WO2019105385A1 - 一种高透光聚苯乙烯材料及其制备方法 - Google Patents

一种高透光聚苯乙烯材料及其制备方法 Download PDF

Info

Publication number
WO2019105385A1
WO2019105385A1 PCT/CN2018/117935 CN2018117935W WO2019105385A1 WO 2019105385 A1 WO2019105385 A1 WO 2019105385A1 CN 2018117935 W CN2018117935 W CN 2018117935W WO 2019105385 A1 WO2019105385 A1 WO 2019105385A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
kpa
devolatilization
prepolymerization
polystyrene
Prior art date
Application number
PCT/CN2018/117935
Other languages
English (en)
French (fr)
Other versions
WO2019105385A9 (zh
Inventor
陈章华
苏杰
关杰华
Original Assignee
惠州仁信新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州仁信新材料股份有限公司 filed Critical 惠州仁信新材料股份有限公司
Publication of WO2019105385A1 publication Critical patent/WO2019105385A1/zh
Publication of WO2019105385A9 publication Critical patent/WO2019105385A9/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the invention relates to the field of polymer materials, in particular to a high light transmissive polystyrene material and a preparation method thereof.
  • LED light guide plates generally use polymethyl methacrylate as a substrate.
  • the transmittance of existing commercial polystyrene is generally between 90 and 91.2%, which is relatively concentrated. Methyl methacrylate is 2 to 3% lower.
  • polystyrene products are used to meet various processing applications. Usually, plasticizers, internal lubricants, mold release agents and antioxidants are added. Give it different processing and application characteristics, but the excessive addition of additives will adversely affect the light transmission, resulting in a decrease in the transmittance of polystyrene and easy yellowing, resulting in the application of polystyrene in LED light guide plates. limit.
  • the object of the invention is to provide a high light transmissive polystyrene material which has high light transmittance, heat resistance and yellowing resistance, simple preparation method, and polymerization of styrene monomer to form random polystyrene by polymerization. Improve material durability and high material conversion rate.
  • a high light transmissive polystyrene material which is composed of styrene monomer, mineral oil, lubricant, mold release agent, ultraviolet absorber And light stabilizer composition, the individual components are as follows by weight:
  • the styrene monomer is 98 to 99.8 wt%, which is a main component of the high light transmissive polystyrene material.
  • Mineral oil 0 ⁇ 0.5wt% mineral oil as lubricating oil can improve the mixing and fluidity of each material in the manufacture of styrene.
  • the addition of mineral oil to more than 0.5wt% reduces the light transmittance of styrene monomer after polymerization.
  • the lubricant is 0-0.1wt%, which improves the fluidity of the added material, and is favorable for uniform mixing of the materials.
  • the amount is more than 0.1% by weight, the light transmittance of the styrene monomer after polymerization is lowered.
  • the release agent is 0-0.1wt%, and the release agent is added to make the polystyrene mold easy to demould after molding, so as to avoid damage to the product during the demolding process and reduce the product yield.
  • the addition amount is more than 0.1wt%, the styrene monomer is reduced after polymerization. Light transmittance.
  • the ultraviolet absorber is 0.1-0.5wt%, and the ultraviolet absorber is added to absorb ultraviolet rays, and the aging speed of the polystyrene is retarded.
  • the addition amount is less than 0.1% by weight, the effect of delaying the aging is not good, and if the amount is more than 0.5 wt%, the benzene is lowered.
  • the light stabilizer is 0.1-1.0wt%.
  • the light stabilizer can shield or absorb the energy of ultraviolet rays, quench the singlet oxygen and decompose the peroxide into inactive substances, so that the polymer can be excluded under the light radiation. Slowing down the possibility of photochemical reaction, delaying the aging process, thereby prolonging the service life of polystyrene.
  • the addition amount is less than 0.1wt%, the process of delaying aging is not effective, and the addition amount of more than 1.0wt% reduces the polymerization of styrene monomer. Transmittance.
  • the lubricant is zinc stearate
  • the release agent is ethylene bis stearamide
  • the ultraviolet absorber is 2-(2H-benzotriazol-2-yl)p-cresol, light stabilizer It is bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate.
  • the release agent ethylene bis-stearamide has good external and internal lubrication, which improves the fluidity and mold release property of the molten state in the polystyrene molding process, thereby improving the processing yield, reducing the energy consumption, and the lubricant.
  • the combination of zinc stearate gives the product a very high surface finish and smoothness.
  • 2-(2H-benzotriazol-2-yl)p-cresol absorbs ultraviolet light in the wavelength range of 270-380 nm. Ultraviolet light easily leads to accelerated aging of polystyrene materials.
  • the addition of 2-(2H-benzotriazol-2-yl)-p-cresol can effectively delay the aging rate of materials, double (2,2,6,6-tetra
  • the base 4-piperidinyl) sebacate enhances the stability of the polystyrene material under illumination.
  • a method for preparing a high light transmissive polystyrene material the preparation steps are as follows:
  • Step S1 adding materials: directly adding the metered styrene monomer and mineral oil to the prepolymerization reactor;
  • Step S2 preliminary prepolymerization of the material: the lubricant, the release agent, the ultraviolet absorber and the light stabilizer are mixed in proportion through a filter, and then injected into a pre-polymerization preheater to preheat to 88 ° C to 92 ° C, and then prepolymerization is added.
  • the prepolymerization of the styrene monomer and the mineral oil is carried out to obtain a preliminary prepolymer; the lubricant, the release agent, the ultraviolet absorber and the light stabilizer are melted into a liquid state by a prepolymerization preheater and then prepolymerized.
  • the material is uniformly mixed, and the polystyrene material obtained in the subsequent step has a uniform polymerization structure.
  • Step S3 multi-step polymerization of materials: the preliminary prepolymers are gradually polymerized through 2#, 3#, 4#, 5# reactors respectively, so that the material conversion rate reaches 78-81%, that is, the polymer material is obtained; after multiple steps The polymerization improves the material conversion rate, achieves a material conversion rate of 78-81%, and improves the utilization rate of the material.
  • Step S4 the material vacuum devolatilization: the polymer material of the 5# reactor is preheated by the devolatilization preheater and then enters the devolatilizer, and under the vacuum condition, the first-stage devolatilization and the second-order devolatilization are respectively performed. After the material is removed, the unpolymerized styrene and ethylbenzene are separated by a devolatilizer under vacuum to reduce the impurity content of the finished product and improve the light transmittance of the finished product.
  • Step S5 finished granulation: after the devolatilization, the material is pumped to the casting head, extruded into a strand, and then enters a cooling water bath of the strip, and then granulated, dried, and sieved to obtain finished granules. After the material is solidified in a cooling water bath, the particles are granulated, dried and sieved to obtain finished particles with uniform particle size, which is convenient for subsequent product preparation.
  • the prepolymerization reactor temperature control range is 126 ° C ⁇ 128 ° C
  • the prepolymerization reactor liquid level is 55% ⁇ 56%
  • the prepolymerization reactor internal vacuum pressure The control range is 56 kPa to 58 kPa. If the temperature of the prepolymerization reactor is less than 126 ° C, the temperature is too low to achieve the prepolymerization effect of the material. When the temperature is higher than 130 ° C, the prepolymerization reaction is too intense, resulting in uneven prepolymerization, which affects the product quality. The liquid level of the prepolymerization reactor is lower than that. 54% lowers the polymerization effect.
  • the conversion rate of the prepolymerization reactor is high when heating, which increases the risk of polymerization operation, and the pressure in the prepolymerization reactor is controlled at 56 kPa. ⁇ 60kPa can better stabilize the polymerization rate.
  • the 2# reactor temperature control range is 130 ° C to 134 ° C
  • the 2 # reactor internal pressure control range is 28 kPa to 32 kPa
  • the 3 # reactor temperature control range is 136 ° C ⁇ 140 ° C
  • the pressure control range of the 3 # reactor is 38 kPa ⁇ 42 kPa
  • the temperature control range of the 4 # reactor is 140 ° C ⁇ 144 ° C
  • the pressure control range of the 4 # reactor is 48 kPa ⁇ 52 kPa
  • the 5# reactor temperature control range is 144 ° C ⁇ 148 ° C
  • the pressure control range of the 5 # reactor is 58 kPa ⁇ 62 kPa.
  • the multi-step polymerization reaction sets the temperature gradient of each reactor and increases the internal pressure of the reactor to promote the complete polymerization of the material.
  • step S4 the polymer material of the 5# reactor is preheated to 234 ° C to 235 ° C by a devolatilization preheater, and then enters a devolatilizer, and the first stage devolatilization temperature is 236 ° C to 237 °C, the secondary devolatilization temperature is 239 ° C ⁇ 241 ° C.
  • the polymer material of the 5# reactor is preheated to 234 ° C ⁇ 235 ° C by devolatilization preheater and then enters the devolatilizer to shorten the heating time of the material in the first-stage devolatilizer and accelerate the volatilization of unpolymerized styrene and ethylbenzene.
  • the secondary devolatilization temperature is higher than the first-order devolatilization temperature to ensure that the unpolymerized styrene and ethylbenzene are completely separated, thereby improving the product quality.
  • the vacuum pressure in the step S4 is less than 3.00 kPa. Degassing under vacuum conditions can eliminate the effect of gas such as water vapor on the devolatilization effect.
  • LED light guide plates currently on the market are generally prepared using polymethyl benzoic acid as a material.
  • the price of polystyrene is relatively low, the existing commercial polystyrene has a low light transmittance and a poor use effect.
  • the invention improves the light transmittance of the polystyrene material by reducing the addition amount of the functional auxiliary agent and adding a functional auxiliary agent which has less influence on the transmittance of the polystyrene, and overcomes the bottleneck problem in the application of the polystyrene in the LED field.
  • the invention improves the stability of the polystyrene under the illumination condition by adding the ultraviolet absorber and the light stabilizer, improves the yellowing resistance of the polystyrene, and achieves high polymerization of the styrene monomer by multi-polymerization to form a high polymerization degree polymerization. Styrene improves the high temperature resistance of the material.
  • Polystyrene preparation Polystyrene material with high light transmittance, high temperature and yellowing resistance can be prepared by five steps of batching, preliminary polymerization, multi-step polymerization, devolatilization and granulation. The material does not need any pretreatment before polymerization. .
  • the material conversion rate is high, reducing production costs.
  • High-level material conversion through multi-step polymerization improve material utilization, avoid waste of materials, thereby reducing production costs and increasing production.
  • Step S1 material preparation: the metered styrene monomer and mineral oil are directly added to the prepolymerization reactor, wherein the styrene monomer is added in an amount of 99.55 wt%, and the mineral oil is added in an amount of 0.1 wt%;
  • Step S2 preliminary prepolymerization of the material: the amount of the zinc stearate added is 0.05 wt%, the amount of the release agent ethylene bis stearamide is 0.1 wt%, and the ultraviolet absorber 2-(2H-benzotriazole) -2-yl)p-cresol is added in an amount of 0.1% by weight and the light stabilizer bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is added in an amount of 0.1% by weight, the above additives
  • the mixture is filtered through a filter and then injected into a pre-polymerization preheater to preheat to 90 ° C.
  • the prepolymerization reactor is then prepolymerized with styrene monomer and mineral oil.
  • the prepolymerization reactor controls the temperature at 128 ° C and the liquid level is 56%.
  • the vacuum pressure is controlled at 58 kPa, that is, the preliminary prepolymer is obtained, and the prepolymerization conversion rate is 32%;
  • Step S3 multi-step polymerization of materials: the preliminary prepolymers are gradually polymerized through 2#, 3#, 4#, 5# reactors respectively, and the temperature of 2# reactor is controlled at 132 ° C, the pressure is controlled at 30 kPa, and the reaction conversion rate is 45%, 3# reactor temperature control at 138 ° C, pressure control at 40 kPa, reaction conversion rate of 58%, 4 # reactor temperature control at 142 ° C, pressure control at 50 kPa, reaction conversion rate 70%, 5 # reaction
  • the temperature of the device is controlled at 146 ° C, the pressure is controlled at 60 kPa, the reaction conversion rate is 80%, and the total conversion rate of the material is 80%, that is, the polymer material is obtained;
  • Step S4 the material vacuum devolatilization: the polymer material of the 5# reactor is preheated to 234 ° C by a devolatilization preheater, and then enters the devolatilizer, and the first stage devolatilization and the second stage are performed under the condition of a vacuum pressure of 3.00 kPa.
  • the devolatilization, the first-stage devolatilization temperature is 236 ° C, and the second-order devolatilization temperature is 239 ° C, that is, the material after devolatilization;
  • Step S5 finished granulation: after the devolatilization, the material is pumped to the casting head, extruded into a strand, and then enters a cooling water bath of the strip, and then granulated, dried, and sieved to obtain finished granules.
  • Step S1 material preparation: the metered styrene monomer and mineral oil are directly added to the prepolymerization reactor, wherein the styrene monomer is added in an amount of 99.15 wt%, and the mineral oil is added in an amount of 0.5 wt%;
  • Step S2 preliminary prepolymerization of the material: the amount of the zinc stearate added is 0.05 wt%, the amount of the release agent ethylene bis stearamide is 0.1 wt%, and the ultraviolet absorber 2-(2H-benzotriazole) -2-yl)p-cresol is added in an amount of 0.1% by weight and the light stabilizer bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is added in an amount of 0.1% by weight, the above additives
  • the mixture is filtered through a filter and then injected into a pre-polymerization preheater to preheat to 92 ° C.
  • the prepolymerization reactor is then prepolymerized with styrene monomer and mineral oil.
  • the prepolymerization reactor controls the temperature at 128 ° C and the liquid level is 55%.
  • the vacuum pressure is controlled at 58 kPa, that is, the preliminary prepolymer is obtained, and the prepolymerization conversion rate is 30%;
  • Step S3 multi-step polymerization of materials: the preliminary prepolymers are gradually polymerized through 2#, 3#, 4#, 5# reactors respectively, and the temperature of 2# reactor is controlled at 134 ° C, the pressure is controlled at 32 kPa, and the reaction conversion rate is 46%, 3# reactor temperature control at 140 ° C, pressure control at 42 kPa, reaction conversion rate of 57%, 4 # reactor temperature control at 144 ° C, pressure control at 52 kPa, reaction conversion rate 70%, 5 # reaction
  • the temperature of the device is controlled at 148 ° C, the pressure is controlled at 62 kPa, the reaction conversion rate is 81%, and the total conversion rate of the material is 81%, that is, the polymer material is obtained;
  • Step S4 the material vacuum devolatilization: the polymer material of the 5# reactor is preheated to 235 ° C by a devolatilization preheater, and then enters the devolatilizer, and the first stage devolatilization and the second stage are performed under the condition of a vacuum pressure of 3.00 kPa.
  • the devolatilization, the first-stage devolatilization temperature is 237 ° C, and the second-stage devolatilization temperature is 240 ° C, that is, the material after devolatilization;
  • Step S5 finished granulation: after the devolatilization, the material is pumped to the casting head, extruded into a strand, and then enters a cooling water bath of the strip, and then granulated, dried, and sieved to obtain finished granules.
  • Step S1 material preparation: the metered styrene monomer and mineral oil are directly added to the prepolymerization reactor, wherein the styrene monomer is added in an amount of 98.4% by weight, and the mineral oil is added in an amount of 0.3% by weight;
  • Step S2 preliminary prepolymerization of the material: the amount of zinc stearate added is 0.1 wt%, and the amount of the ultraviolet absorber 2-(2H-benzotriazol-2-yl)p-cresol added is 0.2 wt% and the light is stable.
  • the dosage of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate is 1.0 wt%, and the above additive mixture is filtered through a filter and then injected into a pre-polymerization preheater to preheat to 88. °C, then adding prepolymerization reactor and styrene monomer and mineral oil for prepolymerization.
  • the prepolymerization reactor controls the temperature of 126 ° C, the liquid level is 56%, and the vacuum pressure is controlled at 56 kPa, which gives the preliminary prepolymer, prepolymerization.
  • the conversion rate is 28%;
  • Step S3 multi-step polymerization of materials: the preliminary prepolymers are gradually polymerized through 2#, 3#, 4#, 5# reactors respectively, and the temperature of 2# reactor is controlled at 130 ° C, the pressure is controlled at 28 kPa, and the reaction conversion rate is 43%, 3# reactor temperature control at 136 ° C, pressure control at 38 kPa, reaction conversion rate is 56%, 4 # reactor temperature control at 140 ° C, pressure control at 48 kPa, reaction conversion rate 68%, 5 # reaction The temperature of the device is controlled at 144 ° C, the pressure is controlled at 58 kPa, and the reaction conversion rate is 78%, so that the total conversion rate of the material reaches 78%, that is, the polymer material is obtained;
  • Step S4 the material vacuum devolatilization: the polymer material of the 5# reactor is preheated to 235 ° C by a devolatilization preheater, and then enters the devolatilizer, and the first stage devolatilization and the second stage are performed under the condition of a vacuum pressure of 3.00 kPa.
  • the devolatilization, the first-stage devolatilization temperature is 237 ° C, and the second-stage devolatilization temperature is 240 ° C, that is, the material after devolatilization;
  • Step S5 finished granulation: after the devolatilization, the material is pumped to the casting head, extruded into a strand, and then enters a cooling water bath of the strip, and then granulated, dried, and sieved to obtain finished granules.
  • Step S1 adding materials: the metered styrene monomer and mineral oil are directly added to the prepolymerization reactor, wherein the styrene monomer is added in an amount of 98.95 wt%;
  • Step S2 preliminary prepolymerization of the material: the release agent ethylene bis stearamide is added in an amount of 0.05 wt%, and the ultraviolet absorber 2-(2H-benzotriazol-2-yl) p-cresol is added in an amount of 0.5 wt. % and light stabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate added in an amount of 0.5% by weight, the above additive mixture is filtered through a filter and then injected into a pre-polymerization preheater.
  • the ultraviolet absorber 2-(2H-benzotriazol-2-yl) p-cresol is added in an amount of 0.5 wt. %
  • light stabilizer bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate added in an amount of 0.5% by weight
  • Step S3 multi-step polymerization of materials: the preliminary prepolymers are gradually polymerized through 2#, 3#, 4#, 5# reactors respectively, and the temperature of 2# reactor is controlled at 132 ° C, the pressure is controlled at 29 kPa, and the reaction conversion rate is 43%, 3# reactor temperature control at 139 ° C, pressure control at 41 kPa, reaction conversion rate of 58%, 4 # reactor temperature control at 143 ° C, pressure control at 51 kPa, reaction conversion rate 70%, 5 # reaction
  • the temperature of the device is controlled at 147 ° C, the pressure is controlled at 61 kPa, the reaction conversion rate is 81%, and the total conversion rate of the material is 81%, that is, the polymer material is obtained;
  • Step S4 the material vacuum devolatilization: the polymer material of the 5# reactor is preheated to 234 ° C by a devolatilization preheater, and then enters the devolatilizer, and the first stage devolatilization and the second stage are performed under the condition of a vacuum pressure of 2.50 kPa.
  • the devolatilization, the first-stage devolatilization temperature is 236 ° C, and the second-stage devolatilization temperature is 241 ° C, that is, the material after devolatilization;
  • Step S5 finished granulation: after the devolatilization, the material is pumped to the casting head, extruded into a strand, and then enters a cooling water bath of the strip, and then granulated, dried, and sieved to obtain finished granules.
  • the light transmissivity of the high light transmissive polystyrene material of the invention is 91% to 92% compared with the commercially available product, the yellowing resistance is good, the sheet is easy to process and the molding quality is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种高透光聚苯乙烯材料及其制备方法,所述高透光聚苯乙烯材料由苯乙烯单体、矿物油、润滑剂、脱模剂、紫外吸收剂和光稳定剂组成,各个组分按重量百分比如下:苯乙烯单体98~99.8wt%,矿物油0~0.5wt%,润滑剂0~0.1wt%,脱模剂0~0.1wt%,紫外吸收剂0.1~0.5wt%,光稳定剂0.1~1.0wt%,通过步骤S1物料添加,步骤S2物料初步预聚合,步骤S3物料多步聚合,步骤S4物料真空脱挥,步骤S5成品制粒,从而实现高透光聚苯乙烯材料的制备。一种高透光聚苯乙烯材料,具有高透光率和良好耐高温耐黄变性能,且制备方法简单,物料转化率高,有效降低生产成本。

Description

一种高透光聚苯乙烯材料及其制备方法 技术领域
本发明涉及高分子材料领域,尤其指一种高透光聚苯乙烯材料及制备方法。
背景技术
目前LED导光板一般使用聚甲基丙烯酸甲酯作为基材,虽然聚苯乙烯原料价格较低且加工性能优越,但是现有商品聚苯乙烯透光率普遍在90~91.2%之间,较聚甲基丙烯酸甲酯低2~3%,此外聚苯乙烯商品为适应各种不同加工应用的客户,通常会加入增塑剂、内滑剂、脱模剂和抗氧剂等各类助剂,赋予其不同的加工和应用特性,但助剂的加入量过大对光传到会造成不良影响,导致聚苯乙烯透光率下降和容易黄变,导致聚苯乙烯在LED导光板的应用受到限制。
发明内容
本发明创造的目的在于提供一种高透光聚苯乙烯材料,它具有高透光率、耐热耐黄变,制备方法简单,通过聚合反应将苯乙烯单体聚合形成无规聚苯乙烯,提高材料的耐用性且物料转化率高。
为达到上述目的,本发明采用如下技术方案:一种高透光聚苯乙烯材料,所述高透光聚苯乙烯材料由苯乙烯单体、矿物油、润滑剂、脱模剂、紫外吸收剂和光稳定剂组成,所述各个组分按重量百分比如下:
苯乙烯单体98~99.8wt%,作为高透光聚苯乙烯材料的主体成分。
矿物油0~0.5wt%,矿物油作为润滑油可提高苯乙烯制造时各物料混合 搅拌流动性,矿物油加入量大于0.5wt%则降低苯乙烯单体聚合后的透光率。
润滑剂0~0.1wt%,提高加入物料的流动性,有利于物料混合均匀,加入量大于0.1wt%则降低苯乙烯单体聚合后的透光率。
脱模剂0~0.1wt%,加入脱模剂使聚苯乙烯浇模成型后容易脱模,避免脱模过程损坏产品降低产品良率,添加量大于0.1wt%则降低苯乙烯单体聚合后的透光率。
紫外吸收剂0.1~0.5wt%,添加紫外吸收剂可吸收紫外线,延缓聚苯乙烯的老化速度,添加量小于0.1wt%则延缓老化的速度效果不佳,若添加量大于0.5wt%则降低苯乙烯单体聚合后的透光率。
光稳定剂0.1~1.0wt%,光稳定剂能屏蔽或吸收紫外线的能量,淬灭单线态氧及将过氧化物分解成非活性物质,使高分子聚合物在光的辐射下,能排除或减缓光化学反应可能性,延迟老化的过程,从而达到延长聚苯乙烯使用寿命,添加量小于0.1wt%则延迟老化的过程效果不佳,添加量大于1.0wt%则降低苯乙烯单体聚合后的透光率。
进一步地,所述润滑剂为硬脂酸锌,脱模剂为乙撑双硬脂酰胺,紫外吸收剂为2-(2H-苯并三氮唑-2-基)对甲苯酚,光稳定剂为双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯。脱模剂乙撑双硬脂酰胺具有很好的外部和内部润滑作用,使得聚苯乙烯成型加工中提高熔融状态的流动性和脱模性,从而提高了加工产量,降低能耗,和润滑剂硬脂酸锌联合作用使制品 获得极高的表面光洁性和平滑性,2-(2H-苯并三氮唑-2-基)对甲苯酚可吸收波长范围为270~380nm紫外线,此波长范围的紫外线容易导致聚苯乙烯材料加速老化,添加了2-(2H-苯并三氮唑-2-基)对甲苯酚可有效延缓材料老化速度,双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯可提高聚苯乙烯材料在光照条件下的稳定性。
再进一步地,一种高透光聚苯乙烯材料制备方法,制备步骤如下:
步骤S1,添加物料:把经计量的苯乙烯单体和矿物油直接加入预聚反应器;
步骤S2,物料初步预聚合:将润滑剂、脱模剂、紫外吸收剂和光稳定剂按比例混合经过滤器过滤后注入预聚釜预热器预热到88℃~92℃,再加入预聚合反应器和苯乙烯单体及矿物油进行预聚合反应,即得初步预聚合物;通过预聚釜预热器将润滑剂、脱模剂、紫外吸收机和光稳定剂熔融为液态再加入预聚反应器中,有利于物料混合均匀,保证后续步骤制得的聚苯乙烯材料聚合结构均匀。
步骤S3,物料多步聚合:所述初步预聚合物分别经过2#、3#、4#、5#反应器逐步聚合,使物料转化率达到78~81%,即得聚合物料;经过多步聚合提高物料转化率,实现物料转化率达到78~81%,提高物料的利用率。
步骤S4,物料真空脱挥:所述5#反应器的聚合物料经脱挥预热器预热后进入脱挥器,在真空条件下分别进行一级脱挥和二级脱挥,即得脱挥后物料;在真空条件下通过脱挥器将未聚合苯乙烯和乙苯分离出来,降低成 品的杂质含量,提高成品的透光率。
步骤S5,成品制粒:所述脱挥后物料经泵输送至铸带头,挤成条束后进入料条冷却水浴,然后经切粒、干燥、过筛,即得成品颗粒。将物料经冷却水浴凝固后,切粒、干燥、过筛即得粒径均匀的成品颗粒,便于后续产品制备。
再进一步地,所述步骤S2中所述预聚合反应器温度控制范围为126℃~128℃,所述预聚合反应器的液位为55%~56%,所述预聚合反应器内真空压力控制范围为56kPa~58kPa。预聚合反应器温度小于126℃则温度过低无法达到物料预聚合效果,温度高于130℃预聚合反应过于剧烈导致预聚合不均匀,影响产品质量,所述预聚合反应器的液位低于54%则降低聚合反应效果,所述预聚合反应器的液位高于56%则加热时预聚反应器转化率偏高,增加聚合反应操作的危险性,预聚合反应器内压力控制在56kPa~60kPa可以更好稳定聚合反应速度。
再进一步地,所述步骤S3中所述2#反应器温度控制范围为130℃~134℃,所述2#反应器内压力控制范围为28kPa~32kPa,所述3#反应器温度控制范围为136℃~140℃,所述3#反应器内压力控制范围为38kPa~42kPa,所述4#反应器温度控制范围为140℃~144℃,所述4#反应器内压力控制范围为48kPa~52kPa,所述5#反应器温度控制范围为144℃~148℃,所述5#反应器内压力控制范围为58kPa~62kPa。多步聚合反应,设置各个反应器温度梯度上升,并梯度增加反应器内部压力,促进物料聚 合反应完全。
再进一步地,所述步骤S4中所述5#反应器的聚合物料经脱挥预热器预热至234℃~235℃后进入脱挥器,所述一级脱挥温度为236℃~237℃,所述二级脱挥温度为239℃~241℃。5#反应器的聚合物料经脱挥预热器预热至234℃~235℃后进入脱挥器可缩短物料在一级脱挥器里加热时间,并且加快未聚合的苯乙烯和乙苯挥发分离出来,二级脱挥温度比一级脱挥温度高可保证未聚合的苯乙烯和乙苯完全分离出来,提高产品质量。
再进一步地,所述步骤S4中所述真空压力小于3.00kPa。真空条件下进行脱挥可排除水汽等气体对脱挥效果的影响。
与现有技术相比,本发明创造的有益技术效果:
第一、具有高透光率。目前市场上销售的LED导光板一般使用聚甲基苯烯酸价值作为材料制备,虽然聚苯乙烯价格较低,但现有商品聚苯乙烯透光率较低,使用效果差。本发明通过降低功能助剂的添加量和添加对聚苯乙烯透光率影响更小的功能助剂,改善聚苯乙烯材料的透光率,克服在聚苯乙烯在LED领域应用的瓶颈问题。
第二、耐高温耐黄变。目前市场上制备的聚苯乙烯为了适应不同客户使用需求添加各种添加剂,导致聚苯乙烯商品容易黄变,限制在LED导光板的应用。本发明通过添加紫外吸收剂和光稳定剂提高聚苯乙烯在光照条件下的稳定性,提高聚苯乙烯耐黄变的性能,并且通过多部聚合实现苯乙烯单体高度聚合,形成高聚合度聚苯乙烯,提高材料的耐高温性能。
第三、制备方法简单。聚苯乙烯制备通过配料、初步聚合、多步聚合、脱挥和制粒五步即可制备出透光率高,耐高温耐黄变的聚苯乙烯材料,物料进行聚合反应前无需任何前处理。
第四、物料转化率高,降低生产成本。通过多步聚合实现物料高度转化,提高物料的利用率,避免浪费物料,从而降低生产成本,提高产量。
具体实施方式
为便于本领域技术人员更好地理解本发明的技术方案,现结合具体实施方式对本发明作进一步说明。
实施例1
步骤S1,物料配制:把经计量的苯乙烯单体和矿物油直接加入预聚反应器,其中苯乙烯单体添加量为99.55wt%,矿物油添加量为0.1wt%;
步骤S2,物料初步预聚合:润滑剂硬脂酸锌添加量为0.05wt%、脱模剂乙撑双硬脂酰胺添加量为0.1wt%、紫外吸收剂2-(2H-苯并三氮唑-2-基)对甲苯酚添加量为0.1wt%和光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯添加量为0.1wt%,上述添加剂混合经过滤器过滤后注入预聚釜预热器预热到90℃,再加入预聚合反应器和苯乙烯单体及矿物油进行预聚合反应,预聚合反应器控制温度128℃、液位56%、真空压力控制在58kPa,即得初步预聚合物,预聚合转化率为32%;
步骤S3,物料多步聚合:所述初步预聚合物分别经过2#、3#、4#、5#反应器逐步聚合,2#反应器温度控制在132℃、压力控制在30kPa,反应 转化率为45%,3#反应器温度控制在138℃、压力控制在40kPa,反应转化率为58%,4#反应器温度控制在142℃、压力控制在50kPa,反应转化率70%,5#反应器温度控制在146℃、压力控制在60kPa,反应转化率80%,使物料总转化率达到80%,即得聚合物料;
步骤S4,物料真空脱挥:所述5#反应器的聚合物料经脱挥预热器预热至234℃后进入脱挥器,在真空压力为3.00kPa条件下进行一级脱挥和二级脱挥,一级脱挥温度为236℃,二级脱挥温度为239℃,即得脱挥后物料;
步骤S5,成品制粒:所述脱挥后物料经泵输送至铸带头,挤成条束后进入料条冷却水浴,然后经切粒、干燥、过筛,即得成品颗粒。
实施例2
步骤S1,物料配制:把经计量的苯乙烯单体和矿物油直接加入预聚反应器,其中苯乙烯单体添加量为99.15wt%,矿物油添加量为0.5wt%;
步骤S2,物料初步预聚合:润滑剂硬脂酸锌添加量为0.05wt%、脱模剂乙撑双硬脂酰胺添加量为0.1wt%、紫外吸收剂2-(2H-苯并三氮唑-2-基)对甲苯酚添加量为0.1wt%和光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯添加量为0.1wt%,上述添加剂混合经过滤器过滤后注入预聚釜预热器预热到92℃,再加入预聚合反应器和苯乙烯单体及矿物油进行预聚合反应,预聚合反应器控制温度128℃、液位55%、真空压力控制在58kPa,即得初步预聚合物,预聚合转化率为30%;
步骤S3,物料多步聚合:所述初步预聚合物分别经过2#、3#、4#、5#反应器逐步聚合,2#反应器温度控制在134℃、压力控制在32kPa,反应转化率为46%,3#反应器温度控制在140℃、压力控制在42kPa,反应转化率为57%,4#反应器温度控制在144℃、压力控制在52kPa,反应转化率70%,5#反应器温度控制在148℃、压力控制在62kPa,反应转化率81%,使物料总转化率达到81%,即得聚合物料;
步骤S4,物料真空脱挥:所述5#反应器的聚合物料经脱挥预热器预热至235℃后进入脱挥器,在真空压力为3.00kPa条件下进行一级脱挥和二级脱挥,一级脱挥温度为237℃,二级脱挥温度为240℃,即得脱挥后物料;
步骤S5,成品制粒:所述脱挥后物料经泵输送至铸带头,挤成条束后进入料条冷却水浴,然后经切粒、干燥、过筛,即得成品颗粒。
实施例3
步骤S1,物料配制:把经计量的苯乙烯单体和矿物油直接加入预聚反应器,其中苯乙烯单体添加量为98.4wt%,矿物油添加量为0.3wt%;
步骤S2,物料初步预聚合:润滑剂硬脂酸锌添加量为0.1wt%,紫外吸收剂2-(2H-苯并三氮唑-2-基)对甲苯酚添加量为0.2wt%和光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯添加量为1.0wt%,上述添加剂混合经过滤器过滤后注入预聚釜预热器预热到88℃,再加入预聚合反应器和苯乙烯单体及矿物油进行预聚合反应,预聚合反应器控制温度126℃、液位 56%、真空压力控制在56kPa,即得初步预聚合物,预聚合转化率为28%;
步骤S3,物料多步聚合:所述初步预聚合物分别经过2#、3#、4#、5#反应器逐步聚合,2#反应器温度控制在130℃、压力控制在28kPa,反应转化率为43%,3#反应器温度控制在136℃、压力控制在38kPa,反应转化率为56%,4#反应器温度控制在140℃、压力控制在48kPa,反应转化率68%,5#反应器温度控制在144℃、压力控制在58kPa,反应转化率78%,使物料总转化率达到78%,即得聚合物料;
步骤S4,物料真空脱挥:所述5#反应器的聚合物料经脱挥预热器预热至235℃后进入脱挥器,在真空压力为3.00kPa条件下进行一级脱挥和二级脱挥,一级脱挥温度为237℃,二级脱挥温度为240℃,即得脱挥后物料;
步骤S5,成品制粒:所述脱挥后物料经泵输送至铸带头,挤成条束后进入料条冷却水浴,然后经切粒、干燥、过筛,即得成品颗粒。
实施例4
步骤S1,添加物料:把经计量的苯乙烯单体和矿物油直接加入预聚反应器,其中苯乙烯单体添加量为98.95wt%;
步骤S2,物料初步预聚合:脱模剂乙撑双硬脂酰胺添加量为0.05wt%、紫外吸收剂2-(2H-苯并三氮唑-2-基)对甲苯酚添加量为0.5wt%和光稳定剂双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯添加量为0.5wt%,上述添加剂混合经过滤器过滤后注入预聚釜预热器预热到91℃,再加入预聚合反应器 和苯乙烯单体及矿物油进行预聚合反应,预聚合反应器控制温度128℃、液位55%、真空压力控制在58kPa,即得初步预聚合物,预聚合转化率为31%:
步骤S3,物料多步聚合:所述初步预聚合物分别经过2#、3#、4#、5#反应器逐步聚合,2#反应器温度控制在132℃、压力控制在29kPa,反应转化率为43%,3#反应器温度控制在139℃、压力控制在41kPa,反应转化率为58%,4#反应器温度控制在143℃、压力控制在51kPa,反应转化率70%,5#反应器温度控制在147℃、压力控制在61kPa,反应转化率81%,使物料总转化率达到81%,即得聚合物料;
步骤S4,物料真空脱挥:所述5#反应器的聚合物料经脱挥预热器预热至234℃后进入脱挥器,在真空压力为2.50kPa条件下进行一级脱挥和二级脱挥,一级脱挥温度为236℃,二级脱挥温度为241℃,即得脱挥后物料;
步骤S5,成品制粒:所述脱挥后物料经泵输送至铸带头,挤成条束后进入料条冷却水浴,然后经切粒、干燥、过筛,即得成品颗粒。
上述4个实施例所得的高透光聚苯乙烯材料与市售产品分别进行性能测试,测试结果参见表1。
表1 4个实施例得到的不同高透光聚苯乙烯材料与市售产品性能测试结果表
Figure PCTCN2018117935-appb-000001
Figure PCTCN2018117935-appb-000002
由表1可见,使用本发明高透光聚苯乙烯材料与市售产品相比,透光率均达到91%~92%,耐黄变性能好,容易加工成板材且成型质量好。
以上所述,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按以上所述顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而作出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (7)

  1. 一种高透光聚苯乙烯材料,其特征在于:所述高透光聚苯乙烯材料由苯乙烯单体、矿物油、润滑剂、脱模剂、紫外吸收剂和光稳定剂组成,所述各个组分按重量百分比如下:
    苯乙烯单体98~99.8wt%,
    矿物油0~0.5wt%,
    润滑剂0~0.1wt%,
    脱模剂0~0.1wt%,
    紫外吸收剂0.1~0.5wt%,
    光稳定剂0.1~1.0wt%。
  2. 根据权利要求1所述的一种高透光聚苯乙烯材料,其特征在于:所述润滑剂为硬脂酸锌,脱模剂为乙撑双硬脂酰胺,紫外吸收剂为2-(2H-苯并三氮唑-2-基)对甲苯酚,光稳定剂为双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯。
  3. 根据权利要求1或2所述的一种高透光聚苯乙烯材料制备方法,其特征在于:制备步骤如下:
    步骤S1,物料配制:把经计量的苯乙烯单体和矿物油直接加入预聚反应器;
    步骤S2,物料初步预聚合:将润滑剂、脱模剂、紫外吸收剂和光稳定剂按比例混合经过滤器过滤后注入预聚釜预热器预热到88℃~92℃,再加入预聚合反应器和苯乙烯单体及矿物油进行预聚合反应,即得初步预聚合 物;
    步骤S3,物料多步聚合:所述初步预聚合物分别经过2#、3#、4#、5#反应器逐步聚合,使物料转化率达到78~81%,即得聚合物料;
    步骤S4,物料真空脱挥:所述5#反应器的聚合物料经脱挥预热器预热后进入脱挥器,在真空条件下分别进行一级脱挥和二级脱挥,即得脱挥后物料;
    步骤S5,成品造粒:所述脱挥后物料经泵输送至铸带头,挤成条束后进入料条冷却水浴,然后经切粒、干燥、过筛,即得成品颗粒。
  4. 根据权利要求3所述的一种高透光聚苯乙烯材料制备方法,其特征在于:所述步骤S2中所述预聚合反应器温度控制范围为126℃~128℃,所述预聚合反应器的液位为55%~56%,所述预聚合反应器内真空压力控制范围为56kPa~58kPa。
  5. 根据权利要求3所述的一种高透光聚苯乙烯材料制备方法,其特征在于:所述步骤S3中所述2#反应器温度控制范围为130℃~134℃,所述2#反应器内压力控制范围为28kPa~32kPa,所述3#反应器温度控制范围为136℃~140℃,所述3#反应器内压力控制范围为38kPa~42kPa,所述4#反应器温度控制范围为140℃~144℃,所述4#反应器内压力控制范围为48kPa~52kPa,所述5#反应器温度控制范围为144℃~148℃,所述5#反应器内压力控制范围为58kPa~62kPa。
  6. 根据权利要求3所述的一种高透光聚苯乙烯材料制备方法,其特征 在于:所述步骤S4中所述5#反应器的聚合物料经脱挥预热器预热至234℃~235℃后进入脱挥器,所述一级脱挥温度为236℃~237℃,所述二级脱挥温度为239℃~241℃。
  7. 根据权利要求3所述的一种高透光聚苯乙烯材料制备方法,其特征在于:所述步骤S4中所述真空压力小于3.00kPa。
PCT/CN2018/117935 2017-12-01 2018-11-28 一种高透光聚苯乙烯材料及其制备方法 WO2019105385A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711248500.7 2017-12-01
CN201711248500.7A CN108047582B (zh) 2017-12-01 2017-12-01 一种高透光聚苯乙烯材料及其制备方法

Publications (2)

Publication Number Publication Date
WO2019105385A1 true WO2019105385A1 (zh) 2019-06-06
WO2019105385A9 WO2019105385A9 (zh) 2019-07-25

Family

ID=62121791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117935 WO2019105385A1 (zh) 2017-12-01 2018-11-28 一种高透光聚苯乙烯材料及其制备方法

Country Status (2)

Country Link
CN (1) CN108047582B (zh)
WO (1) WO2019105385A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047582B (zh) * 2017-12-01 2019-12-31 惠州仁信新材料股份有限公司 一种高透光聚苯乙烯材料及其制备方法
CN110194813A (zh) * 2019-05-07 2019-09-03 河北宝晟新型材料有限公司 一种阻燃聚苯乙烯的制备方法
CN112724296A (zh) * 2020-12-28 2021-04-30 江苏可立特工程设计研究有限公司 一种5万吨级产能规模以上的透明聚苯乙烯及其生产设备、工艺
CN113072777A (zh) * 2021-04-02 2021-07-06 惠州仁信新材料股份有限公司 一种具有良好强度的透明聚苯乙烯树脂及其制备方法
CN113087827A (zh) * 2021-04-02 2021-07-09 惠州仁信新材料股份有限公司 一种耐紫外线老化和良好耐黄变性能的透明聚苯乙烯及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814662A (zh) * 2005-02-01 2006-08-09 享奎企业股份有限公司 高亮度发光树脂组合物
CN102093689A (zh) * 2010-12-27 2011-06-15 金发科技股份有限公司 一种光散射功能母粒及其制备方法与应用
CN102444866A (zh) * 2010-10-15 2012-05-09 苏州拓显光电材料有限公司 改良型导光板及使用该导光板的背光模组
CN102702637A (zh) * 2012-06-29 2012-10-03 东莞市银禧光电材料科技有限公司 一种高透光、高遮光聚苯乙烯组合物及其制备方法
CN103073867A (zh) * 2012-12-28 2013-05-01 东莞市普凯塑料科技有限公司 一种透明塑料用光扩散母粒及其制备方法
JP2014001295A (ja) * 2012-06-18 2014-01-09 Ps Japan Corp ポリスチレン系樹脂組成物及び導光板
CN105037986A (zh) * 2015-06-16 2015-11-11 广东瑞捷光电股份有限公司 母粒、树脂组合物、扩散板及扩散板的制备方法
CN108047582A (zh) * 2017-12-01 2018-05-18 惠州仁信聚苯集团有限公司 一种高透光聚苯乙烯材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150025181A1 (en) * 2012-04-02 2015-01-22 Ps Japan Corporation Polystyrene-based resin composition and light guide plate formed by molding same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1814662A (zh) * 2005-02-01 2006-08-09 享奎企业股份有限公司 高亮度发光树脂组合物
CN102444866A (zh) * 2010-10-15 2012-05-09 苏州拓显光电材料有限公司 改良型导光板及使用该导光板的背光模组
CN102093689A (zh) * 2010-12-27 2011-06-15 金发科技股份有限公司 一种光散射功能母粒及其制备方法与应用
JP2014001295A (ja) * 2012-06-18 2014-01-09 Ps Japan Corp ポリスチレン系樹脂組成物及び導光板
CN102702637A (zh) * 2012-06-29 2012-10-03 东莞市银禧光电材料科技有限公司 一种高透光、高遮光聚苯乙烯组合物及其制备方法
CN103073867A (zh) * 2012-12-28 2013-05-01 东莞市普凯塑料科技有限公司 一种透明塑料用光扩散母粒及其制备方法
CN105037986A (zh) * 2015-06-16 2015-11-11 广东瑞捷光电股份有限公司 母粒、树脂组合物、扩散板及扩散板的制备方法
CN108047582A (zh) * 2017-12-01 2018-05-18 惠州仁信聚苯集团有限公司 一种高透光聚苯乙烯材料及其制备方法

Also Published As

Publication number Publication date
CN108047582B (zh) 2019-12-31
WO2019105385A9 (zh) 2019-07-25
CN108047582A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019105385A1 (zh) 一种高透光聚苯乙烯材料及其制备方法
WO2019105384A1 (zh) 一种用于光扩散板的聚苯乙烯树脂材料及其制备方法
JP5597550B2 (ja) 光学用成形体及びそれを用いた導光板及び光拡散体
JP5073499B2 (ja) 耐化学性、流動性及び耐変色性にすぐれる透明共重合体樹脂の製造方法及びその共重合体樹脂
US5719242A (en) Process for preparing methyl methacrylate polymer
EP3399354A1 (en) Anti-blue light optical resin lens and preparation method therefor
EP0863167A1 (en) Process for producing a copolymer
CN1875034B (zh) 苯乙烯系共聚物及其制造方法
KR20160102963A (ko) (메트)아크릴 수지 조성물의 제조 방법
US7812073B2 (en) Preparation method of small particle sized polybutadiene latex used for the production of ABS
JP3013951B2 (ja) アクリル系樹脂の製造法
JPH0219843B2 (zh)
CN112759873A (zh) 一种高雾度高透光pmma光扩散母粒及其制备方法和应用
WO2016031849A1 (ja) (メタ)アクリル樹脂組成物の製造方法
CN1023487C (zh) 聚甲基丙烯酸酯类溶液聚合的新方法
KR101256998B1 (ko) 액정표시장치 도광판 제조용 폴리메틸(메타)아크릴레이트 수지 조성물
CN107227119B (zh) 一种紫外光固化胶黏剂及其生产工艺
KR101743805B1 (ko) 아크릴계 수지 조성물, 이를 포함하는 수지 펠렛 및 광학필름
JP5160491B2 (ja) メタクリル樹脂連続重合の一時停止方法
KR101657355B1 (ko) 아크릴계 수지 조성물, 이를 포함하는 수지 펠렛 및 광학필름
CN117624449A (zh) 一种聚甲基丙烯酸甲酯组合物及其制备方法
CN111251493B (zh) 一种受阻胺类光稳定剂的造粒方法
JPH01161036A (ja) 近赤外線吸収メタクリル樹脂材料およびその製造方法
JP2016053103A (ja) アクリル樹脂、アクリル樹脂組成物、アクリル樹脂の製造方法、アクリル樹脂組成物の製造方法、導光板及び表示装置
JPS61252116A (ja) 離型性の改善された注型物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883527

Country of ref document: EP

Kind code of ref document: A1