光器,其中所述第二驱动电流的电流值大于所述第一驱动电流的电流值,所述第二时刻与所述第一时刻的间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长;
    所述激光器,适于基于所述波形发生器输入的第一驱动电流,在第一时刻,产生并发射第一激光脉冲;基于所述波形发生器输入的第二驱动电流,在第二时刻,产生并发射第二激光脉冲。
  4. 根据权利要求3所述的激光脉冲的发射装置,其特征在于,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
  5. 根据权利要求3或4所述的激光脉冲的发射装置,其特征在于,所述激光器为半导体激光器。
  6. 一种激光脉冲的发射装置,其特征在于,包括:激光器和与之耦接的第一分路、第二分路,其中:
    所述第一分路包括:相互耦接的第一分路光纤、第一衰减器;
    所述第二分路包括:相互耦接的第二分路光纤、第二衰减器,所述第二衰减器的衰减值小于所述第一衰减器的衰减值,所述第二分路光纤引入的延时大于所述第一分路光纤引入的延时,且其延时差为T, 其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
  7. 根据权利要求6所述的激光脉冲的发射装置,其特征在于,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
  8. 一种激光脉冲的发射装置,其特征在于,包括:
    第一发射单元,适于在第一时刻,发射第一激光脉冲;
    第二发射单元,适于在第二时刻,发射第二激光脉冲,所述第一激光脉冲的峰值功率小于所述第二激光脉冲的峰值功率,所述第二时刻与所述第一时刻的时间间隔大于T,其中T为发射激光脉冲的时刻和接收到近场障碍物反射的激光脉冲回波信号的时刻之间的时长。
  9. 根据权利要求8所述的激光脉冲的发射装置,其特征在于,所述近场为:由于发射的激光脉冲直接被探测模块接收,导致探测电路电压饱和,从而淹没空间障碍物反射的激光脉冲回波信号而引入的测量盲区对应的区域。
  10. 一种障碍物信息的获取方法,其特征在于,包括:
    基于第一激光脉冲的回波信号,计算获取近场障碍物的距离信息;
    基于第二激光脉冲的回波信号,计算获取远场障碍物的距离信息。
PCT/CN2018/119721 2017-12-08 2018-12-07 障碍物信息获取方法、激光脉冲的发射方法及装置 WO2019109997A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18884929.3A EP3722833A4 (en) 2017-12-08 2018-12-07 OBSTACLE INFORMATION PROCESS, AND LASER PULSE EMISSION PROCESS AND DEVICE
US16/805,061 US11346952B2 (en) 2017-12-08 2020-02-28 Systems and methods for light detection and ranging
US17/555,655 US11573327B2 (en) 2017-12-08 2021-12-20 Systems and methods for light detection and ranging
US17/731,411 US20220299647A1 (en) 2017-12-08 2022-04-28 Systems and methods for light detection and ranging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711303228.8 2017-12-08
CN201711303228.8A CN108089201B (zh) 2017-12-08 2017-12-08 障碍物信息获取方法、激光脉冲的发射方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073629 Continuation-In-Part WO2021146954A1 (en) 2017-12-08 2020-01-21 Systems and methods for light detection and ranging

Publications (1)

Publication Number Publication Date
WO2019109997A1 true WO2019109997A1 (zh) 2019-06-13

Family

ID=62174510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119721 WO2019109997A1 (zh) 2017-12-08 2018-12-07 障碍物信息获取方法、激光脉冲的发射方法及装置

Country Status (3)

Country Link
EP (1) EP3722833A4 (zh)
CN (1) CN108089201B (zh)
WO (1) WO2019109997A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050070A (zh) * 2019-12-27 2021-06-29 北京万集科技股份有限公司 激光雷达数据处理方法、装置、设备及存储介质
US11346952B2 (en) 2017-12-08 2022-05-31 Hesai Technology Co., Ltd. Systems and methods for light detection and ranging
CN115517633A (zh) * 2022-11-29 2022-12-27 季华实验室 成像装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609336B1 (en) 2018-08-21 2023-03-21 Innovusion, Inc. Refraction compensation for use in LiDAR systems
WO2018182812A2 (en) 2016-12-30 2018-10-04 Innovusion Ireland Limited Multiwavelength lidar design
US10942257B2 (en) 2016-12-31 2021-03-09 Innovusion Ireland Limited 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices
KR102569841B1 (ko) 2017-01-05 2023-08-24 이노뷰전, 인크. LiDAR를 인코딩 및 디코딩하기 위한 방법 및 시스템
US11009605B2 (en) 2017-01-05 2021-05-18 Innovusion Ireland Limited MEMS beam steering and fisheye receiving lens for LiDAR system
WO2021146954A1 (en) * 2020-01-21 2021-07-29 Hesai Technology Co., Ltd. Systems and methods for light detection and ranging
CN108089201B (zh) * 2017-12-08 2020-04-24 上海禾赛光电科技有限公司 障碍物信息获取方法、激光脉冲的发射方法及装置
US11675050B2 (en) 2018-01-09 2023-06-13 Innovusion, Inc. LiDAR detection systems and methods
US11977184B2 (en) 2018-01-09 2024-05-07 Seyond, Inc. LiDAR detection systems and methods that use multi-plane mirrors
US11391823B2 (en) 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
WO2019164961A1 (en) 2018-02-21 2019-08-29 Innovusion Ireland Limited Lidar systems with fiber optic coupling
US11808888B2 (en) 2018-02-23 2023-11-07 Innovusion, Inc. Multi-wavelength pulse steering in LiDAR systems
WO2019199775A1 (en) 2018-04-09 2019-10-17 Innovusion Ireland Limited Lidar systems and methods for exercising precise control of a fiber laser
WO2019241396A1 (en) 2018-06-15 2019-12-19 Innovusion Ireland Limited Lidar systems and methods for focusing on ranges of interest
US11579300B1 (en) 2018-08-21 2023-02-14 Innovusion, Inc. Dual lens receive path for LiDAR system
US11614526B1 (en) 2018-08-24 2023-03-28 Innovusion, Inc. Virtual windows for LIDAR safety systems and methods
US11796645B1 (en) 2018-08-24 2023-10-24 Innovusion, Inc. Systems and methods for tuning filters for use in lidar systems
US11579258B1 (en) 2018-08-30 2023-02-14 Innovusion, Inc. Solid state pulse steering in lidar systems
CN113167866A (zh) 2018-11-14 2021-07-23 图达通爱尔兰有限公司 使用多面镜的lidar系统和方法
WO2020139381A1 (en) * 2018-12-26 2020-07-02 Didi Research America, Llc System and methods for ranging operations using multiple signals
US11506764B2 (en) 2018-12-26 2022-11-22 Beijing Voyager Technology Co., Ltd. System and methods for ranging operations using multiple signals
US11486984B2 (en) 2018-12-26 2022-11-01 Beijing Voyager Technology Co., Ltd. Three-dimensional light detection and ranging system using hybrid TDC and ADC receiver
CN113302515A (zh) 2019-01-10 2021-08-24 图达通爱尔兰有限公司 具有光束转向和广角信号检测的lidar系统和方法
US11486970B1 (en) 2019-02-11 2022-11-01 Innovusion, Inc. Multiple beam generation from a single source beam for use with a LiDAR system
CN109946675A (zh) * 2019-03-27 2019-06-28 北醒(北京)光子科技有限公司 一种激光雷达杂散光抑制电路
US11977185B1 (en) 2019-04-04 2024-05-07 Seyond, Inc. Variable angle polygon for use with a LiDAR system
CN110488251B (zh) * 2019-08-26 2021-07-27 山东国耀量子雷达科技有限公司 激光雷达系统及其激光雷达回波信号曲线的获得方法、装置
CN110456374B (zh) * 2019-08-30 2021-07-06 上海禾赛科技股份有限公司 激光雷达的发射电路、激光雷达及激光雷达的测距方法
CN110456372A (zh) * 2019-08-30 2019-11-15 上海禾赛光电科技有限公司 激光雷达系统的测距方法以及激光雷达系统
CN110850427B (zh) * 2019-11-26 2022-06-14 上海禾赛科技有限公司 可用于激光雷达的放大电路、激光雷达、控制方法
CN111239753A (zh) * 2020-03-18 2020-06-05 福建海创光电有限公司 一种有效解决回返杂散光干扰的激光测距装置
CN111965625B (zh) * 2020-08-11 2023-02-21 上海禾赛科技有限公司 用于激光雷达的校正方法及装置、环境感知系统
WO2022133914A1 (zh) * 2020-12-24 2022-06-30 深圳市速腾聚创科技有限公司 激光发射控制方法、装置及相关设备
US11422267B1 (en) 2021-02-18 2022-08-23 Innovusion, Inc. Dual shaft axial flux motor for optical scanners
US11789128B2 (en) 2021-03-01 2023-10-17 Innovusion, Inc. Fiber-based transmitter and receiver channels of light detection and ranging systems
US11555895B2 (en) 2021-04-20 2023-01-17 Innovusion, Inc. Dynamic compensation to polygon and motor tolerance using galvo control profile
US11614521B2 (en) 2021-04-21 2023-03-28 Innovusion, Inc. LiDAR scanner with pivot prism and mirror
EP4305450A1 (en) 2021-04-22 2024-01-17 Innovusion, Inc. A compact lidar design with high resolution and ultra-wide field of view
US11662440B2 (en) 2021-05-21 2023-05-30 Innovusion, Inc. Movement profiles for smart scanning using galvonometer mirror inside LiDAR scanner
CN115508850A (zh) * 2021-06-07 2022-12-23 上海禾赛科技有限公司 激光雷达的控制方法及激光雷达
CN116601518A (zh) * 2021-06-11 2023-08-15 深圳市大疆创新科技有限公司 激光雷达控制方法、装置、激光雷达及存储介质
US11768294B2 (en) 2021-07-09 2023-09-26 Innovusion, Inc. Compact lidar systems for vehicle contour fitting
CN114325738B (zh) * 2021-12-23 2023-01-10 探维科技(北京)有限公司 测量距离的方法及激光雷达
US11871130B2 (en) 2022-03-25 2024-01-09 Innovusion, Inc. Compact perception device
CN116930987A (zh) * 2022-04-02 2023-10-24 上海禾赛科技有限公司 激光雷达的探测方法、计算机存储介质以及激光雷达

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373217A (zh) * 2008-08-28 2009-02-25 阮树成 毫米波船用调频多通道防撞雷达
CN102200580A (zh) * 2010-03-25 2011-09-28 付陆欣 用于手持式激光测距仪的测距方法
CN102419435A (zh) * 2011-08-12 2012-04-18 中国科学技术大学 一种激光雷达中全光纤背景光压制和近场信号动态范围抑制技术的光学探测组件
CN104603634A (zh) * 2012-08-29 2015-05-06 特林布尔公司 距离测量方法和装置
EP2963445A2 (en) * 2014-07-03 2016-01-06 Advanced Scientific Concepts, Inc. Ladar sensor for a dense environment
US20160266242A1 (en) * 2015-03-13 2016-09-15 Advanced Scientific Concepts, Inc. Beam steering ladar sensor
CN106154248A (zh) * 2016-09-13 2016-11-23 深圳市佶达德科技有限公司 一种激光雷达光学接收装置及激光雷达测距方法
JP2016205884A (ja) * 2015-04-17 2016-12-08 三菱電機株式会社 レーザレーダ装置
CN108089201A (zh) * 2017-12-08 2018-05-29 上海禾赛光电科技有限公司 障碍物信息获取方法、激光脉冲的发射方法及装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047117A (en) * 1974-01-17 1977-09-06 Hughes Aircraft Company Multi-level laser illuminator
US4128759A (en) * 1977-11-21 1978-12-05 The United States Of America As Represented By The Secretary Of The Navy Fiber optic delay line filter
GB0123640D0 (en) * 2001-09-19 2003-04-09 Matra Bae Dynamics Uk Ltd Multiple pulse generation
CN101414729B (zh) * 2008-11-24 2013-03-27 南京大学 一种自锁模激光器
ES2436873B1 (es) * 2012-05-31 2014-12-12 Universidad Politécnica De Valencia Línea de retardo muestreada
JP6103179B2 (ja) * 2012-09-13 2017-03-29 株式会社リコー 距離測定装置
CN103235314B (zh) * 2013-04-19 2015-05-06 常州大地测绘科技有限公司 脉冲激光测距系统及方法
CN104359564B (zh) * 2014-11-19 2018-11-02 湖北三江航天红峰控制有限公司 一种脉冲激光光束质量同步测量系统及其同步控制方法
EP3070494B1 (de) * 2015-03-18 2021-04-28 Leica Geosystems AG Elektrooptisches distanzmessverfahren und ebensolcher distanzmesser
CN106772404B (zh) * 2015-11-23 2023-11-03 北京万集科技股份有限公司 激光雷达测距装置及方法
CN205809286U (zh) * 2016-05-03 2016-12-14 中国科学院上海技术物理研究所 提高回波动态范围的新型双通道激光雷达接收系统
CN206193241U (zh) * 2016-09-12 2017-05-24 北京万集科技股份有限公司 三维激光的测距装置
CN206450825U (zh) * 2016-12-08 2017-08-29 北京万集科技股份有限公司 一种双激光驱动电路和扫描式激光雷达测距设备
CN107234336B (zh) * 2017-07-06 2020-08-28 温州职业技术学院 一种动态调节脉冲能量与时间间隔的激光加工方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101373217A (zh) * 2008-08-28 2009-02-25 阮树成 毫米波船用调频多通道防撞雷达
CN102200580A (zh) * 2010-03-25 2011-09-28 付陆欣 用于手持式激光测距仪的测距方法
CN102419435A (zh) * 2011-08-12 2012-04-18 中国科学技术大学 一种激光雷达中全光纤背景光压制和近场信号动态范围抑制技术的光学探测组件
CN104603634A (zh) * 2012-08-29 2015-05-06 特林布尔公司 距离测量方法和装置
EP2963445A2 (en) * 2014-07-03 2016-01-06 Advanced Scientific Concepts, Inc. Ladar sensor for a dense environment
US20160266242A1 (en) * 2015-03-13 2016-09-15 Advanced Scientific Concepts, Inc. Beam steering ladar sensor
JP2016205884A (ja) * 2015-04-17 2016-12-08 三菱電機株式会社 レーザレーダ装置
CN106154248A (zh) * 2016-09-13 2016-11-23 深圳市佶达德科技有限公司 一种激光雷达光学接收装置及激光雷达测距方法
CN108089201A (zh) * 2017-12-08 2018-05-29 上海禾赛光电科技有限公司 障碍物信息获取方法、激光脉冲的发射方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722833A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11346952B2 (en) 2017-12-08 2022-05-31 Hesai Technology Co., Ltd. Systems and methods for light detection and ranging
US11573327B2 (en) 2017-12-08 2023-02-07 Hesai Technology Co., Ltd. Systems and methods for light detection and ranging
CN113050070A (zh) * 2019-12-27 2021-06-29 北京万集科技股份有限公司 激光雷达数据处理方法、装置、设备及存储介质
CN115517633A (zh) * 2022-11-29 2022-12-27 季华实验室 成像装置

Also Published As

Publication number Publication date
CN108089201B (zh) 2020-04-24
CN108089201A (zh) 2018-05-29
EP3722833A4 (en) 2021-01-13
EP3722833A1 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2019109997A1 (zh) 障碍物信息获取方法、激光脉冲的发射方法及装置
US11573327B2 (en) Systems and methods for light detection and ranging
US11204420B2 (en) Distance measurement apparatus
US20210325515A1 (en) Transmit signal design for an optical distance measurement system
WO2019110022A1 (zh) 发射及接收激光脉冲的方法、介质及激光雷达系统
US20220299613A1 (en) Pulse ranging device and method, and automatic cleaning apparatus having same
JP2008267920A (ja) レーザ測距装置およびレーザ測距方法
JP2002311138A (ja) 車両用測距装置
Hintikka et al. Experimental investigation into laser ranging with sub-ns laser pulses
CN114428239A (zh) 激光雷达及其飞行时间获取方法、测距方法和存储介质
JP2022190043A (ja) 電子装置及び距離計測方法
CN115015873A (zh) 回波信号检测方法、装置、介质以及激光雷达
WO2021146954A1 (en) Systems and methods for light detection and ranging
US20220334234A1 (en) Method for generating light pulses of a lidar system
US20240019555A1 (en) Method and device for laser detection, and computer-readable storage medium
JP2009229082A (ja) 光パルス試験器および光パルス試験器の光パワー安定化方法
CN113495280B (zh) 激光雷达测距信息的获取方法、装置、电子设备及存储介质
US20220206115A1 (en) Detection and ranging operation of close proximity object
US20230213652A1 (en) LiDAR DEVICE AND OPERATING METHOD THEREOF
CN114389146B (zh) 一种产生多脉冲激光的激光装置及其控制方法
KR102462184B1 (ko) 라이다 시스템 및 그 제어 방법
KR102308786B1 (ko) 차량용 라이다 시스템 및 그것의 신호 처리 방법
US20240085537A1 (en) Lidar device and operating method thereof
JP2008286578A (ja) 光パルス試験装置及びその調整方法
JP5470891B2 (ja) 測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018884929

Country of ref document: EP

Effective date: 20200708