WO2019109784A1 - 贯穿式银铜复合锭块及带材的制备方法 - Google Patents

贯穿式银铜复合锭块及带材的制备方法 Download PDF

Info

Publication number
WO2019109784A1
WO2019109784A1 PCT/CN2018/115340 CN2018115340W WO2019109784A1 WO 2019109784 A1 WO2019109784 A1 WO 2019109784A1 CN 2018115340 W CN2018115340 W CN 2018115340W WO 2019109784 A1 WO2019109784 A1 WO 2019109784A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
silver
composite
strip
preparing
Prior art date
Application number
PCT/CN2018/115340
Other languages
English (en)
French (fr)
Inventor
张宇星
张舟磊
吴新合
秦川
祁更新
陈家帆
Original Assignee
温州宏丰电工合金股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 温州宏丰电工合金股份有限公司 filed Critical 温州宏丰电工合金股份有限公司
Priority to US16/768,274 priority Critical patent/US11000889B2/en
Priority to EP18885125.7A priority patent/EP3722015A4/en
Publication of WO2019109784A1 publication Critical patent/WO2019109784A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B47/00Auxiliary arrangements, devices or methods in connection with rolling of multi-layer sheets of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/233Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/005Copper or its alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the invention relates to the field of preparation of dissimilar metal composite strips, in particular to a method for preparing a through-type silver-copper composite ingot and a subsequent strip.
  • a fuse is an electrical device that breaks the melt by the heat generated by itself when the current exceeds a specified value. It is widely used in high and low voltage distribution systems and control systems and electrical equipment as short circuits and over The current protector is one of the most popular protection devices.
  • the Chinese patent "the preparation method of the side double-type silver-copper composite strip” (publication number CN 102814324A, application number CN201210314140.7), the method uses the mosaic method to embed the silver strip into the copper plate, and then The silver-copper composite material is produced by cold pressing composite method.
  • the production process cannot restrain the non-rolling direction of the strip, resulting in insufficient extrusion of the silver-copper interface, unsatisfactory bonding strength, and complicated processing of the copper sheet in production, resulting in an increase in production cost.
  • the object of the present invention is to provide a method for preparing a follow-up strip of a through-type silver-copper composite ingot machine, which improves the side joint strength of the silver-copper dissimilar material and reduces the production process, thereby further satisfying The actual demand for stable production and large-scale production.
  • a method for preparing a through-type silver-copper composite ingot which comprises splicing a composite ingot composed of a silver-copper dissimilar metal by a through-type method, comprising:
  • the profiled roll set is a pair of work rolls in a four roll solid phase composite roll system, the work roll is provided with a groove at a center position;
  • the surface treatment refers to degreasing and surface grinding treatment.
  • the copper frame and the copper strip are subjected to a softening annealing treatment in the gas protection furnace before the surface treatment to increase the uniformity of the material and the fluidity in the subsequent processing.
  • the softening annealing treatment wherein: the annealing temperature is selected above the recrystallization temperature of the material, from 500 ° C to 800 ° C, the hydrogen atmosphere and the furnace gas pressure is greater than atmospheric pressure, and the gas flow rate is 0.4 to 0.6 m 3 /h. To prevent oxidation of the material, the annealing time is 1 to 3 hours.
  • the profiled roll has a groove width of 130-160 mm and a depth of 3-6 mm.
  • the maximum width of finished products made so far can meet the high current fuse protection in the range of 120-130mm, so the choice of 130-160mm, depth 3-6mm, in line with customer needs, but also meet the needs of the process.
  • the copper frame has a length L of 500 mm to 2000 mm, a width W of 129 mm to 139 mm, and a thickness h of 6 to 40 mm.
  • the above method of the invention adopts a profiled roll set, and the bonding strength of the silver-copper side double-feeding belt is effectively improved by the improvement of the solid phase composite machine roll system.
  • the composite ingot made by the through method has the characteristics of simple structure and easy splicing, which optimizes the subsequent processing technology and shortens the production cycle.
  • a method for preparing a through-type silver-copper composite strip which comprises the above-mentioned silver-copper composite ingot as a raw material, comprising:
  • the key of this step is the limit of the special-shaped work rolls to the composite ingots, so that the silver-copper interface is fully extruded and deformed during rolling, and the fresh silver-copper interface forms a preliminary physical and mechanical bite.
  • the deformation amount X (h-h1)/h, where h is the thickness of the composite ingot, and h1 is the thickness of the through-silver-copper side composite strip.
  • This process is rolled into a single shape.
  • S2 The through-type silver-copper side composite strip obtained by S1 is diffusion-annealed under a protective atmosphere, and the silver-copper interface bonding mode is changed from a preliminary mechanical occlusion to a mechanical occlusion and a chemical combination, and the bonding strength is further improved;
  • the diffusion annealing treatment is performed under a protective atmosphere, wherein: the annealing temperature is 500 ° C to 800 ° C, the shielding gas is hydrogen gas and the gas pressure in the furnace is greater than atmospheric pressure, the gas flow rate is 0.4 to 0.6 m 3 /h, and the annealing time is 3 ⁇ . 8 hours.
  • the annealing temperature is 500 ° C to 800 ° C
  • the shielding gas is hydrogen gas and the gas pressure in the furnace is greater than atmospheric pressure
  • the gas flow rate is 0.4 to 0.6 m 3 /h
  • the annealing time is 3 ⁇ . 8 hours.
  • the multi-pass rolling wherein: the deformation amount Xn per pass is controlled to be 10% to 15%, and the total deformation amount Y is controlled to be between 30% and 60%.
  • the total deformation amount Y X1 + X2 + ... + Xn
  • the number of passes deformation means the ratio of the thickness change amount at the end of each pass to the thickness before the start of the pass.
  • S4 The S3 rolled strip is subjected to softening annealing treatment of a controlled atmosphere to obtain a through-type silver-copper composite strip.
  • the softening annealing treatment of the controlled atmosphere is performed at an annealing temperature of 400 ° C to 600 ° C, the atmosphere is hydrogen gas and the gas pressure in the furnace is greater than atmospheric pressure, the gas flow rate is 0.4 to 0.6 m 3 /h, and the annealing time is 2 to 6 hours.
  • the preferred parameter design is adopted so that the annealing temperature is above the recrystallization temperature of the material and below the solidus line of the AgCu alloy, and the annealing time is appropriate, which can eliminate the rolling texture of the material without forming a thick diffusion. Diffusion layer. It has an important influence on the further improvement of the performance of the final through-type silver-copper composite strip of the present invention.
  • the method may further include S5: finishing the strip after the completion of S4 on a four-roll reversible finishing mill, and the final thickness is 0.05 mm to 0.3 mm.
  • the present invention has the following beneficial effects:
  • the composite ingot made by the through method has the characteristics of simple structure and easy splicing, so that the subsequent processing process is optimized and the production cycle is shortened.
  • the present invention improves the bonding strength of the silver-copper side composite belt by improving the solid phase laminating machine roll system, that is, the center position of the work roll is provided with a groove.
  • the phenomenon of strip cracking and silver layer deviation can be effectively reduced, and at the same time, the design of the preferred process and its parameters are used to ensure the performance of the final product.
  • the present invention achieves the effect of bright annealing of the strip by using an annealing process under hydrogen protection to reduce the surface oxide of the strip in the furnace.
  • the above method of the invention can improve the side bonding strength of the silver-copper dissimilar materials, reduce the production process, shorten the production cycle, and greatly improve the production efficiency, thereby further satisfying the actual demand of stable manufacturing performance and large-scale production.
  • FIG. 1 is a schematic structural view of a profiled roll set according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a profiled roll set used in some embodiments of the present invention.
  • an upper backup roll 1 a first profiled roll 2, a second profiled roll 3, and a lower backup roll 4, the profiled The roll set (the first profiled roll 2, the second profiled roll 3) is a pair of work rolls in the four roll solid phase composite roll system, and the first shaped roll 2 and the second shaped roll 3 are provided with grooves at the center position. 5.
  • Figure 1 shows a specific embodiment in which the first profiled roll 2, the groove 5 provided in the second profiled roll 3, has a groove width of 130 mm and a depth of 3 mm.
  • the first profiled roll 2 and the second profiled roll 3 of the present invention may have other dimensional parameters, as long as the width of the groove is 130-160 mm and the depth is 3-6 mm. purpose.
  • the invention manufactures a copper frame with a fixed width, a corresponding copper strip and a silver strip according to the negative tolerance of the groove width of the above-mentioned profiled roll, and performs surface treatment on the copper frame, the copper strip and the silver strip; then, according to the need, different numbers of copper are used.
  • the strips and the silver strips are arranged in a space between the copper frames to form a composite blank, that is, a composite ingot.
  • length L 500 mm to 2000 mm
  • width W 129 mm to 129.5 mm.
  • thickness h 6 ⁇ 40mm.
  • other shapes may also be used, and the specific shape is set according to actual needs.
  • the specific number of copper strips and silver strips can be set according to actual needs.
  • a 129.5 mm (width) ⁇ 1000 mm (length) ⁇ 20 mm (height) copper plate is used to finish a 46.65 mm (width) ⁇ 950 mm (length) ⁇ 20 mm (height) rectangular groove with rounded corners using a milling machine;
  • Copper strip 11.55mm (width) ⁇ 950mm (length) ⁇ 20mm (height)
  • Silver bar 3mm (width) ⁇ 950mm (length) ⁇ 20mm (height)
  • the above specific copper frame, copper strip and silver strip are parameters used in some embodiments of the present invention, and are not intended to limit the number and size of the copper frame, the copper strip and the silver strip of the present invention for the sake of better description.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the raw materials are made into a composite blank, that is, a through-type silver-copper composite ingot.
  • the composite ingot is deformed by 70% cold composite treatment (rolling) using a four-roller roll solid-phase composite rolling mill to form a through-type silver-copper side composite strip; the product produced after the surface treatment of the raw material is The interface is bonded during the rolling process, and the product without surface treatment cracks at the interface during the rolling process.
  • Surface treatment can significantly improve the bonding strength of the product.
  • the annealing temperature is 750 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 to 0.6 m 3 /h
  • the annealing time is 4 hours.
  • the strip processed after the step (4) is subjected to a softening annealing treatment of a controlled atmosphere, and the annealing temperature is required to be 600 ° C, the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h.
  • the annealing time is 4 hours.
  • the invention treats the raw materials by surface treatment, so that the contact surfaces of different kinds of materials have no oil stains and impurities, and the surface grinding helps the formation of the diffusion layer, which can effectively reduce the cracking of the strip and increase the bonding strength.
  • the above method of the invention can improve the side bonding strength of the silver-copper dissimilar materials, reduce the production process, shorten the production cycle, and greatly improve the production efficiency, thereby further satisfying the actual demand of stable manufacturing performance and large-scale production.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the annealing temperature is 600 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 ⁇ 0.6m 3 /h
  • annealing time is 2 hours, and then degreasing and surface grinding treatment, then two silver plates and a copper plate are arranged in a rectangular copper frame to form a composite blank, that is, through Silver-copper composite ingots.
  • the annealing temperature is 550 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 to 0.6 m 3 /h
  • the annealing time is 6 hours.
  • the side-folding material after diffusion annealing is subjected to four-pass rolling on a four-roll reversing cold rolling mill.
  • the deformation amount per pass is controlled at 15%, and the total deformation amount is controlled at 60%. .
  • the strip processed after the step (4) is subjected to a softening annealing treatment of a controlled atmosphere, and the annealing temperature is required to be 450 ° C, the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h.
  • the annealing time is 2 hours.
  • the invention makes the material flow better by softening and annealing the raw materials.
  • the raw materials are extended synchronously during the rolling process of 50-85% deformation, and the interface is tightly contacted, which helps to increase the diffusion speed and increase the bonding strength.
  • the product is partially reduced due to the unsynchronized flow of raw materials during the rolling process. Internal cracking causes the problem of interface oxidation and improves the quality of the product.
  • the above method of the invention can improve the side bonding strength of the silver-copper dissimilar materials, and at the same time improve the uniformity and stability of the product, and meet the actual demand for large-scale production.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the annealing temperature is 550 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 ⁇ 0.6m 3 /h
  • annealing time is 3 hours, then degreasing and surface grinding treatment, then two silver plates and a copper plate are arranged in a rectangular copper frame to form a composite blank, that is, through Silver-copper composite ingots.
  • step (3) The side composite strip obtained by the rolling in step (2) is subjected to diffusion annealing treatment under a protective atmosphere, and the annealing temperature is required to be 750 ° C, the shielding gas is hydrogen gas (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 . /h, annealing time is 3 hours;
  • annealing temperature is required to be 400 ° C
  • the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h. , annealing time is 6 hours;
  • the invention can effectively control the bonding strength and the finished product rate of the composite product of the product by controlling the rolling deformation amount to be 50-85%. If the amount of composite deformation is too low, an effective mechanical bonding interface cannot be formed between the materials, and the interaction between the molecules on the microscopic layer cannot be formed, so that the diffusion layer becomes thinner and the bonding strength becomes weak; the deformation amount is too high, resulting in product appearance. Defects that cannot be recovered, even internal cracks, eventually lead to unqualified product performance.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the annealing temperature is 650 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 ⁇ 0.6m 3 /h
  • annealing time is 2 hours, and then degreasing and surface grinding treatment, then two silver plates and a copper plate are arranged in a rectangular copper frame to form a composite blank, that is, through Silver-copper composite ingots.
  • step (3) The side composite strip obtained by the rolling in step (2) is subjected to diffusion annealing treatment under a protective atmosphere, and the annealing temperature is required to be 600 ° C, the shielding gas is hydrogen gas (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 . /h, annealing time is 1 hour;
  • annealing temperature is required to be 450 ° C
  • the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h. , annealing time is 2 hours;
  • the invention can effectively control the thickness of the interface layer by formulating the diffusion process parameters. Because the function used in this material is to break through the resistance heat, it acts as a circuit breaker protection, so it is sensitive to the resistance. The higher the temperature, the more intense the thermal motion, the longer the time, the longer the heat diffusion, the thicker the diffusion layer, the more intermetallic compounds formed, the greater the resistance; the lower the temperature, the shorter the time, the less thermal motion, and the inability to form an effective diffusion. The layer causes insufficient bonding strength. The above method of the invention can obtain a reasonable diffusion layer and meet the requirements of the customer under the premise of meeting the strength requirement.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the annealing temperature is 600 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 ⁇ 0.6m 3 /h
  • annealing time is 3 hours, then degreasing and surface grinding treatment, then two silver plates and a copper plate are arranged in a rectangular copper frame to form a composite blank, that is, through Silver-copper composite ingots.
  • step (3) The side composite strip obtained by the rolling in step (2) is subjected to diffusion annealing treatment under a protective atmosphere, and the annealing temperature is required to be 650 ° C, the shielding gas is hydrogen gas (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 . /h, annealing time is 1 hour;
  • annealing temperature is required to be 400 ° C
  • the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h. , annealing time is 2.5 hours;
  • the invention saves the processing time and shortens the processing cycle by controlling the total deformation amount and the ball deformation amount of the cold rolling rolling under the premise of satisfying the positioning of the silver layer. Because of the different amounts of deformation, the material spreads differently and the internal stress of the material accumulates differently. The deformation amount is too small, the processing cycle is long, and the width is large; the deformation amount is too large, and the material will have internal defects that do not recover, which has a certain influence on the performance of the finished product. The above method of the present invention improves production efficiency by a reasonable processing technique.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the annealing temperature is 550 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 ⁇ 0.6m 3 /h
  • annealing time is 4 hours, then degreasing and surface grinding treatment, then two silver plates and a copper plate are arranged in a rectangular copper frame to form a composite blank, that is, through Silver-copper composite ingots.
  • step (3) The side composite strip obtained by the rolling in step (2) is subjected to diffusion annealing treatment under a protective atmosphere, and the annealing temperature is required to be 550 ° C, the shielding gas is hydrogen gas (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 . /h, annealing time is 2 hours;
  • annealing temperature is required to be 450 ° C
  • the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h. , annealing time is 2 hours;
  • the invention obtains a product satisfying the mechanical properties of the customer by controlling the softening annealing. Because of the different softening annealing temperatures, the texture, grain and internal stress of the material are affected differently.
  • the softening annealing temperature is low, the time is short, the tempering is not thorough, the material can not be recrystallized, the processing texture can not be removed, and the product will be broken during the processing; the softening temperature is high and the time is long, which will cause secondary recrystallization of the material. Large grains appear, affecting the strength of the material.
  • the above method of the present invention produces a product that satisfies the requirements of the customer through a reasonable processing process.
  • a method for preparing a through-type silver-copper composite ingot is provided, and a method for preparing a strip is further provided based on the prepared silver-copper composite ingot. Specifically, the following steps are included:
  • the annealing temperature is 550 ° C
  • the shielding gas is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure)
  • the gas flow rate is 0.4 ⁇ 0.6m 3 /h
  • annealing time is 4 hours, then degreasing and surface grinding treatment, then two silver plates and a copper plate are arranged in a rectangular copper frame to form a composite blank, that is, through Silver-copper composite ingots.
  • step (3) The side composite strip obtained by the rolling in step (2) is subjected to diffusion annealing treatment under a protective atmosphere, and the annealing temperature is required to be 650 ° C, the shielding gas is hydrogen gas (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 . /h, annealing time is 1.5 hours;
  • annealing temperature is required to be 500 ° C
  • the atmosphere is hydrogen (the gas pressure in the furnace is greater than atmospheric pressure), and the gas flow rate is 0.4 to 0.6 m 3 /h. , annealing time is 2.5 hours;
  • the invention effectively reduces the cracking of the product and the deviation of the silver layer by using the fast four-roller group solid phase composite rolling mill, thereby improving the production efficiency. Because the four-roller roll group forms a certain pressing and limiting effect on the material, the interface of the material is increased, the side extension of the material is reduced, and the product yield rate is greatly improved; and the four-roller roll is used in comparison with the conventional process. Group production can produce larger single products and improve production efficiency.
  • the four-roller roll rolling method is not used.
  • the positioning silver layer is dislocated, and at the same time, the device applies the material.
  • the energy portion is consumed by the extension in the width direction, and it is not easy to form an effective molecular bond at the interface, resulting in deterioration of the bonding strength.
  • the above method of the present invention and the improved four-roller roll group effectively solve the material cracking and the offset of the silver layer, greatly improving the production efficiency.
  • the preparation of the through-type silver-copper side composite strip by the invention can effectively reduce the phenomenon of strip cracking and silver layer deviation, and at the same time, the bonding strength of copper and silver in the strip is obviously improved and shortened.
  • the production cycle greatly improves production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Rolling (AREA)

Abstract

一种贯穿式银铜复合锭块的制备方法,包括:采用异形轧辊组,所述异形轧辊为四辊固相复合轧机轧辊系统中的一对工作辊(2,3),所述工作辊的中心位置设有槽(5);按异形轧辊的槽宽度的负公差制造宽度固定的铜框、相应的铜条和银条,并对铜框、铜条、银条进行表面处理;然后根据需要将不同条数的铜条与银条间隔排列紧固的放入铜框内,形成复合坯料,即复合锭块。还涉及一种贯穿式银铜复合带材的制备方法,其采用贯穿式银铜复合锭块制备方法制备出的银铜复合锭块加工制作成银铜复合带材。采用贯穿式方法制作的复合锭块,结构简单,易于拼接,使得后续加工工艺得到优化,缩短了生产周期;通过对固相复合机轧辊系统的改进使得银铜侧复料带结合强度得到有效提高。

Description

贯穿式银铜复合锭块及带材的制备方法 技术领域
本发明涉及异种金属复合带材的制备领域,具体地,涉及一种贯穿式银铜复合锭块及后续带材的制备方法。
背景技术
熔断器是指当电流超过规定值时,以本身产生的热量使熔体熔断,断开电路的一种电器,广泛应用于高低压配电系统和控制系统以及用电设备中,作为短路和过电流的保护器,是应用最普遍的保护器件之一。
过去由于技术的限制,银长期作为制造熔体的主要材料,造成了生产成本的增加和稀缺资源的严重浪费。随着现代复合材料技术的发展,已出现多种可实现不同材料稳定复合的工艺,如冷压复合法、热复合法、爆炸复合法等,它们将不同性能的材料复合制成具有超过自身组分性能的复合材料。基于现代复合技术的原理,已发展出可替代纯银熔体的复合材料。
经过对现有技术的检索发现,中国专利“侧复式银铜复合带材的制备方法”(公开号CN 102814324A,申请号CN201210314140.7),该方法利用镶嵌式方法将银条嵌入铜板中,再经过冷压复合方式制作银铜复合材料。但此方法生产过程不能对料带的非轧制方向进行约束,导致银铜界面不能充分挤压,结合强度不理想,并且生产中对铜板多次加工较繁琐,造成生产成本增加。
另外,中国专利申请“贯穿式侧向复合板带材的制备方法及其模具热压装置”(CN101318286A,申请号CN200810040137.4),然而,该方法同样生产工序繁琐,大批量生产过程中成本高,而且热轧复合带材宽度均匀性不易控制。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种贯穿式银铜复合锭块机后续带材的制备方法,以提高银铜异种材料侧面结合强度,并减少生产工序,从而进一步满足了制造性能稳定又可规模化生产的实际需求。
根据本发明的第一目的,提供一种贯穿式银铜复合锭块的制备方法,所述方法 是采用贯穿式的方法拼接由银铜异种金属组成的复合锭块,包括:
采用异形轧辊组,所述异形轧辊组为四辊固相复合轧机轧辊系统中的一对工作辊,所述工作辊的中心位置设有槽;
按异形轧辊的槽宽度的负公差制造宽度固定的铜框及对应的铜条和银条,并对铜框、铜条、银条进行表面处理;
然后根据需要将不同条数的铜条与银条间隔排列紧固的放入铜框内,形成一块复合坯料,即复合锭块。
优选地,所述表面处理,是指去油和表面打磨处理。
优选地,所述铜框、铜条在表面处理前,在气体保护炉中进行一道软化退火处理,增加材料的均匀性和在后续的加工过程中的流动性。
更优选地,所述软化退火处理,其中:退火温度选择在材料的再结晶温度以上,为500℃-800℃,氢气气氛且炉内气压大于大气压,气流量是为0.4~0.6m 3/h,防止材料氧化,退火时间1~3小时。
优选地,所述异形轧辊,其槽的宽度为130-160mm,深度为3-6mm。目前为止所制作的产成品最大的宽度在120-130mm范围内就可以满足大电流的熔断保护,所以选择130-160mm,深度3-6mm,符合客户的需求,同时也满足制程的需要。
优选地,所述铜框,长度L=500mm~2000mm,宽度W=129mm~139mm,厚度h=6~40mm。合适的外援尺寸,在加工过程中各个方向受力均匀,保证材料的完整、可靠性。
优选地,所述铜条、银条是通过挤压成型后截断形成,其长度为L1=L-50mm,厚度与铜框厚度一致,宽度W1=3mm~50mm。
本发明上述方法采用异形轧辊组,通过对固相复合机轧辊系统的改进使得银铜侧复料带结合强度得到有效提高。同时,采用贯穿式方法制作的复合锭块,具有结构简单,易于拼接的特点,使得后续加工工艺得到优化,缩短了生产周期。
根据本发明的第二目的,提供一种贯穿式银铜复合带材的制备方法,所述方法采用上述银铜复合锭块作为原料,包括:
S1:通过异形工作辊的槽对复合锭块进行限位,对复合锭块进行变形量X=50%~85%冷复合处理,形成贯穿式银铜侧复带材;
此步骤的关键在于异形工作辊对复合锭块的限位,使得轧制时银铜界面得到充分的挤压、变形、新鲜的银铜界面形成初步的物理机械咬合。
优选地,本步骤中,所述变形量X=(h-h1)/h,其中h为复合锭块厚度,h1为贯穿式银铜侧复带材厚度。此过程轧制为一道成型。
S2:将S1得到的贯穿式银铜侧复带材在保护气氛下扩散退火处理,使银铜界面结合方式由初步的机械咬合转变为机械咬合与化学结合共同作用,结合强度进一步得到提高;
优选地,所述在保护气氛下扩散退火处理,其中:退火温度500℃~800℃,保护气体为氢气且炉内气压大于大气压,气流量为0.4~0.6m 3/h,退火时间为3~8小时。采用该优选参数设计,既可以得到结合强度牢固的产品,同时不会应为扩散层太厚而产生大的电阻。对于本发明最终贯穿式银铜复合带材性能的进一步提升具有重要影响。
S3:将S2扩散退火后的侧复料带在四辊可逆冷轧机上进行多道次轧制;
优选地,所述多道次轧制,其中:每道次变形量Xn控制在10%~15%,总变形量Y控制在30%~60%之间。
更优选地,所述总变形量Y=X1+X2+…+Xn,道次变形量指每道次结束时其厚度变化量与道次开始前厚度的比值。
S4:将S3轧制后的带材进行可控气氛的软化退火处理,得到贯穿式银铜复合带材。
优选地,所述可控气氛的软化退火处理,退火温度为400℃~600℃,气氛为氢气且炉内气压大于大气压,气流量为0.4~0.6m 3/h,退火时间为2~6小时。采用该优选参数设计,使得退火温度既在材料的再结晶温度以上,又在AgCu合金的固相线以下,退火时间合适,既可以消除材料的轧制织构,又不快速的扩散形成很厚的扩散层。对于本发明最终贯穿式银铜复合带材性能的进一步提升具有重要影响。
进一步的,所述方法在S4完成后,可以进一步包括S5:将S4完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.05mm~0.3mm。
与现有技术相比,本发明具有如下的有益效果:
1.本发明采用贯穿式方法制作的复合锭块,具有结构简单,易于拼接的特点,使得后续加工工艺得到优化,缩短了生产周期。
2.进一步的,本发明通过对固相复合机轧辊系统的改进即工作辊的中心位置设有槽,使得银铜侧复料带结合强度得到有效提高。
3.进一步的,按照本发明的方法步骤,可以有效减少带材开裂及银层偏位等现象,同时,采用优选的工艺及其参数的设计使得最终产品的性能得到保证。比如,本发明通过使用氢气保护下的退火工艺使得料带表面氧化物在炉内发生还原,进而达到料带 光亮退火的效果。
综上,本发明上述方法能提高银铜异种材料侧面结合强度,并减少生产工序,缩短了生产周期,大大的提高了生产效率,从而进一步满足了制造性能稳定又可规模化生产的实际需求。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明一实施例中异形轧辊组的结构示意图;
图2-图8为本发明部分实施例制备产品的实物照片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
如图1所示,为本发明部分实施例中采用的异形轧辊组结构示意图,图1中:上支承辊1,第一异形轧辊2,第二异形轧辊3,下支承辊4,所述异形轧辊组(第一异形轧辊2,第二异形轧辊3)为四辊固相复合轧机轧辊系统中的一对工作辊,所述第一异形轧辊2,第二异形轧辊3的中心位置设有槽5。图1所示为一具体实施例,其中第一异形轧辊2,第二异形轧辊3中设置的槽5,槽的宽度为130mm,深度为3mm。在其他实施例中,本发明上述的第一异形轧辊2,第二异形轧辊3也可以其他尺寸参数,只要在槽的宽度为130-160mm、深度为3-6mm范围内均可以实现本发明的目的。
本发明按上述异形轧辊的槽宽度的负公差制造宽度固定的铜框、相应的铜条和银条,并对铜框、铜条、银条进行表面处理;然后根据需要将不同条数的铜条与银条间隔排列紧固的放入铜框内,形成一块复合坯料,即复合锭块。
在本发明中,所述铜框可以是多种形状,优选规则形状,比如长方形铜框,对该种形状的铜框,可以采用参数:长度L=500mm~2000mm,宽度W=129mm~129.5mm,厚度h=6~40mm。当然,在其他实施例中,也可以是其他形状,具体形状根据实际需要设定。
在本发明中,所述的铜条、银条是挤压成型后截断形成,其长度为L1=L-50mm,厚度与铜框厚度一致,宽度W1=3mm~50mm。铜条、银条复合的具体数量可以根据实际需求设置。
为了更好理解本发明的技术方案,以下采用上述的异形轧辊提供实施例细节说明,以下实施例中以两条银板与一条铜板、一个铜框组合的复合带材制备方法为例,其中:
根据异形轧辊料槽尺寸制备铜框:
将129.5mm(宽)×1000mm(长)×20mm(高)的铜板使用铣床精铣一个46.65mm(宽)×950mm(长)×20mm(高)带圆角的矩形凹槽;
根据图纸需要制备铜条与银条:
铜条:11.55mm(宽)×950mm(长)×20mm(高)
银条:3mm(宽)×950mm(长)×20mm(高)
以上具体的铜框、铜条与银条是本发明部分实施例中采用的参数,仅仅为了更好说明,并不用于限制本发明的铜框、铜条与银条的数量以及尺寸。
实施例1:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将一半的铜条、银条及铜框进行去油和表面打磨处理,另一半的铜条不进行表面处理,然后分别将两种处理方式不同的原材料制作成复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述的复合锭块进行变形量为70%冷复合处理(轧制),形成贯穿式银铜侧复带材;原材料表面处理后制作的产品在轧制过程中界面贴合,没有表面处理的产品在轧制过程中界面开裂。表面处理可以明显的改善产品的结合强度。
(3)将(2)步骤中原材料表面处理后制作的产品进行轧制,轧制得到的侧复带材在保护气氛下扩散退火处理;
本实施例中,退火温度750℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为4小时。
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行四道次轧制,本实施例中,每道次变形量控制在12%,总变形量控制在50%之间。
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为600℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为4小时。
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图2),且各项性能符合图纸要求。
本发明通过对原材料进行表面处理,使的不同种材料接触面没有油污、杂质,同时表面打磨有助于扩散层的形成,可以有效减少带材开裂,增加结合强度。本发明上述方法能提高银铜异种材料侧面结合强度,并减少生产工序,缩短了生产周期,大大的提高了生产效率,从而进一步满足了制造性能稳定又可规模化生产的实际需求。
实施例2:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将相应的铜条、银条及铜框进行软化退火,退火温度600℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2小时,再进行去油和表面打磨处理,然后将两条银板与一条铜板间隔排列紧固的放入长方形铜框内,形成一块复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述的复合锭块进行变形量为70%冷复合处理(轧制),形成贯穿式银铜侧复带材;
(3)将(2)步骤中原材料表面处理后制作的产品进行轧制,轧制得到的侧复带材在保护气氛下扩散退火处理;
本实施例中,退火温度550℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为6小时。
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行四道次轧制,本实施例中,每道次变形量控制在15%,总变形量控制在60%之间。
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为450℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2小时。
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图3),且各项性能符合图纸要求。
本发明通过对原材料进行软化退火,使材料流动性更好。在轧制过程中,原材料在50-85%变形量轧制过程中延伸同步、界面接触紧密,有助提高扩散速度,增加结合强度;同时减少了轧制过程中由于原材料流动不同步导致产品局部内裂而造成界面氧化的问题,提高了产品的质量。本发明上述方法能提高银铜异种材料侧面结合强度,同时提升产品的均一、稳定性,满足了可规模化生产的实际需求。
实施例3:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将相应的铜条、银条及铜框进行软化退火,退火温度550℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为3小时,再进行去油和表面打磨处理,然后将两条银板与一条铜板间隔排列紧固的放入长方形铜框内,形成一块复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述复合锭块进行变形量为60%冷复合处理,形成贯穿式银铜侧复带材;
(3)将(2)步骤轧制得到的侧复带材在保护气氛下扩散退火处理,要求退火温度750℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为3小时;
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行五道次轧制,每道次变形量控制在10%,总变形量控制在40%左右;
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为400℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为6小时;
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图4),且各项性能符合图纸要求。
本发明通过对控制轧制变形量在50-85%,可以有效的控制产品的复合产品的结合强度和成材率。复合变形量过低,材料之间不能形成有效的机械结合界面,及不能形成 微观上的分子间之间的作用力,使得扩散层变薄,结合强度变弱;变形量过高,导致产品出现不能回复的缺陷,甚至内裂,最终导致产品的性能不合格。
实施例4:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将相应的铜条、银条及铜框进行软化退火,退火温度650℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2小时,再进行去油和表面打磨处理,然后将两条银板与一条铜板间隔排列紧固的放入长方形铜框内,形成一块复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述复合锭块进行变形量为70%冷复合处理,形成贯穿式银铜侧复带材;
(3)将(2)步骤轧制得到的侧复带材在保护气氛下扩散退火处理,要求退火温度600℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为1小时;
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行五道次轧制,每道次变形量控制在12%,总变形量控制在50%左右;
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为450℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2小时;
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图5),且各项性能符合图纸要求。
本发明通过对扩散退工工艺参数的制定,可以有效的控制界面层的厚度。因为本材料使用的功能是通过电阻发热的熔断,起到断路保护的作用,所以对电阻及其敏感。温度越高,热运动越剧烈,时间越久,热扩散越距离,扩散层越厚,形成的金属间化合物越多,电阻越大;温度低、时间短,热运动不剧烈,不能形成有效的扩散层,导致结合强度不足。本发明的上述方法可以得到合理的扩散层,符合强度要求的前提下,满足客户的使用要求。
实施例5:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将相应的铜条、银条及铜框进行软化退火,退火温度600℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为3小时,再进行去油和表面打磨处理,然后将两条银板与一条铜板间隔排列紧固的放入长方形铜框内,形成一块复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述复合锭块进行变形量为75%冷复合处理,形成贯穿式银铜侧复带材;
(3)将(2)步骤轧制得到的侧复带材在保护气氛下扩散退火处理,要求退火温度650℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为1小时;
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行五道次轧制,每道次变形量控制在13%,总变形量控制在52%左右;
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为400℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2.5小时;
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图6),且各项性能符合图纸要求。
本发明通过对冷轧轧制的总变形量和道次变形量的控制,在满足银层定位的前提下,节省了加工时间,缩短了加工周期。因为变形量不同,材料的宽展不同、材料的内应力累积不同。变形量太小,加工周期长,宽展大;变形量太大,材料会出现不回复的内部缺陷,对产成品的性能产生一定的影响。本发明的上述方法通过合理的加工工艺,提高了生产效率。
实施例6:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将相应的铜条、银条及铜框进行软化退火,退火温度550℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为4小时,再进行去油和表面打磨处理,然后将两条银板与一条铜板间隔排列紧固的放入长方形铜框内,形成一块复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述复合锭块进行变形量为60%冷复合处理,形成贯穿式银铜侧复带材;
(3)将(2)步骤轧制得到的侧复带材在保护气氛下扩散退火处理,要求退火温度550℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2小时;
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行五道次轧制,每道次变形量控制在12%,总变形量控制在48%左右;
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为450℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2小时;
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图7),且各项性能符合图纸要求。
本发明通过对软化退火的控制,得到满足客户力学性能的产品。因为不同的软化退火温度,对材料的织构、晶粒和内应力产生不同的影响。软化退火温度低、时间短,回火不彻底,材料不能发生再结晶,加工织构不能去除,会导致产品在加工过程中断裂;软化温度高、时间长,会导致材料发生二次再结晶,出现大晶粒,影响材料的强度。本发明的上述方法通过合理的加工工艺,制作出满足客户使用要求的产品。
实施例7:
本实施例中提供一种贯穿式银铜复合锭块的制备方法,并基于制备的银铜复合锭块进一步提供带材的制备方法。具体包括如下步骤:
(1)采用贯穿式的方法拼接由银铜异种金属组成的复合锭块
在制备好铜条、银条及铜框后,将相应的铜条、银条及铜框进行软化退火,退火温度550℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为4小时,再进行去油和表面打磨处理,然后将两条银板与一条铜板间隔排列紧固的放 入长方形铜框内,形成一块复合坯料,即贯穿式银铜复合锭块。
(2)使用四辊辊组固相复合轧机对上述复合锭块进行变形量为65%冷复合处理,形成贯穿式银铜侧复带材;
(3)将(2)步骤轧制得到的侧复带材在保护气氛下扩散退火处理,要求退火温度650℃,保护气体为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为1.5小时;
(4)将扩散退火后的侧复料带在四辊可逆冷轧机上进行五道次轧制,每道次变形量控制在14%,总变形量控制在56%左右;
(5)将(4)步骤加工后的带材进行可控气氛的软化退火处理,要求退火温度为500℃,气氛为氢气(炉内气压大于大气压),气流量为0.4~0.6m 3/h,退火时间为2.5小时;
(6)将(5)步骤完成后的带材在四辊可逆精轧机上进行精加工,其最终厚度为0.1mm,后经检验料带通过检具不漏铜(如图8),且各项性能符合图纸要求。
本发明通过使用赶紧的四辊辊组固相复合轧机,有效的减少了产品的开裂和银层的偏位,提高了生产效率。因为四辊辊组对材料形成一定的挤压和限位作用,增加材料的界面结合,减少材料的侧边延伸,极大的提高了产品的成材率;同时对比常规的工艺,使用四辊辊组生产,可以生产出单重更大的产品,提高了生产效率。
现有技术中不使用四辊辊组轧制的方法,材料在变形的过程中,由于材料上表面和下表面的横向宽展不同,使得定位银层发生错层,同时,设备对材料施加的能量部分会通过宽度方向的延伸消耗,不容易在界面处形成有效的分子结合,导致结合强度变差。
因此,本发明的上述方法以及改进的四辊辊组,有效的解决材料开裂和银层的偏位,极大的提高了生产效率。
综合以上实施例,采用本发明进行贯穿式银铜侧复带材的制备,可以有效减少带材开裂及银层偏位等现象,同时对料带中铜银的结合强度有明显提升,缩短了生产周期,大大的提高了生产效率。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (13)

  1. 一种贯穿式银铜复合锭块的制备方法,其特征在于,采用贯穿式的方法拼接由银铜异种金属组成的复合锭块,包括:
    采用异形轧辊组,所述异形轧辊组是指:四辊固相复合轧机轧辊系统中的一对工作辊,所述工作辊的中心位置设有槽;
    按异形轧辊的槽宽度的负公差制造宽度固定的铜框、及对应的铜条和银条;
    将铜条与银条间隔排列紧固的放入铜框内,形成一块复合坯料,即复合锭块。
  2. 根据权利要求1所述的贯穿式银铜复合锭块的制备方法,其特征在于,所述铜框、铜条、银条在复合前进行表面处理,所述表面处理是指去油和/或表面打磨处理。
  3. 根据权利要求2所述的贯穿式银铜复合锭块的制备方法,其特征在于,所述铜框、铜条在表面处理前,在气体保护炉中进行一道软化退火处理,
  4. 根据权利要求3所述的贯穿式银铜复合锭块的制备方法,其特征在于,所述软化退火处理,其中:退火温度为500℃-800℃,氢气气氛且炉内气压大于大气压,气流量为0.4~0.6m 3/h,退火时间1~3小时。
  5. 根据权利要求1所述的贯穿式银铜复合锭块的制备方法,其特征在于,所述异形轧辊,其槽的宽度为130-160mm,深度为3-6mm。
  6. 根据权利要求1-5任一项所述的贯穿式银铜复合锭块的制备方法,其特征在于,所述铜框采用长方形铜框,长度L=500mm~2000mm,宽度W=129mm~129.5mm,厚度h=6~40mm。
  7. 根据权利要求6所述的贯穿式银铜复合锭块的制备方法,其特征在于,所述的铜条、银条是挤压成型后截断形成,其长度为L1=L-50mm,厚度与铜框厚度一致,宽度W1=3mm~50mm。
  8. 一种贯穿式银铜复合带材的制备方法,其特征在于,所述方法采用上述权利要求1-8任一项所述的银铜复合锭块作为原料,其中:
    S1:通过异形工作辊的槽对复合锭块进行限位,对复合锭块进行变形量X=50%~85%冷复合处理,形成贯穿式银铜侧复带材;其中异形工作辊对复合锭块的限位,使得轧制时银铜界面得到充分的挤压、变形、新鲜的银铜界面形成初步的物理机械咬合;
    S2:将S1得到的贯穿式银铜侧复带材在保护气氛下扩散退火处理,使银铜界面结 合方式由初步的机械咬合转变为机械咬合与化学结合共同作用,结合强度进一步得到提高;
    S3:将S2扩散退火后的侧复带材在四辊可逆冷轧机上进行多道次轧制;
    S4:将S3轧制后的带材进行可控气氛的软化退火处理,得到贯穿式银铜复合带材。
  9. 根据权利要求8所述的贯穿式银铜复合带材的制备方法,其特征在于,S1中,所述变形量X=(h-h1)/h,其中h为复合锭块厚度,h1为贯穿式银铜侧复带材厚度。
  10. 根据权利要求8所述的贯穿式银铜复合带材的制备方法,其特征在于,S2中,所述在保护气氛下扩散退火处理,其中:退火温度500℃~800℃,保护气体为氢气且炉内气压大于大气压,气流量为0.4~0.6m 3/h,退火时间为3~8小时。
  11. 根据权利要求8所述的贯穿式银铜复合带材的制备方法,其特征在于,S3中,所述多道次轧制,其中:每道次变形量Xn控制在10%~15%,总变形量Y控制在30%~60%之间。
  12. 根据权利要求11所述的贯穿式银铜复合带材的制备方法,其特征在于,所述总变形量Y=X1+X2+…+Xn,道次变形量指每道次结束时其厚度变化量与道次开始前厚度的比值。
  13. 根据权利要求8所述的贯穿式银铜复合带材的制备方法,其特征在于,S4中,所述可控气氛的软化退火处理,其中退火温度为400℃~600℃,气氛为氢气且炉内气压大于大气压,气流量为0.4~0.6m 3/h,退火时间为2~6小时。
PCT/CN2018/115340 2017-12-05 2018-11-14 贯穿式银铜复合锭块及带材的制备方法 WO2019109784A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/768,274 US11000889B2 (en) 2017-12-05 2018-11-14 Methods for preparing alternating arrangement silvercopper lateral composite ingot and strip
EP18885125.7A EP3722015A4 (en) 2017-12-05 2018-11-14 PROCESS FOR PREPARING AN INGOT AND A SILVER-COPPER COMPOSITE STRIP OF THE PENETRATION TYPE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711269221.9 2017-12-05
CN201711269221.9A CN108080414B (zh) 2017-12-05 2017-12-05 贯穿式银铜复合锭块及带材的制备方法

Publications (1)

Publication Number Publication Date
WO2019109784A1 true WO2019109784A1 (zh) 2019-06-13

Family

ID=62173787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115340 WO2019109784A1 (zh) 2017-12-05 2018-11-14 贯穿式银铜复合锭块及带材的制备方法

Country Status (4)

Country Link
US (1) US11000889B2 (zh)
EP (1) EP3722015A4 (zh)
CN (1) CN108080414B (zh)
WO (1) WO2019109784A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108080414B (zh) * 2017-12-05 2019-05-24 温州宏丰电工合金股份有限公司 贯穿式银铜复合锭块及带材的制备方法
CN109807177B (zh) * 2019-03-12 2020-05-19 太原理工大学 一种异形支承辊的液压压下波纹辊轧机
CN110773719A (zh) * 2019-10-18 2020-02-11 郑州机械研究所有限公司 一种银铜复合带制备方法
CN112388313B (zh) * 2020-10-26 2022-03-11 郑州机械研究所有限公司 制备复合带材的方法及装备
CN115338277B (zh) * 2022-08-09 2023-11-28 北京首钢吉泰安新材料有限公司 一种亮面金黄的铁铬铝合金材料及其制备方法
CN116000559B (zh) * 2022-09-13 2023-09-15 温州宏丰特种材料有限公司 一种Cu/Al侧面复合材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357503A (ja) * 1989-07-21 1991-03-12 Tanaka Kikinzoku Kogyo Kk 複合接点帯材の製造方法
US5042711A (en) * 1987-06-22 1991-08-27 Polymetallurgical Corporation Multi-gauge bondings
CN1583303A (zh) * 2004-06-09 2005-02-23 沈阳工业大学 一种铜铝双面复合板的轧制方法及轧制设备
CN101318286A (zh) 2008-07-03 2008-12-10 温州宏丰电工合金有限公司 贯穿式侧向复合板带材的制备方法及其模具热压装置
CN101670365A (zh) * 2009-09-15 2010-03-17 西部金属材料股份有限公司 一种双侧面镶嵌式银铜复合带材的制备方法
CN102814324A (zh) 2012-08-30 2012-12-12 福达合金材料股份有限公司 侧复式银铜复合带材的制备方法
CN103464505A (zh) * 2013-09-06 2013-12-25 武汉钢铁(集团)公司 高频焊轧多层复合板生产装置及方法
CN108080414A (zh) * 2017-12-05 2018-05-29 温州宏丰电工合金股份有限公司 贯穿式银铜复合锭块及带材的制备方法
CN207577122U (zh) * 2017-12-05 2018-07-06 温州宏丰电工合金股份有限公司 贯穿式银铜复合锭块的制备装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798932A (en) * 1986-02-10 1989-01-17 Polymetallurgical Corporation Solid phase edge bonding of metal strips
JPH07241685A (ja) * 1994-03-04 1995-09-19 Nkk Corp クラッド鋼板の製造方法
CN1586802A (zh) * 2004-07-01 2005-03-02 陈晓 双侧复合板的制造方法
CN100496778C (zh) * 2007-05-23 2009-06-10 福达合金材料股份有限公司 一种双侧面镶嵌式热轧复合银铜带材的制备方法
CN102896150B (zh) * 2012-11-07 2015-02-11 福达合金材料股份有限公司 一种银复铜镶嵌贯穿式复合带材的制备方法
CN106854710B (zh) * 2016-12-30 2019-04-05 温州宏丰电工合金股份有限公司 一种银基电接触材料的制备方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042711A (en) * 1987-06-22 1991-08-27 Polymetallurgical Corporation Multi-gauge bondings
JPH0357503A (ja) * 1989-07-21 1991-03-12 Tanaka Kikinzoku Kogyo Kk 複合接点帯材の製造方法
CN1583303A (zh) * 2004-06-09 2005-02-23 沈阳工业大学 一种铜铝双面复合板的轧制方法及轧制设备
CN101318286A (zh) 2008-07-03 2008-12-10 温州宏丰电工合金有限公司 贯穿式侧向复合板带材的制备方法及其模具热压装置
CN101670365A (zh) * 2009-09-15 2010-03-17 西部金属材料股份有限公司 一种双侧面镶嵌式银铜复合带材的制备方法
CN102814324A (zh) 2012-08-30 2012-12-12 福达合金材料股份有限公司 侧复式银铜复合带材的制备方法
CN103464505A (zh) * 2013-09-06 2013-12-25 武汉钢铁(集团)公司 高频焊轧多层复合板生产装置及方法
CN108080414A (zh) * 2017-12-05 2018-05-29 温州宏丰电工合金股份有限公司 贯穿式银铜复合锭块及带材的制备方法
CN207577122U (zh) * 2017-12-05 2018-07-06 温州宏丰电工合金股份有限公司 贯穿式银铜复合锭块的制备装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3722015A4
ZHONGCAI ET AL.: "Process and Performance Study on Composite Silver/Copper Melt Materials", ELECTRO-OPTIC MATERIALS *

Also Published As

Publication number Publication date
CN108080414B (zh) 2019-05-24
US20200290103A1 (en) 2020-09-17
EP3722015A4 (en) 2021-09-15
EP3722015A1 (en) 2020-10-14
CN108080414A (zh) 2018-05-29
US11000889B2 (en) 2021-05-11

Similar Documents

Publication Publication Date Title
WO2019109784A1 (zh) 贯穿式银铜复合锭块及带材的制备方法
CN102658452B (zh) 一种铜钢覆合用铜带加工工艺方法
CN103962409B (zh) 一种铜线的制造方法
CN100474458C (zh) 铜包铝扁线的制造方法
CN104722595B (zh) 一种宽幅超薄的纯银箔带及其制造方法
CN100491001C (zh) 一种制造铜及铜合金带材的铸轧加工方法
CN1172758C (zh) 温加工制造钛及钛合金管的方法
CN114525390A (zh) 一种铜锡合金带材的生产方法
WO2009033317A1 (fr) Procédé de fabrication d'un fil plat d'aluminium à gaine de cuivre
CN105327937A (zh) 一种镁合金板带轧制生产线及其轧制成型生产方法
CN112692060B (zh) 一种钛合金板材的制备方法
CN102814324A (zh) 侧复式银铜复合带材的制备方法
CN104028557A (zh) 铜或铜合金带材及其制造方法和生产设备
CN109201738B (zh) 一种梯度结构带材的复合轧制制备方法
CN111451276A (zh) 高纯Gd/Tb/Dy/Y稀土金属箔材的制备方法
CN102400072B (zh) 一种镁及镁合金板的生产方法
JP3659208B2 (ja) MgまたはMg合金帯板の製造方法および製造装置
CN105537313A (zh) 铜线的制造方法
CN205183324U (zh) 一种镁合金板带轧制生产线
CN104475450B (zh) 一种旋压坩埚用宽幅钼板带的轧制方法
CN106623419A (zh) 定膨胀合金带材的冷轧生产方法
CN117463782B (zh) Ti-Al-Ti多层层状复合材料的制备方法及其制得的复合材料
CN111455294A (zh) 高纯Ho/Er/Tm稀土金属箔材及其制备方法
CN104550285A (zh) 连续挤压无氧铜带制造新技术
CN114310170B (zh) 一种基于3d打印的铜铍合金宽幅高精超薄带短流程的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885125

Country of ref document: EP

Effective date: 20200706