WO2019110022A1 - 发射及接收激光脉冲的方法、介质及激光雷达系统 - Google Patents

发射及接收激光脉冲的方法、介质及激光雷达系统 Download PDF

Info

Publication number
WO2019110022A1
WO2019110022A1 PCT/CN2018/120044 CN2018120044W WO2019110022A1 WO 2019110022 A1 WO2019110022 A1 WO 2019110022A1 CN 2018120044 W CN2018120044 W CN 2018120044W WO 2019110022 A1 WO2019110022 A1 WO 2019110022A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
laser
laser pulse
wavelength
sub
Prior art date
Application number
PCT/CN2018/120044
Other languages
English (en)
French (fr)
Inventor
吴世祥
王瑞
向少卿
李一帆
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Publication of WO2019110022A1 publication Critical patent/WO2019110022A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning

Definitions

  • Embodiments of the present invention relate to the field of environment sensing technologies, and in particular, to a method, a medium, and a laser radar system for transmitting and receiving laser pulses.
  • the lidar system is widely used in the field of automatic driving because it can detect whether there is an obstacle in front of the vehicle and provides distance information of the obstacle.
  • the lidar is based on the direct flight time method, which measures the distance by transmitting a laser pulse with a narrow width but a high peak power, and then measuring the time that the pulse travels back and forth between the obstacles.
  • a pulse emitted by one laser radar or a pulse signal reflected by a target obstacle may cause another laser radar signal to be misjudged, resulting in a wrong distance measurement result.
  • the laser pulse echo signals detected by one of the laser radars may not be emitted by themselves, but by other laser radars.
  • the distance information calculated by the pulse signals emitted by other laser radars will generate errors, causing misjudgment of the automatic driving system, thus affecting the application of the laser radar in the field of automatic driving.
  • the laser pulses emitted by the Lidar system can be coded and modulated, that is, the laser pulses are passed through the optical encoder.
  • the encoding is performed, and the receiving end receives the echo signal having the encoded information by demodulation.
  • the existing laser radar system can reduce the interference between the laser radar systems through code modulation, but the laser pulse width, sampling interval and peak power of the laser radar are limited, so that the laser radar system and the receiving system are limited.
  • the demanding requirements are put forward, which is not conducive to the realization of the project in the actual process, and the cost is high.
  • the technical problem solved by the embodiments of the present invention is how to avoid interference between the laser radar systems at a lower cost.
  • an embodiment of the present invention provides a laser radar system, where the laser radar system includes: a transmitting module and a detecting module, wherein: the transmitting module is adapted to generate and transmit with a preset wavelength or have multiple a laser pulse of different preset wavelengths, comprising: generating a sub-module, wherein: the generating sub-module comprises at least one wavelength tunable laser adapted to generate a laser pulse of a preset wavelength; the detecting module is adapted to receive and process The filtering signal of the laser pulse of the preset wavelength to obtain the distance information of the obstacle includes: a filtering submodule and a detecting submodule, wherein: the filtering submodule is adapted to filter out the laser pulse of the preset wavelength a reflection signal of the other light beams; the detection submodule is adapted to receive and process the reflected signal of the laser pulse of the predetermined wavelength.
  • the transmitting module further includes a wavelength division multiplexing sub-module, and the wavelength division multiplexing sub-module is coupled to the generating sub-module, and is adapted to generate a plurality of lasers of different wavelengths generated by the generating sub-module The pulses are coupled together.
  • the transmitting module further includes an output submodule, the output submodule being adapted to transmit a laser pulse coupled by the wavelength division multiplexing submodule.
  • the transmitting module further includes: an amplifying submodule, the amplifying submodule is coupled to the wavelength division multiplexing submodule and the output submodule, respectively, and the amplifying submodule is adapted to amplify the wave The laser pulses coupled to the sub-module are divided and output to the output sub-module.
  • the amplifying submodule is a preamplifier and a main control amplifier coupled to each other.
  • the filtering submodule comprises a wavelength division multiplexer.
  • the filter sub-module comprises a wavelength tunable filter or a narrow band filter.
  • the laser radar system further includes: a control module, a collimation module, a convergence module, a beam splitting module, and a scanning module, wherein: the control module, the transmitting module, the detecting module, and the scanning module
  • the coupling is adapted to control the transmitting module to generate and emit a laser pulse, the scanning module swings, and the detecting module receives a reflected signal of the processed laser pulse; the collimating module and the transmitting module, the optical splitting module,
  • the scanning module is located at the same optical path, and is adapted to adjust a laser pulse of the preset wavelength emitted by the transmitting module to a parallel laser pulse;
  • the beam splitting module is adapted to semi-transmission of the aligned parallel of the collimating module a laser pulse that semi-reflects a reflected signal of the laser pulse reflected by the scanning module;
  • the scanning module is adapted to reflect, by the swing of the control module, parallel laser pulses transmitted by the beam splitting module to the control module a three-dimensional space, and
  • the scanning module is a two-dimensional galvanometer.
  • the collimating module or the convergence module is a lens.
  • Embodiments of the present invention provide a method of emitting a laser pulse, using any of the laser radar systems described above to emit a laser pulse of a predetermined wavelength.
  • Embodiments of the present invention provide a method for receiving a laser pulse, which uses any of the laser radar systems described above to receive and process a reflected signal of a laser pulse of a preset wavelength to obtain distance information of an obstacle.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon computer instructions that perform the steps of the method of transmitting a laser pulse while the computer instructions are running.
  • Embodiments of the present invention provide a computer readable storage medium having stored thereon computer instructions that perform the steps of the method of receiving a laser pulse while the computer instruction is running.
  • Embodiments of the present invention provide a laser radar system including a memory and a processor, wherein the memory stores computer instructions executable on the processor, and the processor executes the emitted laser when the computer command is executed The steps of the pulse method.
  • Embodiments of the present invention provide a laser radar system including a memory and a processor, wherein the memory stores computer instructions executable on the processor, and the processor executes the receiving laser when the computer command is executed The steps of the pulse method.
  • the embodiment of the invention provides a laser radar system, comprising: a transmitting module and a detecting module, wherein the transmitting module can generate and emit a laser pulse of a preset wavelength, and the detecting module can receive and process the reflected signal of the laser pulse of the preset wavelength, and Different preset wavelengths are set for different lidar systems, and each lidar system emits a laser pulse of its corresponding preset wavelength and receives a reflected signal of the laser pulse corresponding to the preset wavelength, which can be used at a lower cost. Effectively avoid interference between different Lidar systems.
  • the transmitting module, the collimating module, the beam splitting module and the scanning module on the same optical path, the leveling problem of the transmitting optical path and the receiving optical path of the non-coaxial laser radar system can be effectively avoided, and the transmitting optical path and the receiving optical path are always kept coaxial. Or parallel, thereby improving the accuracy of obtaining obstacle distance information.
  • FIG. 1 is a schematic structural diagram of a laser radar system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another laser radar system according to an embodiment of the present invention.
  • FIG. 3 is a detailed flowchart of a method for transmitting a laser pulse according to an embodiment of the present invention
  • FIG. 4 is a detailed flowchart of a method for receiving a laser pulse according to an embodiment of the present invention.
  • the existing laser radar system can reduce the interference between the laser radar systems through code modulation, but the laser pulse width, sampling interval and peak power of the laser radar are limited, so that the laser radar system and the receiving system are limited.
  • the demanding requirements are put forward, which is not conducive to the realization of the project in the actual process, and the cost is high.
  • the embodiment of the invention provides a laser radar system, comprising: a transmitting module and a detecting module, wherein the transmitting module can generate and emit a laser pulse of a preset wavelength, and the detecting module can receive and process the reflected signal of the laser pulse of the preset wavelength, and Different preset wavelengths are set for different lidar systems, and each lidar system emits a laser pulse of its corresponding preset wavelength and receives a reflected signal of the laser pulse corresponding to the preset wavelength, which can be used at a lower cost. Effectively avoid interference between different Lidar systems.
  • an embodiment of the present invention provides a laser radar system 10, including: a transmitting module 11 and a detecting module 12, wherein:
  • the transmitting module 11 is adapted to generate and transmit laser pulses of one or more preset wavelengths, including: a generating sub-module 111, a wavelength division multiplexing sub-module 112, and an output sub-module 113, wherein:
  • the generating sub-module 111 is coupled to the wavelength division multiplexing sub-module and is adapted to generate a laser pulse of a preset wavelength.
  • the generating sub-module 111 may include at least one wavelength tunable laser for generating a laser pulse having a preset wavelength, or may generate multiple, ie, two or more different preset wavelengths. Laser pulse.
  • the generating sub-module 111 can generate a laser pulse of a preset wavelength by modulating a seed source wavelength or a plurality of wavelength seed sources.
  • the wavelength division multiplexing sub-module 112 is coupled to the output sub-module 113, and the wavelength division multiplexing sub-module 112 is adapted to generate different pre-productions of the plurality of wavelength tunable lasers that generate the sub-module 111.
  • the laser pulses of the wavelength are coupled together.
  • the wavelength division multiplexing sub-module 112 may be a wavelength division multiplexer.
  • the output sub-module 113 is adapted to transmit a laser pulse coupled by the wavelength division multiplexing sub-module.
  • the laser pulse can also be referred to as a laser beam, a laser or other names, and the meanings are the same, which belong to the protection scope of the embodiment of the present invention.
  • the laser pulse emitted by the transmitting module 11 may be a laser pulse having only a certain preset wavelength, or may be a laser pulse coupled with a plurality of different preset wavelengths. That is to say, the laser pulse of the predetermined wavelength in the present invention may refer to a laser pulse having only a certain preset wavelength, or may be a laser pulse having a plurality of different preset wavelengths.
  • a laser radar may calculate distance information according to laser pulses emitted by other laser radars or reflected signals thereof.
  • the obstacle distance calculation error is caused, so different laser pulses of different wavelengths can be sent by setting different laser radars to avoid interference between different laser radar systems.
  • the laser pulse coupled by the wavelength division multiplexing sub-module 112 may be amplified.
  • the transmitting module 11 further includes an amplifying sub-module 114 coupled to the wavelength division multiplexing sub-module 112 and the output sub-module 113 respectively, and is adapted to amplify the wave splitting A laser pulse coupled by the sub-module is output to the output sub-module.
  • the amplifying sub-module 114 may be a pre-amplifier and a main control amplifier coupled to each other.
  • the transmitting module 11 may include a fiber laser, a distributed feedback semiconductor laser diode (DFB-LD), and other types of lasers, which are not limited in the embodiment of the present invention.
  • DFB-LD distributed feedback semiconductor laser diode
  • the implementation cost of the transmitting module 11 is low.
  • the transmitting module 11 in order to avoid mutual interference between the plurality of laser radars, the transmitting module 11 only emits laser pulses of a predetermined wavelength, so the detecting module 12 needs to receive the reflected signals of the laser pulses of the preset wavelength.
  • the detecting module 12 is adapted to receive and process the reflected signal of the laser pulse of the preset wavelength to obtain the distance information of the obstacle, and includes: a filtering submodule 121 and a detecting submodule 122 coupled thereto, wherein:
  • the filtering sub-module 121 is adapted to filter out reflected signals of other beams than the laser pulses of the preset wavelength.
  • the filtering submodule 121 may include a wavelength division multiplexer adapted to decouple a reflected signal of a laser pulse coupled with a plurality of different preset wavelengths into a plurality of reflected signals having a single predetermined wavelength.
  • the reflected signals of other beams (ambient lights) other than the laser pulses of the preset wavelength are filtered out, and the decoupled plurality of reflected signals having a single preset wavelength are transmitted to the detecting sub-module 122 for signal processing.
  • the detecting sub-module 122 includes at least one photosensor.
  • the detecting sub-module 122 includes the same number of photosensors as the number of channels of the wavelength division multiplexer in the filtering sub-module 121, and the wavelength division Each channel of the multiplexer is coupled in a one-to-one correspondence, and is adapted to receive and process a plurality of decoupled reflected signals having a single predetermined wavelength, respectively.
  • the photoelectric sensor in the detecting sub-module 122 may be an Avalanche Photo Diode (APD), or may be other types of photoelectric sensors, which are not limited in the embodiment of the present invention.
  • APD Avalanche Photo Diode
  • a coaxial laser radar system in order to avoid the leveling problem of the transmitting optical path and the receiving optical path of the non-coaxial Lidar system, a coaxial laser radar system can be adopted to ensure that the transmitting optical path and the receiving optical path are always coaxial or parallel, thereby improving the acquisition of obstacles. The accuracy of the distance information.
  • the laser radar system 10 further includes: a control module (not shown), a collimation module (not shown), a convergence module (not shown), and a beam splitting module (not shown). And a scanning module (not shown), wherein:
  • the control module is coupled to the transmitting module 11, the detecting module 12, and the scanning module, and is adapted to control the transmitting module 11 to generate and emit a laser pulse, the scanning module swings, and the detecting module 12 A reflected signal that processes the laser pulse is received.
  • the collimating module is located on the same optical path as the transmitting module 11, the optical splitting module, and the scanning module, and is adapted to adjust the laser pulse of the preset wavelength emitted by the transmitting module 11 into parallel laser pulses. .
  • the collimating module may be a lens, that is, composed of one or more, that is, two or more lenses.
  • the beam splitting module is adapted to semi-transmit the parallel laser pulses adjusted by the collimating module and semi-reflect the reflected signals of the laser pulses reflected by the scanning module.
  • the optical splitting module may be any one of an apertured aperture mirror, a half mirror, a polarization beam splitter, and a beam splitter.
  • the embodiment of the invention is not limited.
  • the scanning module is adapted to reflect parallel laser pulses transmitted by the beam splitting module into a three-dimensional space under the control of the control module, and reflect the reflected signals of the laser pulses reflected by the obstacles in the three-dimensional space To the spectroscopic module.
  • the scanning module can scan the mirror.
  • the scanning module is a two-dimensional galvanometer, and the two-dimensional galvanometer can be freely oscillated in two dimensions under the control of the control module.
  • the convergence module is adapted to converge the reflected signal of the laser pulse of the preset wavelength reflected by the light splitting module for the detection module 12 to receive.
  • the convergence module may be a lens, that is, composed of one or more, that is, two or more lenses.
  • the generating sub-module 111 includes a plurality of wavelength tunable lasers
  • the plurality of wavelength tunable lasers can respectively emit laser pulses of different preset wavelengths at the same time, and a plurality of laser pulses of different preset wavelengths pass through the wavelength division multiplexing sub-module It is coupled into a laser pulse, that is, only the laser pulse emitted by the transmitting module 11 is wavelength-encoded, and the detecting module 12 uses the wavelength division multiplexer of the filtering sub-module 121 to perform wavelength decoding on the reflected signal of the laser pulse to identify the laser radar. The signal thus prevents signal interference from other lidars.
  • the plurality of wavelength tunable lasers may also sequentially emit laser pulses of different preset wavelengths at predetermined time intervals, that is, double-encoding the wavelengths and timings of the laser pulses emitted by the transmitting module 11.
  • the laser pulse system of the present invention can also perform double encoding of the wavelength and intensity of the laser pulse emitted by the transmitting module 11, and can also perform triple encoding of the wavelength, timing and light intensity of the laser pulse emitted by the transmitting module 11.
  • the above different levels of coding can be applied to achieve a balance between work efficiency and bit error rate.
  • the generating sub-module 111 may include only one wavelength tunable laser, in which case the transmitting module 11 may not include a wavelength division multiplexing sub-module.
  • the wavelength tunable laser can only emit laser pulses of a certain predetermined wavelength.
  • the filtering submodule 121 of the detecting module 12 can include a wavelength tunable filter or a narrow band filter for filtering out the certain
  • the reflected sub-module 112 includes only one photosensor for receiving and processing the reflected signal of the laser pulse of the certain predetermined wavelength.
  • the generation sub-module 111 includes only one wavelength tunable laser, and the transmission module 11 does not include a wavelength division multiplexing sub-module.
  • the wavelength tunable laser can sequentially emit a plurality of laser pulses having different preset wavelengths.
  • the filtering submodule 121 of the detecting module 12 can include a wavelength division multiplexer for emitting laser pulses to the transmitting module 11.
  • the reflected signal is wavelength decoded, and the reflected signals having different preset wavelengths are respectively received and processed by the plurality of photosensors included in the detecting sub-module 112.
  • the transmitting module can generate and emit laser pulses of a preset wavelength
  • the detecting module can receive and process the reflected signals of the laser pulses of the preset wavelength, and set different preset wavelengths for different laser radar systems, each A laser radar system only emits laser pulses of its corresponding preset wavelength and receives reflected signals of laser pulses corresponding to the preset wavelengths, which can effectively avoid interference between different laser radar systems at a low cost.
  • an embodiment of the present invention provides a schematic structural diagram of another laser radar system, as shown in FIG. 2 .
  • the laser radar system includes a fiber laser 21, a collimating lens 24, a beam splitting lens 25, a galvanometer 26, a detecting module 22, a control module 23, and a condenser lens 27.
  • the fiber laser 21 generates and emits a laser pulse 28 of a predetermined wavelength ⁇ 1 under the control of the control module 23, and the laser pulse 28 is adjusted to be parallel after passing through the collimating lens 24.
  • the laser pulse 28 is then partially transmitted through the beam splitting lens 25 to the galvanometer 26, which under the control of the control module 23 reflects the laser pulse 28 into a three-dimensional space by oscillating.
  • the target obstacle 30 When the target obstacle 30 exists in the three-dimensional space, the target obstacle 30 reflects the reflected signal 29 of the laser pulse 28 to the galvanometer 26, and the galvanometer 26 reflects the reflected signal 29 to the splitting light a lens 25, the spectroscopic lens 25 reflects the reflected signal 29 to the converging lens 27 for convergence, and the detecting module 22 receives and processes the convergence of the converging lens 27 under the control of the control module 23.
  • the reflected signal 29 Since the predetermined wavelength of the laser pulse 28 emitted by the fiber laser 21 is ⁇ 1 , the detecting module 22 filters the signal through a wavelength modulation filter or a narrow band filter laser, and only retains the wavelength of ⁇ 1 .
  • an embodiment of the present invention further provides a method for emitting a laser pulse, which uses any of the laser radar systems described above to emit a laser pulse of a predetermined wavelength.
  • an embodiment of the present invention provides a detailed flowchart of a method for transmitting a laser pulse, which may include the following steps:
  • Step S301 determining a preset wavelength of the laser pulse to be transmitted.
  • different preset wavelengths can be set for different lidar systems to avoid interference between different lidar systems.
  • Step S302 generating a laser pulse of a preset wavelength.
  • a laser pulse of a predetermined wavelength may be generated, or a plurality of laser pulses having different preset wavelengths may be generated.
  • a plurality of laser pulses having different preset wavelengths it is necessary to couple the laser pulses of different preset wavelengths by using a wavelength division multiplexer.
  • Step S303 transmitting a laser pulse of a preset wavelength.
  • the embodiment of the invention provides a computer readable storage medium, which is a non-volatile storage medium or a non-transitory storage medium, on which computer instructions are stored, and the computer instructions execute the above-mentioned transmitting laser pulse The steps of the method.
  • Embodiments of the present invention provide a laser radar system including a memory and a processor, wherein the memory stores computer instructions executable on the processor, and the processor executes the transmitting laser pulse when the computer command is executed The steps of the method.
  • an embodiment of the present invention further provides a method for receiving a laser pulse, which receives and processes a laser pulse of a preset wavelength by using any of the laser radar systems described above.
  • the reflected signal is used to obtain the distance information of the obstacle.
  • an embodiment of the present invention provides a detailed flowchart of a method for receiving a laser pulse, which may include the following steps:
  • Step S401 acquiring a preset wavelength of the emitted laser pulse.
  • the preset wavelength of the emitted laser pulse may be acquired by the transmitting module, or the preset wavelength of the emitted laser pulse may be acquired by the control module, and the emitted laser pulse may also be preset.
  • the preset wavelength is not limited in the embodiment of the present invention.
  • Step S402 receiving a reflection signal of a laser pulse of a preset wavelength.
  • a laser pulse emitting a preset wavelength may be set at the transmitting end, so at the receiving end, the filter sub-module may be used to filter out the preset wavelength.
  • the reflected signals of other beams only retain the reflected signals of the laser pulses of the preset wavelength for detection and reception.
  • the laser pulse of the preset wavelength may refer to a laser pulse having only a certain preset wavelength, or may be a laser pulse coupled with a plurality of different preset wavelengths.
  • the filtering submodule 121 may be a wavelength division multiplexer, and is adapted to decouple a reflected signal of a laser pulse coupled with a plurality of different preset wavelengths into a plurality of reflected signals having a single preset wavelength.
  • the reflected signals of other beams (ambient lights) other than the preset wavelength laser pulses are filtered out, and the decoupled plurality of reflected signals having a single preset wavelength are transmitted to the detecting sub-module 122 for signal processing.
  • the filter sub-module may also be a wavelength tunable filter or a narrow-band filter, and its main function is to filter out reflections of other beams than the laser pulse of the preset wavelength.
  • the signal retains only the reflected signal of the laser pulse of the predetermined wavelength.
  • Step S403 processing a reflection signal of a laser pulse of a preset wavelength to acquire distance information of the obstacle.
  • the distance information of the obstacle can be obtained by processing the reflected signal of the laser pulse of the preset wavelength.
  • the embodiment of the present invention provides a computer readable storage medium, which is a non-volatile storage medium or a non-transitory storage medium, on which computer instructions are stored, and the computer instructions execute the above-mentioned receiving laser pulse during operation. The steps of the method.
  • Embodiments of the present invention provide a laser radar system including a memory and a processor, wherein the memory stores computer instructions executable on the processor, and the processor executes the receiving laser pulse when the computer instruction is executed by the processor The steps of the method.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种发射及接收激光脉冲的方法、介质及激光雷达系统,激光雷达系统包括:发射模块,适于产生并发射一个或者多个预设波长的激光脉冲,包括:产生子模块、波分复用子模块和输出子模块;探测模块,适于接收并处理预设波长的激光脉冲的反射信号,以获取障碍物的距离信息,包括:过滤子模块和与之耦接的探测子模块。应用上述系统,通过针对不同的激光雷达系统设置不同的预设波长,每个激光雷达系统只发射其对应的预设波长的激光脉冲、并接收其对应的预设波长的激光脉冲的反射信号,可以以较低的成本,有效避免不同的激光雷达系统之间的干扰。

Description

发射及接收激光脉冲的方法、介质及激光雷达系统
本申请要求于2017年12月08日提交中国专利局、申请号为201711303227.3、发明名称为“发射及接收激光脉冲的方法、介质及激光雷达系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及环境感知技术领域,尤其涉及一种发射及接收激光脉冲的方法、介质及激光雷达系统。
背景技术
由于可以探测行驶前方是否存在障碍物并提供障碍物的距离信息,激光雷达系统被广泛地应用于自动驾驶领域。在实际应用中,激光雷达基于直接飞行时间法,通过发射宽度很窄但峰值功率高的激光脉冲,然后测量脉冲到障碍物之间来回的光飞行的时间进行距离测量。当多台激光雷达系统同时工作时,一台激光雷达发射的脉冲或经目标障碍物反射的脉冲信号可能造成另一台激光雷达信号误判,导致距离测量结果错误。例如,当多台激光雷达同时工作,且发射相同频率的脉冲时,其中某一台激光雷达探测到的激光脉冲回波信号可能并非自身发射的,而是其他激光雷达发射的,该激光雷达根据其他激光雷达发射的脉冲信号计算得到的距离信息会产生错误,引起自动驾驶系统的误判,从而影响激光雷达在自动驾驶领域的应用。
为了解决多台激光雷达系统之间的干扰问题,避免接收到其他雷达发出的脉冲信号,造成测量错误的情况,可以对激光雷达系统发射的激光脉冲进行编码调制,即通过光编码器对激光脉冲进行编码,接收端通过解调,接收具有编码信息的回波信号。
现有的激光雷达系统通过编码调制虽然可以减小激光雷达系统之间的干扰,但是其采用的激光脉冲宽度、采样间隔和发射峰值功率 都有一定的限制,使得激光雷达系统对激光器和接收系统提出了苛刻的要求,在实际过程中不利于工程实现,成本较高。
发明内容
本发明实施例解决的技术问题是如何以较低的成本,避免激光雷达系统之间的干扰。
为解决上述技术问题,本发明实施例提供一种激光雷达系统,所述激光雷达系统包括:发射模块和探测模块,其中:所述发射模块,适于产生并发射具有一个预设波长或者具有多个不同预设波长的激光脉冲,包括:产生子模块,其中:所述产生子模块包括至少一个波长可调谐激光器,适于产生预设波长的激光脉冲;所述探测模块,适于接收并处理所述预设波长的激光脉冲的反射信号,以获取障碍物的距离信息,包括:过滤子模块和探测子模块,其中:所述过滤子模块,适于过滤掉所述预设波长的激光脉冲之外的其他光束的反射信号;所述探测子模块,适于接收并处理所述预设波长的激光脉冲的反射信号。
可选地,所述发射模块还包括波分复用子模块,所述波分复用子模块与所述产生子模块耦接,适于将所述产生子模块产生的多个不同波长的激光脉冲耦合在一起。
可选地,所述发射模块还包括输出子模块,所述输出子模块适于发射所述波分复用子模块耦合的激光脉冲。
可选地,所述发射模块还包括:放大子模块,所述放大子模块与所述波分复用子模块和所述输出子模块分别耦接,所述放大子模块适于放大所述波分复用子模块耦合的激光脉冲,并输出至所述输出子模块。
可选地,所述放大子模块为相互耦接的预放大器和主控放大器。
可选地,所述过滤子模块包括波分复用器。
可选地,所述过滤子模块包括波长可调谐滤波器或者窄带滤光片。
可选地,所述激光雷达系统还包括:控制模块、准直模块、会聚模块、分光模块和扫描模块,其中:所述控制模块,与所述发射模块、所述探测模块和所述扫描模块耦接,适于控制所述发射模块产生并发 射激光脉冲、所述扫描模块摆动和所述探测模块接收处理激光脉冲的反射信号;所述准直模块与所述发射模块、所述分光模块、所述扫描模块位于同一光路,适于将所述发射模块发射的所述预设波长的激光脉冲调整为平行的激光脉冲;所述分光模块,适于半透射所述准直模块调整后的平行的激光脉冲、半反射所述扫描模块反射的激光脉冲的反射信号;所述扫描模块,适于在所述控制模块的控制下,通过摆动,将所述分光模块透射的平行的激光脉冲反射至三维空间,并将三维空间的障碍物反射的激光脉冲的反射信号反射至所述分光模块;所述会聚模块,适于会聚所述分光模块反射的预设波长的激光脉冲的反射信号,以供所述探测模块接收。
可选地,所述扫描模块为二维振镜。
可选地,所述准直模块或者所述会聚模块为透镜。
本发明实施例提供一种发射激光脉冲的方法,采用如上所述任一种激光雷达系统发射预设波长的激光脉冲。
本发明实施例提供一种接收激光脉冲的方法,采用如上所述任一种激光雷达系统接收并处理预设波长的激光脉冲的反射信号,以获取障碍物的距离信息。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行所述发射激光脉冲的方法的步骤。
本发明实施例提供一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行所述接收激光脉冲的方法的步骤。
本发明实施例提供一种激光雷达系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行所述发射激光脉冲的方法的步骤。
本发明实施例提供一种激光雷达系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行所述接收激光脉冲的方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供了一种激光雷达系统,包括:发射模块和探测模块,发射模块可以产生并发射预设波长的激光脉冲,探测模块可以接收并处理预设波长的激光脉冲的反射信号,通过针对不同的激光雷达系统设置不同的预设波长,每个激光雷达系统发射其对应的预设波 长的激光脉冲,并接收其对应的预设波长的激光脉冲的反射信号,可以以较低的成本,有效避免不同的激光雷达系统之间的干扰。
进一步地,通过设置发射模块、准直模块、分光模块和扫描模块位于同一光路,可以有效避免非同轴激光雷达系统发射光路与接收光路的调平问题,保证发射光路与接收光路始终保持共轴或者平行,从而提高了获取障碍物距离信息的准确率。
附图说明
图1是本发明实施例提供的一种激光雷达系统的结构示意图;
图2是本发明实施例提供的另一种激光雷达系统的结构示意图;
图3是本发明实施例提供的一种发射激光脉冲的方法的详细流程图;
图4是本发明实施例提供的一种接收激光脉冲的方法的详细流程图。
具体实施方式
现有的激光雷达系统通过编码调制虽然可以减小激光雷达系统之间的干扰,但是其采用的激光脉冲宽度、采样间隔和发射峰值功率都有一定的限制,使得激光雷达系统对激光器和接收系统提出了苛刻的要求,在实际过程中不利于工程实现,成本较高。
本发明实施例提供了一种激光雷达系统,包括:发射模块和探测模块,发射模块可以产生并发射预设波长的激光脉冲,探测模块可以接收并处理预设波长的激光脉冲的反射信号,通过针对不同的激光雷达系统设置不同的预设波长,每个激光雷达系统发射其对应的预设波长的激光脉冲,并接收其对应的预设波长的激光脉冲的反射信号,可以以较低的成本,有效避免不同的激光雷达系统之间的干扰。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参见图1,本发明实施例提供了一种激光雷达系统10,包括:发射模块11和探测模块12,其中:
所述发射模块11,适于产生并发射一个或者多个预设波长的激光脉冲,包括:产生子模块111、波分复用子模块112和输出子模块113,其中:
所述产生子模块111,与所述波分复用子模块耦接,适于产生预设波长的激光脉冲。
在具体实施中,所述产生子模块111可以包括至少一个波长可调谐激光器,用于产生具有一个预设波长的激光脉冲,也可以产生具有多个,即两个或者两个以上不同预设波长的激光脉冲。
在具体实施中,所述产生子模块111可以通过调制种子源波长或多个波长种子源,产生预设波长的激光脉冲。
所述波分复用子模块112,与所述输出子模块113耦接,所述波分复用子模块112适于将所述产生子模块111的多个波长可调谐激光器产生的具有不同预设波长的激光脉冲耦合在一起。
在具体实施中,所述波分复用子模块112可以为波分复用器。
所述输出子模块113,适于发射所述波分复用子模块耦合的激光脉冲。
可以理解的是,所述激光脉冲也可以称为激光束、激光或者其他名称,只要含义相同,均属于本发明实施例的保护范围。另外,在本发明中,所述发射模块11发射的激光脉冲可以是仅具有某单一预设波长的激光脉冲,也可以是耦合有多个不同预设波长的激光脉冲。也就是说,本发明中的所述预设波长的激光脉冲可以是指仅具有某单一预设波长的激光脉冲,也可以是指具有多个不同预设波长的激光脉冲。
在具体实施中,当多台激光雷达同时发射相同频率、即相同波长的激光脉冲时,会存在相互干扰,某一台激光雷达可能根据其他激光 雷达发射的激光脉冲或者其反射信号计算距离信息,导致障碍物距离计算错误,故可以通过设置不同的激光雷达发送不同波长的激光脉冲,避免不同激光雷达系统之间的干扰。
在具体实施中,为了增加激光脉冲的信号强度,还可以对所述波分复用子模块112耦合后的激光脉冲进行放大。
在本发明一实施例中,所述发射模块11还包括:放大子模块114,与所述波分复用子模块112和所述输出子模块113分别耦接,适于放大所述波分复用子模块耦合的激光脉冲,并输出至所述输出子模块。
在具体实施中,所述放大子模块114可以为相互耦接的预放大器和主控放大器。
在具体实施中,所述发射模块11可以包括光纤激光器,也可以为分布反馈半导体激光器(Distributed Feedback Semiconductor laser diode,DFB-LD),还可以为其他类型的激光器,本发明实施例不做限制。
由于光纤激光器和波分复用器都是成熟商用的器件,故所述发射模块11的实现成本较低。
在具体实施中,为了避免多个激光雷达之间相互干扰,所述发射模块11仅发射预设波长的激光脉冲,故所述探测模块12需要接收所述预设波长的激光脉冲的反射信号。
所述探测模块12,适于接收并处理所述预设波长的激光脉冲的反射信号,以获取障碍物的距离信息,包括:过滤子模块121和与之耦接的探测子模块122,其中:
所述过滤子模块121,适于过滤掉所述预设波长的激光脉冲之外的其他光束的反射信号。
在具体实施中,所述过滤子模块121可以包括波分复用器,适于将耦合有多个不同预设波长的激光脉冲的反射信号解耦成多个具有单一预设波长的反射信号,同时过滤掉预设波长的激光脉冲之外的其 他光束(环境光)的反射信号,并将解耦的多个具有单一预设波长的反射信号传输至探测子模块122进行信号处理。
所述探测子模块122包括至少一个光电传感器,优选地所述探测子模块122包括的光电传感器的个数与所述过滤子模块121中的波分复用器的通道数相同,并与波分复用器的各通道一一对应地耦接,适于分别接收并处理被解耦的多个具有单一预设波长的反射信号。
在具体实施中,所述探测子模块122中的光电传感器可以为雪崩光电二极管(Avalanche Photo Diode,APD),也可以为其他类型的光电传感器,本发明实施例不做限制。
在具体实施中,为了避免非同轴激光雷达系统发射光路与接收光路的调平问题,可以采用同轴激光雷达系统,保证发射光路与接收光路始终保持共轴或者平行,以提高了获取障碍物距离信息的准确率。
在本发明一实施例中,所述激光雷达系统10,还包括:控制模块(未示出)、准直模块(未示出)、会聚模块(未示出)、分光模块(未示出)和扫描模块(未示出),其中:
所述控制模块,与所述发射模块11、所述探测模块12和所述扫描模块耦接,适于控制所述发射模块11产生并发射激光脉冲、所述扫描模块摆动和所述探测模块12接收处理激光脉冲的反射信号。
所述准直模块与所述发射模块11、所述分光模块、所述扫描模块位于同一光路上,适于将所述发射模块11发射的所述预设波长的激光脉冲调整为平行的激光脉冲。
在具体实施中,所述准直模块可以为透镜,即由一个或者多个,即两个或者两个以上透镜组成。
所述分光模块,适于半透射所述准直模块调整后的平行的激光脉冲、半反射所述扫描模块反射的激光脉冲的反射信号。
在具体实施中,所述分光模块可以为开孔发射镜、半透半反镜、偏振分光镜、采用镀膜方式的分光镜中的任意一种,本发明实施例不 做限制。
所述扫描模块,适于在所述控制模块的控制下,通过摆动,将所述分光模块透射的平行的激光脉冲反射至三维空间,并将三维空间的障碍物反射的激光脉冲的反射信号反射至所述分光模块。
在具体实施中,所述扫描模块可以扫描镜。
在本发明一实施例中,所述扫描模块为二维振镜,所述二维振镜可以在所述控制模块的控制下,在两个维度上进行自由摆动。
所述会聚模块,适于会聚所述分光模块反射的预设波长的激光脉冲的反射信号,以供所述探测模块12接收。
在具体实施中,所述会聚模块可以为透镜,即由一个或者多个,即两个或者两个以上透镜组成。
当产生子模块111包括多个波长可调谐激光器时,多个波长可调谐激光器可以在同一时刻分别发射不同预设波长的激光脉冲,多个不同预设波长的激光脉冲通过波分复用子模块被耦合成一个激光脉冲,即仅对发射模块11发射的激光脉冲进行波长编码,探测模块12利用过滤子模块121的波分复用器对激光脉冲的反射信号进行波长解码,来识别本激光雷达的信号,从而防止来自其他激光雷达的信号干扰。多个波长可调谐激光器也可以以预定的时间间隔依次发射不同预设波长的激光脉冲,即对发射模块11发射的激光脉冲进行波长和时序的双重编码。此外,利用本发明的激光雷达系统也可以对发射模块11发射的激光脉冲进行波长和光强的双重编码,还可以对发射模块11发射的激光脉冲进行波长、时序以及光强的三重编码。在不同的应用场景,可以应用以上不同复杂程度的编码方式来达到工作效率与误码率之间的平衡。
在另外的实施例中,产生子模块111可以只包括一个波长可调谐激光器,此时发射模块11可以不包括波分复用子模块。该波长可调谐激光器可以只发射某一预设波长的激光脉冲,在此情况下,探测模 块12的过滤子模块121可以包括波长可调谐滤波器或窄带滤光片,用于过滤掉该某一预设波长的激光脉冲之外的其他光束的反射信号,探测子模块112仅包括一个光电传感器用于接收并处理该某一预设波长的激光脉冲的反射信号。
在另一实施例中,产生子模块111只包括一个波长可调谐激光器,且发射模块11不包括波分复用子模块。该波长可调谐激光器可以依次发射多个具有不同预设波长的激光脉冲,在此情况下,探测模块12的过滤子模块121可以包括波分复用器,用于对发射模块11发射的激光脉冲的反射信号进行波长解码,并通过探测子模块112包括的多个光电传感器分别接收并处理具有不同预设波长的反射信号。
应用上述激光雷达系统,发射模块可以产生并发射预设波长的激光脉冲,探测模块可以接收并处理预设波长的激光脉冲的反射信号,通过针对不同的激光雷达系统设置不同的预设波长,每个激光雷达系统只发射其对应的预设波长的激光脉冲,并接收其对应的预设波长的激光脉冲的反射信号,可以以较低的成本,有效避免不同的激光雷达系统之间的干扰。
为使本领域技术人员更好地理解和实施本发明,本发明实施例提供了另一种激光雷达系统的结构示意图,如图2所示。
参见图2,所述激光雷达系统包括:光纤激光器21、准直透镜24、分光透镜25、振镜26,探测模块22、控制模块23和会聚透镜27。
所述光纤激光器21、所述准直透镜24、所述分光透镜25、所述振镜26、所述探测模块22、所述控制模块23和所述会聚透镜27的具体功能和位置关系与图1所示的激光雷达系统中对应模块的具体功能和位置关系一致,此处不再赘述。
在具体实施中,所述光纤激光器21在所述控制模块23的控制下,产生并发射预设波长为λ 1的激光脉冲28,所述激光脉冲28经过所述准直透镜24后调整为平行的激光脉冲28,然后半透过所述分光透镜 25,到达所述振镜26,所述振镜26在所述控制模块23的控制下,通过摆动将所述激光脉冲28反射至三维空间。当三维空间存在目标障碍物30时,所述目标障碍物30将所述激光脉冲28的反射信号29反射至所述振镜26,所述振镜26将所述反射信号29反射至所述分光透镜25,所述分光透镜25将所述反射信号29反射至所述会聚透镜27进行会聚,所述探测模块22在所述控制模块23的控制下,接收并处理所述会聚透镜27会聚后的所述反射信号29。由于所述光纤激光器21发射的所述激光脉冲28的预设波长为λ 1,故所述探测模块22通过波长调制滤波器或窄带滤光片激光器对信号进行过滤,仅保留波长为λ 1的反射信号,过滤掉其他波长,例如λ 2、λ 3的反射信号,然后基于波长为λ 1的反射信号计算所述目标障碍物30的距离信息,可以有效抑制其他激光雷达的干扰,准确获取所述目标障碍物30的距离信息。
为使本领域技术人员更好地理解和实施本发明,本发明实施例还提供了一种发射激光脉冲的方法,采用上述任一种所述的激光雷达系统发射预设波长的激光脉冲。
参见图3,本发明一实施例给出了一种发射激光脉冲的方法的详细流程图,可以包括如下步骤:
步骤S301,确定待发射的激光脉冲的预设波长。
在具体实施中,可以针对不同的激光雷达系统,设置不同的预设波长,以避免不同激光雷达系统之间的干扰。
步骤S302,产生预设波长的激光脉冲。
在具体实施中,可以产生一个预设波长的激光脉冲,也可以产生多个具有不同预设波长的激光脉冲。当产生多个具有不同预设波长的激光脉冲时,需要采用波分复用器对不同预设波长的激光脉冲进行耦合。
在具体实施中,为了增加激光脉冲的信号强度,还可以对产生的 预设波长的激光脉冲进行放大。
步骤S303,发射预设波长的激光脉冲。
本发明实施例提供一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述发射激光脉冲的方法的步骤。
本发明实施例提供一种激光雷达系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述发射激光脉冲的方法的步骤。
为使本领域技术人员更好地理解和实施本发明,本发明实施例还提供了一种接收激光脉冲的方法,采用上述任一种所述的激光雷达系统接收并处理预设波长的激光脉冲的反射信号,以获取障碍物的距离信息。
参见图4,本发明一实施例给出了一种接收激光脉冲的方法的详细流程图,可以包括如下步骤:
步骤S401,获取已发射的激光脉冲的预设波长。
在具体实施中,可以通过所述发射模块获取已发射的激光脉冲的预设波长,也可以通过所述控制模块获取已发射的激光脉冲的预设波长,还可以预先设置已发射的激光脉冲的预设波长,本发明实施例不做限制。
步骤S402,接收预设波长的激光脉冲的反射信号。
在具体实施中,为了避免激光雷达系统之间的干扰,在发射端,可以设置发射预设波长的激光脉冲,故在接收端,可以通过所述过滤子模块,过滤掉预设波长之外的其他光束的反射信号,仅保留预设波长的激光脉冲的反射信号进行探测接收。可以理解的是,在本发明中,预设波长的激光脉冲可以是指仅具有某单一预设波长的激光脉冲,也可以是指耦合有多个不同预设波长的激光脉冲。
在具体实施中,所述过滤子模块121可以为波分复用器,适于将耦合有多个不同预设波长的激光脉冲的反射信号解耦成多个具有单一预设波长的反射信号,同时过滤掉预设波长激光脉冲之外的其他光束(环境光)的反射信号,并将解耦的多个具有单一预设波长的反射信号传输至探测子模块122进行信号处理。
在另外的具体实施中,所述过滤子模块也可以为波长可调谐滤波器,也可以为窄带滤光片,其主要作用是过滤掉所述预设波长的激光脉冲之外的其他光束的反射信号,仅保留所述预设波长的激光脉冲的反射信号。
步骤S403,处理预设波长的激光脉冲的反射信号,以获取障碍物的距离信息。
在具体实施中,由于激光脉冲的反射信号延迟时间长短可以用来计算障碍物的距离信息,故可以通过处理预设波长的激光脉冲的反射信号,获取障碍物的距离信息。
本发明实施例提供一种计算机可读存储介质,计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述接收激光脉冲的方法的步骤。
本发明实施例提供一种激光雷达系统,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述接收激光脉冲的方法的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (13)

  1. 一种激光雷达系统,其特征在于,包括:发射模块和探测模块,
    其中:
    所述发射模块,适于产生并发射具有一个预设波长或者具有多个不同预设波长的激光脉冲,包括:产生子模块,其中:
    所述产生子模块包括至少一个波长可调谐激光器,适于产生预设波长的激光脉冲;
    所述探测模块,适于接收并处理所述预设波长的激光脉冲的反射信号,以获取障碍物的距离信息,包括:过滤子模块和与探测子模块,其中:
    所述过滤子模块,适于过滤掉所述预设波长的激光脉冲之外的其他光束的反射信号;
    所述探测子模块,适于接收并处理所述预设波长的激光脉冲的反射信号。
  2. 根据权利要求1所述的激光雷达系统,其特征在于,所述发射模块还包括波分复用子模块,所述波分复用子模块与所述产生子模块耦接,适于将所述产生子模块产生的多个不同波长的激光脉冲耦合在一起。
  3. 根据权利要求2所述的激光雷达系统,其特征在于,所述发射模块还包括输出子模块,所述输出子模块适于发射所述波分复用子模块耦合的激光脉冲。
  4. 根据权利要求3所述的激光雷达系统,其特征在于,所述发射模块还包括:放大子模块,所述放大子模块与所述波分复用子模块和所述输出子模块分别耦接,所述放大子模块适于放大所述波分复用子模块耦合的激光脉冲,并输出至所述输出子模块。
  5. 根据权利要求4所述的激光雷达系统,其特征在于,所述放大子模块为相互耦接的预放大器和主控放大器。
  6. 根据权利要求1所述的激光雷达系统,其特征在于,所述过滤子模块包括波分复用器。
  7. 根据权利要求1所述的激光雷达系统,其特征在于,所述过滤子模块包括波长可调谐滤波器或者窄带滤光片。
  8. 根据权利要求1至7任一项所述的激光雷达系统,其特征在于,还包括:控制模块、准直模块、会聚模块、分光模块和扫描模块,其中:
    所述控制模块,与所述发射模块、所述探测模块和所述扫描模块耦接,适于控制所述发射模块产生并发射激光脉冲、所述扫描模块摆动和所述探测模块接收处理激光脉冲的反射信号;
    所述准直模块与所述发射模块、所述分光模块、所述扫描模块位于同一光路,适于将所述发射模块发射的所述预设波长的激光脉冲调整为平行的激光脉冲;
    所述分光模块,适于半透射所述准直模块调整后的平行的激光脉冲、半反射所述扫描模块反射的激光脉冲的反射信号;
    所述扫描模块,适于在所述控制模块的控制下,通过摆动,将所述分光模块透射的平行的激光脉冲反射至三维空间,并将三维空间的障碍物反射的激光脉冲的反射信号反射至所述分光模块;
    所述会聚模块,适于会聚所述分光模块反射的预设波长的激光脉冲的反射信号,以供所述探测模块接收。
  9. 根据权利要求8所述的激光雷达系统,其特征在于,所述扫描模块为二维振镜。
  10. 根据权利要求8所述的激光雷达系统,其特征在于,所述准直模块或者所述会聚模块为透镜。
  11. 一种发射激光脉冲的方法,其特征在于,采用如权利要求1至10任一项所述的激光雷达系统发射预设波长的激光脉冲。
  12. 一种接收激光脉冲的方法,其特征在于,采用如权利要求1至10任一项所述的激光雷达系统接收并处理预设波长的激光脉冲的反射信号,以获取障碍物的距离信息。
  13. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求11或12所述的方法的步骤。
PCT/CN2018/120044 2017-12-08 2018-12-10 发射及接收激光脉冲的方法、介质及激光雷达系统 WO2019110022A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711303227.3 2017-12-08
CN201711303227.3A CN108132471B (zh) 2017-12-08 2017-12-08 发射及接收激光脉冲的方法、介质及激光雷达系统

Publications (1)

Publication Number Publication Date
WO2019110022A1 true WO2019110022A1 (zh) 2019-06-13

Family

ID=62390225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120044 WO2019110022A1 (zh) 2017-12-08 2018-12-10 发射及接收激光脉冲的方法、介质及激光雷达系统

Country Status (2)

Country Link
CN (1) CN108132471B (zh)
WO (1) WO2019110022A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462384A (zh) * 2020-10-13 2021-03-09 中航航空电子有限公司 一种高分辨率固态面阵激光雷达系统、控制方法及装置
CN113514853A (zh) * 2021-04-07 2021-10-19 厦门大学 一体化激光探测方法和一体化探测激光雷达
CN114019483A (zh) * 2021-10-22 2022-02-08 复旦大学 一种能够抑制干扰的激光雷达探测系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132471B (zh) * 2017-12-08 2021-03-30 上海禾赛科技股份有限公司 发射及接收激光脉冲的方法、介质及激光雷达系统
CN109116367B (zh) * 2018-06-27 2020-05-19 上海禾赛光电科技有限公司 一种激光雷达
CN109299769B (zh) * 2018-07-18 2022-03-01 深圳市海梁科技有限公司 一种变波长条形码、半导体激光导航系统及无人驾驶车辆
CN109188394A (zh) * 2018-11-21 2019-01-11 深圳市速腾聚创科技有限公司 激光雷达电路系统及激光雷达
CN111366938B (zh) * 2018-12-10 2023-03-14 北京图森智途科技有限公司 一种挂车夹角的测量方法、装置及车辆
CN114003043A (zh) * 2019-08-13 2022-02-01 上海禾赛科技有限公司 控制车辆无人驾驶的方法、装置及系统
CN112098977B (zh) * 2019-10-25 2021-05-11 深圳煜炜光学科技有限公司 一种具有同步并行扫描功能的多线激光雷达和控制方法
CN113267777A (zh) * 2020-02-17 2021-08-17 上海禾赛科技有限公司 一种激光雷达
CN113973500A (zh) * 2020-05-07 2022-01-25 深圳市速腾聚创科技有限公司 激光收发组件、激光雷达及自动驾驶设备
CN111812631A (zh) * 2020-06-01 2020-10-23 深圳市源芯智能科技有限公司 距离提醒方法、装置、设备及存储介质
CN112180398B (zh) * 2020-09-29 2024-06-21 广州大学 一种多线激光雷达及其控制方法
WO2022089464A1 (zh) * 2020-10-30 2022-05-05 宁波飞芯电子科技有限公司 一种探测方法及探测系统
CN113721221A (zh) * 2021-08-31 2021-11-30 深圳市镭神智能系统有限公司 一种调频连续波激光雷达
CN113985421A (zh) * 2021-12-28 2022-01-28 四川吉埃智能科技有限公司 一种用于激光雷达的斜45°镜光学扫描装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541744B1 (en) * 2013-03-09 2013-09-24 Jian Liu Method and apparatus for wavelength locking free optical frequency comb based differential absorption Lidar
US20160003946A1 (en) * 2014-07-03 2016-01-07 Advanced Scientific Concepts, Inc. Ladar sensor for a dense environment
JP2016148561A (ja) * 2015-02-10 2016-08-18 株式会社小野測器 レーザドップラ速度計
CN105974432A (zh) * 2016-04-28 2016-09-28 中国科学技术大学 基于Fabry-Perot标准具的太阳辐射背景噪声抑制系统
CN106970393A (zh) * 2017-03-14 2017-07-21 南京航空航天大学 一种基于码分多址的面阵激光雷达三维成像方法
CN108132471A (zh) * 2017-12-08 2018-06-08 上海禾赛光电科技有限公司 发射及接收激光脉冲的方法、介质及激光雷达系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203981185U (zh) * 2014-02-13 2014-12-03 上海温光自动化技术有限公司 基于多波长脉冲光信号的otdr装置
CN203870253U (zh) * 2014-04-18 2014-10-08 宁波镭基光电技术有限公司 早期火灾报警用激光雷达监测系统
JP2017161292A (ja) * 2016-03-08 2017-09-14 富士通株式会社 光測距システムおよび光測距方法
CN106772315A (zh) * 2016-12-29 2017-05-31 武汉高思光电科技有限公司 多光束扫描装置及多光束扫描方法
CN107167787A (zh) * 2017-05-25 2017-09-15 深圳市速腾聚创科技有限公司 激光雷达及激光雷达控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8541744B1 (en) * 2013-03-09 2013-09-24 Jian Liu Method and apparatus for wavelength locking free optical frequency comb based differential absorption Lidar
US20160003946A1 (en) * 2014-07-03 2016-01-07 Advanced Scientific Concepts, Inc. Ladar sensor for a dense environment
JP2016148561A (ja) * 2015-02-10 2016-08-18 株式会社小野測器 レーザドップラ速度計
CN105974432A (zh) * 2016-04-28 2016-09-28 中国科学技术大学 基于Fabry-Perot标准具的太阳辐射背景噪声抑制系统
CN106970393A (zh) * 2017-03-14 2017-07-21 南京航空航天大学 一种基于码分多址的面阵激光雷达三维成像方法
CN108132471A (zh) * 2017-12-08 2018-06-08 上海禾赛光电科技有限公司 发射及接收激光脉冲的方法、介质及激光雷达系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112462384A (zh) * 2020-10-13 2021-03-09 中航航空电子有限公司 一种高分辨率固态面阵激光雷达系统、控制方法及装置
CN112462384B (zh) * 2020-10-13 2024-04-05 中航航空电子有限公司 一种高分辨率固态面阵激光雷达系统、控制方法及装置
CN113514853A (zh) * 2021-04-07 2021-10-19 厦门大学 一体化激光探测方法和一体化探测激光雷达
CN113514853B (zh) * 2021-04-07 2023-12-08 厦门大学 一体化激光探测方法和一体化探测激光雷达
CN114019483A (zh) * 2021-10-22 2022-02-08 复旦大学 一种能够抑制干扰的激光雷达探测系统

Also Published As

Publication number Publication date
CN108132471B (zh) 2021-03-30
CN108132471A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2019110022A1 (zh) 发射及接收激光脉冲的方法、介质及激光雷达系统
CN110308456B (zh) 一种用于提高探测距离的偏压调节装置及激光雷达系统
US11460554B2 (en) LiDAR with large dynamic range
US20210333360A1 (en) Anti-interference processing method and apparatus for multi-pulse laser radar system
CN111665486B (zh) 激光雷达系统
US7710547B2 (en) Coherent optical range finder
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
CN110456325A (zh) 一种激光雷达系统及目标物体的识别方法
CN103576162A (zh) 激光雷达装置及利用该装置测量目标物距离的方法
CN115210603B (zh) 激光雷达及激光雷达控制方法
CN109738880A (zh) 一种激光雷达系统及激光测距装置
CN111257910A (zh) 激光雷达系统和激光雷达探测方法
CN110333500B (zh) 一种多波束激光雷达
CN116148817B (zh) 基于双波长的tof激光雷达系统及其抗干扰方法
CN110346779B (zh) 一种用于多波束激光雷达的时间通道复用的测量方法
US20220155442A1 (en) Light detection device, lidar device including the same, and method of measuring distance
CN210401654U (zh) 一种收发同轴的多线激光雷达
CN209946386U (zh) 一种适用于极端条件的激光二极管测距机
CN209911559U (zh) 一种激光雷达系统及车辆
KR20230086489A (ko) 단일 송수신 광학계를 가진 fmcw 라이다 시스템 및 이의 신호처리 방법
MX2023011765A (es) Sistema de deteccion de ensamblaje optico para lidar y lidar.
KR20210072671A (ko) 라이다 모듈
KR20230109075A (ko) 상호 분리된 라이다용 수신 장치, 라이다용 송신 장치 및 라이다 시스템
CN212694051U (zh) 激光雷达系统
US20230221413A1 (en) Separated type receiving device for lidar, transmitting device for lidar and lidar system thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18886171

Country of ref document: EP

Kind code of ref document: A1