WO2019104752A1 - 一种用于模型试验的微型全断面钻孔布置装置及其应用 - Google Patents

一种用于模型试验的微型全断面钻孔布置装置及其应用 Download PDF

Info

Publication number
WO2019104752A1
WO2019104752A1 PCT/CN2017/114989 CN2017114989W WO2019104752A1 WO 2019104752 A1 WO2019104752 A1 WO 2019104752A1 CN 2017114989 W CN2017114989 W CN 2017114989W WO 2019104752 A1 WO2019104752 A1 WO 2019104752A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
radial
track
drilling
controller
Prior art date
Application number
PCT/CN2017/114989
Other languages
English (en)
French (fr)
Inventor
李术才
许振浩
潘东东
黄鑫
王欣桐
高斌
王文扬
赵晓成
林鹏
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to AU2017417167A priority Critical patent/AU2017417167B2/en
Publication of WO2019104752A1 publication Critical patent/WO2019104752A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention relates to a miniature full-section drilling arrangement device for model test and an application thereof, and belongs to the technical field of tunnel excavation test devices.
  • the radial rail portion comprises a radial rail and a high-strength bolt, and the two ends of the radial rail are connected with a high-strength bolt, and the high-strength bolt is fixedly connected to the driven flywheel through the track groove.
  • the advantage of this design is that the first driving motor provides power, and the driven flywheel is driven to rotate by the crank disk, and then the radial guide rail can be rotated circumferentially along the track groove by the driven flywheel, and then can be connected through different track grooves. The flywheel is driven to ensure full coverage.
  • the drill portion includes a micro motor and a drill bit, and the drill bit is combined with an output shaft of the micro motor, and the micro motor is electrically connected to the controller.
  • the combined connection method is convenient for disassembling the drill bit and replacing the drill bit of different diameters to meet different operation requirements.
  • three said support portions are disposed on the outer side of the annular guide rail, and the three support portions are evenly distributed on the outer circumference of the annular guide rail.
  • the two sides of the annular guide rail are provided with a traveling frame, and the bottom end of the traveling frame is provided with a pulley, and the pulley is located in the strip-shaped rail groove.
  • the controller selects a single chip microcomputer.
  • a method of using a miniature full-section drilling arrangement for a model test comprises the following steps:
  • the controller controls the support portion to be activated, and the support portion extends to hang the drilling mechanism in the model test tunnel space, and then removes the track mechanism;
  • the controller adjusts the rotation of the radial rail and the linear movement of the drill portion on the radial rail, and finally aligns the drill bit with the position to be punched;
  • the controller starts the micro motor, and the micro motor drives the drill bit to perform the punching operation;
  • the drilling arrangement device of the invention has scientific and reasonable structural design and high degree of automation, and can be automatically operated by the controller, which effectively solves the problem that the traditional method is difficult to punch in the whole section of the model experimental tunnel, and the punching precision is accurate and high. .
  • the drilling arrangement device of the invention can select different radial guide rails according to different experimental models, and can realize the covering of the whole section of the model experiment by the drilling mechanism and the punching of any position, and can be applied to various rails.
  • Experimental model The drilling arrangement device of the invention can select different radial guide rails according to different experimental models, and can realize the covering of the whole section of the model experiment by the drilling mechanism and the punching of any position, and can be applied to various rails. Experimental model.
  • the drilling arrangement device of the present invention effectively fixes the entire drilling mechanism through the support portion to ensure efficient and stable operation of the drill portion.
  • FIG. 1 is a schematic view showing the overall structure of a drilling arrangement device of the present invention
  • Figure 3 is a schematic structural view of a radial guide rail according to the present invention.
  • Figure 4 is a schematic structural view of a supporting fixture in the present invention.
  • the embodiment provides a miniature full-section drilling arrangement device for model test
  • the drilling arrangement device mainly comprises three parts: a track mechanism, a drilling mechanism and a controller, wherein the drilling hole
  • the mechanism is disposed on the track mechanism and moves along the track mechanism to adjust the entire drilling mechanism to move to the full-section working position of the model experimental area.
  • the drilling mechanism is a main working portion, and includes an annular rail portion, a radial rail portion, a drill portion and a support portion. Both ends of the radial rail portion are located on the annular rail portion and can be circumferentially rotated along the annular rail portion.
  • the portion is mounted on the radial rail portion and linearly movable along the radial rail portion, and the support portion is located outside the annular rail portion for fixing the entire drilling mechanism, and the controller is respectively associated with the annular rail portion, the radial rail portion, the drill portion, and the support Department connection.
  • the rail mechanism comprises a strip-shaped double rail 1 and a telescopic bracket 2, the telescopic bracket 2 is located in the middle of the strip-shaped double rail 1 and is connected to the strip-shaped double rail 1, and the strip-shaped rail 1 is welded to the strip-shaped double rail 1.
  • the strip double rail 1 can realize the adjustment of the two double rail spacings through the telescopic bracket 2 to adapt to different drilling mechanisms, and the rail mechanism is a unit combination type, and the rail mechanism can be extended by the rail mechanism connecting the same unit, which can satisfy the drilling. The long distance movement of the hole mechanism.
  • the annular track portion includes an annular guide rail 3, a driven flywheel 16, a first drive motor 18, and a crankset 17, and the annular guide rail 3 is provided with a track groove 12, the track groove 12 is a through-cavity type, and the first drive motor 18 is mounted on the annular guide rail.
  • the outer circumference of 3 is connected to the crankset 17, and the crankset 17 is meshed with the driven flywheel 16, and the first drive motor 18 is electrically connected to the controller 8.
  • two first drive motors 18 are symmetrically mounted on both ends of the outer circumference of the horizontal diameter of the annular guide rail 3, and are drivenly connected to the driven flywheel 16 via the two crank plates 17.
  • the radial rail portion includes a radial rail 4 and a high-strength bolt 14 .
  • the two ends of the radial rail 4 are respectively connected with a high-strength bolt 14 , and the high-strength bolt 14 is fixedly connected to the driven flywheel 16 through the track groove 12 .
  • Power is supplied from the first drive motor 18, and the driven flywheel 16 is rotated by the crank plate 17, and the radial guide rail 4 is circumferentially rotated along the track groove 12 by the driven flywheel 16.
  • the drill bit portion includes a micro motor 5 and a high-strength drill bit 6, and the high-strength drill bit 6 is combined with the output shaft of the micro motor 5, and the micro motor 5 is electrically connected to the controller 8.
  • the combined connection method is convenient for disassembling and disassembling the drill bit and replacing drill bits of different diameters to meet different operation requirements.
  • the bottom of the micro motor 5 is connected to two micro gears (not shown) through a bottom plate and the two micro gears are connected by a second drive motor 19, and the radial guides 4 are provided with radial slots 13 and micro gears.
  • the second drive motor 19 is driven to travel within the radial slot 13 and the second drive motor 19 is electrically coupled to the controller 8.
  • the output shaft of the second driving motor is fixedly connected to the micro gear, and the one end is connected to the bottom plate through a bearing, and the second driving motor 19 drives the micro gear to move linearly along the radial tooth groove 13, that is, the drill portion can be adjusted by the second driving motor 19.
  • the position on the radial rail cooperates with the rotation of the driven flywheel 16 to achieve drilling of any position at any position.
  • the support portion 7 is a servo electric cylinder, and the servo electric cylinder is electrically connected to the controller 8.
  • three said support portions 7 are mounted on the outer side of the annular guide rail 3, and the three support portions 7 are evenly distributed on the outer circumference of the annular guide rail.
  • a traveling frame is mounted, and a pulley 9 is mounted at the bottom end of the traveling frame, and the pulley 9 is located in the strip-shaped rail groove 11.
  • the drilling mechanism is moved by the walking of the pulley 9 within the strip track to move the drilling mechanism to the model experimental work area.
  • the controller 8 selects a single chip microcomputer, and the driver program can be written in advance in the single chip microcomputer, and the first driving motor 18, the second driving motor 19, the micro motor 5, and the servo electric cylinder are all connected to the controller through the data transmission line 10, The controller controls the respective work operations.
  • a miniature full-section drilling arrangement device for model test the structure is as described in Embodiment 1, except that three circular concentric circular orbit grooves 12 are formed in the annular guide rail 3.
  • the radial guide rails 4 of different diameters can be selected according to different experimental models, and the high-strength bolts 14 at both ends of the radial guide rails 4 can be fixedly connected to the driven flywheel 16 through the corresponding track slots 12, thereby realizing different model areas. Sectional work.
  • a method for using a miniature full-section drilling arrangement device for model testing, using the drilling arrangement device described in Embodiment 1, the specific operation process is as follows:
  • the controller 8 controls the first drive motor 18 and the second drive motor 19 to start the operation to adjust the rotation of the radial guide 4 and the linear movement of the drill portion on the radial guide 4, and finally to align the high-strength drill 6 Punch position;
  • the controller 8 controls the start of the micro motor 5, and the micro motor 5 drives the high strength bit 6 to perform the punching operation;
  • the high-strength drill 6 is adjusted to other positions where punching is required, and the punching operation at other positions is completed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Earth Drilling (AREA)

Abstract

一种用于模型试验的微型全断面钻孔布置装置及其应用,包括轨道机构、钻孔机构和控制器(8),钻孔机构设置在轨道机构上并沿其移动,钻孔机构包括环形轨道部、径向轨道部、钻头部和支撑部(7),径向轨道部的两端位于环形轨道部上并可沿其作周向旋转,钻头部设置在径向轨道部上并可沿其直线移动,支撑部位于环形轨道部外侧用于固定整个钻孔机构,控制器分别与环形轨道部、径向轨道部、钻头部、支撑部连接。该钻孔布置装置结构设计科学合理、自动化程度高,解决了传统方式在模型实验隧道全断面打孔难的问题,打孔精度准效率高,并能实现钻孔机构对模型实验全断面的覆盖以及任何位置的打孔,适用于各种规格的实验模型。

Description

一种用于模型试验的微型全断面钻孔布置装置及其应用 技术领域
本发明涉及一种用于模型试验的微型全断面钻孔布置装置及其应用,属于隧道挖掘试验装置技术领域。
背景技术
由于隧道钻爆法施工具有经济、高效及对地质适应能力强的明显优势,所以至今仍是我国隧道掘进施工中的最重要和最常用的技术手段。我国已建成的各类隧道、隧洞计约万座,其中90%以上是用隧道爆破的方法完成掘进施工的。可以说,在我国百年以来的隧道建设发展历史中,有很大的篇章就是隧道爆破技术的发展历史。然而,在隧道开挖过程中由于爆破开挖扰动影响,诱发各种地质灾害给隧道建设带来了极大的困难。大型物理模型试验作为揭示爆破开挖扰动机理的重要研究手段,可以实现隧道开挖过程多元信息的采集与分析,对于指导隧道爆破施工具有重要意义。研究发现,由工程尺度到物理模型试验尺度钻孔的合理布置成为制约试验开展的难点。模型试验隧道跨度一般较小,随着掌子面的逐步推进,深部掌子面钻孔布置愈加困难。目前,模型实验领域尚没有在隧道全断面实现钻孔自动布置的装置及方法。
发明内容
针对现有技术的不足,本发明提供一种用于模型试验的微型全断面钻孔布置装置。
本发明还提供上述一种用于模型试验的微型全断面钻孔布置装置的使用方法。
本发明的技术方案如下:
一种用于模型试验的微型全断面钻孔布置装置,包括轨道机构、钻孔机构和控制器,所述钻孔机构设置在轨道机构上并沿轨道机构移动,所述钻孔机构包括环形轨道部、径向轨道部、钻头部和支撑部,径向轨道部的两端位于环形轨道部上并可沿环形轨道部作周向旋转,钻头部设置在径向轨道部上并可沿径向轨道部直线移动,支撑部位于环形轨道部外侧用于固定整个钻孔机构,控制器分别与环形轨道部、径向轨道部、钻头部、支撑部连接。
优选的,所述轨道机构包括条形双轨和伸缩支架,伸缩支架位于条形双轨中间并连接条形双轨,条形双轨上设置有条形轨槽。
优选的,所述环形轨道部包括环形导轨、从动飞轮、第一驱动电机以及牙盘,所述环形导轨上设置有多圈同心圆轨道槽,第一驱动电机安装在环形导轨的外周并与牙盘连接,牙盘与从动飞轮相啮合,第一驱动电机与控制器电连接。
优选的,所述径向轨道部包括径向导轨和高强螺栓,径向导轨的两端连接高强螺栓,高强螺栓穿过轨道槽与从动飞轮固定连接。此设计的好处在于,由第一驱动电机提供动力,通过牙盘带动从动飞轮转动,进而通过从动飞轮可实现径向导轨沿轨道槽作周向转动,后续可通过不同的轨道槽来连接从动飞轮,从而保证全断面的覆盖。
优选的,所述钻头部包括微型电机和钻头,钻头与微型电机的输出轴组合式连接,微型电机与控制器电连接。此设计的好处在于,采用组合式的连接方式,方便后期将钻头拆装下来更换不同直径的钻头,用于满足不同的作业要求。
优选的,所述微型电机的底部设置有两个微型齿轮且两个微型齿轮通过第二驱动电机传动连接,径向导轨上开设有径向齿槽,微型齿轮位于径向齿槽内由第二驱动电机驱动行走,第二驱动电机与控制器电连接。此设计的好处在于,通过第二驱动电机可调整钻头部在径向导轨上的位置,配合从动飞轮的转动,从而实现全断面任意位置的钻孔。
优选的,所述支撑部选用伺服电缸,伺服电缸与控制器电连接。
优选的,在环形导轨的外侧设置有三个所述的支撑部,三个支撑部均布在环形导轨的外周。
优选的,所述环形导轨的两侧设置有行走架,行走架的底端设置有滑轮,滑轮位于条形轨槽内。
优选的,所述控制器选用单片机。
一种用于模型试验的微型全断面钻孔布置装置的使用方法,包括以下步骤:
(1)在模型试验区铺设轨道机构,选择合适的高强钻头安装在微型电机上;
(2)将整个钻孔机构放置在轨道机构上,滑轮置于条形轨槽内,然后将整个钻孔机构移动到模型试验的作业区;
(3)钻孔机构到达作业区后,控制器控制支撑部启动,支撑部伸出将钻孔机构架空于模型试验隧道空间内,然后移除轨道机构;
(4)控制器调整径向导轨的旋转以及钻头部在径向导轨上的直线移动,最终使钻头对准所要打孔的位置;
(5)控制器启动微型电机,微型电机驱动钻头进行打孔作业;
(6)依照步骤(4)和步骤(5)的方法,完成其他位置的打孔作业。
本发明的有益效果在于:
1、本发明钻孔布置装置,其结构设计科学合理、自动化程度高,可由控制器实现自动化操作,有效解决了传统方式在模型实验隧道全断面打孔难的问题,打孔精度准、效率高。
2、本发明钻孔布置装置,能够根据不同的实验模型,来选择不同的径向导轨,可实现钻孔机构对模型实验全断面的覆盖以及任何位置的打孔,能适用于各种轨格的实验模型。
3、本发明钻孔布置装置,通过支撑部来有效固定整个钻孔机构,以保证钻头部作业时的高效稳定。
附图说明
图1为本发明钻孔布置装置的整体结构示意图;
图2为本发明中钻孔机构的结构示意图;
图3为本发明中径向导轨的结构示意图;
图4为本发明中支撑固定装置的结构示意图;
其中:1.条形双轨;2.伸缩支架;3.环形导轨;4.径向导轨;5.微型电机;6.高强钻头;7.支撑部;8.控制器;9.滑轮;10.数据传输线;11.条形轨槽;12.轨道槽;13.径向齿槽;14.高强螺栓;15.伸缩臂;16.从动飞轮;17.牙盘;18.第一驱动电机;19.第二驱动电机。
具体实施方式
下面通过实施例并结合附图对本发明做进一步说明,但不限于此。
实施例1:
如图1至图4所示,本实施例提供一种用于模型试验的微型全断面钻孔布置装置,该钻孔布置装置主要包括轨道机构、钻孔机构和控制器三部分,其中钻孔机构设置在轨道机构上并沿轨道机构移动,从而调节整个钻孔机构移动到模型实验区的全断面工作位置。钻孔机构是主要的作业部分,其包括环形轨道部、径向轨道部、钻头部和支撑部,径向轨道部的两端位于环形轨道部上并可沿环形轨道部作周向旋转,钻头部安装在径向轨道部上并可沿径向轨道部直线移动,支撑部位于环形轨道部外侧用于固定整个钻孔机构,控制器分别与环形轨道部、径向轨道部、钻头部、支撑部连接。
轨道机构包括条形双轨1和伸缩支架2,伸缩支架2位于条形双轨1中间并连接条形双轨1,条形双轨1上焊接有条形轨槽11。条形双轨1可通过伸缩支架2实现两个双轨间距的调整,以适应不同的钻孔机构,另外轨道机构为单元组合式,可通过连接相同单元的轨道机构实现轨道机构的延长,可满足钻孔机构的长距离移动。
环形轨道部包括环形导轨3、从动飞轮16、第一驱动电机18以及牙盘17,环形导轨3上开设有轨道槽12,轨道槽12为通腔式,第一驱动电机18安装在环形导轨3的外周并与牙盘17连接,牙盘17与从动飞轮16相啮合,第一驱动电机18与控制器8电连接。本实施例中,在环形导轨3的水平直径的外周两端对称安装两个第一驱动电机18,并通过两个牙盘17与从动飞轮16从动连接。
径向轨道部包括径向导轨4和高强螺栓14,径向导轨4的两端分别连接高强螺栓14,高强螺栓14穿过轨道槽12与从动飞轮16固定连接。由第一驱动电机18提供动力,通过牙盘17带动从动飞轮16转动,进而通过从动飞轮16可实现径向导轨4沿轨道槽12作周向转动。
钻头部包括微型电机5和高强钻头6,高强钻头6与微型电机5的输出轴组合式连接,微型电机5与控制器8电连接。采用组合式的连接方式,方便后期将钻头拆装下来更换不同直径的钻头,用于满足不同的作业要求。
微型电机5的底部通过一底板连接有两个微型齿轮(图中未示出)且两个微型齿轮通过第二驱动电机19传动连接,径向导轨4上开设有径向齿槽13,微型齿轮位于径向齿槽13内由第二驱动电机19驱动行走,第二驱动电机19与控制器8电连接。第二驱动电机的输出轴与微型齿轮固定连接后一端通过轴承连接在底板上,由第二驱动电机19带动微型齿轮沿径向齿槽13直线移动,即通过第二驱动电机19可调整钻头部在径向导轨上的位置,配合从动飞轮16的转动,从而实现全断面任意位置的钻孔。
支撑部7选用伺服电缸,伺服电缸与控制器8电连接。本实施例中,在环形导轨3的外侧安装有三个所述的支撑部7,三个支撑部7均布在环形导轨的外周。
另外环形导轨3的两侧还安装有行走架,行走架的底端安装有滑轮9,滑轮9位于条形轨槽11内。通过滑轮9在条形轨槽内的行走来移动钻孔机构,从而将钻孔机构移动到模型实验作业区。本实施例中,控制器8选用单片机,单片机内可事先写入驱动程序,第一驱动电机18、第二驱动电机19、微型电机5、伺服电缸均通过数据传输线10与控制器连接,由控制器控制各自的工作运行。
实施例2:
一种用于模型试验的微型全断面钻孔布置装置,结构如实施例1所述,其不同之处在于:环形导轨3上开设有三圈同心圆轨道槽12。后续可根据不同的实验模型选择不同直径大小的径向导轨4,将径向导轨4两端的高强螺栓14穿过相应的轨道槽12与从动飞轮16固定连接即可,从而实现不同模型面积全断面的作业。
实施例3:
一种用于模型试验的微型全断面钻孔布置装置的使用方法,采用实施例1所述的钻孔布置装置,其具体操作过程如下:
(1)在模型试验区铺设轨道机构,根据钻孔机构需要行走的距离可选择多单元的轨道机构连接起来,同时利用伸缩支架将条形双轨两侧的双轨调整到与滑轮相适应的间距,根据实验要求选择合适的高强钻头6安装在微型电机5上;
(2)将整个钻孔机构放置在轨道机构上,滑轮9放置在条形轨槽11内,然后将整个钻孔机构移动到模型试验的作业区;
(3)钻孔机构到达作业区后,控制器8控制支撑部7启动,伺服电缸的伸缩臂15(活塞杆)伸出将钻孔机构架空于模型试验隧道空间内,使其与条形双轨1脱离,进而维持钻孔机构足够的稳定性,然后移除轨道机构;
(4)控制器8控制第一驱动电机18和第二驱动电机19启动作业,来调整径向导轨4的旋转以及钻头部在径向导轨4上的直线移动,最终使高强钻头6对准所要打孔的位置;
(5)控制器8控制启动微型电机5,微型电机5驱动高强钻头6进行打孔作业;
(6)依照步骤(4)和步骤(5)的方法,将高强钻头6调整到其他需要打孔的位置,完成其他位置的打孔作业。

Claims (10)

  1. 一种用于模型试验的微型全断面钻孔布置装置,其特征在于,包括轨道机构、钻孔机构和控制器,所述钻孔机构设置在轨道机构上并沿轨道机构移动,所述钻孔机构包括环形轨道部、径向轨道部、钻头部和支撑部,径向轨道部的两端位于环形轨道部上并可沿环形轨道部作周向旋转,钻头部设置在径向轨道部上并可沿径向轨道部直线移动,支撑部位于环形轨道部外侧用于固定整个钻孔机构,控制器分别与环形轨道部、径向轨道部、钻头部、支撑部连接。
  2. 如权利要求1所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述轨道机构包括条形双轨和伸缩支架,伸缩支架位于条形双轨中间并连接条形双轨,条形双轨上设置有条形轨槽。
  3. 如权利要求2所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述环形轨道部包括环形导轨、从动飞轮、第一驱动电机以及牙盘,所述环形导轨上设置有多圈同心圆轨道槽,第一驱动电机安装在环形导轨的外周并与牙盘连接,牙盘与从动飞轮相啮合,第一驱动电机与控制器电连接。
  4. 如权利要求3所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述径向轨道部包括径向导轨和高强螺栓,径向导轨的两端连接高强螺栓,高强螺栓穿过轨道槽与从动飞轮固定连接。
  5. 如权利要求3所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述钻头部包括微型电机和钻头,钻头与微型电机的输出轴组合式连接,微型电机与控制器电连接。
  6. 如权利要求5所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述微型电机的底部设置有两个微型齿轮且两个微型齿轮通过第二驱动电机传动连接,径向导轨上开设有径向齿槽,微型齿轮位于径向齿槽内由第二驱动电机驱动行走,第二驱动电机与控制器电连接。
  7. 如权利要求3所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述支撑部选用伺服电缸,伺服电缸与控制器电连接;
    在环形导轨的外侧设置有三个所述的支撑部,三个支撑部均布在环形导轨的外周。
  8. 如权利要求3所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所 述环形导轨的两侧设置有行走架,行走架的底端设置有滑轮,滑轮位于条形轨槽内。
  9. 如权利要求1所述的用于模型试验的微型全断面钻孔布置装置,其特征在于,所述控制器选用单片机。
  10. 一种如权利要求1-9任一项所述的用于模型试验的微型全断面钻孔布置装置的使用方法,包括以下步骤:
    (1)在模型试验区铺设轨道机构,选择合适的高强钻头安装在微型电机上;
    (2)将整个钻孔机构放置在轨道机构上,滑轮置于条形轨槽内,然后将整个钻孔机构移动到模型试验的作业区;
    (3)钻孔机构到达作业区后,控制器控制支撑部启动,支撑部伸出将钻孔机构架空于模型试验隧道空间内,然后移除轨道机构;
    (4)控制器调整径向导轨的旋转以及钻头部在径向导轨上的直线移动,最终使钻头对准所要打孔的位置;
    (5)控制器启动微型电机,微型电机驱动钻头进行打孔作业;
    (6)依照步骤(4)和步骤(5)的方法,完成其他位置的打孔作业。
PCT/CN2017/114989 2017-11-28 2017-12-07 一种用于模型试验的微型全断面钻孔布置装置及其应用 WO2019104752A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2017417167A AU2017417167B2 (en) 2017-11-28 2017-12-07 A Miniature Full-Face Borehole Arrangement Device for Model Test and Its Application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711218228.8A CN108020650B (zh) 2017-11-28 2017-11-28 一种用于模型试验的微型全断面钻孔布置装置及其应用
CN201711218228.8 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019104752A1 true WO2019104752A1 (zh) 2019-06-06

Family

ID=62077252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114989 WO2019104752A1 (zh) 2017-11-28 2017-12-07 一种用于模型试验的微型全断面钻孔布置装置及其应用

Country Status (2)

Country Link
CN (1) CN108020650B (zh)
WO (1) WO2019104752A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109290429B (zh) * 2018-09-29 2020-08-07 深圳龙图腾创新设计有限公司 一种汽车轴类打孔装置
CN111720122B (zh) * 2020-05-25 2022-04-29 浙江中智物联科技集团有限公司 一种立体停车库竖井掘进装置
CN113404525B (zh) * 2021-07-21 2022-06-28 太原理工大学 环式钻锚机
CN117583894B (zh) * 2023-11-14 2024-04-30 佛山市高明左右铝业有限公司 型材自动装夹多面钻铣加工系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106388A (ja) * 1991-10-15 1993-04-27 Tone Chika Gijutsu Kk 削孔ジヤンボおよびそれを用いたパイプルーフ工法
CN102251747A (zh) * 2011-06-20 2011-11-23 北京首尔工程技术有限公司 拱形钻机机架
CN102720432A (zh) * 2012-06-28 2012-10-10 中国水利水电第七工程局成都水电建设工程有限公司 自行式坑道钻孔台车
CN204402351U (zh) * 2014-11-28 2015-06-17 西安众智惠泽光电科技有限公司 一种钻孔孔位及深度自调节式隧道爆破钻孔装置
CN204402350U (zh) * 2014-11-28 2015-06-17 西安众智惠泽光电科技有限公司 隧道爆破施工用爆破钻孔装置
CN204421776U (zh) * 2014-11-30 2015-06-24 西安众智惠泽光电科技有限公司 一种自动旋转式隧道爆破施工车
CN204535578U (zh) * 2014-12-02 2015-08-05 长安大学 一种隧道爆破开挖施工用旋转托架

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336394A (ja) * 1989-06-30 1991-02-18 Komatsu Ltd 小口径穿孔装置
CN2144229Y (zh) * 1992-12-03 1993-10-20 王松勃 组合式双轨道水平管道推进装置
JP2008208695A (ja) * 2007-02-26 2008-09-11 Yamazaki Haguruma Seisakusho:Kk レ−ル底部把持型のレール用穴あけ機
BRPI0914249A2 (pt) * 2008-06-23 2015-11-03 Pluton Resources Ltd estrutura de suporte para equipamento de perfuração de amostra geológica, e, método para localizar equipamento de perfuração de amostra geológica para utilização.
CN201714393U (zh) * 2010-03-26 2011-01-19 甘忠荣 多功能全断面隧道挖掘机
CN105696939A (zh) * 2014-11-28 2016-06-22 西安众智惠泽光电科技有限公司 一种钻孔孔位及深度自调节式隧道爆破钻孔装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106388A (ja) * 1991-10-15 1993-04-27 Tone Chika Gijutsu Kk 削孔ジヤンボおよびそれを用いたパイプルーフ工法
CN102251747A (zh) * 2011-06-20 2011-11-23 北京首尔工程技术有限公司 拱形钻机机架
CN102720432A (zh) * 2012-06-28 2012-10-10 中国水利水电第七工程局成都水电建设工程有限公司 自行式坑道钻孔台车
CN204402351U (zh) * 2014-11-28 2015-06-17 西安众智惠泽光电科技有限公司 一种钻孔孔位及深度自调节式隧道爆破钻孔装置
CN204402350U (zh) * 2014-11-28 2015-06-17 西安众智惠泽光电科技有限公司 隧道爆破施工用爆破钻孔装置
CN204421776U (zh) * 2014-11-30 2015-06-24 西安众智惠泽光电科技有限公司 一种自动旋转式隧道爆破施工车
CN204535578U (zh) * 2014-12-02 2015-08-05 长安大学 一种隧道爆破开挖施工用旋转托架

Also Published As

Publication number Publication date
CN108020650A (zh) 2018-05-11
CN108020650B (zh) 2020-08-25
AU2017417167A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2019104752A1 (zh) 一种用于模型试验的微型全断面钻孔布置装置及其应用
CN204556351U (zh) 一种三轴压缩实验原状试样制备装置
CN105547741A (zh) 一种用于全自动多功能取芯机的钻头转换装置
CN205977091U (zh) 一种萤石矿勘探钻取装置
CN201865610U (zh) 一种轻型取芯钻机
CN206882832U (zh) 钻孔机
CN112443286B (zh) 一种井下油套管等离子切割装置及方法
CN108176875A (zh) 用于地热井滤水管的数控气动多头钻床
CN205743689U (zh) 一种隧道支护钻孔机器人
CN103072003B (zh) 装配式凸轮轴的装配机构
CN107327305A (zh) 一种管幕施工多轴动力头及具有该动力头的管排顶进管幕机
CN206046915U (zh) 一种锁芯盖板旋铆装置
CN108058964B (zh) 一种双转盘上料装置
CN207300617U (zh) 用于软岩取芯的钻机
CN206775351U (zh) 一种电机装配专用结构
CN205117248U (zh) 油田卸扣机
CN203390511U (zh) 热交换器串片机
CN106216560A (zh) 一种锁芯盖板旋铆装置及使用方法
CN107701196A (zh) 龙门架凿岩掘进车
CN213297842U (zh) 一种岩土勘察设计用具有调节结构的钻探装置
CN212743878U (zh) 一种高瓦斯地段隧道施工用爆破钻孔装置
CN207701138U (zh) 龙门架凿岩掘进车
CN207033491U (zh) 一种矿井顶板离层仪锚固器安装装置
CN207013747U (zh) 一种钻孔装置
CN105772786A (zh) 一种在线式自动钻孔机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017417167

Country of ref document: AU

Date of ref document: 20171207

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.10.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17933562

Country of ref document: EP

Kind code of ref document: A1