WO2019105051A1 - 一种触控显示面板及其制备方法、触控显示装置 - Google Patents

一种触控显示面板及其制备方法、触控显示装置 Download PDF

Info

Publication number
WO2019105051A1
WO2019105051A1 PCT/CN2018/097341 CN2018097341W WO2019105051A1 WO 2019105051 A1 WO2019105051 A1 WO 2019105051A1 CN 2018097341 W CN2018097341 W CN 2018097341W WO 2019105051 A1 WO2019105051 A1 WO 2019105051A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
display panel
sensing
driving
sub
Prior art date
Application number
PCT/CN2018/097341
Other languages
English (en)
French (fr)
Inventor
马浚原
刘甲定
王冰
张亚朋
张成明
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201721642852.6U external-priority patent/CN207909093U/zh
Priority claimed from CN201711241252.3A external-priority patent/CN108037846B/zh
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Priority to US16/349,122 priority Critical patent/US20200285347A1/en
Publication of WO2019105051A1 publication Critical patent/WO2019105051A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present application relates to the field of display technologies, and in particular, to a touch display panel, a method for fabricating the same, and a touch display device.
  • the touch display panel integrates the touch screen and the flat display panel to enable the flat display panel to have a touch function.
  • the touch display panel can provide a human-machine interaction interface, and allows input through fingers, a stylus, etc., and is more direct and more user-friendly in use.
  • touch display panels are increasingly being used in various display devices.
  • the thickness of the touch display panel is becoming thinner and thinner.
  • the distance between the two is closer and closer.
  • the display panel may interfere with the touch electrode, resulting in a decrease in detection sensitivity of the touch electrode.
  • the touch function of the touch display panel is damaged or even disabled.
  • the main purpose of the present application is to provide a touch display panel, a method for fabricating the same, and a touch display device, which are intended to solve the problem in the prior touch display panel because the distance between the display panel and the touch electrode is relatively close.
  • the display panel has a large interference to the touch electrodes, which affects the touch sensitivity of the touch electrodes.
  • a touch display panel including: a cathode, an encapsulation layer, and a touch layer, wherein:
  • the encapsulation layer is located between the cathode and the touch layer, and the encapsulation layer is made of a material having a low dielectric constant.
  • the low dielectric constant ranges from 3 to 8
  • the encapsulation layer has a thickness of 1 to 10 ⁇ m.
  • the encapsulation layer comprises at least one of a thin film encapsulation layer and a substrate layer, wherein:
  • the encapsulation layer includes a thin film encapsulation layer and/or a substrate layer
  • at least one of the thin film encapsulation layer and the underlayer is made of a material having a dielectric constant of 3 to 8.
  • the touch layer includes: a first conductive layer and a first insulating layer, wherein:
  • the first conductive layer includes a plurality of sensing electrodes and a plurality of driving electrodes
  • the first insulating layer covers the first conductive layer, and the first insulating layer is made of a material having a dielectric constant of not less than 30.
  • the first insulating layer has a thickness of 0.01 to 10 ⁇ m.
  • the touch layer includes: a second conductive layer, a third conductive layer, and a second insulating layer, wherein:
  • the second conductive layer includes a plurality of sensing electrodes, and the third conductive layer includes a plurality of driving electrodes;
  • the second insulating layer is located between the second conductive layer and the third conductive layer, and the second insulating layer is made of a material having a dielectric constant of not less than 30.
  • the second insulating layer has a thickness of 0.01 to 10 ⁇ m.
  • the touch display panel further includes: a display panel, wherein:
  • the touch layer is disposed on the display panel, and the third conductive layer is located between the second conductive layer and the display panel;
  • An orthographic projection area of the plurality of sensing electrodes on the display panel falls within an orthographic projection area of the plurality of driving electrodes on the display panel.
  • each of the driving electrodes includes a plurality of driving sub-electrodes connected in series
  • each of the sensing electrodes includes a plurality of sensing sub-electrodes connected in sequence, wherein:
  • the number of the sensing sub-electrodes is equal to the number of the driving sub-electrodes, and each of the sensing sub-electrodes on the front projection area of the display panel respectively falls on one of the driving sub-electrodes in the Inside the orthographic area of the display panel; or,
  • the number of the sensing sub-electrodes is greater than the number of the driving sub-electrodes, and at least one of the sensing sub-electrodes falls on an orthographic projection area on the display panel on one of the driving sub-electrodes on the display panel. Within the orthographic projection area.
  • the third conductive layer further includes a plurality of filler blocks, wherein:
  • the plurality of filling blocks are filled in a gap between the plurality of driving electrodes
  • the plurality of filler blocks are insulated from each other, and the plurality of filler blocks and the plurality of driving electrodes are insulated from each other.
  • the touch display panel provided by the embodiment of the present invention includes a cathode, an encapsulation layer, and a touch layer.
  • the encapsulation layer is located between the cathode and the touch layer, and the encapsulation layer is made of a material having a low dielectric constant.
  • the sensing capacitance between the cathode and the touch electrode in the touch layer can be reduced, and the touch display panel is touched.
  • the sensing capacitance between the cathode and the touch electrode is reduced, so that the interference of the display panel on the touch electrode can be reduced, thereby reducing the damage to the touch function of the touch display panel and improving the touch display. Touch sensitivity of the panel.
  • the embodiment of the present application further provides a touch display panel, including: a first conductive layer, a second conductive layer, and a display panel, wherein:
  • the first conductive layer includes a plurality of sensing electrodes
  • the second conductive layer includes a plurality of driving electrodes
  • the second conductive layer is located between the first conductive layer and the display panel;
  • An orthographic projection area of the plurality of sensing electrodes on the display panel falls within an orthographic projection area of the plurality of driving electrodes on the display panel.
  • each of the driving electrodes includes a plurality of driving sub-electrodes connected in series
  • each of the sensing electrodes includes a plurality of sensing sub-electrodes connected in sequence, wherein:
  • the number of the sensing sub-electrodes is equal to the number of the driving sub-electrodes, and each of the sensing sub-electrodes on the front projection area of the display panel respectively falls on one of the driving sub-electrodes in the Inside the orthographic area of the display panel; or,
  • the number of the sensing sub-electrodes is greater than the number of the driving sub-electrodes, and at least one of the sensing sub-electrodes falls on an orthographic projection area on the display panel on one of the driving sub-electrodes on the display panel. Within the orthographic projection area.
  • the shape of the driving sub-electrode is a diamond shape and/or a strip shape
  • the shape of the sensing sub-electrode is a diamond shape and/or a strip shape
  • the second conductive layer further includes a plurality of filler blocks, wherein:
  • the plurality of filling blocks are filled in a gap between the plurality of driving electrodes
  • the plurality of filler blocks are insulated from each other, and the plurality of filler blocks and the plurality of driving electrodes are insulated from each other.
  • the display panel includes a driving signal line, and the driving signal line is configured to provide a driving signal, where the driving signal includes at least one of a data voltage signal, a power signal, a scan control signal, and an illumination control signal. .
  • the touch display panel further includes: a cathode, wherein:
  • the cathode includes at least one hollowed out area, each of the positions of the hollowed out area corresponding to a position of one of the sensing electrodes or the driving electrodes.
  • the embodiment of the present application further provides a method for preparing a touch display panel, including:
  • An orthographic projection area of the plurality of sensing electrodes on the display panel falls within an orthographic projection area of the plurality of driving electrodes on the display panel.
  • each of the driving electrodes includes a plurality of driving sub-electrodes connected in series
  • each of the sensing electrodes includes a plurality of sensing sub-electrodes connected in sequence, wherein:
  • the number of the sensing sub-electrodes is equal to the number of the driving sub-electrodes, and each of the sensing sub-electrodes on the front projection area of the display panel respectively falls on one of the driving sub-electrodes in the Inside the orthographic area of the display panel; or,
  • the number of the sensing sub-electrodes is greater than the number of the driving sub-electrodes, and at least one of the sensing sub-electrodes falls on the front projection area of the display panel on one of the driving sub-electrodes on the display panel Inside the orthographic projection area.
  • a plurality of filling blocks are formed when the second conductive layer is etched, and the plurality of filling blocks are filled in a gap between the plurality of driving electrodes, between the plurality of filling blocks They are insulated from each other, and the plurality of filler blocks and the plurality of driving electrodes are insulated from each other.
  • the touch display panel provided by the embodiment of the present application includes a first conductive layer, a second conductive layer, and a display panel, wherein the first conductive layer includes a plurality of sensing electrodes, and the second conductive layer includes a plurality of driving electrodes
  • the second conductive layer is located between the first conductive layer and the display panel; the front projection area of the plurality of sensing electrodes on the display panel falls on the plurality of driving electrodes in the display Inside the orthographic projection area on the panel.
  • the driving electrode since the driving electrode is located between the sensing electrode and the display panel, and the orthographic projection area of the sensing electrode on the display panel falls within the orthographic projection area of the driving panel of the driving panel, the driving electrode can effectively block or absorb the driving signal generated.
  • the electromagnetic field can effectively reduce the interference of the display panel on the sensing electrode when the touch display panel is touched, thereby ensuring the touch function of the touch display panel.
  • the touch display device of any one of the above described touch display panels is provided.
  • FIG. 1 is a schematic structural diagram of a touch display panel according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another touch display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of still another touch display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of adjacent driving sub-electrodes and sensing sub-electrodes in a touch display panel according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of adjacent driving sub-electrodes and sensing sub-electrodes in another touch display panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another touch display panel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of still another touch display panel according to an embodiment of the present application.
  • FIG. 8 is a side view of a touch display panel according to an embodiment of the present application.
  • FIG. 9 is a top view of a touch display panel according to an embodiment of the present application.
  • FIG. 10 is a top view of another touch display panel according to an embodiment of the present disclosure.
  • FIG. 11 is a side view of another touch display panel according to an embodiment of the present application.
  • FIG. 12 is a top view of still another touch display panel according to an embodiment of the present application.
  • FIG. 13 is a schematic flow chart of a method for fabricating a touch display panel according to an embodiment of the present application.
  • the distance between the display panel and the touch electrodes in the touch display panel is getting closer.
  • the display panel may interfere with the touch electrode due to the relatively close distance between the display panel and the touch electrode.
  • the cathode and the driving signal in the display panel may interfere with the touch electrode, and affect the touch sensitivity of the touch electrode.
  • the embodiment of the present invention provides a touch display panel, which can reduce interference of at least one of a cathode and a driving signal line in the display panel to the touch electrode, thereby improving touch sensitivity of the touch display panel.
  • the touch display panel provided by the embodiment of the present invention may be an on-cell or an out-cell or an in-cell touch display panel, and the touch display panel may be applied to display panels of various modes, which is not specifically limited herein.
  • the plurality of the sensing electrodes and the plurality of the driving electrodes may be located in the same conductive layer, or may be located in different conductive layers, wherein the plurality of sensing electrodes And the plurality of driving electrodes may be transparent conductive materials, including but not limited to: ITO (Chinese name: indium tin oxide, English name: Indium Tin Oxide); AgNW (nano silver wire), graphene, etc., or Metal mesh.
  • ITO Choinese name: indium tin oxide, English name: Indium Tin Oxide
  • AgNW nano silver wire
  • graphene etc.
  • Metal mesh Metal mesh
  • the encapsulation layer described in the embodiment of the present application may be a thin film encapsulation layer for encapsulating the display panel, or may be a substrate layer between the touch layer and the thin film encapsulation layer, or may include the thin film encapsulation layer.
  • the substrate layer is further included and is not specifically limited herein.
  • the thin film encapsulation layer is made of a material having a low dielectric constant; if the encapsulation layer is the substrate layer, the substrate layer is low dielectric constant a material; if the encapsulation layer comprises the thin film encapsulation layer and the substrate layer, at least one of the thin film encapsulation layer and the substrate layer is a low dielectric constant material.
  • FIG. 1 is a schematic structural diagram of a touch display panel according to an embodiment of the present application.
  • the touch display panel is as follows.
  • the touch display panel may include a cathode 11 , a thin film encapsulation layer 12 , a substrate layer 13 (the thin film encapsulation layer 12 and the substrate layer 13 may be collectively referred to as an encapsulation layer), and a touch layer 14 included in the touch layer 14 .
  • the conductive layer 141 and the insulating layer 142 include a sensing electrode 1411 and a driving electrode 1412.
  • the thin film encapsulation layer 12 covers the cathode 11 and can be used for encapsulating the cathode 11.
  • the substrate layer 13 covers the thin film encapsulation layer 12, and the touch layer 14 covers the substrate layer 13.
  • the material of the thin film encapsulation layer 12 shown in FIG. 1 may be a low dielectric constant material, and specifically may be a transparent low dielectric constant material.
  • the dielectric constant of the low dielectric constant material may be between 3 and 8.
  • the low dielectric constant material may be silicon oxide or silicon oxynitride, and may be other materials having a low dielectric constant, which is not specifically limited in the embodiment of the present application.
  • the first conductive layer 141 and the first insulating layer 142 may be included in the touch layer 14 , wherein the first conductive layer 141 may include a sensing electrode 1411 and a driving electrode 1412 .
  • an induction capacitor can be generated between the sensing electrode 1411 and the cathode 11.
  • the thin film encapsulation layer 12 is located between the cathode 11 and the sensing electrode 1411 and can be regarded as a sensing electrode.
  • the dielectric between the 1411 and the cathode 11 (the sensing electrode 1411 and the cathode 11 can be regarded as one of the plates of the capacitor, respectively). Since the thin film encapsulation layer 12 is a low dielectric constant material in the embodiment of the present application, the inductance between the sensing electrode 1411 and the cathode 11 can be reduced, thereby effectively reducing the cathode 11 compared with the prior art. Interference with the sensing electrode 1411.
  • an induction capacitor can also be generated between the driving electrode 1412 and the cathode 11.
  • the thin film encapsulation layer 12 can also be regarded as the driving electrode 1412 and the cathode 11.
  • the capacitance between the drive electrodes 1412 and the cathode 11 can be considered as one of the plates of the capacitor, respectively. Since the thin film encapsulation layer 12 is a low dielectric constant material in the embodiment of the present application, the induced capacitance generated between the driving electrode 1412 and the cathode 11 can be reduced compared with the prior art, thereby effectively reducing the cathode. 11 pairs of interference with the drive electrode 1412.
  • the touch display panel provided by the embodiment of the present invention can reduce the interference of the cathode on the sensing electrode and the interference of the cathode on the driving electrode. Therefore, compared with the prior art, the touch display panel can be effectively touched. Control sensitivity.
  • the thickness of the thin film encapsulation layer 12 is appropriately increased.
  • the thickness of the thin film encapsulation layer 12 may be between 1 and 10 ⁇ m.
  • a conductive layer 141 may be formed over the substrate layer 13, and the conductive layer 141 is covered with an insulating layer 142.
  • the substrate layer 13 can be integral with the touch layer 14.
  • the substrate layer 13 may also be made of a material having a low dielectric constant, and may be transparent.
  • Low dielectric constant material The dielectric constant of the low dielectric constant material may be between 3 and 8, and may be silicon oxide or silicon oxynitride, or other low dielectric constant materials. No specific restrictions.
  • the thin film encapsulation layer 12 and the substrate layer 13 between the cathode 11 and the touch layer 14 are both made of a low dielectric constant material, the capacitance between the cathode 11 and the sensing electrode 1411 and the driving electrode 1412 can be further reduced. In addition, the interference of the cathode 11 on the sensing electrode 1411 and the driving electrode 1412 is reduced, and the touch sensitivity of the touch display panel is improved.
  • At least one of the thin film encapsulation layer 12 and the substrate substrate 13 shown in FIG. 1 may be made of a material having a low dielectric constant, as long as the cathode 11 and the sensing electrode 1411 and the driving electrode 1412 can be reduced.
  • the sensing capacitance between them can be.
  • the thin film encapsulation layer 12 and the substrate substrate 13 are both made of a low dielectric constant material, the low dielectric constant materials used by the two may be the same or different, and are not specifically limited herein.
  • the substrate substrate 13 can also be removed, that is, the touch layer 14 can be directly formed on the thin film encapsulation layer 12, so that The thickness of the thin film encapsulation layer 12 may be designed to be thicker to meet the thickness of the touch display panel to minimize the sensing capacitance between the cathode 11 and the sensing electrode 1411 and the driving electrode 1412.
  • a sensing capacitor can also be generated between the sensing electrode 1411 and the driving electrode 1412 in the touch layer 14 , wherein the insulating layer 142 can be regarded as the sensing electrode 1411 and the driving electrode.
  • the dielectric formed by 1412 (the sensing electrode 1411 and the driving electrode 1412 can be regarded as one of the plates of the capacitor, respectively).
  • the insulating layer 142 may also be made of a material having a high dielectric constant. In this way, the sensing capacitance generated between the sensing electrode 1411 and the driving electrode 1412 can be increased, thereby achieving the purpose of improving touch sensitivity.
  • the high dielectric constant material used in the insulating layer 142 may be a transparent high dielectric constant material, wherein the high dielectric constant material may have a dielectric constant greater than 30, specifically nitriding.
  • the silicon may be titanium oxide, or may be other materials having a high dielectric constant such as alumina, magnesia, or zirconia, and is not specifically limited herein.
  • the embodiment of the present application can also appropriately reduce the thickness of the insulating layer 142.
  • the thickness of the insulating layer 142 may be set to be between 0.01 and 10 ⁇ m.
  • the touch display panel provided by the embodiment of the present invention includes: a cathode, an encapsulation layer, and a touch layer, wherein the encapsulation layer is located between the cathode and the touch layer, and the encapsulation layer comprises a thin film encapsulation layer and a liner
  • the touch layer includes a sensing electrode and a driving electrode, and the sensing electrode and the driving electrode are located in the same conductive layer, and the encapsulating layer is made of a material having a low dielectric constant.
  • the sensing capacitance between the cathode and the sensing layer and the driving electrode in the touch layer can be reduced.
  • the sensing capacitance between the cathode and the sensing electrode and the driving electrode is reduced. Therefore, compared with the prior art, the interference of the cathode on the touch electrode can be reduced, thereby reducing the touch display panel.
  • the damage of the touch function improves the touch sensitivity of the touch display panel.
  • FIG. 2 is a schematic structural diagram of another touch display panel according to an embodiment of the present application.
  • the touch display panel is as follows.
  • the touch display panel may include a cathode 21 , a thin film encapsulation layer 22 , and a touch layer 23 .
  • the thin film encapsulation layer 22 is located between the cathode 21 and the touch layer 23
  • the touch layer 23 includes a first conductive layer 231 .
  • the insulating layer 232 is disposed between the first conductive layer 231 and the second conductive layer 233.
  • the first conductive layer 231 includes a driving electrode 2311
  • the second conductive layer 233 includes a sensing electrode 2331. .
  • the thin film encapsulation layer 12 can be used to encapsulate the cathode 21.
  • the touch display panel shown in FIG. 2 is different from the touch display panel shown in FIG. 1 , and the driving electrode 2311 and the sensing electrode 2331 in FIG. 2 are located in different conductive layers, and the touch layer 23 can be directly formed on the touch display layer 23 .
  • the thin film encapsulation layer 22 On the thin film encapsulation layer 22.
  • the material of the thin film encapsulation layer 22 shown in FIG. 2 may be a low dielectric constant material, and specifically may be a transparent low dielectric constant material.
  • a low dielectric constant material and specifically may be a transparent low dielectric constant material.
  • the thickness of the low dielectric constant material and the dielectric constant refer to the content described in Embodiment 1, and the description thereof will not be repeated here.
  • the sensing capacitance between the driving electrode 2311 and the cathode 21 and the sensing capacitance between the sensing electrode 2331 and the cathode 21 can be reduced, and the touch layer 23 is touched.
  • the cathode 21 is interfered with the driving electrode 2311 and the sensing electrode 2331, the touch sensitivity of the touch display panel is improved.
  • the insulating layer 232 shown in FIG. 2 may also be made of a material having a high dielectric constant, and specifically may be a transparent high dielectric constant material.
  • a material having a high dielectric constant and specifically may be a transparent high dielectric constant material.
  • the thickness of the high dielectric constant material and the dielectric constant refer to the content described in Embodiment 1, and the description thereof will not be repeated here.
  • an induction capacitor can be generated between the driving electrode 2311 and the sensing electrode 2331 in the touch layer 23, and the insulating layer 232 can be regarded as the driving electrode 2311 and the sensing electrode 2331.
  • the capacitance between the drive electrodes 2311 and the sense electrodes 2331 can be considered as one of the plates of the capacitor, respectively.
  • the insulating layer 232 of FIG. 2 is made of a high dielectric constant material, the induced capacitance generated between the driving electrode 2311 and the sensing electrode 2331 can be increased compared to the prior art. In this way, when the touch layer 23 is touched, the interference between the driving electrode 2311 and the sensing electrode 2331 can be reduced by increasing the sensing capacitance between the driving electrode 2311 and the sensing electrode 2331, thereby improving the touch. Control the touch sensitivity of the display panel.
  • the touch display panel of the present application includes a cathode, a thin film encapsulation layer, and a touch layer, wherein the touch screen includes a sensing electrode and a driving electrode, and the sensing electrode and the driving electrode are located at different conductive levels.
  • the thin film encapsulation layer is located between the cathode and the touch layer, and the thin film encapsulation layer is made of a material having a low dielectric constant.
  • the sensing capacitance between the cathode and the sensing layer and the driving electrode in the touch layer can be reduced.
  • the sensing capacitance between the cathode and the sensing electrode and the driving electrode is reduced. Therefore, compared with the prior art, the interference of the cathode on the touch electrode can be reduced, thereby reducing the touch on the touch display panel.
  • the damage of the control function improves the touch sensitivity of the touch display panel.
  • the touch display panel shown in FIG. 1 and FIG. 2 in order to further reduce the influence of the cathode on the touch electrode in the touch display panel, at least one of the touch electrodes may be dug inside. Therefore, the touch sensitivity of the touch display panel can be improved by reducing the interference between the cathode and the touch electrode by reducing the relative area between the cathode and the touch electrode.
  • the touch electrode may include a sensing electrode and a driving electrode, and the interior of the at least one touch electrode is hollowed out, and may be at least one of the sensing electrodes.
  • the internal hollowing out may also be the internal hollowing of at least one driving electrode, or may be the internal hollowing of at least one of the sensing electrodes and the internal hollowing of at least one driving electrode, which is not specifically limited herein.
  • the interference of the cathode with the sensing electrode is greater than the interference of the cathode with the driving electrode. Therefore, as a preferred manner, the interior of at least one of the sensing electrodes may be Knock out.
  • FIG. 3 is a schematic structural diagram of a touch display panel according to an embodiment of the present application.
  • the touch display panel includes a plurality of (only two are shown in FIG. 3 ) sensing electrodes 31 and a plurality of (only two are shown in FIG. 3 ) driving electrodes 32 , and a plurality of sensing electrodes 31 .
  • the plurality of driving electrodes 32 may be arranged along the first direction (the X direction shown in FIG. 3), and the plurality of sensing electrodes 31 and the plurality of driving electrodes 32 may be arranged along the second direction (the Y direction shown in FIG. 3). Crossing each other, the first direction may be perpendicular to the second direction.
  • Each of the sensing electrodes 31 may include a plurality of sensing sub-electrodes 311, and each of the driving electrodes 32 may include a plurality of driving sub-electrodes 321 .
  • the shape of each of the sensing sub-electrodes 311 and each of the driving sub-electrodes 321 may be a diamond shape. In other implementations, the shape of each of the sensing sub-electrodes 311 and each of the driving sub-electrodes 321 may also be strip-shaped. Make specific limits.
  • the inside of the three sensing sub-electrodes 311 included therein may be all hollowed out, so that the relative area between the sensing electrodes 31 and the cathode can be minimized.
  • a sensing sub-electrode included in one sensing electrode may have a part of the sensing sub-electrode internally hollowed out, and another part of the sensing sub-electrode is not hollowed out inside, and the number of internally-inducing sensing sub-electrodes may be determined according to actual conditions. There is no specific limit here.
  • the inductive sub-electrodes that are internally hollowed out may be adjacent sensing sub-electrodes or non-adjacent sensing sub-electrodes, and are not specifically limited herein.
  • the plurality of sensing sub-electrodes 311 included may be sequentially connected by the first conductive bridge 312, and for one of the driving electrodes 31, the plurality of drivers included therein
  • the electrodes 321 may be sequentially connected by a second conductive bridge 322, wherein the first conductive bridge 312 and the second conductive bridge 322 are insulated from each other.
  • the plurality of sensing electrodes 31 and the plurality of driving electrodes 32 shown in FIG. 3 may be located in the same conductive layer, and the first conductive bridge 312 and the second conductive bridge 322 may be disposed in different conductive layers.
  • the first conductive bridge 312 may be located in the conductive layer A
  • the second conductive bridge 322 may be located in the conductive layer B (or, first The conductive bridge 312 can be located in the conductive layer B and the second conductive bridge 322 can be located in the conductive layer A).
  • the positional relationship of the conductive layer A, the conductive layer B and the cathode in the touch display panel from top to bottom may be: conductive layer A, conductive layer B, cathode, or conductive layer B, conductive layer A, cathode.
  • the plurality of sensing electrodes 31 and the plurality of driving electrodes 32 shown in FIG. 3 may also be located in different conductive layers, and the first conductive bridge 312 and the second conductive bridge 322 are also located in different conductive layers. For example, if the plurality of sensing electrodes 31 are located in the conductive layer A, the first conductive bridge 312 is also located in the conductive layer A. If the plurality of driving electrodes 31 are located in the conductive layer B, the second conductive bridge 322 is also located in the conductive layer B. in.
  • the positional relationship of the conductive layer A, the conductive layer B, and the cathode in the touch display panel from top to bottom may be: conductive layer A, conductive layer B, and cathode.
  • At least one driving electrode in the touch display panel may be hollowed out .
  • the size of the hollowed out area of the driving electrode can be determined according to actual needs, and is not specifically limited herein.
  • each of the three driving sub-electrodes 321 included in each of the driving electrodes 32 in FIG. 3 may be hollowed out.
  • one of the driving sub-electrodes included in one driving electrode may be hollowed out inside the driving sub-electrode, and the other driving sub-electrode is not hollowed out inside, and the number of driving sub-electrodes that are internally hollowed out may be determined according to actual conditions.
  • the driving sub-electrodes that are internally hollowed out may be adjacent driving sub-electrodes or non-adjacent driving sub-electrodes, and are not specifically limited herein.
  • the inside of the sensing sub-electrode included therein may be hollowed out, the inside of the driving sub-electrode is not hollowed out, and the sensing sub-electrode and the The inside of the driving sub-electrode is hollowed out, and a part of the sensing sub-electrode is hollowed out, and a part of the driving sub-electrode is hollowed out, which is not specifically limited in the embodiment of the present application.
  • At least one sensory surface included in the touch display panel is hollowed out on the interior of the at least one sensing sub-electrode included in the touch display panel.
  • the adjacent sensing sub-electrodes and the driving sub-electrodes may be designed to be nested with each other in order to further increase the touch sensitivity of the touch display panel. Structure.
  • the adjacent driving sub-electrodes and the sensing sub-electrodes are nested with each other, and may include:
  • the side of the driving sub-electrode and the side of the adjacent sensing sub-electrode each have a concavo-convex structure, and the two concavo-convex structures have the same shape and match each other.
  • the convex portion of the driving sub-electrode may be embedded in the concave portion of the sensing sub-electrode, and the convex portion of the sensing sub-electrode may be embedded in the concave portion of the driving sub-electrode.
  • the concave portion and the convex portion of the concave-convex structure may be rectangular, square, curved or other shapes, and are not specifically limited herein.
  • 41 in FIG. 4 may be a side of the sensing sub-electrode 311 shown in FIG. 3, 42 may be a side of the driving sub-electrode 321 shown in FIG. 3, and the side 41 has a plurality of rectangular irregularities.
  • the side structure 42 has a rectangular concavo-convex structure 421, and the two concavo-convex structures match each other. In this way, the relative area between the sensing sub-electrode 311 shown in FIG. 3 and the driving sub-electrode 321 shown in FIG. 3 can be increased, and the distance between the sensing sub-electrode 311 and the driving sub-electrode 321 can be shortened, thereby increasing the inductance. The induced capacitance between the electrode 311 and the driving sub-electrode 321 .
  • the side of at least one of the sensing sub-electrodes 311 and the side of the adjacent driving sub-electrode 321 may be disposed as described above for the uneven structure, preferably, each A side of the sensing sub-electrode 311 and a side of the connected driving sub-electrode 321 can be disposed as the concave-convex structure, so that the plurality of driving electrodes and the plurality of sensing electrodes in the touch display panel can be maximized.
  • the mutual capacitance between the electrodes improves the touch sensitivity of the touch display panel.
  • the sensing sub-electrode and the adjacent driving sub-electrode into a concave-convex structure, on the one hand, the relative area between the sensing sub-electrode and the driving sub-electrode can be increased, and on the other hand, the sensing sub-electrode and the driving sub-electrode can be shortened.
  • the distance between the sensing electrode and the driving electrode can be effectively increased.
  • the adjacent driving sub-electrodes and the sensing sub-electrodes are nested with each other, and may further include:
  • the sides of the driving sub-electrodes and the sides of the adjacent sensing sub-electrodes are all spiral structures, and the two spiral structures have the same shape and match each other.
  • spiral wall of the driving sub-electrode may be embedded in the gap of the spiral wall of the sensing sub-electrode, and the spiral wall of the sensing sub-electrode may be embedded in the gap of the spiral wall of the driving sub-electrode, two different The spiral wall can constitute the structure of the Fermat spiral.
  • 51 in FIG. 5 may be a side of the sensing sub-electrode 311 shown in FIG. 3, 52 may be a side of the driving sub-electrode 321 shown in FIG. 3, and the side 51 is a spiral structure and has The spiral wall 511 has a spiral structure and has a spiral wall 521.
  • the spiral wall 511 and the spiral wall 521 have the same shape, and the spiral wall 511 is embedded in the gap of the spiral wall 521, and the spiral wall 521 is embedded in the gap of the spiral wall 511. . In this way, the relative area between the sensing sub-electrode 311 shown in FIG. 3 and the driving sub-electrode 321 shown in FIG.
  • the distance between the sensing sub-electrode 311 and the driving sub-electrode 321 can be shortened, thereby increasing the inductance.
  • the induced capacitance between the electrode 311 and the driving sub-electrode 321 can be increased, and the distance between the sensing sub-electrode 311 and the driving sub-electrode 321 .
  • the side of the at least one sensing sub-electrode 311 and the side of the adjacent driving sub-electrode 321 may be provided with the spiral structure described above, preferably, each sensing
  • the side of the sub-electrode 311 and the side of the connected driving sub-electrode 321 can be disposed as the spiral structure, so that the plurality of driving electrodes and the plurality of sensing electrodes in the touch display panel can be maximized.
  • the mutual compatibility improves the touch sensitivity of the touch display panel.
  • the sensing sub-electrode and the adjacent driving sub-electrode as a spiral structure, on the one hand, the relative area between the sensing sub-electrode and the driving sub-electrode can be increased, and on the other hand, the sensing sub-electrode and the driving sub-electrode can be shortened.
  • the distance between the sensing electrode and the driving electrode can be effectively increased.
  • the sides of all the driving sub-electrodes and the sides of the adjacent sensing sub-electrodes may be arranged in a concave-convex structure, or They are all arranged in a spiral structure, and the side edges of a part of the driving sub-electrodes and the side edges of the adjacent sensing sub-electrodes may be arranged in a concave-convex structure, and the other side of the side of the driving sub-electrodes and the side of the adjacent sensing sub-electrodes may be disposed. It is set as a spiral structure, which is not specifically limited in the embodiment of the present application.
  • the touch display panel provided by the embodiment of the present invention includes a cathode and a plurality of sensing electrodes, and at least one of the sensing electrodes is hollowed out to reduce a relative area between the sensing electrodes and the cathode.
  • the relative area between the sensing electrode and the cathode of the touch display panel can be reduced, thereby reducing the sensing capacitance between the sensing electrode and the cathode.
  • the sensing electrode can detect a large capacitance change, thereby effectively reducing the interference of the cathode on the sensing electrode, thereby improving Sensing electrode detection sensitivity, touch display panel touch sensitivity.
  • the region corresponding to the position of the touch electrode in the cathode can also be hollowed out, so that the interference of the cathode on the touch electrode can also be reduced. Thereby improving the touch sensitivity of the touch display panel.
  • FIG. 6 and FIG. 7 Please refer to FIG. 6 and FIG. 7 for details.
  • FIG. 6 is a schematic structural diagram of a touch display panel according to an embodiment of the present application.
  • the touch display panel is as follows.
  • the touch display panel shown in FIG. 6 may include a sensing electrode layer 61, a driving electrode layer 62, and a cathode layer 63.
  • the upper and lower positional relationship of the three may be: the sensing electrode layer 61, the driving electrode layer 62, and the cathode layer 63.
  • the sensing electrode layer 61 includes a plurality of sensing electrodes 611.
  • the driving electrode layer includes a plurality of driving electrodes 62 (not specifically shown in FIG. 6), and the cathode layer 63 can be regarded as a cathode of the touch display panel.
  • the cathode may include a plurality of hollowed out regions 631, and the number of the hollowed out regions 631 is the same as the number of sensing electrodes 611 (7 sensing electrodes 611 and 7 hollowed out regions 631 are shown in FIG. 6).
  • the position of each hollowed out area 631 may correspond one-to-one with the position of each of the sensing electrodes 611.
  • the relative area between the cathode and the sensing electrode can be reduced, thereby reducing the sensing capacitance between the cathode and the sensing electrode, and touching the touch display panel.
  • the interference of the cathode to the sensing electrode can be effectively reduced, thereby improving the touch sensitivity of the touch display panel.
  • the number of the hollowed out regions included in the cathode may be smaller than the number of the sensing electrodes.
  • the cathode of the touch display panel shown in FIG. 6 may include five hollowed out regions, and the position of each of the hollowed out regions may correspond to the position of one sensing electrode (ie, there are cathodes corresponding to two sensing electrode positions). There is no hollowing out in the area).
  • the relative area between the cathode and the sensing electrode can also be reduced, thereby reducing the interference of the cathode with the sensing electrode.
  • the number of the hollowed out regions included in the cathode may be greater than the number of the sensing sub-electrodes included in the sensing electrode.
  • the cathode region corresponding to the position thereof may be hollowed out and two or more hollowed out regions are obtained, and the positions of the hollowed out regions correspond to the positions of the sensing electrodes. . This also reduces the relative area between the cathode and the sensing electrode, thereby reducing the interference of the cathode with the sensing electrode.
  • the number of the hollowed out regions included in the cathode may be determined according to the sensitivity requirement of the sensing electrode, and is not specifically limited herein. As a preferred manner, it may be determined that the number of the hollowed out regions included in the cathode is the same as the number of the sensing electrodes, and the position of the hollowed out region and the position of the sensing electrode are one by one correspond.
  • each hollowed out area 631 may be the same as the shape of the sensing electrode 611, that is, each hollowed out area 631 may have a strip shape, and the area of each hollowed out area 631 may be equal to its position.
  • each of the hollowed out regions 631 in FIG. 6 may also be smaller than the area of the sensing electrodes 611 corresponding to the positions thereof, such that for the entire cathode, the cathode and the sensing electrodes may be reduced. Under the premise of the relative area, it is ensured that the display function of the cathode is not damaged as much as possible.
  • the specific area of each of the hollowed out areas 631 may be determined according to the detection sensitivity requirement of the sensing electrodes or the touch sensitivity requirement of the touch display panel, and is not specifically limited herein.
  • the touch display panel provided by the embodiment of the present application includes a cathode and a plurality of sensing electrodes, wherein the cathode includes at least one hollowed out area, and the position of the hollowed out area corresponds to the position of the sensing electrode to reduce The relative area between the cathode and the sensing electrode.
  • the cathode includes at least one hollowed out area
  • the position of the hollowed out area corresponds to the position of the sensing electrode to reduce The relative area between the cathode and the sensing electrode.
  • the sensing capacitance between the cathode and the sensing electrode is reduced, the interference of the cathode to the sensing electrode can be reduced, and the sensing electrode can be detected compared with the prior art.
  • the change in capacitance increases the detection sensitivity of the sensing electrode, thereby improving the touch sensitivity of the touch display panel.
  • FIG. 7 is a schematic structural diagram of another touch display panel according to an embodiment of the present application.
  • the touch display panel is as follows.
  • the touch display panel shown in FIG. 7 includes a touch electrode layer 71 and a cathode layer 72.
  • the touch electrode layer 71 may be located above the cathode layer 72.
  • the touch electrode layer 71 may include a plurality of sensing electrodes 711 and a plurality of driving electrodes.
  • the electrode 712, the cathode layer 72 can be regarded as the cathode of the touch display panel.
  • the plurality of sensing electrodes 711 and the plurality of driving electrodes 712 are located on the same conductive layer 71 (ie, the touch electrode layer 71 ) and intersect each other, wherein the plurality of sensing electrodes 711 can be along the first direction ( FIG. 7 )
  • the X-directions are arranged, and the plurality of drive electrodes 712 may be arranged in a second direction (Y direction in FIG. 7), the first direction crossing the second direction.
  • the plurality of sensing electrodes 711 and the plurality of driving electrodes 712 may be transparent conductive materials or metal materials.
  • the sensing electrode 711 may include a plurality of sensing sub-electrodes (four sensing sub-electrodes are shown in FIG. 7) connected in series, each of which has a diamond shape;
  • the driving electrode 712 may include four driving sub-electrodes connected in series, each of which has a diamond shape.
  • each of the sensing sub-electrodes may be in the shape of a strip, or a part of the sensing sub-electrodes may have a diamond shape and another part of the sensing element.
  • the shape of the electrode is strip-shaped, and is not specifically limited herein.
  • each of the driving sub-electrodes may have a strip shape, or a part of the driving sub-electrodes may have a rhombus shape, and the other part of the driving sub-electrodes may have a strip shape, as long as The pattern of the sensing sub-electrode and the driving sub-electrode may be filled to cover the display area of the touch display panel.
  • the sensing electrode 711 may include at least one electrode region 713 crossing the driving electrode 712 . As shown in FIG. 7 , one sensing electrode 711 includes 3 The electrode regions 713 and the three sensing electrodes 711 include nine electrode regions 713. The sensing electrode corresponding to the position of each electrode region 713 and the driving electrode are not connected to each other.
  • the plurality of electrode regions 713 of the sensing electrode 711 and the driving electrode 712 shown in FIG. 7 are generally bridges for connecting a plurality of sensing sub-electrodes.
  • the plurality of electrode regions 713 The sensing electrode 711 can be regarded as a part of the sensing electrode 711.
  • the sensing area can be generated between the electrode area 713 and the cathode. When the touch surface is touched, the cathode passes through the electrode area 713 to the sensing electrode 711. Interference.
  • At least one hollowed out area 721 may be included in the cathode layer 72, and the position of each hollowed out area 721 corresponds to the position of one electrode area 713, respectively, as shown in FIG.
  • the layer 72 includes nine hollowed out areas 721, and the position of each of the hollowed out areas 721 is in one-to-one correspondence with the positions of the nine electrode areas 713 included in the electrode layer 71. In this way, the relative area between the cathode and the electrode region can be reduced, thereby reducing the relative area between the cathode and the sensing electrode, and reducing the interference of the cathode with the sensing electrode.
  • the number of the hollowed out regions 721 included in the cathode described in FIG. 7 is the same as the number of the electrode regions 713. In other implementations, the number of the hollowed out regions 721 may be smaller than the number of the sensing regions 713. In this way, the relative area between the cathode and the sensing electrode can also be reduced, thereby reducing the interference of the cathode with the sensing electrode.
  • the shape of the hollowed out area 721 may be the same as the shape of the sensing area 713 corresponding to the position.
  • the shape of the sensing area 713 is strip-shaped, and the hollowed out area 721 The shape is also strip.
  • the area of the hollowed out area 721 can also be the same as the area of the sensing area 713 corresponding to the position, so that the relative area between the hollowed out area 721 and the sensing area 713 can be minimized, thereby effectively reducing the cathode and the The relative area between the sensing electrodes.
  • the area of the hollowed out area 721 may also be smaller than the area of the sensing area 713 corresponding to the position to reduce the area where the cathode is hollowed out, thereby avoiding damage to the display function of the cathode.
  • the cathode layer 72 shown in FIG. 7 may include a plurality of hollowed out regions 722 in addition to the plurality of hollowed out regions 721, and the position of each of the hollowed out regions 722 may be associated with the position of one of the sensing sub-electrodes.
  • the number of the hollowed out areas 722 may not be greater than the number of the sensing sub-electrodes, and may be determined according to actual needs, and is not specifically limited herein.
  • the shape of the hollowed out area 722 may be the same as the shape of the sensing sub-electrode 711 corresponding to the position, and the area of the hollowed out area 722 may be smaller than the area of the sensing sub-electrode 711.
  • the cathode region corresponding to the at least one sensing sub-electrode is hollowed out, thereby effectively reducing the relative area between the sensing electrode and the cathode, thereby reducing the cathode to the sensing electrode. Interference.
  • the cathode portion corresponding to the electrode region where the sensing electrode and the driving electrode overlap may be preferable to hollow out the cathode portion corresponding to the electrode region where the sensing electrode and the driving electrode overlap, because the position of the electrode region corresponds to the cathode region of the sensing electrode.
  • the interference of the cathode region corresponding to the position of the sensing sub-electrode is more obvious to the sensing electrode. Therefore, in order to effectively reduce the interference of the cathode to the sensing electrode, and to the greatest extent possible to avoid damage to the display function of the cathode, Preferably, the position of the cathode corresponding to the electrode region is hollowed out.
  • the touch display panel provided by the embodiment of the present invention includes a cathode, a plurality of sensing electrodes, and a plurality of driving electrodes, wherein the plurality of sensing electrodes and the plurality of driving electrodes are located in a conductive layer, and the plurality of sensing electrodes and the plurality of sensing electrodes
  • the drive electrodes intersect each other and include at least one intersecting electrode region, the cathode including at least one hollowed out region, the position of each of the hollowed out regions corresponding to the position of one of the electrode regions.
  • the relative area between the cathode and the sensing electrode can be reduced, and the sensing capacitance between the cathode and the sensing electrode can be reduced.
  • the sensing capacitance between the cathode and the sensing electrode is reduced, thereby reducing the interference of the cathode on the sensing electrode, and the sensing electrode detection can be increased compared with the prior art.
  • the change in capacitance increases the detection sensitivity of the sensing electrode, thereby improving the touch sensitivity of the touch display panel.
  • FIG. 8 is a side view of a touch display panel according to an embodiment.
  • 9 is a top plan view of the touch display panel shown in FIG. 8.
  • the touch display panel provided in this embodiment can reduce the interference of the driving signal in the display panel on the touch electrode.
  • the touch display panel is as follows.
  • the touch display panel may include a first conductive layer 81 , a second conductive layer 82 , and a display panel 83 .
  • the first conductive layer 81 includes a plurality of sensing electrodes 811
  • the second conductive layer 82 includes a plurality of The driving electrode 821 and the second conductive layer 82 are located between the first conductive layer 81 and the display panel 83.
  • the touch display panel shown in FIG. 8 may further include an encapsulation layer 84, an insulating layer 85, and a protective layer 86.
  • the encapsulation layer 84 is located between the second conductive layer 82 and the display panel 83, and may be used for
  • the thin film encapsulation layer for encapsulating the display panel may also be the thin film encapsulation layer and the substrate layer between the touch layer and the thin film encapsulation layer, and may also include the thin film encapsulation layer and the liner
  • the bottom layer is not specifically limited here.
  • the insulating layer 85 is located between the first conductive layer 81 and the second conductive layer 82 for insulating the sensing electrode 811 and the driving electrode 821.
  • the protective layer 86 covers the first conductive layer 81 and can be used for the sensing electrode 811. Protect.
  • the orthographic projection areas of the plurality of sensing electrodes 811 on the display panel 83 fall within the orthographic projection area of the plurality of driving electrodes 821 on the display panel 83. specifically:
  • the X direction in FIG. 8 can be regarded as the orthogonal projection direction of the sensing electrode 811 on the display panel 83, and the orthogonal projection direction of the driving electrode 821 on the display panel 83.
  • the width of the orthographic projection area of the sensing electrode 811 on the display panel 83 falls within the width of the orthographic projection area of the driving electrode 821 on the display panel 83.
  • FIG. 9 is a top plan view of the touch display panel shown in FIG. 8, wherein the direction perpendicular to the display panel 83 can be regarded as the orthographic projection direction of the sensing electrode 811 on the display panel 83, and the driving electrode 821 is on the display panel 83. Positive projection direction. As can be seen in conjunction with FIGS. 8 and 9, the orthographic projection area of the sensing electrode 811 on the display panel 83 falls within the orthographic projection area of the drive electrode 821 on the display panel 83.
  • the driving electrode 821 is located between the sensing electrode 811 and the display panel 83, and the orthographic projection area of the sensing electrode 811 on the display panel 83 falls within the orthographic projection area of the driving electrode 821 in the display panel 83, the driving electrode 821
  • the electromagnetic field generated by the driving signal in the display panel 83 can be effectively blocked or absorbed, thereby weakening the influence of the electromagnetic field on the sensing electrode.
  • the driving signal to the sensing electrode 811 can be effectively reduced. The interference ensures the touch function of the touch display panel.
  • each of the sensing electrodes 811 may further include a plurality of sensing sub-electrodes 8111 connected in sequence
  • each of the driving electrodes 821 may further include a plurality of driving sub-electrodes 8211 connected in sequence, wherein
  • the number of the sensing sub-electrodes 8111 included in one sensing electrode 811 is the same as the number of the driving sub-electrodes 8211 included in one driving electrode 821.
  • the number of sensing sub-electrodes 8111 included in the touch display panel and the driving sub-electrodes included therein The number of 8211 is the same.
  • the number of the sensing sub-electrodes 8111 corresponding to the position of the driving sub-electrode 8211 is one along the orthographic projection direction, and the sensor
  • the orthographic projection area of the electrode 8111 on the display panel 83 falls within the orthographic projection area on the display panel 83 of the driving sub-electrode 8211 corresponding to its position.
  • each of the sensing sub-electrodes 8111 on the display panel 83 respectively fall within the orthographic projection area of one of the driving sub-electrodes 8211 on the display panel 83, for each of the driving sub-electrodes 8211,
  • the electromagnetic field of the driving signal that interferes with one of the sensing electrodes 8111 can be effectively blocked or absorbed, thereby reducing the interference of the electromagnetic field on the sensing sub-electrode 8111, and the driving can be effectively reduced for the entire touch display panel.
  • the signal interferes with the sensing electrode 811.
  • each of the sensing sub-electrodes 8111 and each of the driving sub-electrodes 8211 have a diamond shape.
  • each of the sensing sub-electrodes 8111 and each of the driving sub-electrodes 8211 The shape of each of the sensing sub-electrodes 8111 is a diamond shape, and the shape of each of the driving sub-electrodes 8111 is strip-shaped, and the like, which is not specifically limited in the embodiment of the present application, as long as the sensing electrode 811 is satisfied.
  • the orthographic projection area on the display panel 83 may fall within the orthographic projection area of the drive electrode 821 on the display panel 83.
  • the number of the sensing sub-electrodes included in the at least one sensing electrode of the touch display panel may be greater than the number of the driving sub-electrodes included in one of the driving electrodes, and at least one sensing An orthographic projection area of the sub-electrode on the display panel falls within an orthographic projection area of one of the drive sub-electrodes on the display panel.
  • FIG. 10 is another top view of the touch display panel shown in FIG. 8.
  • the number of the sensing sub-electrodes 8111 included in the sensing electrode 811 is larger than the number of the driving sub-electrodes 8211 included in the driving electrode 821, and the direction perpendicular to the display panel 83 may be the positive of the sensing electrode 811 on the display panel 83.
  • the projection direction and the orthogonal projection direction of the drive electrode 821 on the display panel 83 are examples of the drive electrode 821 on the display panel 83.
  • the number of the sensing sub-electrodes 8111 corresponding to the position of the driving sub-electrode 8211 in the orthogonal projection direction is two in the orthogonal projection direction, and the two inductors
  • the orthographic projection area of the electrode 8111 on the display panel 83 falls within the orthographic projection area of the driving sub-electrode 8211 on the display panel 83.
  • each of the two sensing sub-electrodes 8111 on the display panel 83 falls within the orthographic projection area of one of the driving sub-electrodes 8211 on the display panel 83, for each of the driving sub-electrodes 8211,
  • the electromagnetic field of the driving signal that interferes with the two sensing electrodes 8111 can be effectively blocked or absorbed, thereby reducing the interference of the electromagnetic field on the two sensing sub-electrodes 8111, which can effectively reduce the entire touch display panel.
  • the drive signal interferes with the sensing electrode 811.
  • the second conductive layer in the touch display panel shown in FIG. 8 may further include a plurality of filler blocks, wherein:
  • the plurality of filling blocks are filled in a gap between the plurality of driving electrodes
  • the plurality of filler blocks are insulated from each other, and the plurality of filler blocks and the plurality of driving electrodes are insulated from each other.
  • FIG. 11 may include a plurality of filling blocks 822 as compared with FIG. 8, and the materials of the plurality of filling blocks 822 may be the same as the material of the driving electrodes 821.
  • FIG. 12 is a top plan view of the touch display panel illustrated in FIG. 11. As can be seen from FIG. 12, for each of the filling blocks 822, it may be filled in the gap between the driving electrodes 821, but insulated from each of the driving electrodes 821, and the plurality of filling blocks 822 may be insulated from each other. .
  • the electromagnetic field of the driving signal between the plurality of driving electrodes 821 can be effectively blocked or absorbed, and the electromagnetic field is prevented from passing through the plurality of The gap between the driving electrodes 821 acts on the sensing electrode 811 and interferes with the sensing electrode 811. That is to say, after the plurality of filling blocks 821 are filled between the plurality of driving electrodes 821, the interference of the electromagnetic field generated by the driving signal on the sensing electrodes 811 can be more effectively reduced, thereby ensuring the touch function of the touch display panel.
  • the touch display panel provided by the embodiment of the present invention includes: a first conductive layer, a second conductive layer, and a display panel, wherein the first conductive layer includes a plurality of sensing electrodes, and the second conductive layer includes a plurality of a driving electrode, the second conductive layer is located between the first conductive layer and the display panel; the orthographic projection area of the plurality of sensing electrodes on the display panel falls on the plurality of driving electrodes In the orthographic projection area on the display panel.
  • the driving electrode since the driving electrode is located between the sensing electrode and the display panel, and the orthographic projection area of the sensing electrode on the display panel falls within the orthographic projection area of the driving panel of the driving panel, the driving electrode can effectively block or absorb the driving signal generated.
  • the electromagnetic field can effectively reduce the interference of the driving signal on the sensing electrode when the touch display panel is touched, thereby ensuring the touch function of the touch display panel.
  • FIG. 13 is a schematic flow chart of a method for fabricating a touch display panel according to an embodiment of the present application.
  • the preparation method can be used to prepare the touch display panel according to the fifth embodiment.
  • the preparation method is as follows.
  • Step 1301 Form an encapsulation layer on the display panel.
  • the material of the encapsulation layer may be a material having a low dielectric constant, and the low dielectric constant may range from 3 to 8.
  • the low dielectric constant material may be silicon oxide or silicon oxynitride. It can also be other materials with a low dielectric constant.
  • the sensing capacitance between the cathode and the touch electrode in the touch layer in the display panel can be reduced, and the sensing capacitance between the cathode and the sensing electrode and the driving electrode is reduced when the touch display panel is touched. Therefore, compared with the prior art, the interference of the cathode on the touch electrode can be reduced, thereby reducing the damage to the touch function of the touch display panel, and improving the touch sensitivity of the touch display panel.
  • the thickness of the encapsulation layer may be between 1 and 10 ⁇ m.
  • Step 1302 Form a second conductive layer on the encapsulation layer, and etch the second conductive layer to form a plurality of driving electrodes.
  • step 1302 when the plurality of driving electrodes are formed, the area of the driving electrodes may be appropriately increased, so that the positive electrode projecting region formed in step 1304 on the display panel falls on the driving electrode. In the orthographic projection area on the display panel.
  • Step 1303 deposit an insulating layer on the second conductive layer.
  • the material of the insulating layer may be a transparent material.
  • the insulating layer may be a high dielectric constant material, the high dielectric constant may be 30 or more, and the high dielectric constant material may be silicon nitride or titanium oxide. It may also be other materials having a high dielectric constant such as alumina, magnesia, zirconia, etc., which are not specifically limited herein.
  • the sensing capacitance between the sensing electrode and the driving electrode can be increased.
  • the sensing capacitance between the sensing electrode and the driving electrode is increased.
  • the interference of the cathode with the sensing electrode and the driving electrode can be reduced, thereby improving the touch sensitivity of the touch display panel.
  • the thickness of the insulating layer may also be set between 0.01 and 10 ⁇ m.
  • Step 1404 Form a first conductive layer on the insulating layer, and etch the first conductive layer to form a plurality of sensing electrodes.
  • the orthographic projection area of the plurality of sensing electrodes prepared on the display panel falls within an orthographic projection area of the plurality of driving electrodes on the display panel.
  • the plurality of driving electrodes can effectively block or absorb the electromagnetic field generated by the driving signal, thereby effectively reducing the interference of the driving signal on the plurality of sensing electrodes, and ensuring the touch function of the touch display panel.
  • each of the sensing electrodes may include a plurality of sensing sub-electrodes connected in series, and each of the driving electrodes may further include a plurality of driving sub-electrodes connected in sequence, wherein:
  • the number of the sensing sub-electrodes may be equal to the number of the driving sub-electrodes, and the orthographic projection area of each of the sensing sub-electrodes on the display panel may respectively fall on one of the drivers.
  • the electrodes are within the orthographic projection area on the display panel.
  • the number of the sensing sub-electrodes may also be greater than the number of the driving sub-electrodes, and at least one of the sensing sub-electrodes on the front projection area of the display panel may fall on one of the driving sub-electrodes In the orthographic projection area on the display panel.
  • each of the sensing sub-electrodes and each of the driving sub-electrodes may be a diamond shape or a strip shape, which is not specifically limited herein.
  • the second conductive layer when the second conductive layer is etched to form the plurality of driving electrodes, the second conductive layer may be etched to form a plurality of filling blocks. a plurality of filling blocks may be filled between the gaps of the plurality of driving electrodes, and the plurality of filling blocks and the plurality of driving electrodes are insulated from each other, and the plurality of filling blocks may be insulated from each other .
  • the plurality of filler blocks obtained by etching the second conductive layer are electrically conductive, the plurality of filler blocks can effectively block or absorb the electromagnetic field of the driving signal between the plurality of driving electrode gaps.
  • the electromagnetic field is prevented from acting on the plurality of sensing electrodes through a gap between the plurality of driving electrodes, and causing interference to the plurality of sensing electrodes. In this way, the interference of the electromagnetic field generated by the driving signal on the plurality of sensing electrodes can be more effectively reduced, thereby ensuring the touch function of the touch display panel.
  • the method for preparing the touch display panel provided by the embodiment of the present invention is prepared in the touch display panel, wherein the plurality of driving electrodes are located between the plurality of sensing electrodes and the display panel, and the orthographic projections of the plurality of sensing electrodes on the display panel The area falls in the orthographic projection area of the plurality of driving electrodes on the display panel. Therefore, the driving electrode can effectively block or absorb the electromagnetic field generated by the driving signal, and can effectively reduce the driving signal pair sensing when the touch display panel is touched. The interference of the electrodes ensures the touch function of the touch display panel.
  • the touch display panel described in the above embodiment 5 may further hollow out the interior of at least one of the sensing electrodes in the touch display panel to reduce the difference between the sensing electrode and the cathode of the touch display panel.
  • the relative area further reduces the induced capacitance between the sensing electrode and the cathode.
  • the touch display panel when the touch display panel is touched, since the sensing capacitance between the cathode and the sensing electrode is reduced, the interference of the cathode on the touch electrode can be effectively reduced, which can be reduced compared with the prior art.
  • the touch function of the touch display panel is damaged, and the touch sensitivity of the touch display panel is improved.
  • the region corresponding to the position of the touch electrode in the cathode of the touch display panel may be hollowed out, or the cathode and the sensing electrode and the driving The corresponding area of the overlapping portion of the electrode is hollowed out, so that the interference of the cathode on the touch electrode can also be reduced, thereby improving the touch sensitivity of the touch display panel.
  • the sensing capacitance between the cathode and the sensing electrode is reduced, the interference of the cathode to the sensing electrode can be reduced, and the sensing electrode can be detected compared with the prior art.
  • the change in capacitance increases the detection sensitivity of the sensing electrode, thereby improving the touch sensitivity of the touch display panel.
  • the touch display device may include any one of the touch display panels described in the embodiments shown in FIG. 1 to FIG. 12 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请公开一种触控显示面板及其制备方法、触控显示装置,该触控显示面板包括:阴极、封装层以及触控层,其中,所述封装层位于所述阴极与所述触控层之间,所述封装层采用低介电常数的材料。这样,通过将触控显示面板中封装层采用低介电常数的材料,可以减少阴极与触控层中触控电极之间的感应电容,在对触控显示面板进行触控时,由于降低了阴极与触控电极之间的感应电容,因此,相对于现有技术而言,可以减少阴极对触控电极的干扰,进而降低对触控显示面板触控功能的损伤,提高触控显示面板的触控灵敏度。

Description

一种触控显示面板及其制备方法、触控显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种触控显示面板及其制备方法、触控显示装置。
背景技术
触控显示面板是将触控屏与平面显示面板整合在一起,以使平面显示面板具有触控功能。通常,触控显示面板可以提供人机互动界面,并允许通过手指、触控笔等执行输入,在使用上更直接、更人性化。随着显示技术的发展,触控显示面板被越来越多地应用于各种显示装置中。
随着触控显示面板薄型化的发展,触控显示面板的厚度越来越薄,针对触控显示面板中的显示面板与触控电极而言,两者之间的距离越来越近。然而,在实际应用中,由于显示面板与触控电极之间的距离较近,在对触控显示面板进行触控时,显示面板会对触控电极产生干扰,导致触控电极的检测灵敏度降低,触控显示面板的触控功能受损,甚至失效。
发明内容
本申请的主要目的是提供一种触控显示面板及其制备方法、触控显示装置,旨在解决现有的触控显示面板中,由于显示面板与触控电极之间的距离较近,导致显示面板对触控电极的干扰较大,影响触控电极触控灵敏度的问题。
为解决上述问题,本申请实施例提供一种触控显示面板,包括:阴极、封装层以及触控层,其中:
所述封装层位于所述阴极与所述触控层之间,所述封装层采用低介电常数的材料。
可选地,所述低介电常数的范围为3~8,所述封装层的厚度为1~10μm。
可选地,所述封装层包括薄膜封装层以及衬底层中的至少一种,其中:
当所述封装层包括薄膜封装层和/或衬底层时,所述薄膜封装层以及所述衬底层中的至少一种采用介电常数为3~8的材料。
可选地,所述触控层包括:第一导电层以及第一绝缘层,其中:
所述第一导电层中包含多个感应电极以及多个驱动电极;
所述第一绝缘层覆盖于所述第一导电层上,所述第一绝缘层采用介电常数不小于30的材料。
可选地,所述第一绝缘层的厚度为0.01~10μm。
可选地,所述触控层包括:第二导电层、第三导电层以及第二绝缘层,其中:
所述第二导电层中包含多个感应电极,所述第三导电层中包含多个驱动电极;
所述第二绝缘层位于所述第二导电层以及所述第三导电层之间,所述第二绝缘层采用介电常数不小于30的材料。
可选地,所述第二绝缘层的厚度为0.01~10μm。
可选地,所述触控显示面板还包括:显示面板,其中:
所述触控层覆盖于所述显示面板上,所述第三导电层位于所述第二导电层与所述显示面板之间;
所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。
可选地,每一个所述驱动电极包含多个依次连接的驱动子电极,每一个所述感应电极包含多个依次连接的感应子电极,其中:
所述感应子电极的个数与所述驱动子电极的个数相等,每一个所述感应子电极在所述显示面板的上的正投影区域分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内;或,
所述感应子电极的个数大于所述驱动子电极的个数,至少一个所述感应子电极在所述显示面板上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
可选地,所述第三导电层中还包含多个填充块,其中:
所述多个填充块填充于所述多个驱动电极之间的空隙中;
所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本申请实施例提供的触控显示面板中包含阴极、封装层以及触控层,所述封装层位于所述阴极与所述触控层之间,所述封装层采用低介电常数的材料。这样,通过将触控显示面板中的封装层采用低介电常数的材料,可以减少阴极与触控层中触控电极之间的感应电容,在对触控显示面板进行触控时,由于降低了阴极与触控电极之间的感应电容,因此,相对于现有技术而言,可以减少显示面板对触控电极的干扰,进而降低对触控显示面板触控功能的损伤,提高触控显示面板的触控灵敏度。
为解决上述问题,本申请实施例还提供一种触控显示面板,包括:第一导电层、第二导电层以及显示面板,其中:
所述第一导电层中包含多个感应电极,所述第二导电层中包含多个驱动电极,所述第二导电层位于所述第一导电层与所述显示面板之间;
所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。
可选地,每一个所述驱动电极包含多个依次连接的驱动子电极,每一个所述感应电极包含多个依次连接的感应子电极,其中:
所述感应子电极的个数与所述驱动子电极的个数相等,每一个所述感应子电极在所述显示面板的上的正投影区域分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内;或,
所述感应子电极的个数大于所述驱动子电极的个数,至少一个所述感应子电极在所述显示面板上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
可选地,所述驱动子电极的形状为菱形和/或条状,所述感应子电极的形状为菱形和/或条状。
可选地,所述第二导电层中还包含多个填充块,其中:
所述多个填充块填充于所述多个驱动电极之间的空隙中;
所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
可选地,所述显示面板中包含驱动信号线,所述驱动信号线用于提供驱动信号,所述驱动信号包括:数据电压信号、电源信号、扫描控制信号以及发光控制信号中的至少一种。
可选地,所述触控显示面板还包括:阴极,其中:
所述阴极中包含至少一个挖空区域,每一个所述挖空区域的位置分别与其中一个感应电极或驱动电极的位置相对应。
本申请实施例还提供一种触控显示面板的制备方法,包括:
在显示面板上形成封装层;
在所述封装层上形成第二导电层,并对所述第二导电层进行刻蚀,形成多个驱动电极;
在所述第二导电层上蒸镀绝缘层;
在所述绝缘层上形成第一导电层,并对所述第一导电层进行刻蚀,形成多个感应电极;
所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。
可选地,每一个所述驱动电极包含多个依次连接的驱动子电极,每一个所述感应电极包含多个依次连接的感应子电极,其中:
所述感应子电极的个数与所述驱动子电极的个数相等,每一个所述感应子电极在所述显示面板的上的正投影区域分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内;或,
所述感应子电极的个数大于所述驱动子电极的个数,至少一个所述感应子电极在所述显示面板的上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
可选地,在对所述第二导电层进行刻蚀时形成多个填充块,所述多个填充块填充于所述多个驱动电极之间的空隙中,所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本申请实施例提供的触控显示面板中包含第一导电层、第二导电层以及显示面板,所述第一导电层中包含多个感应电极,所述第二导电层中包含多个驱动电极,所述第二导电层位于所述第一导电层与所述显示面板之间;所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。这样,由于驱动电极位于感应电极与显示面板之间,且感应电极在显示面板上的正投影区域落在驱动电极在显示面板的 正投影区域内,因此,驱动电极可以有效阻挡或吸收驱动信号产生的电磁场,在对触控显示面板进行触控时,可以有效降低显示面板对感应电极的干扰,进而保证触控显示面板的触控功能。
本申请实施例还提供一种触控显示装置,包括上述记载的任一种所述触控显示面板。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请实施例提供的一种触控显示面板的结构示意图;
图2为本申请实施例提供的另一种触控显示面板的结构示意图;
图3为本申请实施例提供的再一种触控显示面板的结构示意图;
图4为本申请实施例提供的一种触控显示面板中相邻驱动子电极和感应子电极的结构示意图;
图5为本申请实施例提供的另一种触控显示面板中相邻驱动子电极和感应子电极的结构示意图;
图6为本申请实施例提供的另一种触控显示面板的结构示意图;
图7为本申请实施例提供的再一种触控显示面板的结构示意图;
图8为本申请实施例提供的一种触控显示面板的侧视图;
图9为本申请实施例提供的一种触控显示面板的俯视图;
图10为本申请实施例提供的另一种触控显示面板的俯视图;
图11为本申请实施例提供的另一种触控显示面板的侧视图;
图12为本申请实施例提供的再一种触控显示面板的俯视图;
图13为本申请实施例提供的一种触控显示面板的制备方法的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
随着触控显示面板薄型化的发展,触控显示面板中的显示面板与触控电极之间的距离越来越近。然而,在对触控电极进行触控时,由于显示面板与触控电极之间的距离比较近,显示面板会对触控电极产生干扰。具体地,显示面板中的阴极以及驱动信号会对触控电极产生干扰,影响触控电极的触控灵敏度。
有鉴于此,本申请实施例提供一种触控显示面板,可以降低显示面板中的阴极以及驱动信号线中的至少一种对触控电极的干扰,进而提高触控显示面板的触控灵敏度。
下面结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的触控显示面板可以是on-cell或out-cell或in-cell触控显示面板,所述触控显示面板可以适用于各种模式的显示面板,这里不做具体限定。
本申请实施例提供的触控显示面板中,多个所述感应电极以及多个所述驱动电极可以位于相同的导电层中,也可以位于不同的导电层中,其中,多个所述感应电极以及多个所述驱动电极可以为透明导电材料,包括但不限于:ITO(中文名称:氧化铟锡,英文名称:Indium Tin Oxide);AgNW(纳米银线),石墨烯,等,也可以为金属材料metal mesh。
本申请实施例记载的封装层可以是用于对显示面板进行封装的薄膜封装层,也可以是触控层与所述薄膜封装层之间的衬底层,还可以既包含所述薄膜封装层,又包含所述衬底层,这里不做具体限定。其中,若所述封装层为所述薄膜封装层,则所述薄膜封装层采用低介电常数的材料;若所述封装层是所述衬底层,则所述衬底层采用低介电常数的材料;若所述封装层包含所述薄膜封装层以及所述衬底层,则所述薄膜封装层以及所述衬底层中的至少一个采用低介电常数的材料。
以下结合附图,详细说明本申请各实施例提供的技术方案。
实施例1
图1为本申请实施例提供的一种触控显示面板的结构示意图。所述触控显示面板如下所述。
图1中,所述触控显示面板可以包含阴极11、薄膜封装层12、衬底层13(薄膜封装层12以及衬底层13可以统称为封装层)以及触控层14,触控层14中包含导电层141以及绝缘层142,导电层141中包含感应电极1411以及驱动电极1412。其中,薄膜封装层12覆盖于阴极11上,可以用于对阴极11进行封装,衬底层13覆盖在薄膜封装层12之上,触控层14覆盖于衬底层13上。
图1所示的薄膜封装层12的材料可以是低介电常数材料,具体可以是透明的低介电常数材料。其中,作为一种优选地方式,所述低介电常数材料的介电常数可以在3~8之间。具体地,所述低介电常数材料可以是氧化硅,也可以是氮氧化硅,还可以是其他具有低介电常数的材料,本申请实施例不做具体限定。
图1中,触控层14中可以包含第一导电层141以及第一绝缘层142,其中,第一导电层141中可以包含感应电极1411以及驱动电极1412。
在对图1所示的触控显示面板进行触控时,感应电极1411与阴极11之间可以产生感应电容,其中,薄膜封装层12位于阴极11与感应电极1411之间,可以视为感应电极1411与阴极11构成的电容(感应电极1411与阴极11可以分别视为该电容的其中一个极板)之间的介质。由于本申请实施例中薄膜封装层12采用的是低介电常数的材料,因此,相较于现有技术而言,可以降低感应电极1411与阴极11之间的感应电容,进而有效降低阴极11对感应电极1411的干扰。
同样的,在对图1所示的触控显示面板进行触控时,驱动电极1412与阴极11之间也可以产生感应电容,其中,薄膜封装层12也可以视为驱动电极1412与阴极11构成的电容(驱动电极1412与阴极11可以分别视为该电容的其中一个极板)之间的介质。由于本申请实施例中薄膜封装层12采用的是低介电常数的材料,因此,相较于现有技术而言,可以降低驱动电极1412与阴极11之间产生的感应电容,进而有效降低阴极11对驱动电极1412的干扰。
由于本申请实施例提供的触控显示面板可以降低阴极对感应电极的干扰,以及阴极对驱动电极的干扰,因此,相较于现有技术而言,可以有效提 高所述触控显示面板的触控灵敏度。
本申请实施例中,为了进一步减少阴极11与感应电极1411之间的感应电容,以及阴极11与驱动电极1412之间的感应电容,在满足所述触控显示面板厚度要求的情况下,还可以适当增加薄膜封装层12的厚度。
本申请实施例中,作为一种优选地方式,薄膜封装层12的厚度可以在1~10μm之间。
图1中,衬底层13的上方可以形成导电层141,导电层141上覆盖有绝缘层142。在其他实现方式中,衬底层13可以与触控层14作为一个整体。
在本申请实施例中,为了最大程度的减少阴极11与触控层14中感应电极1411以及驱动电极1412之间的感应电容,衬底层13也可以采用低介电常数的材料,具体可以是透明的低介电常数材料。其中,所述低介电常数的材料的介电常数可以在3~8之间,具体可以是氧化硅,也可以是氮氧化硅,还可以是其他低介电常数的材料,本申请实施例不做具体限定。
这样,由于阴极11与触控层14之间的薄膜封装层12以及衬底层13均采用低介电常数的材料,因此,可以进一步降低阴极11与感应电极1411以及驱动电极1412之间的感应电容,进而降低阴极11对感应电极1411以及驱动电极1412的干扰,提高触控显示面板的触控灵敏度。
需要说明的是,在实际应用中,图1所示的薄膜封装层12以及基板衬底13中可以至少有一个采用低介电常数的材料,只要可以减少阴极11与感应电极1411以及驱动电极1412之间的感应电容即可。其中,若薄膜封装层12以及基板衬底13均采用低介电常数的材料,则两者采用的低介电常数材料可以相同,也可以不同,这里也不做具体限定。
还需要说明的是,在其他实现方式中,图1所示的触控显示面板中,还可以去掉基板衬底13,也就是说,触控层14可以直接形成于薄膜封装层12上,这样,可以在满足所述触控显示面板厚度的要求下,将薄膜封装层12的厚度设计的更厚一些,以最大程度地减低阴极11与感应电极1411以及驱动电极1412之间的感应电容。
图1中,在对触控显示面板进行触控时,触控层14中的感应电极1411与驱动电极1412之间也可以产生感应电容,其中,绝缘层142可以视为感应电极1411与驱动电极1412构成的电容(感应电极1411与驱动电极1412可以分别视 为该电容的其中一个极板)之间的介质。
为了进一步提高触控显示面板的触控灵敏度,绝缘层142还可以采用高介电常数的材料。这样,可以增加感应电极1411与驱动电极1412之间产生的感应电容,实现提高触控灵敏度的目的。
作为一种优选的方式,绝缘层142采用的高介电常数材料可以是透明的高介电常数材料,其中,所述高介电常数的材料的介电常数可以大于30,具体可以是氮化硅,也可以是氧化钛,还可以是氧化铝、氧化镁、氧化锆等其他具有高介电常数的材料,这里不做具体限定。
为了进一步增加感应电极1411与驱动电极1412之间的感应电容,本申请实施例还可以适当减少绝缘层142的厚度。作为一种优选地方式,绝缘层142的厚度可以设置在0.01~10μm之间。
本申请实施例提供的触控显示面板包括:阴极、封装层以及触控层,其中,所述封装层位于阴极与所述触控层之间,且所述封装层中包含薄膜封装层以及衬底层,所述触控层中包含感应电极以及驱动电极,所述感应电极以及所述驱动电极位于相同的导电层中,所述封装层采用低介电常数的材料。这样,通过将触控显示面板中阴极与触控层之间的封装层采用低介电常数的材料,可以减少阴极与触控层中感应电极以及驱动电极之间的感应电容,在对触控显示面板进行触控时,由于降低了阴极与感应电极以及驱动电极之间的感应电容,因此,相对于现有技术而言,可以减少阴极对触控电极的干扰,进而降低对触控显示面板触控功能的损伤,提高触控显示面板的触控灵敏度。
实施例2
图2是本申请实施例提供的另一个触控显示面板的结构示意图。所述触控显示面板如下所述。
图2中,所述触控显示面板可以包含阴极21、薄膜封装层22以及触控层23,薄膜封装层22位于阴极21与触控层23之间,触控层23包括第一导电层231、绝缘层232以及第二导电层233,绝缘层232位于第一导电层231与第二导电层233之间,第一导电层231中包含驱动电极2311,第二导电层233中包含感应电极2331。其中,薄膜封装层12可以用于对阴极21进行封装。
图2所示的触控显示面板与图1所示的触控显示面板相比,图2中的驱动电极2311与感应电极2331位于不同的导电层中,且,触控层23可以直接形成于 薄膜封装层22上。
图2所示的薄膜封装层22的材料可以是低介电常数材料,具体可以是透明的低介电常数材料。其中,该低介电常数材料的厚度以及介电常数的大小可以参见实施例1中记载的内容,这里不再重复描述。
通过对薄膜封装层22采用低介电常数的材料,可以降低驱动电极2311与阴极21之间的感应电容,以及感应电极2331与阴极21之间的感应电容,在对触控层23进行触控时,可以有效降低阴极21对驱动电极2311以及感应电极2331的干扰,提高触控显示面板的触控灵敏度。
在本申请实施例中,为了进一步提高所述触控显示面板的触控灵敏度,图2所示的绝缘层232也可以采用高介电常数的材料,具体可以是透明的高介电常数材料。其中,该高介电常数材料的厚度以及介电常数的大小可以参见实施例1中记载的内容,这里不再重复描述。
图2中,在对触控显示面板进行触控时,触控层23中的驱动电极2311与感应电极2331之间可以产生感应电容,且绝缘层232可以视为驱动电极2311与感应电极2331构成的电容(驱动电极2311与感应电极2331可以分别视为该电容的其中一个极板)之间的介质。
由于图2中绝缘层232采用的是高介电常数材料,因此,相较于现有技术而言,可以增加驱动电极2311与感应电极2331之间产生的感应电容。这样,在对触控层23进行触控时,可以通过增加驱动电极2311与感应电极2331之间的感应电容的方法,降低阴极21对驱动电极2311以及感应电极2331的干扰,进而提高所述触控显示面板的触控灵敏度。
本申请实施例提供的触控显示面板包括:阴极、薄膜封装层以及触控层,其中,所述触控屏中包含感应电极以及驱动电极,所述感应电极以及所述驱动电极位于不同的导电层中,所述薄膜封装层位于所述阴极与所述触控层之间,所述薄膜封装层采用低介电常数的材料。
通过将触控显示面板中阴极与触控层之间的薄膜封装层采用低介电常数的材料,可以减少阴极与触控层中感应电极以及驱动电极之间的感应电容,在对触控显示面板进行触控时,由于降低了阴极与感应电极以及驱动电极之间的感应电容,因此,相对于现有技术而言,可以减少阴极对触控电极的干扰,进而降低对触控显示面板触控功能的损伤,提高触控显示面板的触控灵 敏度。
实施例3
在本申请实施例中,针对图1以及图2所示的触控显示面板,为了进一步降低触控显示面板中阴极对触控电极的影响,还可以将至少一个所述触控电极的内部挖空,这样,可以通过减少所述阴极与所述触控电极之间的相对面积,降低阴极对触控电极的干扰,从而提高触控显示面板的触控灵敏度。
需要说明的是,在本申请实施例提供的触控显示面板中,所述触控电极可以包含感应电极以及驱动电极,将至少一个触控电极的内部挖空,可以是至少一个所述感应电极的内部挖空,也可以是至少一个驱动电极的内部挖空,也可以是至少一个所述感应电极的内部挖空以及至少一个驱动电极的内部挖空,这里不做具体限定。
但是,在实际应用中,通常,所述阴极对所述感应电极的干扰大于所述阴极对所述驱动电极的干扰,因此,作为一种优选地方式,可以将至少一个所述感应电极的内部挖空。
具体请参考图3。
图3为本申请实施例提供的一种触控显示面板的结构示意图。
如图3所示,所述触控显示面板包含多个(图3中仅示出两个)感应电极31以及多个(图3中仅示出两个)驱动电极32,多个感应电极31可以沿第一方向(图3所示的X方向)排布,多个驱动电极32可以沿第二方向(图3所示的Y方向)排布,多个感应电极31与多个驱动电极32相互交叉,所述第一方向可以与所述第二方向相互垂直。
每一个感应电极31可以包含多个感应子电极311,每个驱动电极32可以包含多个驱动子电极321。其中,每一个感应子电极311以及每一个驱动子电极321的形状可以是菱形,在其他实现方式中,每一个感应子电极311以及每一个驱动子电极321的形状也可以是条状,这里不做具体限定。
图3中,针对其中一个感应电极31,其包含的三个感应子电极311的内部可以均挖空,这样,可以最大程度的减少感应电极31与阴极之间的相对面积。在其他实现方式中,一个感应电极包含的感应子电极中可以有一部分感应子电极内部挖空,另一部分感应子电极内部不挖空,内部挖空的感应子电极的个数可以根据实际情况确定,这里不做具体限定。其中,内部挖空的感应子 电极可以是相邻的感应子电极,也可以是不相邻的感应子电极,这里也不做具体限定。
本申请实施例中,针对其中一个感应电极31而言,其包含的多个感应子电极311可以通过第一导电桥312依次连接,针对其中一个驱动电极31而言,其包含的多个驱动子电极321可以通过第二导电桥322依次连接,其中,第一导电桥312和第二导电桥322相互绝缘。
图3所示的多个感应电极31以及多个驱动电极32可以位于相同的导电层中,第一导电桥312和第二导电桥322可以设置在不同的导电层中。例如,若多个感应电极31以及多个驱动电极32位于导电层A中,则,第一导电桥312可以位于导电层A中,第二导电桥322可以位于导电层B中(或者,第一导电桥312可以位于导电层B中,第二导电桥322可以位于导电层A中)。其中,导电层A、导电层B以及所述触控显示面板中的阴极从上到下的位置关系可以依次为:导电层A、导电层B、阴极,也可以为:导电层B、导电层A、阴极。
图3所示的多个感应电极31以及多个驱动电极32也可以位于不同的导电层中,且第一导电桥312和第二导电桥322也位于不同的导电层中。例如,若多个感应电极31位于导电层A中,则第一导电桥312也位于导电层A中,若多个驱动电极31位于导电层B中,则第二导电桥322也位于导电层B中。其中,导电层A、导电层B以及所述触控显示面板中的阴极从上到下的位置关系可以依次为:导电层A、导电层B、阴极。
本申请实施例中,在对感应电极内部挖空降低阴极对感应电极的干扰的基础上,为了降低阴极对驱动电极的干扰,可以对所述触控显示面板中的至少一个驱动电极内部挖空。其中,所述驱动电极内部挖空区域的大小可以根据实际需要确定,这里不做具体限定。
如图3所示,图3中每一个驱动电极32包含的三个驱动子电极321的内部可以均挖空。这样,可以最大程度的减少驱动电极32与阴极之间的相对面积,进而减少阴极对驱动电极32的干扰。在其他实现方式中,一个驱动电极包含的驱动子电极中可以有一部分驱动子电极内部挖空,另一部分驱动子电极内部不挖空,内部挖空的驱动子电极的个数可以根据实际情况确定,这里不做具体限定,其中,内部挖空的驱动子电极可以是相邻的驱动子电极,也可以是不相邻的驱动子电极,这里也不做具体限定。
需要说明的是,在实际应用中,针对整个触控显示面板而言,可以将其包含的感应子电极内部均挖空,驱动子电极内部不挖空,也可以将所述感应子电极以及所述驱动子电极内部均挖空,还可以是将一部分感应子电极内部挖空,一部分驱动子电极内部挖空,本申请实施例不做具体限定。
在本申请提供的另一实施例中,在对所述触控显示面板中包含的至少一个感应子电极内部挖空的基础上,或在对所述触控显示面板中包含的至少一个感子应电极内部挖空以及至少一个驱动子电极内部挖空的基础上,为了进一步增加所述触控显示面板的触控灵敏度,还可以将相邻的感应子电极和驱动子电极设计为相互嵌套的结构。
具体地,相邻的驱动子电极和感应子电极之间相互嵌套,可以包括:
驱动子电极的侧边和相邻的感应子电极的侧边均具有凹凸状结构,两凹凸状结构形状一致且相互匹配。
所述驱动子电极的凸形部位可以嵌入所述感应子电极的凹形部位中,所述感应子电极的凸形部位可以嵌入所述驱动子电极的凹形部位中。其中,所述凹凸状结构的凹形部位以及凸形部位可以均为长方形,正方形、弧形或其他形状,这里不做具体限定。
如图4所示,图4中41可以为图3所示的感应子电极311的侧边,42可以为图3所示的驱动子电极321的侧边,侧边41具有多个长方形的凹凸状结构411,侧边42具有长方形的凹凸状结构421,两个凹凸状结构相互匹配。这样,可以增加图3所示的感应子电极311与图3所示的驱动子电极321之间的相对面积,以及缩短感应子电极311与驱动子电极321之间的距离,进而可以增加感应子电极311与驱动子电极321之间的感应电容。
针对图3所示的整个触控显示面板而言,至少一个感应子电极311的侧边与相邻的驱动子电极321的侧边可以设置为上述记载的所述凹凸状结构,优选地,每一个感应子电极311的侧边与相连的驱动子电极321的侧边均可以设置为所述凹凸状结构,这样,可以最大程度的增加所述触控显示面板中多个驱动电极与多个感应电极之间的互容,提高触控显示面板的触控灵敏度。
这样,通过将感应子电极与相邻的驱动子电极设计为凹凸状结构,一方面可以增加感应子电极与驱动子电极之间的相对面积,另一方面还可以缩短感应子电极与驱动子电极之间的距离,从而可以有效增加感应电极与驱动电 极之间的互容,在对触控显示装置进行触控时,可以增加感应电极检测到的电容变化,有效提高感应电极的检测灵敏度,触控显示面板的触控灵敏度。
在本申请的一个实施例中,相邻的驱动子电极和感应子电极之间相互嵌套,还可以包括:
驱动子电极的侧边和相邻的感应子电极的侧边均为螺旋状结构,两螺旋状结构形状一致且相互匹配。
其中,所述驱动子电极的螺旋壁可以嵌入所述感应子电极的螺旋壁的间隙中,所述感应子电极的螺旋壁可以嵌入所述驱动子电极的螺旋壁的间隙中,两个不同的螺旋壁可以构成费马螺线的结构。
如图5所示,图5中51可以为图3所示的感应子电极311的侧边,52可以为图3所示的驱动子电极321的侧边,侧边51为螺旋状结构且具有螺旋壁511,侧边52为螺旋状结构且具有螺旋壁521,螺旋壁511和螺旋壁521的形状一致,且螺旋壁511嵌入螺旋壁521的间隙中,螺旋壁521嵌入螺旋壁511的间隙中。这样,可以增加图3所示的感应子电极311与图3所示的驱动子电极321之间的相对面积,以及缩短感应子电极311与驱动子电极321之间的距离,进而可以增加感应子电极311与驱动子电极321之间的感应电容。
针对图3所示的触控显示面板而言,至少一个感应子电极311的侧边与相邻的驱动子电极321的侧边可以设置上述记载的所述螺旋状结构,优选地,每一个感应子电极311的侧边与相连的驱动子电极321的侧边均可以设置为所述螺旋状结构,这样,可以最大程度地增加所述触控显示面板中多个驱动电极与多个感应电极之间的互容,提高触控显示面板的触控灵敏度。
这样,通过将感应子电极与相邻的驱动子电极设计为螺旋状结构,一方面可以增加感应子电极与驱动子电极之间的相对面积,另一方面还可以缩短感应子电极与驱动子电极之间的距离,从而可以有效增加感应电极与驱动电极之间的互容,在对触控显示装置进行触控时,可以增加感应电极检测到的电容变化,有效提高感应电极的检测灵敏度,触控显示面板的触控灵敏度。
需要说明的是,在实际应用中,针对整个所述触控显示面板而言,可以将其中所有的驱动子电极的侧边与相邻感应子电极的侧边均设置为凹凸状结构,也可以均设置为螺旋状结构,还可以将一部分驱动子电极的侧边与相邻的感应子电极的侧边设置为凹凸状结构,另一部分驱动子电极的侧边与相邻 感应子电极的侧边设置为螺旋状结构,本申请实施例不做具体限定。
本申请实施例提供的触控显示面板,包括阴极和多个感应电极,至少一个所述感应电极的内部挖空,以减少所述感应电极与所述阴极之间的相对面积。本申请实施例通过将触控显示面板中感应电极的内部进行挖空,可以减少感应电极与触控显示面板阴极之间的相对面积,进而减少感应电极与阴极之间的感应电容。这样,在对触控显示面板进行触控时,由于阴极与感应电极之间的感应电容变小,因此,感应电极可以检测到较大的电容变化,从而有效降低阴极对感应电极的干扰,提高感应电极的检测灵敏度,触控显示面板的触控灵敏度。
实施例4
在本申请实施例中,针对图1和图2所示的触控显示面板,还可以将阴极中与触控电极的位置对应的区域挖空,这样,也可以减少阴极对触控电极的干扰,进而提高触控显示面板的触控灵敏度。
具体请参考图6和图7。
图6为本申请实施例提供的一种触控显示面板的结构示意图。所述触控显示面板如下所述。
图6所示的触控显示面板可以包含感应电极层61、驱动电极层62以及阴极层63,三者的上下位置关系可以是:感应电极层61、驱动电极层62以及阴极层63。其中,感应电极层61包含多个感应电极611,驱动电极层包含多个驱动电极62(图6中未具体示出),阴极层63可以视为所述触控显示面板的阴极。
在图6中,所述阴极可以包含多个挖空区域631,挖空区域631的个数与感应电极611个数相同(图6中示出了7个感应电极611,7个挖空区域631),每一个挖空区域631的位置可以与每一个感应电极611的位置一一对应。
这样,对于整个所述阴极而言,可以减少所述阴极与所述感应电极之间的相对面积,进而减少所述阴极与所述感应电极之间的感应电容,在对触控显示面板进行触控时,可以有效降低所述阴极对所述感应电极的干扰,进而提高触控显示面板的触控灵敏度。
需要说明的是,图6所示的触控显示面板中,所述阴极包含的所述挖空区域的个数还可以小于所述感应电极的个数。例如,图6所示触控显示面板的阴极中可以包含5个挖空区域,每一个所述挖空区域的位置可以与一个感应电极 的位置相对应(即存在两个感应电极位置对应的阴极区域没有挖空)。这样,针对整个所述阴极而言,也可以减少所述阴极与所述感应电极之间的相对面积,进而减少所述阴极对感应电极的干扰。
此外,所述阴极包含的所述挖空区域的个数还可以大于所述感应电极包含的所述感应子电极的个数。例如,针对图6所示的其中一个感应电极,可以在其位置对应的阴极区域进行挖空并得到两个或多个挖空区域,这些挖空区域的位置均与该感应电极的位置相对应。这样也可以减少所述阴极与所述感应电极之间的相对面积,进而减少所述阴极对感应电极的干扰。
在实际应用中,所述阴极中包含的所述挖空区域的个数可以根据对所述感应电极的灵敏度要求确定,这里不做具体限定。作为一种优选地方式,可以确定所述阴极中包含的所述挖空区域的个数与所述感应电极的个数相同,且所述挖空区域的位置与所述感应电极的位置一一对应。
图6中,每一个挖空区域631的形状可以与感应电极611的形状相同,即每一个挖空区域631的形状可以为条状,每一个挖空区域631的面积也可以等于与其位置相对应的感应电极611的面积。这样,针对整个所述阴极而言,可以最大程度的减少所述阴极与所述感应电极之间的相对面积,进而有效降低所述阴极对所述感应电极的干扰。
此外,图6中每一个挖空区域631的面积也可以小于与其位置对应的感应电极611的面积,这样,针对整个所述阴极而言,可以在减少所述阴极与所述感应电极之间的相对面积的前提下,尽可能地保证所述阴极的显示功能不受损。其中,每一个挖空区域631的具体面积可以根据对所述感应电极的检测灵敏度要求或所述触控显示面板的触控灵敏度要求确定,这里不做具体限定。
本申请实施例提供的触控显示面板,包括阴极和多个感应电极,其中,所述阴极包含至少一个挖空区域,所述挖空区域的位置与所述感应电极的位置相对应,以减少所述阴极与所述感应电极之间的相对面积。这样,针对整个阴极而言,通过将触控显示面板阴极中与感应电极相对应的区域进行挖空,可以减少阴极与感应电极之间的相对面积,进而减少阴极与感应电极之间的感应电容。这样,在对触控显示面板进行触控时,由于降低了阴极与感应电极之间的感应电容,因此,可以减少阴极对感应电极的干扰,相对于现有技术而言,可以增加感应电极检测到的电容变化,提高感应电极的检测灵敏度, 进而提高触控显示面板的触控灵敏度。
图7是本申请实施例提供的另一个触控显示面板的结构示意图。所述触控显示面板如下所述。
图7所示的触控显示面板包括触控电极层71以及阴极层72,触控电极层71可以位于阴极层72的上方,触控电极层71中可以包含多个感应电极711以及多个驱动电极712,阴极层72可以视为所述触控显示面板的阴极。
图7中,多个感应电极711与多个驱动电极712位于相同的导电层71(即触控电极层71),且相互交叉,其中,多个感应电极711可以沿第一方向(图7中的X方向)排布,多个驱动电极712可以沿第二方向(图7中的Y方向)排布,所述第一方向与所述第二方向交叉。本申请实施例中,多个感应电极711以及多个驱动电极712可以为透明导电材料或金属材料。
针对其中一个感应电极711而言,该感应电极711可以包含多个依次连接的感应子电极(图7中示出4个感应子电极),每一个所述感应子电极的形状为菱形;针对其中一个驱动电极712而言,该驱动电极712可以包含4个依次连接的驱动子电极,每一个所述驱动子电极的形状为菱形。
需要说明的是,在其他实现方式中,针对其中一个所述感应电极,其包含的每一个感应子电极的形状还可以是条状,或者,一部分感应子电极的形状为菱形,另一部分感应子电极的形状为条状,这里不做具体限定。同理,针对其中一个所述驱动电极,其包含的每一个驱动子电极的形状也可以是条状,或者,一部分驱动子电极的形状为菱形,另一部分驱动子电极的形状为条状,只要满足所述感应子电极以及所述驱动子电极的图案可以布满所述触控显示面板的显示区域即可。
图7所示的触控显示面板中,针对每一个感应电极711而言,该感应电极711可以包含至少一个与驱动电极712交叉的电极区域713,如图7所示,一个感应电极711包含3个电极区域713,3个感应电极711包含9个电极区域713。其中,与每一个电极区域713位置对应的感应电极与驱动电极互不连接。
需要说明的是,图7所示的感应电极711与驱动电极712交叉的多个电极区域713通常是用于连接多个感应子电极的架桥,在本申请实施例中,多个电极区域713可以视为感应电极711的一部分,所述电极区域713与所述阴极之间可以产生感应电容,在对所述显示触控面进行触控时,所述阴极会通过电极区 域713对感应电极711产生干扰。
图7所示的触控显示面板中,阴极层72中可以包含至少一个挖空区域721,每一个挖空区域721的位置分别与一个电极区域713的位置相对应,如图7所示,阴极层72中包含9个挖空区域721,每一个挖空区域721的位置与电极层71中包含的9个电极区域713的位置一一对应。这样,可以减少所述阴极与所述电极区域之间的相对面积,进而减少所述阴极与所述感应电极之间的相对面积,降低所述阴极对所述感应电极的干扰。
图7所述的所述阴极中包含的挖空区域721的个数与电极区域713的个数相同,在其他实现方式中,挖空区域721的个数也可以小于感应区域713的个数,这样,也可以减少所述阴极与所述感应电极之间的相对面积,进而降低所述阴极对所述感应电极的干扰。
图7中,针对其中一个挖空区域721而言,挖空区域721的形状可以与位置对应的感应区域713形状相同,如图7所示,感应区域713的形状为条状,挖空区域721的形状也为条状。此外,挖空区域721的面积也可以与位置对应的感应区域713的面积相同,这样,可以最大程度地减少挖空区域721与感应区域713之间的相对面积,进而有效减少所述阴极与所述感应电极之间的相对面积。
此外,挖空区域721的面积也可以小于位置对应的感应区域713的面积,以减少所述阴极被挖空的区域,避免所述阴极的显示功能受损。
图7所示的阴极层72中,除了可以包含多个挖空区域721外,还可以包含多个挖空区域722,每一个挖空区域722的位置可以与其中一个所述感应子电极的位置相对应。具体地,挖空区域722的个数可以不大于所述感应子电极的个数,具体可以根据实际需要确定,这里不做具体限定。针对其中一个挖空区域722而言,挖空区域722的形状可以与位置对应的所述感应子电极711的形状相同,挖空区域722的面积可以小于所述感应子电极711的面积。这样,在将所述电极区域对应的阴极区域挖空的基础上,将至少一个感应子电极对应的阴极区域挖空,可以有效减少感应电极与阴极之间的相对面积,进而降低阴极对感应电极的干扰。
需要说明的是,在实际应用中,可以优选将所述感应电极与所述驱动电极重合的电极区域对应的阴极部分挖空,原因是:所述电极区域的位置对应 的阴极区域对感应电极的干扰,相较于所述感应子电极的位置对应的阴极区域对感应电极的干扰更为明显,因此,为了有效减少阴极对感应电极的干扰,且最大可能的避免阴极的显示功能受损,可以优选将阴极中与所述电极区域对应的位置进行挖空。
本申请实施例提供的触控显示面板,包括阴极、多个感应电极以及多个驱动电极,其中,多个感应电极和多个驱动电极位于一个导电层,所述多个感应电极与所述多个驱动电极相互交叉,且包含至少一个交叉的电极区域,所述阴极中包含至少一个挖空区域,每一个所述挖空区域的位置与其中一个电极区域的位置相对应。
这样,通过将阴极中与感应电极和驱动电极重叠部分对应的区域进行挖空,可以减少阴极与感应电极之间的相对面积,进而减少阴极与感应电极之间的感应电容。这样,在对触控显示面板进行触控时,由于降低了阴极与感应电极之间的感应电容,因此,减少了阴极对感应电极的干扰,相对于现有技术而言,可以增加感应电极检测到的电容变化,提高感应电极的检测灵敏度,进而提高触控显示面板的触控灵敏度。
实施例5
图8为实施例提供的一种触控显示面板的侧视图。图9为图8所示的触控显示面板的俯视图。本实施例提供的所述触控显示面板可以减少显示面板中的驱动信号对触控电极的干扰。所述触控显示面板如下所述。
图8中,所述触控显示面板可以包含:第一导电层81、第二导电层82以及显示面板83,第一导电层81中包含多个感应电极811,第二导电层82中包含多个驱动电极821,第二导电层82位于第一导电层81与显示面板83之间。此外,图8所示的触控显示面板中还可以包含封装层84、绝缘层85以及保护层86,其中,封装层84位于第二导电层82与显示面板83之间,可以是用于对显示面板进行封装的薄膜封装层,也可以是所述薄膜封装层及所述触控层与所述薄膜封装层之间的衬底层,还可以既包含所述薄膜封装层,又包含所述衬底层,这里不做具体限定。
绝缘层85位于第一导电层81与第二导电层82之间,用于对感应电极811与驱动电极821进行绝缘,保护层86覆盖于第一导电层81上,可以用于对感应电极811进行保护。
本申请实施例中,多个感应电极811在显示面板83上的正投影区域落在多个驱动电极821在显示面板上83上的正投影区域内。具体地:
图8中X方向可以视为感应电极811在显示面板83上的正投影方向,以及驱动电极821在显示面板83上的正投影方向。从图8可以看出,感应电极811在显示面板83上的正投影区域的宽度落在了驱动电极821在显示面板83上的正投影区域的宽度内。
图9为图8所示的触控显示面板的俯视图,其中,垂直于显示面板83的方向可以视为感应电极811在显示面板83上的正投影方向,以及驱动电极821在显示面板83上的正投影方向。结合图8以及图9可以看出,感应电极811在显示面板83上的正投影区域落在了驱动电极821在显示面板83上的正投影区域内。
这样,由于驱动电极821位于感应电极811与显示面板83之间,且感应电极811在显示面板83上的正投影区域落在驱动电极821在显示面板83的正投影区域内,因此,驱动电极821可以有效阻挡或吸收显示面板83中的驱动信号产生的电磁场,进而减弱该电磁场对感应电极的影响,在对所述触控显示面板进行触控时,可以有效降低所述驱动信号对感应电极811的干扰,保证所述触控显示面板的触控功能。
在图9所示的触控显示面板中,每一个感应电极811还可以包含多个依次连接的感应子电极8111,每一个驱动电极821还可以包含多个依次连接的驱动子电极8211,其中,一个感应电极811包含的感应子电极8111的个数与一个驱动电极821包含的驱动子电极8211的个数相同,所述触控显示面板包含的感应子电极8111的个数与其包含的驱动子电极8211的个数相同。
结合图8以及图9可以看出,针对其中一个驱动子电极8211而言,沿所述正投影方向,与该驱动子电极8211位置对应的感应子电极8111的个数为1个,该感应子电极8111在显示面板83上的正投影区域落在了与其位置对应的驱动子电极8211在显示面板83上的正投影区域内。
这样,由于每一个感应子电极8111在显示面板83上的正投影区域分别落在了其中一个驱动子电极8211在显示面板83上的正投影区域内,因此,针对每一个驱动子电极8211而言,可以有效阻挡或吸收对其中一个感应电极8111产生干扰的所述驱动信号的电磁场,进而降低该电磁场对该感应子电极8111的干扰,针对整个触控显示面板而言,可以有效降低所述驱动信号对感应电 极811的干扰。
图9所示的触控显示面板中,每一个感应子电极8111以及每一个驱动子电极8211的形状为均为菱形,在其他实施例中,每一个感应子电极8111以及每一个驱动子电极8211的形状还可以均为条状,或者,每一个感应子电极8111的形状为菱形,每一个驱动子电极8211的形状为条状,等,本申请实施例不做具体限定,只要满足感应电极811在显示面板83上的正投影区域落在驱动电极821在显示面板83上的正投影区域内即可。
在本申请的其他实施例中,所述触控显示面板中的至少一个感应电极包含的感应子电极的个数还可以大于其中一个驱动电极包含的驱动子电极的个数,且,至少一个感应子电极在所述显示面板上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
图10为图8所示的触控显示面板的另一种俯视图。图10中,感应电极811包含的感应子电极8111的个数大于驱动电极821中包含的驱动子电极8211的个数,垂直于显示面板83的方向可以是感应电极811在显示面板83上的正投影方向,以及驱动电极821在显示面板83上的正投影方向。
针对图10所示的驱动子电极8211而言,沿所述正投影方向,与该驱动子电极8211沿正投影方向上位置对应的感应子电极8111的个数为2个,该2个感应子电极8111在显示面板83上的正投影区域落在该驱动子电极8211在显示面板83上的正投影区域内。
这样,由于每两个感应子电极8111在显示面板83上的正投影区域落在了其中一个驱动子电极8211在显示面板83上的正投影区域内,因此,针对每一个驱动子电极8211而言,可以有效阻挡或吸收对其中两个感应电极8111产生干扰的所述驱动信号的电磁场,进而降低该电磁场对该两个感应子电极8111的干扰,针对整个触控显示面板而言,可以有效降低所述驱动信号对感应电极811的干扰。
在本申请提供的另一实施例中,图8所示的触控显示面板中的所述第二导电层还可以包含多个填充块,其中:
所述多个填充块填充于所述多个驱动电极之间的空隙中;
所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
如图11所示,图11与图8相比,可以包含多个填充块822,多个填充块822的材料可以与驱动电极821的材料相同。图12为图11所示的触控显示面板的俯视图。从图12可以看出,针对每一个填充块822而言,其可以填充于驱动电极821之间的空隙中,但与每一个驱动电极821相互绝缘,且多个填充块822之间可以相互绝缘。
由于多个填充块822导电,且填充于多个驱动电极821的空隙之间,因此,可以有效阻挡或吸收多个驱动电极821空隙间的所述驱动信号的电磁场,避免所述电磁场通过多个驱动电极821之间的空隙作用在感应电极811上,并对感应电极811产生干扰。也就是说,在多个驱动电极821之间填充多个填充块821后,可以更加有效地降低驱动信号产生的电磁场对感应电极811的干扰,从而保证触控显示面板的触控功能。
本申请实施例提供的触控显示面板,包含:第一导电层、第二导电层以及显示面板,其中,所述第一导电层中包含多个感应电极,所述第二导电层中包含多个驱动电极,所述第二导电层位于所述第一导电层与所述显示面板之间;所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。这样,由于驱动电极位于感应电极与显示面板之间,且感应电极在显示面板上的正投影区域落在驱动电极在显示面板的正投影区域内,因此,驱动电极可以有效阻挡或吸收驱动信号产生的电磁场,在对触控显示面板进行触控时,可以有效降低驱动信号对感应电极的干扰,进而保证触控显示面板的触控功能。
实施例6
图13是本申请实施例提供的一种触控显示面板的制备方法的流程示意图。所述制备方法可以用于制备得到上述实施例5记载的所述触控显示面板。所述制备方法如下所述。
步骤1301:在显示面板上形成封装层。
所述封装层的材料可以采用低介电常数的材料,所述低介电常数的范围可以是3~8之间,所述低介电常数的材料可以是氧化硅,也可以是氮氧化硅,还可以是其他具有低介电常数的材料。
这样,可以减少所述显示面板中阴极与触控层中触控电极之间的感应电容,在对触控显示面板进行触控时,由于降低了阴极与感应电极以及驱动电 极之间的感应电容,因此,相对于现有技术而言,可以减少阴极对触控电极的干扰,进而降低对触控显示面板触控功能的损伤,提高触控显示面板的触控灵敏度。
本申请实施例中,为了进一步减少阴极与触控电极之间的干扰,所述封装层的厚度可以在1~10μm之间。
步骤1302:在所述封装层上形成第二导电层,并对所述第二导电层进行刻蚀,形成多个驱动电极。
在步骤1302中,在形成所述多个驱动电极时,可以适当增加驱动电极的面积,以便于步骤1304中形成的感应电极在所述显示面板上的正投影区域,落在所述驱动电极在所述显示面板上的正投影区域内。
步骤1303:在所述第二导电层上蒸镀绝缘层。
所述绝缘层的材料可以是透明的材料。
在本申请实施例中,所述绝缘层可以采用高介电常数的材料,所述高介电常数可以大于等于30,所述高介电常数的材料可以是氮化硅,也可以是氧化钛,还可以是氧化铝、氧化镁、氧化锆等其他具有高介电常数的材料,这里不做具体限定。
这样,可以增加所述感应电极与所述驱动电极之间的感应电容,在对触控显示面板进行触控时,由于增加了所述感应电极与所述驱动电极之间的感应电容,因此,可以降低阴极对所述感应电极以及所述驱动电极的干扰,进而提高所述触控显示面板的触控灵敏度。
为了进一步增加所述感应电极与所述驱动电极之间的感应电容,所述绝缘层的厚度还可以设置在0.01~10μm之间。
步骤1404:在所述绝缘层上形成第一导电层,并对所述第一导电层进行刻蚀,形成多个感应电极。
其中,制备得到的所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。这样,所述多个驱动电极可以有效阻挡或吸收驱动信号产生的电磁场,进而有效降低所述驱动信号对所述多个感应电极的干扰,保证触控显示面板的触控功能。
本申请实施例中,每一个所述感应电极可以包含多个依次连接的感应子电极,每一个所述驱动电极也可以包含多个依次连接的驱动子电极,其中:
所述感应子电极的个数可以与所述驱动子电极的个数相等,且,每一个所述感应子电极在所述显示面板的上的正投影区域可以分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。具体可以参见上述图8记载的所述触控显示面板,这里不再重复描述。
所述感应子电极的个数也可以大于所述驱动子电极的个数,且,至少一个所述感应子电极在所述显示面板的上的正投影区域可以落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。具体可以参见上述图9以及图10记载的所述触控显示面板,这里不再重复描述。
每一个所述感应子电极以及每一个所述驱动子电极的形状可以是菱形,也可以是条状,这里不做具体限定。
需要说明的是,在步骤1302中,在对所述第二导电层进行刻蚀形成所述多个驱动电极时,还可以对所述第二导电层进行刻蚀并形成多个填充块,所述多个填充块可以填充于所述多个驱动电极的空隙之间,且,所述多个填充块与所述多个驱动电极之间相互绝缘,所述多个填充块之间可以相互绝缘。
本申请实施例中,由于对所述第二导电层进行刻蚀得到的多个填充块导电,因此,多个填充块可以有效阻挡或吸收多个驱动电极空隙间的所述驱动信号的电磁场,避免所述电磁场通过多个驱动电极之间的空隙作用在所述多个感应电极上,并对所述多个感应电极产生干扰。这样,可以更加有效地降低所述驱动信号产生的电磁场对所述多个感应电极的干扰,从而保证触控显示面板的触控功能。
本申请实施例提供的触控显示面板的制备方法制备得到触控显示面板中,由于多个驱动电极位于多个感应电极与显示面板之间,且,多个感应电极在显示面板上的正投影区域落在多个驱动电极在显示面板上的正投影区域内,因此,驱动电极可以有效阻挡或吸收驱动信号产生的电磁场,在对触控显示面板进行触控时,可以有效降低驱动信号对感应电极的干扰,进而保证触控显示面板的触控功能。
实施例7
在本申请实施例中,针对上述实施例5记载的触控显示面板,还可以对触控显示面板中至少一个感应电极的内部挖空,以减少感应电极与触控显示面板中阴极之间的相对面积,进而减少感应电极与阴极之间的感应电容。
这样,在对触控显示面板进行触控时,由于减少了阴极与感应电极之间的感应电容,因此,可以有效降低阴极对触控电极的干扰,相对于现有技术而言,可以降低对触控显示面板触控功能的损伤,提高触控显示面板的触控灵敏度。
具体请参见上述图3所示的实施例中记载的内容,这里不再重复描述。
实施例8
在本申请实施例中,针对上述实施例5记载的触控显示面板,还可以将触控显示面板的阴极中与触控电极的位置对应的区域挖空,或将阴极中与感应电极和驱动电极的重叠部分对应的区域挖空,这样,也可以减少阴极对触控电极的干扰,进而提高触控显示面板的触控灵敏度。
这样,在对触控显示面板进行触控时,由于降低了阴极与感应电极之间的感应电容,因此,可以减少阴极对感应电极的干扰,相对于现有技术而言,可以增加感应电极检测到的电容变化,提高感应电极的检测灵敏度,进而提高触控显示面板的触控灵敏度。
具体请参见上述图6和图7所示的实施例中记载的内容,这里不再重复描述。
实施例9
本申请实施例提供一种触控显示装置,所述触控显示装置可以包括上述图1至图12所示实施例中记载的任一种触控显示面板。
本领域的技术人员应明白,尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种触控显示面板,包括:阴极、封装层以及触控层,其中:
    所述封装层位于所述阴极与所述触控层之间,所述封装层采用介电常数的范围为3~8的材料。
  2. 如权利要求1所述的触控显示面板,其中,
    所述封装层的厚度为1~10μm。
  3. 如权利要求1所述的触控显示面板,其中,
    所述封装层包括薄膜封装层以及衬底层中的至少一种,其中:
    当所述封装层包括薄膜封装层和/或衬底层时,所述薄膜封装层以及所述衬底层中的至少一种采用介电常数为3~8的材料。
  4. 如权利要求1至3任一项所述的触控显示面板,所述触控层包括:第一导电层以及第一绝缘层,其中:
    所述第一导电层中包含多个感应电极以及多个驱动电极;
    所述第一绝缘层覆盖于所述第一导电层上,所述第一绝缘层采用介电常数不小于30的材料。
  5. 如权利要求4所述的触控显示面板,其中,
    所述第一绝缘层的厚度为0.01~10μm。
  6. 如权利要求1至3任一项所述的触控显示面板,所述触控层包括:第二导电层、第三导电层以及第二绝缘层,其中:
    所述第二导电层中包含多个感应电极,所述第三导电层中包含多个驱动电极;
    所述第二绝缘层位于所述第二导电层以及所述第三导电层之间,所述第二绝缘层采用介电常数不小于30的材料。
  7. 如权利要求6所述的触控显示面板,其中,
    所述第二绝缘层的厚度为0.01~10μm。
  8. 如权利要求6所述的触控显示面板,所述触控显示面板还包括:显示 面板,其中:
    所述触控层覆盖于所述显示面板上,所述第三导电层位于所述第二导电层与所述显示面板之间;
    所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。
  9. 如权利要求8所述的触控显示面板,每一个所述驱动电极包含多个依次连接的驱动子电极,每一个所述感应电极包含多个依次连接的感应子电极,其中:
    所述感应子电极的个数与所述驱动子电极的个数相等,每一个所述感应子电极在所述显示面板的上的正投影区域分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内;或,
    所述感应子电极的个数大于所述驱动子电极的个数,至少一个所述感应子电极在所述显示面板上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
  10. 如权利要求9所述的触控显示面板,所述第三导电层中还包含多个填充块,其中:
    所述多个填充块填充于所述多个驱动电极之间的空隙中;
    所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
  11. 一种触控显示面板,包括:第一导电层、第二导电层以及显示面板,其中:
    所述第一导电层中包含多个感应电极,所述第二导电层中包含多个驱动电极,所述第二导电层位于所述第一导电层与所述显示面板之间;
    所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。
  12. 如权利要求11所述的触控显示面板,每一个所述驱动电极包含多个依次连接的驱动子电极,每一个所述感应电极包含多个依次连接的感应子电 极,其中:
    所述感应子电极的个数与所述驱动子电极的个数相等,每一个所述感应子电极在所述显示面板的上的正投影区域分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内;或,
    所述感应子电极的个数大于所述驱动子电极的个数,至少一个所述感应子电极在所述显示面板上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
  13. 如权利要求12所述的触控显示面板,其中,
    所述驱动子电极的形状为菱形和/或条状,所述感应子电极的形状为菱形和/或条状。
  14. 如权利要求11所述的触控显示面板,所述第二导电层中还包含多个填充块,其中:
    所述多个填充块填充于所述多个驱动电极之间的空隙中;
    所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
  15. 如权利要求14所述的触控显示面板,其中,
    所述显示面板中包含驱动信号线,所述驱动信号线用于提供驱动信号,所述驱动信号包括:数据电压信号、电源信号、扫描控制信号以及发光控制信号中的至少一种。
  16. 如权利要求11所述的触控显示面板,所述触控显示面板还包括:阴极,其中:
    所述阴极中包含至少一个挖空区域,每一个所述挖空区域的位置分别与其中一个感应电极或驱动电极的位置相对应。
  17. 一种触控显示面板的制备方法,其中,包括:
    在显示面板上形成封装层;
    在所述封装层上形成第二导电层,并对所述第二导电层进行刻蚀,形成多个驱动电极;
    在所述第二导电层上蒸镀绝缘层;
    在所述绝缘层上形成第一导电层,并对所述第一导电层进行刻蚀,形成多个感应电极;
    所述多个感应电极在所述显示面板上的正投影区域落在所述多个驱动电极在所述显示面板上的正投影区域内。
  18. 如权利要求17所述的制备方法,每一个所述驱动电极包含多个依次连接的驱动子电极,每一个所述感应电极包含多个依次连接的感应子电极,其中:
    所述感应子电极的个数与所述驱动子电极的个数相等,每一个所述感应子电极在所述显示面板的上的正投影区域分别落在其中一个所述驱动子电极在所述显示面板上的正投影区域内;或,
    所述感应子电极的个数大于所述驱动子电极的个数,至少一个所述感应子电极在所述显示面板的上的正投影区域落在其中一个所述驱动子电极在所述显示面板上的正投影区域内。
  19. 如权利要求17所述的制备方法,其中,
    在对所述第二导电层进行刻蚀时形成多个填充块,所述多个填充块填充于所述多个驱动电极之间的空隙中,所述多个填充块之间相互绝缘,且所述多个填充块与所述多个驱动电极之间相互绝缘。
  20. 一种触控显示装置,其中,包括:如权利要求1至10任一项所述的触控显示面板,或,如权利要求11至16任一项所述的触控显示面板。
PCT/CN2018/097341 2017-11-30 2018-07-27 一种触控显示面板及其制备方法、触控显示装置 WO2019105051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/349,122 US20200285347A1 (en) 2017-11-30 2018-07-27 Touch display panel, method of manufacturing the same and touch display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201721642852.6 2017-11-30
CN201721642852.6U CN207909093U (zh) 2017-11-30 2017-11-30 一种触控显示面板和触控显示装置
CN201711241252.3A CN108037846B (zh) 2017-11-30 2017-11-30 一种触控显示面板及其制备方法、触控显示装置
CN201711241252.3 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019105051A1 true WO2019105051A1 (zh) 2019-06-06

Family

ID=65033790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097341 WO2019105051A1 (zh) 2017-11-30 2018-07-27 一种触控显示面板及其制备方法、触控显示装置

Country Status (3)

Country Link
US (1) US20200285347A1 (zh)
TW (1) TWI665594B (zh)
WO (1) WO2019105051A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625127A (zh) * 2020-05-11 2020-09-04 武汉华星光电半导体显示技术有限公司 触控装置及触控基板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108255347B (zh) * 2018-01-26 2020-06-30 云谷(固安)科技有限公司 触控显示面板及其制备方法、驱动方法
KR20210049245A (ko) * 2019-10-24 2021-05-06 삼성디스플레이 주식회사 표시장치
KR20210056468A (ko) * 2019-11-08 2021-05-20 삼성디스플레이 주식회사 센싱 유닛과 그를 포함하는 표시 장치
CN111309197A (zh) * 2020-01-19 2020-06-19 深圳市鸿合创新信息技术有限责任公司 感应膜及其制作方法、感应板及其制作方法和显示设备
KR20210118307A (ko) * 2020-03-20 2021-09-30 삼성디스플레이 주식회사 표시장치
CN111625121A (zh) * 2020-05-08 2020-09-04 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN114153335B (zh) * 2020-09-07 2023-12-19 京东方科技集团股份有限公司 触控基板和触控装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512728A (zh) * 2005-09-15 2009-08-19 应用材料股份有限公司 增加封装膜透光度的方法
CN201622554U (zh) * 2010-02-04 2010-11-03 深圳市汇顶科技有限公司 一种电容式触摸传感器、触摸检测装置及触控终端
WO2017060572A1 (en) * 2015-10-09 2017-04-13 Inkron Oy Electrically conductive siloxane particle films, and devices with the same
CN206657340U (zh) * 2017-03-30 2017-11-21 昆山国显光电有限公司 有机发光二极管触摸屏
CN108037846A (zh) * 2017-11-30 2018-05-15 云谷(固安)科技有限公司 一种触控显示面板及其制备方法、触控显示装置
CN108153445A (zh) * 2017-11-30 2018-06-12 云谷(固安)科技有限公司 一种触控显示面板和触控显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104750285B (zh) * 2013-12-27 2019-01-18 昆山工研院新型平板显示技术中心有限公司 一种触控显示装置及其制备方法
TWM504287U (zh) * 2015-04-01 2015-07-01 Dynacard Co Ltd 具有指紋辨識功能的觸控面板
TWI597647B (zh) * 2015-09-16 2017-09-01 瑞鼎科技股份有限公司 電容式壓力感測觸控面板
TWI605369B (zh) * 2016-08-31 2017-11-11 晨星半導體股份有限公司 互容式壓力感測器以及具有壓力感測功能之觸控顯示裝置與其壓力感測方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512728A (zh) * 2005-09-15 2009-08-19 应用材料股份有限公司 增加封装膜透光度的方法
CN201622554U (zh) * 2010-02-04 2010-11-03 深圳市汇顶科技有限公司 一种电容式触摸传感器、触摸检测装置及触控终端
WO2017060572A1 (en) * 2015-10-09 2017-04-13 Inkron Oy Electrically conductive siloxane particle films, and devices with the same
CN206657340U (zh) * 2017-03-30 2017-11-21 昆山国显光电有限公司 有机发光二极管触摸屏
CN108037846A (zh) * 2017-11-30 2018-05-15 云谷(固安)科技有限公司 一种触控显示面板及其制备方法、触控显示装置
CN108153445A (zh) * 2017-11-30 2018-06-12 云谷(固安)科技有限公司 一种触控显示面板和触控显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625127A (zh) * 2020-05-11 2020-09-04 武汉华星光电半导体显示技术有限公司 触控装置及触控基板

Also Published As

Publication number Publication date
TWI665594B (zh) 2019-07-11
US20200285347A1 (en) 2020-09-10
TW201839587A (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2019105051A1 (zh) 一种触控显示面板及其制备方法、触控显示装置
WO2019105049A1 (zh) 一种触控显示面板和触控显示装置
US11093066B2 (en) Touch substrate and manufacturing method thereof, touch display panel and touch display apparatus
JP5236696B2 (ja) タッチスクリーンパネル及びその製造方法
CN202677328U (zh) 电极串和用于触摸屏的面板
US9229554B2 (en) Touch screen panel for display device
TWI588730B (zh) 電容式觸控結構及其觸控顯示裝置
CN207909093U (zh) 一种触控显示面板和触控显示装置
WO2017004975A1 (zh) 电容触摸屏及其制备方法、触控装置
WO2014044049A1 (zh) 触控式液晶显示装置
CN108037846B (zh) 一种触控显示面板及其制备方法、触控显示装置
US9298330B2 (en) Capacitive touch panel having complementarily matching adjacent electrode units and display device including the capacitive touch panel
US20140152915A1 (en) Touch panel
TWM505004U (zh) 觸控面板
WO2015021619A1 (zh) 电容触控单元及电容式触摸屏
US9798426B2 (en) Touch panel and method of manufacturing thereof
WO2019105050A1 (zh) 一种触控显示面板和触控显示装置
JP2013168125A (ja) タッチパネル
KR101481978B1 (ko) 센싱 패턴을 포함하는 터치 패널
CN207833470U (zh) 一种触控显示面板和触控显示装置
EP3796137A1 (en) Touch panel, touch display panel, and touch display device
KR20160012690A (ko) 정전용량방식의 터치 패널
TW201531912A (zh) 觸控面板
TWI702527B (zh) 觸控面板
KR20150014106A (ko) 터치 스크린 패널 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18883103

Country of ref document: EP

Kind code of ref document: A1