WO2019109407A1 - 一种基于飞行路径角规划的再入轨迹设计方法 - Google Patents

一种基于飞行路径角规划的再入轨迹设计方法 Download PDF

Info

Publication number
WO2019109407A1
WO2019109407A1 PCT/CN2017/117968 CN2017117968W WO2019109407A1 WO 2019109407 A1 WO2019109407 A1 WO 2019109407A1 CN 2017117968 W CN2017117968 W CN 2017117968W WO 2019109407 A1 WO2019109407 A1 WO 2019109407A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight path
reentry
path angle
reentry trajectory
trajectory
Prior art date
Application number
PCT/CN2017/117968
Other languages
English (en)
French (fr)
Inventor
周文雅
王玉桃
马宏图
陈洪波
聂振焘
李永远
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/629,725 priority Critical patent/US11286065B2/en
Publication of WO2019109407A1 publication Critical patent/WO2019109407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • B64G1/245Attitude control algorithms for spacecraft attitude control

Definitions

  • the invention relates to the field of aerospace technology, in particular to a reentry trajectory design method based on flight path angle planning.
  • the lift-type re-entry spacecraft has the advantages of high speed, long range and strong maneuverability, and can achieve military missions such as rapid global attack or material transportation.
  • This type of aircraft exhibits dynamic characteristics such as strong nonlinearity, strong coupling, and fast dynamic change during reentry flight.
  • reentry flight needs to meet process constraints such as stagnation heat flow, dynamic pressure, and overload, and speed, position, and heading error. Terminal constraints such as corners make reentry trajectory design extremely difficult.
  • r is the geocentric distance (the distance from the center of the earth to the aircraft); V is the flight speed; ⁇ and ⁇ are the longitude and latitude respectively; ⁇ is the flight path angle; ⁇ is the heading angle.
  • m is the mass of the aircraft.
  • represents the atmospheric density
  • S represents the reference area of the aircraft
  • C L and C D are the lift coefficient and the drag coefficient respectively (usually the lift coefficient, the drag coefficient and the angle of attack ⁇ and the velocity V are obtained according to the wind tunnel test).
  • the equation also contains two control variables, the tilt angle ⁇ and the angle of attack ⁇ .
  • the control effect of the angle of attack ⁇ is implicit in the drag coefficient C D and the lift coefficient C L .
  • the gravity model is as follows
  • Process constraints include stagnation heat flow, overload and dynamic pressure, as follows:
  • the terminal constraints include the flight speed V reaching the terminal speed requirement, and the geocentric distance, flight range and heading error angle are within a certain range:
  • the subscript f indicates the reentry terminal state
  • the subscript TAEM indicates the required terminal state.
  • s indicates the flight to be traversed: the plane determined by the point where the aircraft is located, the target point and the center of the earth is the instantaneous target plane, and the flight path to be traveled refers to the large arc length projected from the current position to the target point in the instantaneous target plane to the surface of the earth.
  • the latitude and longitude of the target point are known as ⁇ f and ⁇ f .
  • LOS LOS indicates the line of sight azimuth of the current position of the aircraft to the target point (based on true north) Clockwise is positive), the expression is:
  • the reentry trajectory design is to design the two control angles of attack angle ⁇ and the tilt angle ⁇ to make the motion trajectory of the aircraft satisfy the process constraints and the terminal constraints.
  • the angle of attack ⁇ is designed offline and loaded into the onboard computer in advance, and the tilt angle ⁇ is usually generated online in real time according to the actual situation of the reentry task.
  • Equation (20) describes the relationship between the two control-quantity angles of attack ⁇ (implicitly in the lift L) and the tilt angle ⁇ and the two state-valued core distances r and the flight velocity V, also known as the quasi-equilibrium. Gliding conditions (QEGC). Since the angle of attack ⁇ is designed offline in advance, equation (20) gives the relationship between the inclination angle ⁇ and the geocentric distance r and the flight velocity V. Equations (11), (12) and (13) give the relationship between the process constraint and the geocentric distance r and the flight velocity V. Therefore, the above-mentioned relationship can be used to find the inclination angle ⁇ limit corresponding to the process constraint.
  • the purpose of designing the reentry reference trajectory is achieved by planning the control quantity profile within the control quantity limit.
  • the present invention provides a new method for reentry trajectory design based on flight path angle planning, which not only improves the accuracy of the reentry trajectory, but also has high reliability, which is beneficial to re-entry aerospace engineering. Application.
  • a reentry trajectory design method based on flight path angle planning comprising the following steps:
  • the reentry trajectory design method disclosed by the invention can accurately plan the reentry trajectory, avoiding the risk that the reentry trajectory may not satisfy the path constraint due to neglecting the flight path angle and its change rate, improving the reliability of the reentry trajectory, and the calculation rate is fast, The solution accuracy is high.
  • Figure 1 is a flow chart of a method of the present invention
  • FIG. 2 is a schematic diagram of the lower limit of the flight path angle of the present invention.
  • a reentry trajectory design method based on flight path angle planning including the following steps:
  • Step S11 extracting the actual working parameters of the aircraft, and setting the dynamic pressure maximum value q max and the stagnation point heat flow maximum according to the requirements of the aircraft mission. And overload maximum n max ;
  • Step S12 according to the dynamic pressure maximum value q max , the stagnation point heat flow maximum value And the overload maximum value n max to calculate the process constraints of the reentry trajectory, the specific expression is as follows:
  • Step S13 Draw a reentry trajectory process constraint in the velocity-height phase to obtain a velocity-height boundary of the reentry trajectory.
  • the specific steps include:
  • Step S21 Solving the flight state quantity of the initial descending segment according to the following reentry motion differential equation and plotting the reentry trajectory of the initial descending segment in the speed-height phase plane:
  • Step S22 Establish a lower limit ⁇ 1 (V) of the flight path of the first stage of the controlled flight of the aircraft according to the reentry trajectory and the speed-height boundary of the initial descending segment in the velocity-height phase.
  • the steps for obtaining the lower limit of the flight path angle of the first stage include:
  • Step A Perform a re-entry trajectory of the initial descending segment and a common tangent l 1 of the velocity-height boundary in the velocity-height phase.
  • the points of the re-entry trajectory of the initial falling section are tangent sequentially.
  • T is taken as the transition point, that is, the initial descending section motion and the aircraft have The boundary point of the controlled flight motion, which corresponds to the point (V t , r t ) in the velocity-height phase.
  • Procedure B extracting common tangent slope of 1 l of k 1.
  • Step C from the reentry motion differential equation, the slope of the re-entry tangential line satisfies the following formula
  • Step S23 Establish a lower limit ⁇ 2 (V) of the flight path of the second stage of the controlled flight of the aircraft according to the target point and the speed-height boundary in the speed-height phase.
  • the steps for obtaining the lower limit of the flight path angle of the second stage include:
  • Step D Perform a speed-height boundary tangent l 2 in the speed-height phase to re-enter the target point, that is, the end point F(V f , r f ) corresponding to the terminal speed and the geocentric distance, and the speed-height
  • the straight line l 2 of the boundary tangent; the intersection M (V m , r m ) of the straight line l 1 and the straight line l 2 is the intermediate point between the first stage and the second stage of the controlled flight of the aircraft.
  • Step E to extract the tangent slope of 2 l of K 2;
  • Step F according to the formula Calculate the lower limit ⁇ 2 (V) of the flight path of the second phase of the controlled flight of the aircraft, ie:
  • Step S24 combining the lower limit of the flight path angle of the first stage and the lower limit of the flight path angle of the second stage, and obtaining the lower limit of the flight path angle ⁇ min (V) of the entire controlled flight process.
  • Step S31 setting two initial values ⁇ 1 (V) and ⁇ 2 (V) of the flight path angle increment ⁇ (V);
  • Step S32 determining the size of the flight path angle under different speed conditions according to the following formula
  • Step S34 using a tilt angle flipping strategy, changing the positive and negative values of the tilt angle to satisfy the lateral trajectory control;
  • Step S35 Calculate the flight path s of the current design end point to the target point to determine whether the error requirement is met. If the requirement is not met, update the flight path angle increment ⁇ n according to the following formula.
  • step S36 step S32 to step S35 are repeatedly executed until the error satisfies the requirement.
  • the error requirement is set according to a specific task situation, and usually the terminal constraint includes the flight speed V reaching the terminal speed requirement, and the geocentric distance, the flight path to be traveled, and the heading error angle are within a certain range:
  • the subscript f indicates the reentry terminal state
  • the subscript TAEM indicates the required terminal state.
  • s indicates the flight to be traversed: the plane determined by the point where the aircraft is located, the target point and the center of the earth is the instantaneous target plane, and the flight path to be traveled refers to the large arc length projected from the current position to the target point in the instantaneous target plane to the surface of the earth.
  • the warp and latitudes ⁇ f and ⁇ f of the target point are known.
  • Heading error angle ⁇ ⁇ LOS - ⁇ , indicating the angle between the line of sight (LOS) of the target point and the current heading;
  • LOS LOS indicates the line of sight azimuth of the current position of the aircraft to the target point (based on the true north as the reference, The hour hand is positive) and its expression is:
  • the invention can accurately plan the reentry trajectory, and does not neglect the flight path angle and the rate of change thereof in the prior art, so that the reentry trajectory may not satisfy the risk of the path constraint and improve the reliability of the reentry trajectory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种基于飞行路径角规划的再入轨迹设计方法,其包括以下步骤:S1、提取飞行器实际工作参数,根据任务需求设置动压最大值Qmax、驻点热流最大值qmax和过载最大值nmax,求解再入轨迹设计的速度-高度边界;S2、根据再入运动微分方程,求解初始下降阶段的再入轨迹,并根据速度-高度相面内的初始下降阶段再入轨迹、速度-高度边界和目标点,建立飞行路径角下限γmin(V);S3、在飞行路径角下限γmin(V)的基础上,规划满足终端约束的飞行路径角,计算对应的倾斜角,得到再入轨迹。本发明通过主动规划飞行路径角,保证再入轨迹满足路径及终端约束,得到准确可靠的再入轨迹。

Description

一种基于飞行路径角规划的再入轨迹设计方法 技术领域
本发明涉及航空航天技术领域,具体涉及一种基于飞行路径角规划的再入轨迹设计方法。
背景技术
升力式再入航天器具有速度快、航程远、机动性强等优势,能够实现全球快速攻击或者物资运送等军事任务。这种飞行器在再入飞行过程中表现为强非线性、强耦合、动态变化快等动力学特征,加之再入飞行需要满足驻点热流、动压、过载等过程约束和速度、位置、航向误差角等终端约束,使得再入轨迹设计极其困难。
常用描述再入运动的微分方程如下(忽略地球自转):
Figure PCTCN2017117968-appb-000001
Figure PCTCN2017117968-appb-000002
Figure PCTCN2017117968-appb-000003
Figure PCTCN2017117968-appb-000004
Figure PCTCN2017117968-appb-000005
Figure PCTCN2017117968-appb-000006
其中:r为地心距(地心到飞行器的距离);V为飞行速度;θ和φ分别为经度和纬度;γ为飞行路径角;ψ为航向角。另外,m为飞行器质量。阻力D和升力L的表达式如下:
Figure PCTCN2017117968-appb-000007
Figure PCTCN2017117968-appb-000008
其中:ρ表示大气密度;S表示飞行器参考面积;C L和C D分别为升力系数和阻力系数(通常根据风洞试验得到升力系数、阻力系数与攻角α和速度V的关 系)。
除上述六个运动状态量以外,方程中还包含两个控制变量,即倾斜角σ和攻角α。其中,攻角α的控制作用隐含在阻力系数C D和升力系数C L中。
对大气密度采用指数形式的模型,其具体的表达式如下:
Figure PCTCN2017117968-appb-000009
其中,ρ 0是海平面处的大气密度;h代表海拔高度;β为大气常数;
重力模型如下
Figure PCTCN2017117968-appb-000010
其中R 0为地球半径,并且海拔高度h=r-R 0,g 0为海平面处重力加速度。
设计再入轨迹,须考虑过程约束和终端约束。过程约束包括驻点热流、过载和动压,分别如下:
Figure PCTCN2017117968-appb-000011
Figure PCTCN2017117968-appb-000012
Figure PCTCN2017117968-appb-000013
三种过程约束的边界是关于地心距r和飞行速度V的等式。
终端约束包括飞行速度V达到终端速度要求,以及地心距、待飞航程和航向误差角在一定范围之内:
V f=V TAEM   (14)
|r f-r TAEM|<Δr   (15)
|s f-s TAEM|<Δs   (16)
|Δψ f|<Δψ TAEM   (17)
式中:下标f表示再入终端状态;下标TAEM表示要求的终端状态。s表示待飞航程:飞行器所在点、目标点和地心所确定的平面为瞬时目标平面,待飞航程指在瞬时目标平面内从当前位置到目标点投影到地球表面的大圆弧长。其中,目标点的经、纬度已知即θ f和φ f
s=cos -1[sinφ fsinφ+cosφ fcosφcos(θ f-θ)]   (18)
Δψ=ψ LOS-ψ表示航向误差角,是目标点视线方向(Line of Sight,LOS)与当前航向的夹角;ψ LOS表示飞行器当前位置到目标点的视线方位角(以正北为基准,顺时针为正),其表达式为:
Figure PCTCN2017117968-appb-000014
再入轨迹设计就是通过设计两个控制量攻角α和倾斜角σ,使飞行器的运动轨迹满足过程约束和终端约束。其中,攻角α会离线设计完成并事先载入机载计算机,倾斜角σ通常根据再入任务的实际情况实时在线生成。
目前已有技术为基于“准平衡滑翔条件(Quasi Equilibrium Gliding Condition,QEGC)”的轨迹设计方法。具体描述如下:由于在再入滑翔阶段,飞行路径角γ始终很小,该方法假设再入滑翔阶段飞行路径角γ始终为零,则其变化率
Figure PCTCN2017117968-appb-000015
也为零,即将微分方程(5)转化为代数方程:
Figure PCTCN2017117968-appb-000016
方程(20)描述了两个控制量攻角α(隐含在升力L中)和倾斜角σ与两个状态量地心距r和飞行速度V之间的关系,又被称作“准平衡滑翔条件(QEGC)”。由于攻角α事先离线设计,因此方程(20)给出了倾斜角σ与地心距r和飞行速度V之间的关系。而方程(11)、(12)和(13)给出了过程约束与地心距r和飞行速度V之间的关系,因此可以过以上关系求出过程约束对应的倾斜角σ界限。通过在控制量界限内规划控制量剖面,以达到设计再入参考轨迹的目的。
上述方法忽略了“飞行路径角及其变化率”,因此设计的再入轨迹可能不满足路径约束,降低了再入轨迹的可靠性。
发明内容
鉴于已有技术存在的不足,本发明提供一种基于飞行路径角规划的再入轨迹设计新方法,该方法不仅提高了再入轨迹的准确性,而且可靠性高,有利于在再入航天工程中应用。
为了实现上述目的,本发明技术方案如下:
一种基于飞行路径角规划的再入轨迹设计方法,其特征在于包括以下步骤:
S1、提取飞行器实际工作参数,根据任务需求设置动压最大值q max、驻点热流最大值Q max和过载最大值n max,求解再入轨迹规划的速度-高度边界;
S2、根据再入运动微分方程,求解初始下降阶段的再入轨迹,并根据速度-高度相面内初始下降阶段再入轨迹、速度-高度边界和目标点,建立飞行路径 角下限γ min(V);
S3、在飞行路径角下限γ min(V)的基础上,规划满足终端约束的飞行路径角,计算对应的倾斜角,得到再入轨迹。
本发明公开的再入轨迹设计方法能够准确规划再入轨迹,避免因忽略飞行路径角及其变化率造成再入轨迹可能不满足路径约束的风险,提高再入轨迹的可靠性,运算速率快、求解精度高。
附图说明
为了更清楚地说明本发明的实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明方法计算流程图;
图2为本发明飞行路径角下限求取示意图。
具体实施方式
为使本发明的实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
如图1所示:一种基于飞行路径角规划的再入轨迹设计方法,包括以下步骤:
S1、提取飞行器实际工作参数,根据任务需求设置动压最大值q max、驻点热流最大值
Figure PCTCN2017117968-appb-000017
和过载最大值n max,求解再入轨迹的速度-高度边界,其具体步骤包括:
步骤S11、提取飞行器实际工作参数,并根据飞行器任务需求设置动压最大值q max、驻点热流最大值
Figure PCTCN2017117968-appb-000018
和过载最大值n max
步骤S12、根据动压最大值q max、驻点热流最大值
Figure PCTCN2017117968-appb-000019
和过载最大值n max计算再入轨迹的过程约束,具体表述如下:
根据以下公式求解当驻点热流达到最大值时对应的飞行速度V Q和地心距r Q
Figure PCTCN2017117968-appb-000020
其中,k Q表示飞行器参数,ρ表示大气密度;
根据以下公式求解当动压达到最大值时对应的飞行速度V q和地心距r q
Figure PCTCN2017117968-appb-000021
根据以下公式求解当过载达到最大值时对应的飞行速度V n和地心距r n
Figure PCTCN2017117968-appb-000022
其中,L表示升力,D表示阻力;
经过上述计算可以求得包括驻点热流约束、动压约束以及过载约束在内的再入轨迹过程约束。
步骤S13、在速度-高度相面内绘制再入轨迹过程约束,得到再入轨迹的速度-高度边界。
S2、根据再入运动微分方程,求解初始下降阶段的再入轨迹,并根据速度-高度相面内的初始下降阶段再入轨迹、速度-高度边界和目标点,建立飞行路径角下限γ min(V)。如图2所示,其具体步骤包括:
步骤S21、根据以下再入运动微分方程,求解初始下降段的飞行状态量并在速度-高度相面内绘制初始下降段的再入轨迹:
Figure PCTCN2017117968-appb-000023
Figure PCTCN2017117968-appb-000024
Figure PCTCN2017117968-appb-000025
Figure PCTCN2017117968-appb-000026
Figure PCTCN2017117968-appb-000027
Figure PCTCN2017117968-appb-000028
其中,r表示地心距,θ表示经度,φ表示纬度,V表示速度、γ表示飞行路径角,ψ表示航向角;m表示飞行器质量,g表示重力加速度,L表示升力,D表示阻力,σ表示倾斜角。经过上述微分方程计算可求得一系列速度-高度相面内的点(V,r)。
步骤S22、根据速度-高度相面内初始下降段的再入轨迹与速度-高度边界,建立飞行器有控飞行第一阶段飞行路径角下限γ 1(V)。求取第一阶段飞行路径角下限的步骤包括:
步骤A、在速度-高度相面内做初始下降段的再入轨迹与速度-高度边界的公 切线l 1。具体的,过初始下降段再入轨迹各点依次做切线,当过切点T的切线l 1也满足与速度-高度边界相切时,取T为过渡点,即初始下降段运动与飞行器有控飞行运动的分界点,其在速度-高度相面内对应点(V t,r t)。
步骤B、提取公切线l 1的斜率k 1
步骤C、由再入运动微分方程可知,再入轨迹切线斜率满足下式
Figure PCTCN2017117968-appb-000029
因此,根据公式
Figure PCTCN2017117968-appb-000030
计算飞行器有控飞行第一阶段飞行路径角下限γ 1(V),即:
Figure PCTCN2017117968-appb-000031
步骤S23、根据速度-高度相面内目标点与速度-高度边界,建立飞行器有控飞行第二阶段飞行路径角下限γ 2(V)。求取第二阶段飞行路径角下限的步骤包括:
步骤D、在速度-高度相面内过再入目标点做速度-高度边界的切线l 2,即通过终端速度和地心距对应的终点F(V f,r f),做与速度-高度边界相切的直线l 2;直线l 1与直线l 2的交点M(V m,r m)为飞行器有控飞行第一阶段与第二阶段的中间点。
步骤E、提取切线l 2的斜率k 2
步骤F、根据公式
Figure PCTCN2017117968-appb-000032
计算飞行器有控飞行第二阶段飞行路径角下限γ 2(V),即:
Figure PCTCN2017117968-appb-000033
步骤S24、合并第一阶段飞行路径角下限与第二阶段飞行路径角下限,得到整个有控飞行过程的飞行路径角下限γ min(V)。
S3、在飞行路径角下限γ min(V)的基础上,规划满足终端约束的飞行路径角,计算对应的倾斜角,得到再入轨迹。其具体步骤包括:
步骤S31、设定飞行路径角增量Δγ(V)的两个初始值Δγ 1(V)和Δγ 2(V);
步骤S32、根据以下公式求出不同速度条件下的飞行路径角的大小
γ(V)=γ min(V)+Δγ(V);
步骤S33、根据公式
Figure PCTCN2017117968-appb-000034
求取对应的倾斜角;
步骤S34、使用倾斜角翻转策略,改变倾斜角的正负值来满足横向轨迹控制;
步骤S35、计算本轮设计末端点到目标点的待飞航程s,判断是否满足误差要求,若不满足要求,根据以下公式更新飞行路径角增量Δγ n
Figure PCTCN2017117968-appb-000035
步骤S36、反复执行步骤S32至步骤S35,直至误差满足要求。
本发明中,误差要求根据具体任务情况设定,通常终端约束包括飞行速度V达到终端速度要求,以及地心距、待飞航程和航向误差角在一定范围之内:
V f=V TAEM
|r f-r TAEM|<Δr
|s f-s TAEM|<Δs
|Δψ f|<Δψ TAEM
式中:下标f表示再入终端状态;下标TAEM表示要求的终端状态。s表示待飞航程:飞行器所在点、目标点和地心所确定的平面为瞬时目标平面,待飞航程指在瞬时目标平面内从当前位置到目标点投影到地球表面的大圆弧长。其中目标点的经、纬度θ f和φ f已知。根据以下公式求的待飞航程:
s=cos -1[sinφ fsinφ+cosφ fcosφcos(θ f-θ)]
航向误差角Δψ=ψ LOS-ψ,表示目标点视线方向(Line of Sight,LOS)与当前航向的夹角;ψ LOS表示飞行器当前位置到目标点的视线方位角(以正北为基准,顺时针为正),其表达式为:
Figure PCTCN2017117968-appb-000036
本发明能够准确规划再入轨迹,不会因为现有技术中忽略飞行路径角及其变化率,造成再入轨迹可能不满足路径约束的风险,提高再入轨迹的可靠性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (7)

  1. 一种基于飞行路径角规划的再入轨迹设计方法,其特征在于包括以下步骤:
    S1、提取飞行器实际工作参数,根据任务需求设置动压最大值q max、驻点热流最大值
    Figure PCTCN2017117968-appb-100001
    和过载最大值n max,求解再入轨迹的速度-高度边界;
    S2、根据再入运动微分方程,求解初始下降阶段的再入轨迹,并根据速度-高度相面内初始下降阶段再入轨迹、速度-高度边界和目标点,建立飞行路径角下限γ min(V);
    S3、在飞行路径角下限γ min(V)的基础上,规划满足终端约束的飞行路径角,计算对应的倾斜角,得到再入轨迹。
  2. 根据权利要求1所述的再入轨迹设计方法,其特征在于步骤S1包括:
    步骤S11、提取飞行器实际工作参数,并根据飞行器任务需求设置动压最大值q max、驻点热流最大值
    Figure PCTCN2017117968-appb-100002
    和过载最大值n max
    步骤S12、根据动压最大值q max、驻点热流最大值
    Figure PCTCN2017117968-appb-100003
    和过载最大值n max计算再入轨迹的过程约束;
    步骤S13、在速度-高度相面内绘制再入轨迹的过程约束,得到再入轨迹的速度-高度边界。
  3. 根据权利要求1所述的再入轨迹设计方法,其特征在于步骤S2包括:
    步骤S21、根据以下再入运动微分方程,求解初始下降段的飞行状态量并在速度-高度相面内绘制初始下降段的再入轨迹:
    Figure PCTCN2017117968-appb-100004
    Figure PCTCN2017117968-appb-100005
    Figure PCTCN2017117968-appb-100006
    Figure PCTCN2017117968-appb-100007
    Figure PCTCN2017117968-appb-100008
    Figure PCTCN2017117968-appb-100009
    其中,r表示地心距,θ表示经度,φ表示纬度,V表示速度、γ表示飞行路径角,ψ表示航向角;m表示飞行器质量,g表示重力加速度,L表示升力,D表示阻力,σ表示倾斜角;
    步骤S22、根据速度-高度相面内初始下降段的再入轨迹与速度-高度边界,建立飞行器有控飞行第一阶段飞行路径角下限γ 1(V);
    步骤S23、根据速度-高度相面内目标点与速度-高度边界,建立飞行器有控飞行第二阶段飞行路径角下限γ 2(V);
    步骤S24、合并第一阶段飞行路径角下限与第二阶段飞行路径角下限,得到整个有控飞行过程的飞行路径角下限γ min(V)。
  4. 根据权利要求3所述的再入轨迹设计方法,其特征在于求取第一阶段飞行路径角下限的步骤包括:
    步骤221、在速度-高度相面内做初始下降段的再入轨迹与速度-高度边界的公切线l 1
    步骤222、提取公切线l 1的斜率k 1
    步骤223、根据公式
    Figure PCTCN2017117968-appb-100010
    计算飞行器有控飞行第一阶段飞行路径角下限γ 1(V)。
  5. 根据权利要求3所述的再入轨迹设计方法,其特征在于求取第二阶段飞行路径角下限的步骤包括:
    步骤231、在速度-高度相面内过再入目标点做速度-高度边界的切线l 2
    步骤232、提取切线l 2的斜率k 2
    步骤233、根据公式
    Figure PCTCN2017117968-appb-100011
    计算飞行器有控飞行第二阶段飞行路径角下限γ 2(V)。
  6. 根据权利要求1所述的再入轨迹设计方法,其特征在于步骤S3包括:
    步骤S31、设定飞行路径角增量Δγ(V)的两个初始值Δγ 1(V)和Δγ 2(V);
    步骤S32、根据以下公式求出不同速度条件下的飞行路径角的大小
    γ(V)=γ min(V)+Δγ(V);
    步骤S33、根据公式
    Figure PCTCN2017117968-appb-100012
    求取对应的倾斜角;
    步骤S34、使用倾斜角翻转策略,改变倾斜角的正负值来满足横向轨迹控制要求;
    步骤S35、计算本轮设计末端点到目标点的待飞航程s,判断是否满足误差要求,若不满足要求,根据以下公式更新飞行路径角增量Δγ n
    Figure PCTCN2017117968-appb-100013
    步骤S36、反复执行步骤S32至步骤S35,直至误差满足要求。
  7. 根据权利要求6所述的再入轨迹设计方法,其特征在于所述待飞航程s根据以下公式求得:
    s=cos -1[sinφ fsinφ+cosφ fcosφcos(θ f-θ)]
    其中,φ f表示目标点纬度,θ f表示目标点经度。
PCT/CN2017/117968 2017-12-07 2017-12-22 一种基于飞行路径角规划的再入轨迹设计方法 WO2019109407A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,725 US11286065B2 (en) 2017-12-07 2017-12-22 Method for designing reentry trajectory based on flight path angle planning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711285057.0 2017-12-07
CN201711285057.0A CN107992074B (zh) 2017-12-07 2017-12-07 一种基于飞行路径角规划的再入轨迹设计方法

Publications (1)

Publication Number Publication Date
WO2019109407A1 true WO2019109407A1 (zh) 2019-06-13

Family

ID=62036678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117968 WO2019109407A1 (zh) 2017-12-07 2017-12-22 一种基于飞行路径角规划的再入轨迹设计方法

Country Status (3)

Country Link
US (1) US11286065B2 (zh)
CN (1) CN107992074B (zh)
WO (1) WO2019109407A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110826288A (zh) * 2019-10-27 2020-02-21 西安电子科技大学 一种基于免疫克隆选择的再入轨迹优化方法
CN112379693A (zh) * 2020-11-24 2021-02-19 中国运载火箭技术研究院 一种智能并行高斯伪谱法飞行器再入轨迹优化方法
CN113050682A (zh) * 2021-03-12 2021-06-29 中国人民解放军国防科技大学 导弹助推段校正制导方法、装置和高超声速飞行器
CN113483758A (zh) * 2021-06-21 2021-10-08 北京理工大学 多约束行星着陆轨迹矢量规划方法
CN114167887A (zh) * 2021-11-16 2022-03-11 湖北航天技术研究院总体设计所 飞行器落速控制方法、装置、设备及可读存储介质
CN114690794A (zh) * 2022-03-31 2022-07-01 北京中科宇航技术有限公司 一种表格化实时控制飞行状态的方法及系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240323B (zh) * 2018-11-02 2021-07-13 北京控制工程研究所 一种实时解析构造的空天飞行器再入制导方法
CN110471450B (zh) * 2019-08-29 2020-07-14 大连理工大学 在高度速度剖面内直接规划再入轨迹的方法
JP7413121B2 (ja) * 2020-03-27 2024-01-15 三菱重工業株式会社 滑空制御装置、滑空体、飛行体、および滑空プログラム
CN111348223B (zh) * 2020-05-25 2020-08-21 北京星际荣耀空间科技有限公司 一种控制弹道顶点高度的闭路制导方法、装置及设备
CN111813146B (zh) * 2020-07-01 2021-06-08 大连理工大学 基于bp神经网络预测航程的再入预测-校正制导方法
CN112257222B (zh) * 2020-09-08 2023-09-29 航天科工空间工程发展有限公司 弹道式再入起旋角速度计算方法、装置、存储介质和设备
CN112596544B (zh) * 2020-12-16 2023-02-03 彩虹无人机科技有限公司 一种低速无人机满足炸弹投放扇面角条件的攻击航路在线规划方法
CN113111434B (zh) * 2021-03-30 2022-07-15 北京航空航天大学 一种基于凸混合整数规划的组合动力飞行器轨迹优化方法
CN113687660B (zh) * 2021-07-18 2023-11-10 北京理工大学 一种考虑转角约束的气动辅助借力预测-校正制导方法
CN113721653B (zh) * 2021-08-09 2024-01-19 陕西工业职业技术学院 一种飞行器航迹实时规划系统
CN114104339B (zh) * 2021-08-18 2022-05-20 北京空间飞行器总体设计部 基于降落伞落点离线分析的火星着陆器降落伞规避方法
CN113835442B (zh) * 2021-09-30 2023-09-26 北京航空航天大学 高超声速滑翔飞行器线性伪谱再入制导方法和系统
CN114167886B (zh) * 2021-11-17 2023-11-17 北京航空航天大学 一种基于离轨制动窗口的航天器再入返回任务规划方法
CN114740894B (zh) * 2022-05-13 2022-08-26 北京航空航天大学 基于注意力机制与门控循环单元的飞行器制导方法和系统
CN115167126B (zh) * 2022-06-24 2024-04-30 西北工业大学 一种两级入轨高超声速飞行器上升段纵向轨迹设计和优化方法
CN117170252B (zh) * 2023-11-01 2024-03-19 北京理工大学 基于再入走廊凸规划的高超声速飞行器最优滚动制导方法
CN117932793B (zh) * 2024-03-21 2024-06-14 西安现代控制技术研究所 采用耦合迭代优化的制导火箭弹内外弹道联合设计方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615144A (zh) * 2015-01-30 2015-05-13 天津大学 基于目标规划的高超声速飞行器再入轨迹在线优化方法
US20160364988A1 (en) * 2014-03-18 2016-12-15 Bae Systems Plc Path planning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568901A (en) * 1994-08-01 1996-10-29 William Henry Gates Two stage launch vehicle and launch trajectory method
US6119985A (en) * 1997-03-07 2000-09-19 Pioneer Rocketplane Corporation Reusable rocket-propelled high altitude airplane and method and apparatus for mid-air oxidizer transfer to said airplane
US20150268048A1 (en) * 2014-03-18 2015-09-24 Honeywell International Inc. System and method for optimizing aircraft lateral and vertical trajectory for published procedures
FR3025920B1 (fr) * 2014-09-15 2016-11-04 Thales Sa Procede de calcul temps reel d'une trajectoire planifiee, notamment de plan de vol, combinant une mission, et systeme de gestion d'une telle trajectoire
CN104503471A (zh) * 2014-11-03 2015-04-08 北京航空航天大学 一种机动飞行器多终端约束反演滑模末制导方法
US9639085B1 (en) * 2015-08-05 2017-05-02 The United States Of America As Represented By The Secretary Of The Air Force Phugoid peaks trajectory for hypersonic glide vehicles
CN105867402B (zh) * 2016-05-10 2019-05-07 北京航空航天大学 一种火星着陆器大气进入段抗干扰复合在线制导方法
US9698498B1 (en) * 2016-05-23 2017-07-04 Rockwell Automation Technologies, Inc. Connector with spring contact
CN106227972A (zh) * 2016-08-04 2016-12-14 北京航空航天大学 一种高超声速飞行器平稳滑翔弹道的优化方法
CN106354152B (zh) * 2016-08-18 2019-02-05 中国人民解放军国防科学技术大学 一种对辐射型禁飞区的再入轨迹优化设计方法
CN106647269B (zh) * 2016-12-21 2019-05-14 清华大学 一种机车智能操纵优化计算方法
CN106643341B (zh) * 2017-02-24 2018-06-01 北京临近空间飞行器系统工程研究所 基于准平衡滑翔原理的力热控制耦合设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160364988A1 (en) * 2014-03-18 2016-12-15 Bae Systems Plc Path planning
CN104615144A (zh) * 2015-01-30 2015-05-13 天津大学 基于目标规划的高超声速飞行器再入轨迹在线优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG, GUOQIANG ET AL.: "A Survey of Numerical Algorithms for Trajectory Optimization o Flight Vehicles", SCIENCE CHINA, vol. 55, no. 9, 30 September 2012 (2012-09-30) *
ZHOU, WENYA ET AL.: "Rapid Planning of Reentry Trajectory with High Reliability", SYSTEMS ENGINEERING AND ELECTRONICS, vol. 38, no. 8, 31 August 2016 (2016-08-31) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110826288A (zh) * 2019-10-27 2020-02-21 西安电子科技大学 一种基于免疫克隆选择的再入轨迹优化方法
CN110826288B (zh) * 2019-10-27 2023-04-25 西安电子科技大学 一种基于免疫克隆选择的再入轨迹优化方法
CN112379693A (zh) * 2020-11-24 2021-02-19 中国运载火箭技术研究院 一种智能并行高斯伪谱法飞行器再入轨迹优化方法
CN112379693B (zh) * 2020-11-24 2024-02-20 中国运载火箭技术研究院 一种智能并行高斯伪谱法飞行器再入轨迹优化方法
CN113050682A (zh) * 2021-03-12 2021-06-29 中国人民解放军国防科技大学 导弹助推段校正制导方法、装置和高超声速飞行器
CN113483758A (zh) * 2021-06-21 2021-10-08 北京理工大学 多约束行星着陆轨迹矢量规划方法
CN113483758B (zh) * 2021-06-21 2023-10-20 北京理工大学 多约束行星着陆轨迹矢量规划方法
CN114167887A (zh) * 2021-11-16 2022-03-11 湖北航天技术研究院总体设计所 飞行器落速控制方法、装置、设备及可读存储介质
CN114167887B (zh) * 2021-11-16 2023-08-15 湖北航天技术研究院总体设计所 飞行器落速控制方法、装置、设备及可读存储介质
CN114690794A (zh) * 2022-03-31 2022-07-01 北京中科宇航技术有限公司 一种表格化实时控制飞行状态的方法及系统

Also Published As

Publication number Publication date
CN107992074B (zh) 2019-08-20
CN107992074A (zh) 2018-05-04
US11286065B2 (en) 2022-03-29
US20210086921A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2019109407A1 (zh) 一种基于飞行路径角规划的再入轨迹设计方法
WO2021036778A1 (zh) 在高度速度剖面内直接规划再入轨迹的方法
CN107966156B (zh) 一种适用于运载火箭垂直回收段的制导律设计方法
CN104392047B (zh) 一种基于平稳滑翔弹道解析解的快速弹道规划方法
CN111103890B (zh) 一种高精度强鲁棒的进场着陆引导控制方法
CN110908396B (zh) 可重复使用运载器全阶段再入返回制导方法
CN106643341B (zh) 基于准平衡滑翔原理的力热控制耦合设计方法
US10656650B2 (en) Method for guiding and controlling drone using information for controlling camera of drone
CN106371312B (zh) 基于模糊控制器的升力式再入预测-校正制导方法
CN109240323B (zh) 一种实时解析构造的空天飞行器再入制导方法
CN105180728B (zh) 基于前数据的旋转制导炮弹快速空中对准方法
CN109446582B (zh) 一种考虑地球自转的高精度降阶平稳滑翔动力学建模方法
CN107861517A (zh) 基于线性伪谱的跳跃式再入飞行器在线弹道规划制导方法
US20100241294A1 (en) Method and device for estimating at least one wind characteristic on an aircraft
CN109269504B (zh) 一种具有末端约束的姿态机动路径规划方法
CN115248038B (zh) 一种发射系下的sins/bds组合导航工程算法
CN102508492B (zh) 一种飞行器在等高航路点间的定高度大圆飞行实现方法
CN108073742A (zh) 基于改进粒子滤波算法的拦截导弹末段飞行状态估计方法
CN107796401B (zh) 跳跃式再入飞行器线性伪谱参数修正横向制导方法
CN106200664A (zh) 一种适应长时间失控的姿态控制方法
CN113835442A (zh) 高超声速滑翔飞行器线性伪谱再入制导方法和系统
CN108398883B (zh) 一种rlv进场着陆轨迹快速推演及确定方法
Wang et al. Novel in-flight coarse alignment of low-cost strapdown inertial navigation system for unmanned aerial vehicle applications
Li et al. Steady glide reentry trajectory optimization with waypoint and no-fly zone constraints
CN106444832B (zh) 一种用于反潜型飞机低空巡航状态的导航方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934025

Country of ref document: EP

Kind code of ref document: A1