WO2019107126A1 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
WO2019107126A1
WO2019107126A1 PCT/JP2018/041789 JP2018041789W WO2019107126A1 WO 2019107126 A1 WO2019107126 A1 WO 2019107126A1 JP 2018041789 W JP2018041789 W JP 2018041789W WO 2019107126 A1 WO2019107126 A1 WO 2019107126A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow passage
injection hole
fuel
fuel injection
downstream
Prior art date
Application number
PCT/JP2018/041789
Other languages
English (en)
French (fr)
Inventor
拓矢 渡井
威生 三宅
保夫 生井沢
明靖 宮本
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019107126A1 publication Critical patent/WO2019107126A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present invention relates to a fuel injection device.
  • At least one spray hole (1) has a hole inlet (9) inside the nozzle body, and a hole outlet (11) outside the nozzle body (3).
  • a hole inlet portion (15) is provided, starting from the hole inlet (9), this hole inlet portion (15) being from the relatively larger flow area at the hole inlet (9) to the end of the hole inlet portion (15) and the holes
  • the flow area is reduced to a relatively small flow area at the intersection with the start of the outlet part (17)
  • the hole outlet part (17) starting from the intersection with the hole inlet part (15) is a hole With a flow area increasing from a relatively small flow area at the intersection with the inlet portion (15) to a relatively larger flow area at the hole outlet (11). reference).
  • the injection hole nozzle of the fuel injection device of the above-mentioned Patent Document 1 reduces from a relatively larger flow area at the hole inlet to a relatively small flow area at the intersection between the end of the hole inlet portion and the start of the hole outlet portion.
  • the area of the outlet of the hole having a flow area that starts at the intersection with the hole inlet section increases from the relatively small flow area at the intersection with the hole inlet section to the relatively larger flow area at the hole outlet
  • the injection hole shape portion whose flow area increases toward the injection hole outlet is smaller than the injection hole shape portion whose flow area decreases from the injection hole inlet, and the flow area is smaller. Since the fuel spray is attracted to the increased injection hole shape, the fuel is likely to be attached, which causes the accumulation of deposits and causes the increase of harmful exhaust components.
  • the present invention provides a fuel injection device capable of adjusting L / D, which is the ratio of the injection hole length L and the injection hole diameter D, while suppressing fuel adhesion at the end of the fuel injection device.
  • the fuel injection device of the present invention forms a valve which opens and closes a fuel channel, a seat which seats a valve seat, and an injection hole located on the downstream side of the seat.
  • a fuel injection valve provided with the injection hole forming member, wherein the injection hole is formed on the upstream side, and the flow path reduction portion decreases in the flow path cross-sectional area as going to the downstream side;
  • the axial length L ' is configured such that L' ⁇ L ⁇ 2L '.
  • the adhesion of fuel at the tip of the fuel injection device is suppressed, and the design of any penetration is aimed.
  • FIG. 7 is an enlarged cross-sectional view of the vicinity of the injection hole cup 106 (in the configuration in which Lt is longer than Ls). It is a figure which shows the outline
  • FIG. 1 is a longitudinal sectional view of a fuel injection device 204 according to this embodiment.
  • FIGS. 2 and 4 are partial enlarged views centering around the nozzle hole cup 116 of FIG. 1, which are limited to the components which are the features of the fuel injection device 204 in the present embodiment and are shown in simplified form. .
  • the injection hole cup supporting body 101 is provided with a small diameter cylindrical portion 22 having a small diameter and a large diameter cylindrical portion 23 having a large diameter.
  • An injection hole cup (a fuel injection hole forming member) 116 in which a guide portion 115 and a fuel injection hole 117 (may be called an injection hole) are formed is inserted or pressed into the inner peripheral portion of the tip of the small diameter cylindrical portion 22. Ru.
  • the edge portion of the outer peripheral portion of the tip end surface of the injection hole cup 116 is fixed to the small diameter cylindrical portion 22 by being welded all around in the axial direction of the fuel injection device 204.
  • the guide portion 115 is provided at the tip of the needle valve 114A which is a movable member. When the downstream portion of the needle valve 114A moves up and down in the axial direction of the fuel injection device 204, it has a function of guiding the outer peripheral portion.
  • a conical seat portion 39 is formed on the downstream side of the guide portion 115 in the injection hole cup 116.
  • the seat portion 39 is formed with a seat portion on which a needle valve 114A provided at the tip of the needle valve 114A abuts or blocks the flow of fuel. Further, when the valve body sheet portion at the tip end of the needle valve 114A separates from the seat portion of the seat portion 39, high pressure fuel passes through the fuel injection hole 117 and is injected.
  • a groove is formed on the outer peripheral portion of the injection hole cup support 101, and a seal member of combustion gas represented by a tip seal 132 made of a resin material is fitted in the groove.
  • a needle valve guide member 113 for guiding the upstream portion of the needle valve 114A which is a movable member, is formed at the lower end of the inner periphery of the large diameter cylindrical portion 23 of the injection hole cup support 101 and the drawn portion 25 of the large diameter cylindrical portion 23. It is fixed by pressure.
  • the needle valve guide member 113 is provided at its center with a guide portion 127 for guiding the needle valve 114A in its axial direction, and a plurality of fuel passages 126 are perforated at the periphery thereof.
  • the upstream portion of the elongated needle valve 114A is radially positioned by the guide portion 127 of the needle valve guide member 113, and is guided to reciprocate axially straight. In FIG. 1, the valve opening direction is upward in the valve axial direction, and the valve closing direction is downward in the valve axial direction.
  • the needle valve 114A is provided with a head portion 114C having a stepped portion 129 having an outer diameter larger than the diameter of the needle valve 114A at an upstream portion opposite to the lower end portion where the valve body tip portion 114B is provided.
  • a seating surface of a spring 110 for urging the needle valve 114A in the valve closing direction is provided on the upper end surface of the stepped portion 129, and holds the spring 110 together with the head 114C.
  • the mover 102 configured separately from the needle valve 114A has a through hole 128 in the center through which the needle valve 114A passes.
  • a zero spring 112 is held between the mover 102 and the needle valve guide member 113 for biasing the mover 102 in the valve opening direction.
  • the diameter of the through hole 128 is smaller than the diameter of the stepped portion 129 of the head 114C, under the action of the biasing force of the spring 110 or the force of gravity pressing the needle valve 114A against the seat portion of the injection hole cup 116.
  • the upper surface of the mover 102 held by the zero spring 112 abuts on the lower end surface of the stepped portion 129 of the needle valve 114A, and both are engaged.
  • the mover 102 moves upward against the gravity by the biasing force of the zero spring 112
  • the upper side surface of the mover 102 and the lower end surface of the stepped portion 129 of the needle valve 114A operate in cooperation.
  • the upper side surface of the mover 102 and the lower end surface of the stepped portion 129 of the needle valve 114A cooperate to operate Do.
  • the fixed core 107 is press-fitted to the inner peripheral portion of the large-diameter cylindrical portion 23 of the injection hole cup support 101, and is welded and joined at the press-fit contact position 118.
  • the gap formed between the inside of the large diameter cylindrical portion 23 of the injection hole cup support 101 and the outside air is sealed by the welding.
  • the fixed core 107 is provided at its center with a through hole 107D having a diameter slightly larger than the diameter of the stepped portion 129 of the needle valve 114A as a fuel introduction passage.
  • the lower end surface of the fixed core 107, the upper end surface and the collision end surface of the mover 102 may be plated to improve the durability. Even when relatively soft soft magnetic stainless steel is used for the mover 102, durability reliability can be ensured by using hard chromium plating or electroless nickel plating.
  • the lower end of the spring 110 abuts on the spring receiving surface formed on the upper end surface of the stepped portion 129 provided on the head portion 114C of the needle valve 114A, whereby the needle valve 114A is biased downward.
  • the other end of the spring 110 is received by the adjuster 54 which is press-fit and fixed to the inside of the through hole 107D of the fixed core 107, whereby the spring 110 is held between the head 114C and the adjuster 54.
  • a cylindrical housing 103 is fixed to the outer periphery of the large diameter cylindrical portion 23 of the injection hole cup support 101.
  • a through hole is provided at the center of the bottom of the housing 103, and the large diameter cylindrical portion 23 of the injection hole cup support 101 is inserted and fixed in the through hole.
  • the inner peripheral portion of the housing 103 faces the outer peripheral surface of the large diameter cylindrical portion 23 of the injection hole cup support 101 to form an outer peripheral yoke portion.
  • the inner peripheral surface of the outer peripheral portion of the housing 103 is configured to face the coil 105, and forms an outer peripheral yoke portion.
  • a coil 105 wound in an annular shape is disposed in a cylindrical space formed by the housing 103.
  • the coil 105 is formed by an annular coil bobbin 104 having a U-shaped groove open in a radially outward direction and a copper wire wound in the groove.
  • a rigid conductor 109 is fixed to the winding start end and the winding end end of the coil 105 and is drawn out from the through hole provided in the fixed core 107.
  • An insulating resin is injected from the inner periphery of the upper end opening of the housing 103, and the outer periphery of the conductor 109 and the fixed core 107 and the large diameter cylindrical portion 23 of the injection hole cup support 101 is molded and covered with the resin molding 131.
  • a toroidal magnetic path is formed around the coil 105.
  • a high voltage power supply and a plug for supplying power from a battery power supply are connected to the connector 43A formed at the tip of the conductor 109, and the energization and non-energization are controlled by an engine control unit (ECU) not shown.
  • ECU engine control unit
  • valve body sheet portion of the valve body tip end portion 114B on the tip end side of the needle valve 114A is separated from the seat portion 39, whereby the fuel passes through the fuel passage 118 and is formed on the tip end side of the injection hole cup 116 The fuel is injected into the combustion chamber of the internal combustion engine through the fuel injection holes 117.
  • the mover 102 is attracted to the fixed core 107 and collides with the fixed core 107 to bounce to the opposite downstream side, but the needle valve 114A continues to move upward even after the mover 102 collides. That is, the needle valve 114A overshoots upward from the mover collision position, and then is urged by the spring 110 to move in the downstream direction again. Thereafter, if the coil 105 is in a state of being energized, the lower end surface of the stepped portion 129 of the needle valve 114A engages with the upper side surface of the recess of the mover 102, so that the needle valve 114A stands still.
  • the needle seat 114A of the tip end side of the needle plug 114A is separated from the seat 39 and pulled upward, and the coil 105 is de-energized. Move downward to close the valve.
  • the needle valve 114A reciprocates, the elongated needle valve 114A is vertically moved along the valve axial direction by the guide portion 127 of the needle valve guide member 113 and the guide portion 115 of the injection hole cup 116. Reciprocation in the direction is guided.
  • the needle valve 114A is guided only by the guide portion 127 of the needle valve guide member 113 while the valve body sheet portion of the valve body tip portion 114B at the tip end of the needle valve 114A is in contact with the seat portion 39 and in the closed position. There is no contact with the guide portion 115 of the injection hole cup 116. At this time, the stepped portion 129 of the head 114C abuts on the upper surface of the mover 102 to move the mover 102 toward the needle valve guide member 113 by overcoming the biasing force of the zero spring 112.
  • the inertial force of the mover 102 is smaller than that in which the mover 102 and the needle valve 114A are integrated, the repulsive force received after the zero spring 112 is compressed is reduced. Therefore, the phenomenon in which the needle valve 114A is moved again in the valve opening direction due to the rebounding phenomenon of the mover 102 is less likely to occur. As a result, the springback of the needle valve 114A is minimized, and the needle valve 114A is opened after the coils 104 and 105 are de-energized, so that the so-called secondary injection phenomenon in which fuel is injected at random is suppressed. And emission reduction effect can be expected.
  • FIG. 2 is an enlarged view of the vicinity of the injection hole cup 116 in FIG.
  • the fuel injection valve according to the present embodiment is located downstream of the seat 39 and the seat 39 on which the valve seat seat is seated, and the valve body (needle valve 114A) for opening and closing the fuel flow path.
  • the injection hole 117 is formed on the upstream side and the flow passage reduced area 117A which decreases in flow passage cross-sectional area toward the downstream side, and formed on the downstream side of the flow passage reduced region 117A toward the downstream side
  • a flow path enlargement portion 117B is provided.
  • the axial length L of the upstream flow path contraction portion 117A and the axial length L 'of the downstream flow path expansion portion 117B are in the relationship of L' ⁇ L ⁇ 2L'. Configured
  • the present embodiment it is possible to suppress the decrease in fuel pressure inside the injection holes 117 constituting the spray forming portion by the flow path reducing portion 117A and to suppress the occurrence of decompression boiling. It is. Therefore, the effective passage area of the injection hole 117 is increased, and the separation of the fuel flow can be suppressed, and the fuel adhering to the surface 118 on the downstream side of the injection hole cup 116 (that is, the combustion chamber side of the engine cylinder) can be suppressed. . Further, the axial length L of the flow passage reducing portion 117A can be adjusted by the flow passage expanding portion 117B.
  • the axial length L of the flow path contraction portion 117A can be adjusted by the axial length L 'of the flow path expansion portion 117B, L / D, which is the ratio to the injection hole diameter D, is adjusted by this, and penetration is performed. It becomes possible to design.
  • penetration refers to the length of the fuel spray injected from the injection holes 117.
  • FIG. 3 is a view showing the relationship between L / D and penetration. The smaller L / D, the shorter the penetration.
  • the axial length L ′ of the flow path expanding portion 117B is preferably as short as possible from the viewpoint of easiness of manufacture and manufacturing cost.
  • the flow passage reduction portion 117A needs to secure a certain length as the axial length L. For this reason, it is desirable to geometrically satisfy the relationship of L ' ⁇ L.
  • the injection hole diameter of the flow path expanding portion 117B is to avoid contact between the spray and the flow path expanding portion 117B. It is necessary to make D 'part larger.
  • FIG. 4 is an enlarged view of the periphery of the injection hole cup 116 in FIG.
  • FIG. 3 is the same drawing as FIG. 2 but for illustrating different part lengths and angles.
  • the right side is the inner diameter side
  • the lower side is the tip side.
  • the sheet portion positioned on the side of the sheet portion with respect to the length Lt of the tip inner diameter portion positioned on the tip side.
  • the length Ls of the side inner diameter portion is configured to be longer.
  • the shaft 124 is directed to the direction of the shaft 126 of the fuel injection device, and the flow passage reduction portion 117A.
  • the axial length La of this and the axial length La 'of the flow path expanding portion 117B are geometrically long, and laser drilling becomes impossible.
  • the configuration as shown in FIG. 4 enables geometrically processing of the injection holes.
  • the acute crossing angle ⁇ ′ between the tip inner diameter located at the tip end and the seat inner diameter located at the side of the seat 39 is 29 It is configured to be between 70 ° and 70 °.
  • the tolerance angle ⁇ ′ is 29 ° or more, it is possible to prevent the spray from coming into contact with the wall surface 122 of the flow path expanding portion 117B.
  • overlapping with the adjacent injection hole 123 is avoided unless it is 70 degrees or less.
  • the acute crossing angle ⁇ between the tip inner diameter located on the tip end and the sheet inner diameter located on the sheet 39 side is 5 It is configured to be between 45 ° and 45 °.
  • FIG. 6 is a figure which shows the outline
  • the laser 141a is irradiated from the laser transmitter 140 for processing.
  • the wall surface 125a of the flow path reducing portion 117A is extended to intersect with the axis 124 of the injection hole 117, the virtual vertex 109a intersects the surface 118 of the injection hole cup 116a, and the axis 124 of the injection hole 117
  • the relationship between the virtual point 110 and the virtual point 110 needs to be such that the vertex 109 a is on the downstream side (tip side) of the point 110.
  • to 45 ° or less as described above, it is possible to form the flow path contraction portion 117A by the laser transmitter 140.
  • FIG. 7 is a diagram showing an outline of laser processing when ⁇ is 45 ° or more.
  • the virtual wall 109 b of the flow path reduction portion 117 A ′ is extended to intersect with the axis 124 of the injection hole 117 ′, and the injection hole cup 116 b
  • the relationship between the surface 118 and the imaginary point 110 intersecting the axis 124 of the injection hole 117 ' is such that the apex 109b is located upstream of the point 110 (inside the fuel injection valve).
  • the laser 141b interferes with the intersection 132 of the flow path shrinking portion 117A 'and the flow path expanding portion 117B' to generate the unprocessable region 131.
  • the laser transmitter 140 it is possible to form the flow path reduction portion 117A by the laser transmitter 140.
  • the injection hole 117 is configured by the R portion 121 in which the upstream side opening portion formed with a short length with respect to the tapered surface in the upstream side flow path contraction portion 117A spreads radially outward. . It is desirable that this R portion 121 be formed by the processing method of fluid polishing. With such a shape, separation of the flow is reduced, and swaying of the spray is reduced, thereby suppressing fuel adhering to the wall surface 122.
  • the downstream side opening of the downstream side flow passage enlarged portion 117B is configured such that the spread angle to the outside in the radial direction is smaller than the maximum spread angle of the R portion 121. That is, in the present embodiment, although the R portion 121 is formed in the upstream flow path contraction portion 117A, the R portion is not formed in the downstream flow path enlarged portion 117B. This makes it possible to reduce the production cost while securing the required injection shape.
  • the upstream side flow reduction portion 117A and the downstream side flow expansion portion 117B are respectively formed in a tapered shape, and a cylindrical portion 117C having a constant diameter is formed between them. Ru.
  • the fuel suppresses the flow along the cylindrical portion 117C, and the fuel adhesion on the wall surface 122 of the flow path expanding portion 117B is suppressed.
  • a plurality of injection holes 117 are formed in the injection hole forming member 116.
  • a spark plug is attached to the top of the engine cylinder to which the fuel injection valve is attached.
  • the second injection hole and the third injection hole formed on both sides of the first injection hole that most points the tip of the spark plug are the flow passage reduced portion 117A and the flow passage enlarged portion 117B. It is desirable that the flow passage cross-sectional area of the connection portion 117C be configured to be larger than that of the other injection holes.
  • the second injection hole and the third injection hole are directed to an intermediate position between the spark plug tip and the engine piston, and it is possible to shorten the penetration by increasing the injection hole diameter of the second injection hole and the third injection hole. Become. Therefore, it is possible to reduce the fuel adhesion to the wall surface of the engine cylinder or the piston.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

本発明の燃料噴射装置によれば、燃料噴射装置先端の燃料の付着を抑止し、かつ、任意のペネトレーションの設計を目的とする。そのため、噴射孔117は、上流側に形成され下流側に向かうにつれ流路断面積が小さくなる流路縮小部117Aと、前記流路縮小部117Aよりも下流側に形成され下流側に向かうにつれ流路断面積が大きくなる流路拡大部107Bとを備え、上流側の流路縮小部107Aの軸方向長さL、下流側の流路拡大部107Bの軸方向長さL´がL´<L<2L´の関係にあるように構成される。

Description

燃料噴射装置
 本発明は、燃料噴射装置に関する。
 本技術分野の背景技術として、特開2009-8087号公報(特許文献1)がある。
この公報には、「少なくとも1つの噴霧孔(1)はノズル本体の内側に孔入口(9)、およびノズル本体(3)の外側に孔出口(11)を有する。噴霧孔(1)には孔入口部分(15)が設けられ、孔入口(9)から開始するこの孔入口部分(15)は、孔入口(9)における比較的より大きな流れ面積から孔入口部分(15)の終端と孔出口部分(17)の開始点との間の交差部分における比較的小さな流れ面積まで減少する流れ面積を有する。孔入口部分(15)との交差部分から開始する孔出口部分(17)は、孔入口部分(15)との交差部分における比較的小さな流れ面積から孔出口(11)における比較的より大きな流れ面積まで増加する流れ面積を有する。」技術が開示されていると記載されている(要約参照)。
特開2009-8087号公報
 内燃機関の有害排気成分低減のためには、燃料噴射装置先端の燃料付着を抑制し、かつ、任意のペネトレーション(噴霧の軸方向長さ)の設計が求められている。上記特許文献1の燃料噴射装置の噴孔ノズルは、孔入口における比較的より大きな流れ面積から孔入口部分の終端と孔出口部分の開始点との間の交差部分における比較的小さな流れ面積まで減少する流れ面積を有し、孔入口部分との交差部分から開始する孔出口部分は、孔入口部分との交差部分における比較的小さな流れ面積から孔出口における比較的より大きな流れ面積まで増加する流れ面積を有した形状を提案させている。
 しかしながら、上記特許文献1に開示されている構成では、噴孔出口にかけて流れ面積が増加する噴孔形状部が、噴孔入口から流れ面積が減少する噴孔形状部に対して小さく、流れ面積が増加する噴孔形状部に燃料噴霧が引き寄せられるため、燃料が付着しやすく、デポジット蓄積の原因になり、有害排気成分の増加原因になる。
 また、噴孔をレーザー加工機によって穴加工した場合、レーザー加工の原理からステップホールを設けることが極めて困難であり、噴孔長さLと噴孔径Dの比であるL/D値がブランク形状の肉厚に依存するため、ペネトレーションの設計が困難になる。
 そこで、本発明は、燃料噴射装置先端の燃料付着を抑制しつつ、噴孔長さLと噴孔径Dの比であるL/Dの調整を可能とした燃料噴射装置を提供する。
 上記課題を解決するために、本発明の燃料噴射装置は、燃料流路を開閉する弁体と、弁体シート部が着座するシート部と、前記シート部の下流側に位置する噴射孔が形成される噴射孔形成部材と、を備えた燃料噴射弁において、前記噴射孔は、上流側に形成され下流側に向かうにつれ流路断面積が小さくなる流路縮小部と、前記流路縮小部よりも下流側に形成され下流側に向かうにつれ流路断面積が大きくなる流路拡大部とを備え、上流側の前記流路縮小部の軸方向長さL、下流側の前記流路拡大部の軸方向長さL´がL´<L<2L´の関係にあるように構成される。
 本発明の燃料噴射装置によれば、燃料噴射装置先端の燃料の付着を抑止し、かつ、任意のペネトレーションの設計を目的とする。
燃料噴射装置の全体を示す断面図である。 噴孔カップ106周辺の断面拡大図である。 L/Dとペネトレーションの関係である。 噴孔カップ106周辺の断面拡大図である。 噴孔カップ106周辺の断面拡大図(LsよりLtの方が長くなる構成時)である。 θが45°以下の場合のレーザー加工の概要を示す図である。 θが45°以上の場合のレーザー加工の概要を示す図である。
 以下、本発明の実施例について、図面を用いて説明する。
 図1から図4を用いて、本発明の実施例に係る燃料噴射装置204の構成について説明する。図1は本実施例による燃料噴射装置204の縦断面図である。図2と図4は図1の噴孔カップ116周辺を中心とした部分拡大図で、本実施例における燃料噴射装置204の特徴となる部品に限定し、形状を簡略化して示したものである。
 図2から図4では動作や機能を分かり易くするために部品の大きさや隙間の大きさは実際の比率と異なり、機能を説明するために不要な部品は省略されている。各図面において同一の構成要素には同一の符号が与えられており、重複する説明は省略している。
 図1において、噴孔カップ支持体101は直径が小さい小径筒状部22と直径が大きい大径筒状部23とを備えている。小径筒状部22の先端部分の内周部に、案内部115、燃料噴射孔117(噴射孔と呼んでも良い)が形成された噴孔カップ(燃料噴射孔形成部材)116が挿入または圧入される。噴孔カップ116の先端面の外周部の縁部が燃料噴射装置204の軸方向から全周溶接されることにより、小径筒状部22に固定される。案内部115は可動部材である針弁114Aの先端に設けられる。針弁114Aの下流部が燃料噴射装置204の軸方向に上下運動する際に、その外周部を案内する機能を有する。
 噴孔カップ116には案内部115の下流側に円錐状のシート部39が形成されている。このシート部39には針弁114Aの先端に設けた針弁114Aが当接または燃料の流れを遮断するシート部が形成される。またシート部39のシート部から針弁114Aの先端の弁体シート部が離れると高圧燃料が燃料噴射孔117を通過して噴射される。噴孔カップ支持体101の外周部には溝が形成されており、この溝に樹脂材製のチップシール132に代表される燃焼ガスのシール部材が嵌め込まれている。
 噴孔カップ支持体101の大径筒状部23の内周下端部には可動部材である針弁114Aの上流部をガイドする針弁案内部材113が大径筒状部23の絞り加工部25に圧入固定されている。針弁案内部材113は中央に針弁114Aをその軸方向にガイドする案内部127が設けられており、その周囲に複数個の燃料通路126が穿孔されている。細長い形状の針弁114Aの上流部は針弁案内部材113の案内部127によって径方向の位置を規定され、かつ軸方向にまっすぐに往復運動するようガイドされる。なお図1において、開弁方向は弁軸方向における上方向、閉弁方向は弁軸方向における下方向である。
 針弁114Aは、弁体先端部114Bが設けられている下端部と反対の上流部に針弁114Aの直径より大きい外径を有する段付き部129を有する頭部114Cが設けられている。段付き部129の上端面には針弁114Aを閉弁方向に付勢するスプリング110の着座面が設けられており、頭部114Cと併せてスプリング110を保持する。
 針弁114Aとは別体で構成された可動子102は針弁114Aが貫通する貫通孔128を中央に有する。可動子102と針弁案内部材113との間に可動子102を開弁方向に付勢するゼロスプリング112が保持されている。
 頭部114Cの段付き部129の直径より貫通孔128の直径の方が小さいので、針弁114Aを噴孔カップ116のシート部に向かって押付けるスプリング110の付勢力もしくは重力の作用下においては、ゼロスプリング112によって保持された可動子102の上側面と針弁114Aの段付き部129の下端面が当接し、両者は係合している。可動子102がゼロスプリング112の付勢力により重力に逆らう上方へ動いた場合には可動子102の上側面と針弁114Aの段付き部129の下端面とが協働して動作する。一方でスプリング110の付勢力により、可動子102が重力に沿った下方へ動いた場合にも、可動子102の上側面と針弁114Aの段付き部129の下端面とが協働して動作する。
 噴孔カップ支持体101の大径筒状部23の内周部には固定コア107が圧入され、圧入接触位置118で溶接接合されている。この溶接接合により噴孔カップ支持体101の大径筒状部23の内部と外気との間に形成される隙間が密閉される。固定コア107は中心に針弁114Aの段付き部129の直径よりわずかに大きい直径の貫通孔107Dが燃料導入通路として設けられている。
 固定コア107の下端面や、可動子102の上端面及び衝突端面にはメッキを施して耐久性を向上させても良い。可動子102に比較的、軟らかい軟磁性ステンレス鋼を用いた場合においても、硬質クロムメッキや無電解ニッケルメッキを用いることで、耐久信頼性を確保することができる。
 針弁114Aの頭部114Cに設けられた段付き部129の上端面に形成されたスプリング受け面にはスプリング110の下端が当接することで、針弁114Aは下方向に付勢される。スプリング110の他端は固定コア107の貫通孔107Dの内部に圧入されて固定される調整子54で受け止められることで、スプリング110が頭部114Cと調整子54の間に保持されている。調整子54の固定位置を調整することでスプリング110が針弁114Aをシート部39に押付ける初期荷重を調整することができる。
 噴孔カップ支持体101の大径筒状部23の外周には円筒形状のハウジング103が固定される。ハウジング103の底部には中央に貫通孔が設けられており、貫通孔には噴孔カップ支持体101の大径筒状部23が挿入されて固定される。ハウジング103の内周部は噴孔カップ支持体101の大径筒状部23の外周面に対向して外周ヨーク部を形成する。またハウジング103の外周部の内周面はコイル105と対向するように構成され、外周ヨーク部を形成する。
 ハウジング103によって形成される筒状空間内には環状を成すように巻回されたコイル105が配置されている。コイル105は半径方向外側に向かって開口する断面がU字状の溝を持つ環状のコイルボビン104と、この溝の中に巻きつけられた銅線で形成される。コイル105の巻き始め、巻き終わり端部には剛性のある導体109が固定されており、固定コア107に設けた貫通孔より引き出されている。この導体109と固定コア107、噴孔カップ支持体101の大径筒状部23の外周はハウジング103の上端開口部内周から絶縁樹脂が注入され、モールド成形され、樹脂成形体131で覆われる。かくして、コイル105の周りにトロイダル状の磁気通路が形成される。
 導体109の先端部に形成されたコネクタ43Aには高電圧電源、バッテリ電源より電力を供給するプラグが接続され、図示しないエンジンコントロールユニット(ECU)によって通電、非通電が制御される。コイル105に駆動電流が流れると、固定コア107、可動子102、大径筒状部23、ハウジング103等から構成される磁気回路に磁束が流れることで可動子102と固定コア107との間に磁気吸引力が発生する。可動子102が固定コア107に吸引される磁気吸引力がスプリング110の設定荷重を超えると、可動子102が上方へ動く。そして可動子102の凹み部の上側面が針弁114Aの段付き部129の下端面と係合して、可動子102と針弁114Aとが共に上方へ移動する。
その後、可動子102は可動子102の上端面が固定コア107の下端面に衝突するまで移動する。
 その結果、針弁114Aの先端側の弁体先端部114Bの弁体シート部がシート部39より離座することで、燃料が燃料通路118を通り、噴孔カップ116の先端側に形成された燃料噴射孔117を通って内燃機関の燃焼室内に噴射される。
 可動子102は固定コア107に吸引されて固定コア107と衝突することで反対側の下流側にバウンドするが、針弁114Aは可動子102が衝突した後もさらに上方への移動を継続する。つまり、針弁114Aは可動子衝突位置から上側にオーバーシュートし、その後、スプリング110に付勢されることで、再び下流方向へ移動する。その後、コイル105が通電した状態であれば、針弁114Aの段付き部129の下端面が可動子102の凹み部の上側面と係合することで針弁114Aは静止する。
 コイル105の通電により針弁114Aは、先端側の弁体先端部114Bの弁体シート部がシート部39より離座し、上方向に引き上げられ、コイル105が非通電となると、針弁114Aは下方向に動いて閉弁する。このように針弁114Aが往復動作をする際に細長い形状の針弁114Aは針弁案内部材113の案内部127と、噴孔カップ116の案内部115の2箇所によって弁軸方向に沿って上下方向の往復運動がガイドされる。
 電磁コイル105への通電が断たれると、磁束が消滅し、可動子102に作用する磁気吸引力も消滅する。この状態では、針弁114Aの頭部114Cを下流方向に押す初期荷重設定用のスプリング110の付勢力がゼロスプリング112の上流方向への付勢力に打ち勝って可動子102、針弁114Aに作用する。その結果、可動子102はスプリング110の付勢力によって、弁体先端部114Bの弁体シート部がシート部39に接触する閉弁位置に押し戻される。
 針弁114Aの先端の弁体先端部114Bの弁体シート部がシート部39に接触し閉弁位置にある間、針弁114Aは針弁案内部材113の案内部127のみによりガイドされており、噴孔カップ116の案内部115とは接触していない。このとき、頭部114Cの段付き部129が可動子102の上面に当接して可動子102を、ゼロスプリング112の付勢力に打ち勝って針弁案内部材113の側へ移動させる。弁体先端部114Bの弁体シート部がシート部39に衝突すると、可動子102は針弁114Aと別体であるため、慣性力によって針弁案内部材113の側への移動を継続する。針弁114Aはシート部39に衝突した後に、開弁方向に跳ね返る。このとき針弁114Aの外周部と可動子102の内周部との間に流体による摩擦が発生するので、運動エネルギが摩擦エネルギに変換されて小さくなる
 また慣性質量の大きな可動子102が針弁114Aと別体で構成されているため、針弁114Aがシート部39に衝突した際の運動エネルギが小さくなるため、針弁114Aの跳ね返りが小さくなる。また、可動子102の慣性力は可動子102と針弁114Aとが一体であることに比べて小さくなるため、ゼロスプリング112を圧縮した後に受ける反発力が小さくなる。よって可動子102の跳ね返り現象によって針弁114Aが開弁方向に再び動かされる現象は発生し難くなる。結果として、針弁114Aの跳ね返りは最小限に抑えられ、コイル104、105への通電が断たれた後に針弁114Aが開いて、燃料が不作為に噴射される、いわゆる二次噴射現象が抑制され、エミッション軽減効果が期待できる。
 次に、噴孔カップ116の噴射孔117について詳細に説明する。 
 図2は図1における噴孔カップ116周辺を拡大した図である。本実施例の燃料噴射弁は図1で示したように燃料流路を開閉する弁体(針弁114A)と、弁体シート部が着座するシート部39と、シート部39の下流側に位置する噴射孔117が形成される噴射孔形成部材116と、を備えている。噴射孔117は、上流側に形成され下流側に向かうにつれ流路断面積が小さくなる流路縮小部117Aと、流路縮小部117Aよりも下流側に形成され下流側に向かうにつれ流路断面積が大きくなる流路拡大部117Bを備える。そして本実施例では、上流側の流路縮小部117Aの軸方向長さL、下流側の流路拡大部117Bの軸方向長さL´がL´<L<2L´の関係にあるように構成される。
 本実施例の上記構成によれば、まず流路縮小部117Aにより噴霧形成部を構成する噴射孔117の内部の燃料圧力が低下することを抑えることができ減圧沸騰の発生を抑制することが可能である。したがって、噴射孔117の有効通路面積が大きくなり、燃料の流れのはく離を抑制し噴孔カップ116の下流側(つまりエンジンシリンダの燃焼室側)の表面118に付着する燃料を抑制することができる。また、流路拡大部117Bにより、流路縮小部117Aの軸方向長さLを調整することが可能となる。流路拡大部117Bの軸方向長さL’により流路縮小部117Aの軸方向長さLを調整することができるため、これにより噴射孔径Dとの比であるL/Dを調整しペネトレーションを設計することが可能となる。なお、ペネトレーションとは噴射孔117から噴射される燃料の噴霧の長さのことである。図3はL/Dとペネトレーションの関係を示す図であり、L/Dが小さくなるほどペネトレーションは短くなる。ここで、流路拡大部117Bの軸方向長さL´は、製造のし易さ、製造コストの観点から短いほど良い。一方で流路縮小部117Aは噴射孔117に流れる燃料の流れを整える機能を有するために軸方向長さLとして一定の長さが確保される必要がある。このため、幾何学的にL´<Lの関係になることが望ましい。しかしながら、有害排気成分の排出に繋がる流路拡大部117Bの壁面122の燃料付着を抑制するためには、噴霧と流路拡大部117Bとの接触を避けるためには流路拡大部117Bの噴射孔径D´部を大きくする必要がある。また、流路拡大部の軸方向長さL´は長いほど噴孔カップ116の表面118と噴霧との距離が長くなるので燃料付着の観点から望ましいが、前記の理由からL<2L´の関係がよい。図4は図1における噴孔カップ116の周辺を拡大した図である。図2と同じ図面であるが、異なる部位の長さや角度を示すための図面である。図2、図4において右側が内径側であり、下側が先端側を示す。図4に示すように本実施例では、下流側の流路拡大部117Bの軸方向断面において、先端側に位置する先端側内径部の長さLtに対し、シート部の側に位置するシート部側内径部の長さLsの方が長くなるように構成される。
 ここで図5の噴孔カップ116の断面図のようなLsよりLtの方が長くなる構成の場合、軸124が燃料噴射装置の軸126の方向に向いた構成になり、流路縮小部117Aの軸方向長さLaや流路拡大部117Bの軸方向長さLa‘が幾何学的に長くなりレーザー穴加工が不可能になる。これに対して、本実施例では上記したように、図4のような構成にすることで、噴射孔の加工が幾何学的に可能となる。また本実施例では、流路拡大部117Bの軸方向断面において、先端側に位置する先端側内径部とシート部39の側に位置するシート部側内径部との鋭角の交差角度θ´が29°~70°の間になるように構成される。本発明者らの鋭意検討の結果、公差角度θ´が29°以上あることで噴霧が流路拡大部117Bの壁面122に接触しないようにできることを見出したものである。また、噴霧同士の干渉を抑えるため、70°以下でないと隣り合う噴射孔123と重なりを回避する。
 また本実施例では、流路縮小部117Aの軸方向断面において、先端側に位置する先端側内径部と、シート部39の側に位置するシート部側内径部との鋭角の交差角度θが5°~45°の間になるように構成される。本発明者らの鋭意検討の結果、公差角度θが5°以上あることで、噴射孔117の流路拡大部117Aの燃料の圧力低下を抑えることができ、減圧沸騰を抑制できることを見出したものである。
 ここで、図6はθが45°以下の場合の噴孔カップ116に対しレーザー加工の概要を示す図である。図6に示すように噴孔カップ116に噴射孔117を形成する場合、レーザー発信器140からレーザー141aを照射し加工をする。ここで、レーザー加工原理から流路縮小部117Aの壁面125aを延長して噴射孔117の軸124と交わる仮想上の頂点109aと、噴孔カップ116aの表面118と噴射孔117の軸124と交わる仮想上の点110との関係は、頂点109aが点110より下流側(先端側)にある必要がある。本実施例では上記したようにθを45°以下とすることで、レーザー発信器140によりに流路縮小部117Aを形成することが可能である。
 次に図7はθが45°以上の場合のレーザー加工の概要を示す図である。図7に示すようにθbが45°以上の形状の場合、流路縮小部117A´の壁面125bを延長して噴射孔117´の軸124と交わる仮想上の頂点109bと、噴孔カップ116bの表面118と噴射孔117´の軸124と交わる仮想上の点110との関係は、頂点109bが点110より上流側(燃料噴射弁内側)に構成される。このような形状の場合は、レーザー141bが流路縮小部117A´と流路拡大部117B´の交点132と干渉して加工不可能領域131が発生してしまう。これに対して本実施例によれば図6で説明したようにため、レーザー発信器140によりに流路縮小部117Aを形成することが可能である。
 また本実施例では、噴射孔117は、上流側の流路縮小部117Aのうち、テーパ面に対して短い長さで形成される上流側開口部が径方向外側に広がるR部121により構成する。このR部121は流体研磨の加工方法にて形成することが望ましい。このような形状にすることで、流れの剥離を低減し、噴霧の揺れを低減することで壁面122に付着する燃料を抑制する。
 また本実施例では、下流側の流路拡大部117Bの下流側開口部がR部121の最大広がり角度に対して径方向外側への広がり角度が小さくなるように構成される。つまり本実施例において、上流側の流路縮小部117AにはR部121を形成するものの、下流側の流路拡大部117BにはR部を形成しないように構成している。これにより、必要な噴射形状を確保しつつ生産コストを低減することが可能である。
 なお、本実施例においては上流側の流路縮小部117Aと下流側の流路拡大部117Bとがそれぞれテーパ形状で構成され、これらの間に一定の径で構成される円筒部117Cが形成される。燃料が円筒部117Cに沿った流れを抑制し、流路拡大部117Bの壁面122の燃料付着を抑制する。
 なお、本実施例において噴射孔形成部材116には、噴射孔117が複数形成されている。また燃料噴射弁が取り付けられるエンジンシリンダの上部には点火プラグが取り付けられる。そして複数の噴射孔117のうち、点火プラグ先端部を最も指向する第一噴射孔の両側に形成される第二噴射孔及び第三噴射孔の流路縮小部117Aと流路拡大部117Bとの接続部117Cの流路断面積が他の噴射孔に比べて大きくなるように構成されていることが望ましい。
 つまり、第二噴射孔及び第三噴射孔は、点火プラグ先端部とエンジンピストンとの間において中間位置を指向するものであり、これの噴射孔径を大きくすることでペネトレーションを短くすることが可能となる。よって、エンジンシリンダの壁面、又はピストンへの燃料付着を低減することが可能である。
 204…燃料噴射弁、116…噴孔カップ、117…噴射孔、117A…流路縮小部、117B…流路拡大部。

Claims (6)

  1.  燃料流路を開閉する弁体と、弁体シート部が着座するシート部と、前記シート部の下流側に位置する噴射孔が形成される噴射孔形成部材と、を備えた燃料噴射弁において、
     前記噴射孔は、上流側に形成され下流側に向かうにつれ流路断面積が小さくなる流路縮小部と、前記流路縮小部よりも下流側に形成され下流側に向かうにつれ流路断面積が大きくなる流路拡大部とを備え、
     上流側の前記流路縮小部の軸方向長さL、下流側の前記流路拡大部の軸方向長さL´がL´<L<2L´の関係にあるように構成された燃料噴射弁。
  2.  前記噴射孔は、下流側の前記流路拡大部の軸方向断面において、先端側に位置する先端側内径部の長さLtに対し、前記シート部の側に位置するシート部側内径部の長さLsの方が長くなるように構成された燃料噴射弁。
  3.  前記噴射孔は、下流側の前記流路拡大部の軸方向断面において、先端側に位置する先端側内径部と、前記シート部の側に位置するシート部側内径部との鋭角の交差角度が29°~70°の間になるように構成された燃料噴射弁。
  4.  請求項1に記載の燃料噴射弁において、
     前記噴射孔は、上流側の前記流路縮小部の軸方向断面において、先端側に位置する先端側内径部と、前記シート部の側に位置するシート部側内径部との鋭角の交差角度が5°~45°の間になるように構成された燃料噴射弁。
  5.  請求項1に記載の燃料噴射弁において、
     前記噴射孔は、上流側の前記流路縮小部のうち、テーパ面に対して短い長さで形成される上流側開口部が径方向外側に広がるR部により構成された燃料噴射弁。
  6.  請求項5に記載の燃料噴射弁において、
     下流側の前記流路拡大部の下流側開口部が前記R部の最大広がり角度に対して径方向外側への広がり角度が小さくなるように構成された燃料噴射弁。
PCT/JP2018/041789 2017-11-30 2018-11-12 燃料噴射装置 WO2019107126A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017229801A JP2021028472A (ja) 2017-11-30 2017-11-30 燃料噴射装置
JP2017-229801 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107126A1 true WO2019107126A1 (ja) 2019-06-06

Family

ID=66664448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041789 WO2019107126A1 (ja) 2017-11-30 2018-11-12 燃料噴射装置

Country Status (2)

Country Link
JP (1) JP2021028472A (ja)
WO (1) WO2019107126A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291737B2 (ja) * 2021-03-09 2023-06-15 日本特殊陶業株式会社 スパークプラグ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120472A (ja) * 2001-10-11 2003-04-23 Denso Corp 燃料噴射ノズル
JP2008031909A (ja) * 2006-07-28 2008-02-14 Ngk Spark Plug Co Ltd 燃料噴射ノズル及び燃料噴射装置
JP2009270448A (ja) * 2008-05-01 2009-11-19 Mitsubishi Electric Corp 燃料噴射弁
JP2012145048A (ja) * 2011-01-12 2012-08-02 Nippon Soken Inc 燃料噴射弁
US20160319792A1 (en) * 2013-12-11 2016-11-03 Continental Automotive Gmbh Nozzle Body and Fuel Injection Valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120472A (ja) * 2001-10-11 2003-04-23 Denso Corp 燃料噴射ノズル
JP2008031909A (ja) * 2006-07-28 2008-02-14 Ngk Spark Plug Co Ltd 燃料噴射ノズル及び燃料噴射装置
JP2009270448A (ja) * 2008-05-01 2009-11-19 Mitsubishi Electric Corp 燃料噴射弁
JP2012145048A (ja) * 2011-01-12 2012-08-02 Nippon Soken Inc 燃料噴射弁
US20160319792A1 (en) * 2013-12-11 2016-11-03 Continental Automotive Gmbh Nozzle Body and Fuel Injection Valve

Also Published As

Publication number Publication date
JP2021028472A (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
JP6087210B2 (ja) 燃料噴射弁
US20130075501A1 (en) Fuel injector
JP2010084552A (ja) 電磁式燃料噴射弁
JP5855270B2 (ja) 燃料噴射弁
JP6355765B2 (ja) 燃料噴射弁
JP2008280981A (ja) 燃料噴射装置およびそれを搭載した内燃機関
JP4089915B2 (ja) 燃料噴射弁
CN101910609B (zh) 可电磁操作的阀
WO2019107126A1 (ja) 燃料噴射装置
JP2010281248A (ja) 電磁式燃料噴射弁
JP2016070070A (ja) 燃料噴射弁
JP6592587B2 (ja) 流量制御装置
JP2013151915A (ja) 燃料噴射弁
WO2015068534A1 (ja) 燃料噴射弁
JP6338662B2 (ja) 燃料噴射弁
JP6780087B2 (ja) 燃料噴射装置
JPWO2019054036A1 (ja) 流量制御装置、および流量制御装置の製造方法
JP2020139488A (ja) 燃料噴射弁
JP2017210933A (ja) 燃料噴射装置
WO2017163574A1 (ja) 燃料噴射装置
JP2014152695A (ja) 燃料噴射弁
JP2014208974A (ja) 燃料噴射弁
WO2017043211A1 (ja) 燃料噴射装置
JP2017210890A (ja) 流量調整弁
JP2007032283A (ja) 燃料噴射弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18884042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP