CN111257910A - 激光雷达系统和激光雷达探测方法 - Google Patents

激光雷达系统和激光雷达探测方法 Download PDF

Info

Publication number
CN111257910A
CN111257910A CN202010196069.1A CN202010196069A CN111257910A CN 111257910 A CN111257910 A CN 111257910A CN 202010196069 A CN202010196069 A CN 202010196069A CN 111257910 A CN111257910 A CN 111257910A
Authority
CN
China
Prior art keywords
light
target object
light beam
laser
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010196069.1A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DeepRoute AI Ltd
Original Assignee
DeepRoute AI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DeepRoute AI Ltd filed Critical DeepRoute AI Ltd
Priority to CN202010196069.1A priority Critical patent/CN111257910A/zh
Publication of CN111257910A publication Critical patent/CN111257910A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请提供一种激光雷达系统和激光雷达探测方法。激光光束和物体反射光,均经过分束装置。且物体反射光经分束装置后,进入接收装置。此时,激光雷达系统通过分束装置可以使得光源装置(发射系统)与接收装置(接收系统)形成收发同轴结构,即发射光路与接收光路同轴。进而,通过分束装置可以使得光源装置(发射系统)形成的视场与接收装置(接收系统)形成的视场完全重合,不存在盲区,增强了目标回波信号。发射系统与接收系统视场完全重合,没有盲区的存在。当距离目标物体比较近时,由于没有盲区的存在,也不会受到距离远近的影响。从而,目标物体的反射光(即物体反射光)会被接收装置接收,提高了激光雷达系统的探测性能,更加完整地获取目标物体的信息。

Description

激光雷达系统和激光雷达探测方法
技术领域
本申请涉及雷达探测技术领域,特别是涉及一种激光雷达系统和激光雷达探测方法。
背景技术
激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统,主要由发射系统、接收系统以及信号处理系统等结构组成,发射系统将激光束打到目标上,接收系统接收目标反射回来的光信号。向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作数据处理后就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数。从而对飞机、导弹等目标进行探测、跟踪和识别。其中,发射和接收系统设计的好坏直接影响系统的测量精度。
然而,传统的激光雷达系统中发射系统与接收系统通常处于离轴平行放置,即发射系统与接收系统的光路不在同一光轴。当发射系统与接收系统视场开始发生重叠时便可以测量到物体的回波信号。但是,传统的激光雷达系统中发射系统与接收系统的光路不在同一光轴,使得发射面和接受面的重叠面积小,目标回波信号较弱,容易在距离目标物体较近位置处产生盲区,无法测量到回波信号,对目标物体的成像质量带来不好的影响,降低了传统激光雷达系统的探测性能。
发明内容
基于此,有必要针对传统激光雷达系统的发射与接收系统处于离轴平行放置导致的探测性能偏低的问题,提供一种激光雷达系统和激光雷达探测方法。
本申请提供一种激光雷达系统。所述激光雷达系统包括光源装置、分束装置以及接收装置。所述光源装置用于发射激光光束。所述分束装置用于将所述激光光束进行分束,形成第一光束。所述第一光束照射至目标物体,并经所述目标物体反射形成物体反射光。所述物体反射光经所述分束装置分束后形成第三光束。所述第一光束为所述激光光束经所述分束装置后的透射光。所述第三光束为所述物体反射光经所述分束装置后的反射光。所述接收装置用于基于所述第三光束获取所述目标物体的信息。
在一个实施例中,所述激光光束经所述分束装置分束后还形成第二光束。所述激光雷达系统还包括光束吸收装置。所述光束吸收装置用于吸收所述第二光束。所述第二光束为所述激光光束经所述分束装置后的反射光。
在一个实施例中,所述分束装置包括偏振分束器。所述光源装置用于发射P偏振激光光束。所述第一光束为所述P偏振激光光束经所述偏振分束器后的光。所述第三光束为所述物体反射光经所述偏振分束器后的光。
在一个实施例中,本申请提供一种激光雷达系统。所述激光雷达系统包括光源装置、偏振分束装置以及接收装置。所述光源装置用于发射激光光束。所述偏振分束装置用于将所述激光光束进行分束,形成第一光束。所述第一光束照射至目标物体,并经所述目标物体反射形成物体反射光。所述物体反射光经所述偏振分束装置后形成第三光束,所述第一光束与所述第三光束为线偏振光。所述接收装置用于基于所述第三光束获取所述目标物体的信息。
在一个实施例中,所述激光光束经所述偏振分束装置后还形成第二光束。所述第二光束为线偏振光。所述激光雷达系统还包括光束吸收装置。所述光束吸收装置用于吸收所述第二光束。
在一个实施例中,所述偏振分束装置包括偏振分束器。所述光源装置用于发射S偏振激光光束。所述第一光束为所述S偏振激光光束经所述偏振分束器后的光。所述第三光束为所述物体反射光经所述偏振分束器后的光。
在一个实施例中,所述接收装置包括探测装置与数据处理装置。所述探测装置用于对所述第三光束进行探测,并将所述第三光束转换为探测电信号。所述数据处理装置用于获取所述探测电信号,并对所述探测电信号进行数据处理,获取所述目标物体的信息。
在一个实施例中,所述激光雷达系统还包括投影装置。所述投影装置设置于所述第一光束的光路上,用于将所述第一光束投影至所述目标物体,且将所述物体反射光进行整形和准直处理。
在一个实施例中,所述分束装置为分束棱镜、分光平片、偏振分束棱镜或格兰泰勒棱镜。
在一个实施例中,本申请提供一种激光雷达探测方法,包括:
通过光源装置发射激光光束;
将所述激光光束经分束装置,形成第一光束;
将所述第一光束照射至目标物体,并经所述目标物体反射形成的物体反射光,经所述分束装置后形成第三光束;
通过接收装置对所述第三光束进行收集、转换以及计算,获得所述目标物体的信息;
其中,所述第一光束为所述激光光束经所述分束装置后的透射光,所述第三光束为所述物体反射光经所述分束装置后的反射光;或者
所述第一光束与所述第三光束为线偏振光。
本申请提供一种上述激光雷达系统和激光雷达探测方法。通过所述分束装置可以将所述光源装置发射的所述激光光束进行分束。所述激光光束经所述分束装置分束后的透射光(即所述第一光束)照射到所述目标物体上。所述目标物体的反射光(即所述物体反射光)照射至所述分束装置。并经所述分束装置进行分束。所述物体反射光经所述分束装置分束后的反射光(即所述第三光束)被所述接收装置接收,并基于所述第三光束(目标物体反射的信号)与发射信号进行比较,进行相应的数据处理后,可以获得所述目标物体的相关信息。所述目标物体的信息可以为目标距离、方位、高度、速度、姿态、甚至形状等参数。从而,实现对所述目标物体进行探测、跟踪和识别等。
所述光源装置发射的所述激光光束和所述物体反射光,均经过所述分束装置。且所述物体反射光经所述分束装置后,进入所述接收装置。此时,所述激光雷达系统通过所述分束装置可以使得所述光源装置(发射系统)与所述接收装置(接收系统)形成收发同轴结构,即发射光路与接收光路同轴。进而,通过所述分束装置可以使得所述光源装置(发射系统)形成的视场与所述接收装置(接收系统)形成的视场完全重合,增强了目标回波信号。
此时,发射系统与接收系统视场完全重合,没有盲区的存在。当距离所述目标物体比较近时,由于没有盲区的存在,也不会受到距离远近的影响。从而,所述目标物体的反射光(即所述物体反射光)会被所述接收装置接收,提高了激光雷达系统的探测性能,更加准确地获取所述目标物体的信息。
同时,通过本申请所述激光雷达系统,可以使得发射系统与接收系统同轴设置,无需对光学器件进行严格的光学对准调试,工艺简单。
附图说明
图1为本申请提供的一个实施例中激光雷达系统的结构示意图;
图2为本申请提供的一个实施例中激光雷达系统的结构示意图;
图3为本申请提供的一个实施例中激光雷达系统的结构示意图;
图4为本申请提供的一个实施例中激光雷达系统的结构示意图;
图5为本申请提供的一个实施例中激光雷达系统的结构示意图;
图6为本申请提供的一个实施例中激光雷达系统的结构示意图;
图7为本申请提供的一个实施例中激光雷达探测方法的流程示意图。
附图标记说明
激光雷达系统100;
目标物体10;
投影装置20;
分束装置30;
偏振分束器310;
偏振分束装置320;
光源装置40;
光束吸收装置50;
接收装置60;
探测装置610;
数据处理装置620;
滤光装置630。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参见图1,本申请提供一种激光雷达系统100。所述激光雷达系统100包括光源装置40、分束装置30以及接收装置60。所述光源装置40用于发射激光光束。所述分束装置30用于将所述激光光束进行分束,形成第一光束。所述第一光束照射至目标物体10,并经所述目标物体10反射形成物体反射光。所述物体反射光经所述分束装置30分束后形成第三光束。所述第一光束为所述激光光束经所述分束装置30后的透射光。所述第三光束为所述物体反射光经所述分束装置30后的反射光。所述接收装置60用于基于所述第三光束获取所述目标物体10的信息。
通过所述分束装置30可以将所述光源装置40发射的所述激光光束进行分束。所述激光光束经所述分束装置30分束后的透射光(即所述第一光束)照射到所述目标物体10上。所述目标物体10的反射光(即所述物体反射光)照射至所述分束装置30。并经所述分束装置30进行分束。所述物体反射光经所述分束装置30分束后的反射光(即所述第三光束)被所述接收装置60接收,并基于所述第三光束(目标物体10反射的信号,可以理解为回波光束)与所述光源装置40发射的所述激光光束(可以理解为发射探测光束)进行比较,进行相应的数据处理后,可以获得所述目标物体10的相关信息。
所述目标物体10的信息可以为目标距离、方位、高度、速度、姿态、甚至形状等参数。从而,实现对所述目标物体10进行探测、跟踪和识别等。
所述光源装置40发射的所述激光光束和所述物体反射光,均经过所述分束装置30。且所述物体反射光经所述分束装置30后,进入所述接收装置60。此时,所述激光雷达系统100通过所述分束装置30可以使得所述光源装置40(发射系统)与所述接收装置60(接收系统)形成收发同轴结构,即发射光路与接收光路同轴。进而,通过所述分束装置30可以使得所述光源装置40(发射系统)形成的视场与所述接收装置60(接收系统)形成的视场完全重合,不存在盲区,增强了目标回波信号。
此时,发射系统与接收系统视场完全重合,没有盲区的存在。当距离所述目标物体10比较近时,由于没有盲区的存在,也不会受到距离远近的影响。从而,所述目标物体10的反射光(即所述物体反射光)会被所述接收装置60接收,提高了激光雷达系统的探测性能,更加准确地获取所述目标物体10的信息。
同时,通过本申请所述激光雷达系统100,可以使得发射系统与接收系统同轴设置,无需对光学器件进行严格的光学对准调试,工艺简单不需要光纤进行器件之间的连接,降低了成本。
在一个实施例中,所述激光光束经所述分束装置30分束后还形成第二光束。所述激光雷达系统还包括光束吸收装置50。所述光束吸收装置50用于吸收所述第二光束。所述第二光束为所述激光光束经所述分束装置30后的反射光。
本实施例中,所述第一光束为照射至所述目标物体10的光,所述第二光束为所述激光光束经所述分束装置30后的反射光,为不需要的光。通过所述光束吸收装置50将不需要的光进行吸收,以避免所述第二光束在所述目标物体10的成像过程中造成影响,对所述目标物体10的信息造成误导。
在一个实施例中,所述分束装置30可以为分束棱镜、分光平片或者彼此之间的任意组合形成的分束器件等,用于将所述激光光束和所述物体反射光进行分束。所述光束吸收装置50为光束终止器,用于对不需要的光进行吸收。具体地,所述光束吸收装置50还可以为吸收性能良好的黑色金属材料或者光吸收器件等。
在一个实施例中,所述接收装置60包括探测装置610与数据处理装置620。所述探测装置610用于对所述第三光束进行探测,并将所述第三光束转换为探测电信号。所述数据处理装置620用于获取所述探测电信号,并对所述探测电信号进行数据处理,获取所述目标物体10的信息。
所述探测装置610可以为雪崩光电二极管(Avalanche Photo Diode,APD)探测器、PIN(positive-intrinsic-negative,P型半导体-杂质-N型半导体)、单光子接收器、MPPC(Multi Pixel Photon Counters,硅光电倍增管)等,或可以是上述功能器件的单个或者多个阵列组成的探测器。所述探测装置610将所述第三光束转换为探测电信号。所述数据处理装置620包括但不限于中央处理器(Center Processor Unit,CPU)、嵌入式微控制器(MicroController Unit,MCU)、嵌入式微处理器(Micro Processor Unit,MPU)、嵌入式片上系统(System on Chip,SoC)或计算机等。
所述数据处理装置620接收所述探测电信号,并进行数据处理。其中,所述数据处理装置620采用时间飞行法、相位法和/或调频连续波法等,以确定所述目标物体10的相关信息。时间飞行法(Time of Flight,TOF)通过计算激光脉冲的时间差来确定所述目标物体10的位置信息。相位法通过计算所述光源装置40发射的所述激光光束(发射探测光束)与所述第三光束(回波光束)的相位差确定所述目标物体10的距离。调频连续波法(FrequencyModulated Continuous Wave,FMCW)通过计算所述光源装置40发射的所述激光光束(发射探测光束)与所述第三光束(回波光束)的频率差确定所述目标物体10的距离。
同时,所述接收装置60还包括处理电路,分别与所述探测装置610和所述数据处理装置620连接,用于检测是否接收到所述第三光束(即物体反射光),并进行信号整形、放大、降噪等处理,将处理后的信号传输至所述数据处理装置620。
具体地,根据所述探测装置610接收到的所述第三光束,可以确定所述目标物体10的距离。例如,根据所述光源装置40发射的所述激光光束与所述第三光束接收之间的时间差,并根据时间差,计算确定所述目标物体10的距离。同时,根据所述目标物体10的距离和激光发射的角度,通过简单地几何变化可以推导出所述目标物体10的位置信息。
在一个实施例中,所述激光雷达系统100还包括投影装置20。所述投影装置20设置于所述第一光束的光路上,用于将所述第一光束投影至所述目标物体10,且将所述物体反射光进行整形和准直处理。
所述投影装置20可以为扩束镜或者二由目镜和物镜组成,用于实现远距离投影,进而将所述第一光束投影至所述目标物体10上。同时当所述物体反射光经过所述投影装置20后,可以进行整形和准直处理,使得所述物体反射光照射至所述分束装置30。
请参见图2,在一个实施例中,所述分束装置30包括偏振分束器310。所述光源装置40用于发射P偏振激光光束。所述第一光束为所述P偏振激光光束经所述偏振分束器310后的透射光。所述第三光束为所述物体反射光经所述偏振分束器310后的反射光。
本实施例中,所述偏振分束器310可以为偏振分束棱镜、格兰泰勒棱镜或者彼此之间的相互组合形成的偏振分束器件等。所述光源装置40用于发射P偏振激光光束。当所述P偏振激光光束经所述偏振分束器310后,只存在P偏振状态的光,即所述第一光束。并且,当所述物体反射光经所述偏振分束器310后形成的所述第三光束,只存在s偏振的光。
此时,通过所述偏振分束器310与所述P偏振激光光束可以避免形成不需要的光。从而,不需要通过所述光束吸收装置50吸收所述第二光束,简化了所述激光雷达系统100的整体结构,更有利于产品集成,且节约了成本。
在一个实施例中,所述光源装置40可以为一个或多个激光器,用以发射具有单色性好、方向性强、亮度高等优点激光,可以进行高时空分辨能力的实时监测。具体地,所述光源装置40可以为905nm或者1550nm波长的激光器。
请参见图5-6,在一个实施例中,所述激光雷达系统100还包括滤光装置630。所述滤光装置630设置于接收光路上,即用于对进入所述探测装置610的所述第三光束进行过滤,过滤掉所述第三光束之外的光。所述第三光束之外的光,包括环境光,如太阳光和白炽灯光等。从而,通过所述滤光装置630提高了对所述目标物体10的识别精确度,提高了所述激光雷达系统100的检测性能。
优选地,所述滤光装置为带通型滤光片,只对特定波段的激光进行通过,通带以外的激光截止。
在一个实施例中,所述激光雷达系统100还包括电源电路、通信电路等。其中,电源电路和通信电路分别与所述数据处理装置620连接。电源电路为稳压、防反接等电源保护电路与12V-5V等电压转换电路。通信电路指与外部通信的接口电路,例如控制器局域网络(Controller Area Network,CAN)接口、以太网(Ethernet)接口等。
请参见图3,在一个实施例中,本申请提供一种激光雷达系统100。所述激光雷达系统100包括光源装置40、偏振分束装置320以及接收装置60。所述光源装置40用于发射激光光束。所述偏振分束装置320用于将所述激光光束进行分束,形成第一光束。所述第一光束照射至目标物体10,并经所述目标物体10反射形成物体反射光。所述物体反射光经所述偏振分束装置320后形成第三光束,所述第一光束与所述第三光束为线偏振光。所述接收装置60用于基于所述第三光束获取所述目标物体10的信息。
通过所述偏振分束装置320可以将所述光源装置40发射的所述激光光束进行分束。通过所述偏振分束装置320将所述激光光束,分束为两束偏振态正交的偏振光。此时,所述第一光束为线偏振光(P偏振或S偏振)。所述第一光束照射到所述目标物体10上,发生反射形成所述物体反射光。所述物体反射光照射至所述偏振分束装置320后形成的所述第三光束为线偏振光(P偏振或S偏振)。所述第三光束被所述接收装置60接收,并基于所述第三光束(目标物体10反射的信号)与发射信号进行比较,进行相应的数据处理后,获得所述目标物体10的相关信息。
所述光源装置40发射的所述激光光束和所述物体反射光,均经过所述偏振分束装置320。且所述物体反射光经所述偏振分束装置320后,进入所述接收装置60。此时,所述激光雷达系统100通过所述偏振分束装置320可以使得所述光源装置40(发射系统)与所述接收装置60(接收系统)形成收发同轴结构,即发射光路与接收光路同轴。进而,通过所述偏振分束装置320可以使得所述光源装置40(发射系统)形成的视场与所述接收装置60(接收系统)形成的视场完全重合,不存在盲区,增强了目标回波信号。
此时,发射系统与接收系统视场完全重合,没有盲区的存在。当距离所述目标物体10比较近时,由于没有盲区的存在,也不会受到距离远近的影响。从而,所述目标物体10的反射光(即所述物体反射光)会被所述接收装置60接收,提高了激光雷达系统的探测性能,更加准确地获取所述目标物体10的信息。
在一个实施例中,所述激光光束经所述偏振分束装置320后还形成第二光束。所述第二光束为线偏振光。所述激光雷达系统100还包括光束吸收装置50。所述光束吸收装置50用于吸收所述第二光束。
本实施例中,所述第一光束为照射至所述目标物体10的光,所述第二光束为所述激光光束经所述偏振分束装置320后的光,为不需要的光。通过所述光束吸收装置50将不需要的光进行吸收,以避免所述第二光束在所述目标物体10的成像过程中造成影响,对所述目标物体10的信息造成误导。
在一个实施例中,所述偏振分束装置320包括偏振分束器310。所述光源装置40用于发射S偏振激光光束。所述第一光束为所述S偏振激光光束经所述偏振分束器310后的光。所述第三光束为所述物体反射光经所述偏振分束器310后的光。
本实施例中,所述光源装置40用于发射S偏振激光光束。当所述S偏振激光光束经所述偏振分束器310后,只存在S偏振状态的光,即所述第一光束。并且,当所述物体反射光经所述偏振分束器310后形成的所述第三光束,只存在p偏振方向的光。
此时,通过所述偏振分束器310与所述S偏振激光光束,可以避免形成不需要的光。从而,不需要通过所述光束吸收装置50吸收所述第二光束,简化了所述激光雷达系统100的整体结构,更有利于集成产品,且节约了成本。
请参见图7,在一个实施例中,本申请提供一种激光雷达探测方法,包括:
通过光源装置40发射激光光束;
将所述激光光束经分束装置30,形成第一光束;
将所述第一光束照射至目标物体10,并经所述目标物体10反射形成的物体反射光,经所述分束装置30后形成第三光束;
通过接收装置60对所述第三光束进行收集、转换以及计算,获得所述目标物体10的信息;
其中,所述第一光束为所述激光光束经所述分束装置30后的透射光,所述第三光束为所述物体反射光经所述分束装置30后的反射光;或者
所述第一光束与所述第三光束为线偏振光。
本实施例中,所述分束装置30可以为分束棱镜、分光平片、偏振分束棱镜或格兰泰勒棱镜,以实现对所述激光光束和所述物体反射光的分束作用。所述光源装置40发射的所述激光光束和所述物体反射光,均经过所述分束装置30。且所述物体反射光经所述分束装置30后,进入所述接收装置60。此时,所述激光雷达系统100通过所述分束装置30可以使得所述光源装置40(发射系统)与所述接收装置60(接收系统)形成收发同轴结构,即发射光路与接收光路同轴。进而,通过所述分束装置30可以使得所述光源装置40(发射系统)形成的视场与所述接收装置60(接收系统)形成的视场完全重合,不存在盲区,增强了目标回波信号。
此时,发射系统与接收系统视场完全重合,没有盲区的存在。当距离所述目标物体10比较近时,由于没有盲区的存在,也不会受到距离远近的影响。从而,所述目标物体10的反射光(即所述物体反射光)会被所述接收装置60接收,更加准确地获取所述目标物体10的信息。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种激光雷达系统,其特征在于,包括:
光源装置(40),用于发射激光光束;
分束装置(30),用于将所述激光光束进行分束,形成第一光束;
所述第一光束照射至目标物体(10),并经所述目标物体(10)反射形成物体反射光,所述物体反射光经所述分束装置(30)分束后形成第三光束;
所述第一光束为所述激光光束经所述分束装置(30)后的透射光,所述第三光束为所述物体反射光经所述分束装置(30)后的反射光;
接收装置(60),用于基于所述第三光束获取所述目标物体(10)的信息。
2.如权利要求1所述的激光雷达系统,其特征在于,所述激光光束经所述分束装置(30)分束后还形成第二光束,所述激光雷达系统还包括:
光束吸收装置(50),用于吸收所述第二光束;
所述第二光束为所述激光光束经所述分束装置(30)后的反射光。
3.如权利要求1所述的激光雷达系统,其特征在于,所述分束装置(30)包括偏振分束器(310),所述光源装置(40)用于发射P偏振激光光束;
所述第一光束为所述P偏振激光光束经所述偏振分束器(310)后的光,所述第三光束为所述物体反射光经所述偏振分束器(310)后的光。
4.一种激光雷达系统,其特征在于,包括:
光源装置(40),用于发射激光光束;
偏振分束装置(320),用于将所述激光光束进行分束,形成第一光束;
所述第一光束照射至目标物体(10),并经所述目标物体(10)反射形成物体反射光,所述物体反射光经所述偏振分束装置(320)后形成第三光束,所述第一光束与所述第三光束为线偏振光;
接收装置(60),用于基于所述第三光束获取所述目标物体(10)的信息。
5.如权利要求4所述的激光雷达系统,其特征在于,所述激光光束经所述偏振分束装置(320)后还形成第二光束,所述第二光束为线偏振光;
所述激光雷达系统还包括:
光束吸收装置(50),用于吸收所述第二光束。
6.如权利要求4所述的激光雷达系统,其特征在于,所述偏振分束装置(320)包括偏振分束器(310),所述光源装置(40)用于发射S偏振激光光束;
所述第一光束为所述S偏振激光光束经所述偏振分束器(310)后的光,所述第三光束为所述物体反射光经所述偏振分束器(310)后的光。
7.如权利要求1或权利要求4所述的激光雷达系统,其特征在于,所述接收装置(60)包括探测装置(610)与数据处理装置(620);
所述探测装置(610)用于对所述第三光束进行探测,并将所述第三光束转换为探测电信号;
所述数据处理装置(620)用于获取所述探测电信号,并对所述探测电信号进行数据处理,获取所述目标物体(10)的信息。
8.如权利要求1或权利要求4所述的激光雷达系统,其特征在于,所述激光雷达系统还包括:
投影装置(20),设置于所述第一光束的光路上,用于将所述第一光束投影至所述目标物体(10),且将所述物体反射光进行整形和准直处理。
9.如权利要求1所述的激光雷达系统,其特征在于,所述分束装置(30)为分束棱镜、分光平片、偏振分束棱镜或格兰泰勒棱镜。
10.一种激光雷达探测方法,其特征在于,包括:
通过光源装置(40)发射激光光束;
将所述激光光束经分束装置(30),形成第一光束;
将所述第一光束照射至目标物体(10),并经所述目标物体(10)反射形成的物体反射光,经所述分束装置(30)后形成第三光束;
通过接收装置(60)对所述第三光束进行收集、转换以及计算,获得所述目标物体(10)的信息;
其中,所述第一光束为所述激光光束经所述分束装置(30)后的透射光,所述第三光束为所述物体反射光经所述分束装置(30)后的反射光;或者
所述第一光束与所述第三光束为线偏振光。
CN202010196069.1A 2020-03-19 2020-03-19 激光雷达系统和激光雷达探测方法 Pending CN111257910A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010196069.1A CN111257910A (zh) 2020-03-19 2020-03-19 激光雷达系统和激光雷达探测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010196069.1A CN111257910A (zh) 2020-03-19 2020-03-19 激光雷达系统和激光雷达探测方法

Publications (1)

Publication Number Publication Date
CN111257910A true CN111257910A (zh) 2020-06-09

Family

ID=70947878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010196069.1A Pending CN111257910A (zh) 2020-03-19 2020-03-19 激光雷达系统和激光雷达探测方法

Country Status (1)

Country Link
CN (1) CN111257910A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156401A (zh) * 2021-04-19 2021-07-23 中国电子科技集团公司第五十八研究所 一种收发分置激光雷达光学系统
CN114323313A (zh) * 2021-12-24 2022-04-12 北京深测科技有限公司 一种基于iccd相机的成像方法和系统
CN114895281A (zh) * 2022-05-10 2022-08-12 上海枢光科技有限公司 一种本征信号与目标返回信号生成目标信息的方法及装置
CN116804760A (zh) * 2023-08-21 2023-09-26 山东省科学院海洋仪器仪表研究所 一种高重频正交偏振光子计数测深系统及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113156401A (zh) * 2021-04-19 2021-07-23 中国电子科技集团公司第五十八研究所 一种收发分置激光雷达光学系统
CN113156401B (zh) * 2021-04-19 2023-01-24 中国电子科技集团公司第五十八研究所 一种收发分置激光雷达光学系统
CN114323313A (zh) * 2021-12-24 2022-04-12 北京深测科技有限公司 一种基于iccd相机的成像方法和系统
CN114895281A (zh) * 2022-05-10 2022-08-12 上海枢光科技有限公司 一种本征信号与目标返回信号生成目标信息的方法及装置
CN114895281B (zh) * 2022-05-10 2023-09-29 上海枢光科技有限公司 一种本征信号与目标返回信号生成目标信息的方法及装置
CN116804760A (zh) * 2023-08-21 2023-09-26 山东省科学院海洋仪器仪表研究所 一种高重频正交偏振光子计数测深系统及方法
CN116804760B (zh) * 2023-08-21 2023-11-21 山东省科学院海洋仪器仪表研究所 一种高重频正交偏振光子计数测深系统及方法

Similar Documents

Publication Publication Date Title
CN111257910A (zh) 激光雷达系统和激光雷达探测方法
US20210356567A1 (en) HIGH RESOLUTION LiDAR USING HIGH FREQUENCY PULSE FIRING
US20220026575A1 (en) Integrated illumination and detection for lidar based 3-d imaging
US20160377721A1 (en) Beat signal bandwidth compression method, apparatus, and applications
US20230375668A1 (en) Detection Apparatus, Control Method, Fusion Detection System, and Terminal
US20180100738A1 (en) Laser radar system
CN107843888A (zh) 用于自动化车辆的相干激光雷达系统
CN112740066A (zh) 一种多脉冲激光雷达系统抗干扰处理方法及装置
CN210005696U (zh) 双波长自适应距离门激光雷达
CN107367736B (zh) 一种高速激光测距装置
CN113933811B (zh) 激光雷达的探测方法、激光雷达以及计算机存储介质
JP2018151278A (ja) 計測装置
US20130341486A1 (en) Apparatus for obtaining 3d information using photodetector array
KR20120069487A (ko) 능동형 광 레이더 장치
CN212694051U (zh) 激光雷达系统
CN111239764A (zh) 关联成像系统和关联成像方法
US10725173B2 (en) Airborne ice detector using quasi-optical radar
US11567202B2 (en) SPAD-based LIDAR system
CN114895281B (zh) 一种本征信号与目标返回信号生成目标信息的方法及装置
TWM451527U (zh) 相位式雷射測距儀反制系統
WO2022126429A1 (zh) 测距装置、测距方法和可移动平台
CN110346779B (zh) 一种用于多波束激光雷达的时间通道复用的测量方法
CN110333500B (zh) 一种多波束激光雷达
CN212060581U (zh) 主动照明关联成像系统
EP3767336B1 (en) Light monitoring device and method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination